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statistical distance between individual map scores, the ability to define map-score quantiles, a 

reduction in grading bias, and an overall improvement in the reliability and validity of concept 

map evaluation. Empirical support for underlying probability distributions is presented and 

mathematical aspects are discussed. Tables of concept map score distributions for one branch 

and one node are provided and may be used to very quickly assign concept map scores based on 

one branch and one node. 
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A concept map is a two-dimensional hierachical diagram that reflects how 

knowledge is organized. Concept maps are often used to evaluate science and math knowledge 

and are generally accepted as viable evaluation and research instruments. Concept maps may 

also be used as pre-assessment and post-assessment instruments, to assist in the clarification, 

consolidation, and reinforcement of knowledge, and in sequencing concepts in lessons and 

curricula. 

A concept map hierarchy has the most general concepts in the center (or at the top) 

and has branches that extend outward to the most specific concepts. Because of the hierarchical 

structure, concept maps reveal students’ understandings of relationships between concepts in 

various areas and provide an alternative to traditional testing instruments. Moreover, concept 

maps measure a dimension of knowledge that is not usually assessed by traditional tests. 

STRUCTURE 

Concept maps might contain only concepts and connecting links (or arrows). 

 

 

Concept maps might also contain propositions on the links between concepts. 



 

TESTING 

Concept map tests range from formats where students start with a blank piece of 

paper, to formats where lists of concept and relating propositions are provided, to where students 

start with a pre-arranged map structure with designated spaces for concepts and. In all cases, a 

key or base concept is provided. 

 

Students develop a list of related concepts from memory, from class notes and/or text book, or 

students may be given a list of concepts and/or propositions. Usually, the concepts are then 

organized into groups ranging from the most general, inclusive concepts to the most specific, 

least inclusive concepts.  

SCORING 

Typically, scores assigned to concept maps are based on the number of times various 

map features correctly appear in the maps. For example, the number of concepts, the number of 

hierarchy levels, the number of cross-links, the number of propositions, and/or the number of 



examples can all be use to compute a score. To help with the scoring process, the scorer might 

refer to lists of concepts, cross-links, propositions, and examples derived from expert-prepared 

maps so that a score reflect the similarity between the graded map and an expert map. After 

frequencies are found, the numbers might be weighted to give more credit to some features over 

others. For example, features might be weighted by 1 for each concept, 1 for each proposition, 2 

for each example, 3 for the number of hierachy levels, and 3 for each cross-link. The weighted 

numbers are then added together to get a total performance score.  

Figure 1. 

 

The map in Figure 1 has eight concepts (not counting the base concept), zero 

propositions, zero examples, two hierarchy levels, and two crosslinks. Assuming all features are 

correct, the score for this map would be 1X8 + 1X0 + 2X0 + 3X2 + 3X2 = 20. One problem with 

this scoring methodology, however, is that highly dissimilar maps can end up with similar 

scores. For example, the map in Figure 2 has five concepts (not counting the base concept), zero 

propositions, zero examples, five hierarchy levels, and zero crosslinks. Assuming all features are 

correct, the score would be 1X5 + 1X0 + 2X0 + 3X5 + 3X0 = 20. 

Figure 2. 



 

A SCORING METHODOLOGY 

After observing many concept maps drawn by many students, there are two concept 

map features that stand out in their ability to reflect the level of understanding shown in the 

concept map construction. These two features are the breadth of the map and depth of the map. 

That is, students with a better understanding of a particular domain tend to draw maps with a 

greater number of branches and a greater average branch length than do students with a poorer 

understanding in the domain. Thus, a straightforeward way to grade concept maps is to base the 

score on the average number of branches eminating from nonterminal concept nodes, and the 

average branch length. For example, Figure 3 shows how the average number of branches 

eminating from nonterminal concept nodes would be calculated for a particular concept map. 

Figure 3. 

 

score=(6+1+4+1+1+1+1+1+2+4+4)/11 = 2.36 branches per nonterminal concept 



The greatest advantage in using the average number of branches eminating from 

nonterminal concept nodes together with the average branch length is that relative performance 

information becomes readily available. Specifically, relative performance scoring methods 

assume there is an underlying probability distribution that describes the concept maps scores. 

Even though debates continue as to whether relative-performance grading methods are better 

than performance-based methods in general, the advantages of grading concept maps “on a 

curve” are many. The relative performance method described below gives the ability to estimate 

and compare the complexity of different concept maps, the ability to measure the statistical 

distance between individual map scores, the ability to define map-score quantiles, a reduction in 

grading bias, and an overall improvement in the reliability and validity of concept map 

evaluation.  

When concept maps with large numbers of both nonterminal and terminal concepts 

are scored based on the average number of branches eminating from nonterminal concepts and 

the average branch length, the conditions of the Central Limit Theorem are fairly well met. As 

the numbers increase, the distribution of the standardized scores approaches a normal probability 

distribution and all the advantages of “normed” grading method can be realized. However, if the 

numbers of nonterminal and terminal concepts are small, using a continuous normal distribution 

to model scores computed from discrete variables is not appropriate. Moreover, scoring large 

concept maps is generally not accurite and too time consuming.  Instead, it is better to test 

students in very specific knowledge domains so that their maps are compact and manageable.  

In the nearly 40 years that concept maps have been used as knowledge-evaluating 

instruments, no advancements have significantly improved concept-map assessment. However, 

goodness-of-fit tests reveal that when concept maps are scored using the average number of 

branches eminating from nonterminal concepts and the average branch length, the scores are 

accurately described by a certain type of modified joint Poisson distribution. The theoretical 



argument for why a Poisson model describes the number of branches eminating from 

nonterminal concept nodes is as follows: 

WHY A POISSON DISTRIBUTION 

For the number of branches eminating from nonterminal concepts, consider all concepts 

that could be correctly linked to a specific node. Partition these concepts into classes of equal 

difficulty. That is, create sets of concepts of the same cognitive level. Call the sets difficulty 

classes. If n concepts are in a difficulty class, the probability that x out of n are linked to a 

specific node is given by a binomial probability model provided the following two conditions 

hold: 

(i) the chance of selecting any new concept is constant for all concepts (uniformity), and 

(ii) branching to a new concept is independent of any concept already in the map 

(independence).  

In general, condition (ii) above does not hold. However, if a linked concept within a 

difficulty class is counted only when no other linked concepts are hints for (correlated with) any 

other linked concept, then the independence assumption is reasonable. 

If the uniformity and independence assumptions hold, and if the number of concepts 

within each difficulty class is large, then, the Poisson distribution approximates the probability 

that x concepts are selected. Further, if the difficulty classes are independent, then the TOTAL 

number of concepts selected over ALL difficulty classes also has a Poisson distribution.  

An important property of the Poisson distribution is that the mean number of concepts is 

the sum of the mean number of concepts for each of the difficulty classes. More specifically, let 



Y1 + Y2 be the sum of the numbers of concepts from the 1st and 2nd difficulty levels. It follows 

that if Y1 ~ P(m1) (Piosson with mean=m1) and if Y2 ~ P(m2), then Y1 + Y2 ~ P(m1 + m2).   

A similar argument could be made for branch lengths having a Poisson distribution. 

However, from an examination of concept map data it was found that the variance of branch 

length was less than the variance of the number of branches eminating from non-terminal nodes. 

Thus, a standard Poisson distribution (where the mean equals the variance) did not accurately 

describe the data.. The Conway-Maxwell-Poisson (CMP) distribution gave a fit that was better 

than the Poisson distribution because this distribution has a second parameter that affects the 

variance. But as with the Poisson distribution, the variance of the CMP distribution was still too 

large. A modification to a truncated CMP distribution that reduced the variance (see below) 

worked well in describing branch length and, moreover, only one parameter was needed. 

TRUNCATED DISTRIBUTIONS 

There is one more consideration in using Poisson and modified CMP models to 

describe concept map scores. A truncated Poisson model is used when the number of zero 

observations is unknown or unobserved, or if the population size is unknown. In the case of 

concept maps, the number of concepts that are NOT linked to a terminal node is unknown and 

unobserved, and in many cases, the number of concepts that might be linked to a given concept 

is unknown. 

Some other examples of when truncated Poisson models might be used are as 

follows. Consider the number of people with an infectious disease (e.g. measles) per household -

- the number of people that do not get sick varies with household size (population size). Consider 

the number of accidents in a factory -- the number of employees varies per factory, so the 

number who do not have accidents is unknown. Consider the number of butterflies caught in a 

net in one pass through a field -- the number of butterflies not caught is unknown. Consider the 



number of words that are repeated once, twice, three times, etc. -- the number of words repeating 

zero times is unknown. 

EMPIRICAL SUPPORT FOR TRUNCATED POISSON AND MODIFIED CMP MODELS 

The following five tables present the results of goodness-of-fit tests that show how closely 

truncated Poisson distributions fit the empirical distributions of the number of branches 

eminating from nonterminal concepts. 

The data in Table 1 show the number of links (branches) eminating from nonterminal concepts 

and the observed frequencies (for example, there were 29 nodes with 2 eminating branches) for 

students who completed concept maps in Class I. A chi-square test shows the empirical and 

truncated Poisson distributions are very close. One would have to accept a 70% chance of being 

wrong to conclude that the empirical and Poisson distributions were different. 

Table 1. 

 

   Data I    
No. links Obs Freq.  Mean Lambda Trunc Poisson Exp Freq (o-e)^2/e 

1 51   0.471116 47 0.32092 
2 29   0.319098 32 0.26535 
3 12   0.144089 14 0.40272 
4 5   0.048797 5 0.00296 
5 2   0.013220 1 0.34762 
6 1   0.002984 0 1.64867 
       

Total 100 1.81 1.3546 Chi-sq= 2.9882 Alpha = 

     
(k-1)  

= 5 d.f. 0.70 
 



 

The data in Table 2 show the number of branches eminating from nonterminal concepts and the 

observed frequency of each number (for example, there were 2 nodes having 6(not shown) 

eminating branches) for students who completed concept maps in Class II. A chi-square test 

shows the empirical and truncated Poisson distributions are very close. One would have to 

accept a 88% chance of being wrong to conclude that the empirical and Poisson distributions 

were different.  

Table 2. 



 

 

The data in Table 3 show the number of branches eminating from nonterminal concepts and the 

observed frequency of each number (for example, there were 5 nodes having 4 eminating 

branches) for students who completed concept maps in Class III. A chi-square test shows the 

empirical and truncated Poisson distributions are very close. One would have to accept a 91% 

chance of being wrong to conclude that the empirical and Poisson distributions were different. 

  Data II    

ObsFreq Mean  Lambda 
Trunc 

 Poisson Exp Freq (o-e)^2/e 
47   0.357616 51 0.28159 
52   0.320953 46 0.90565 
26   0.192032 27 0.05902 
11   0.086172 12 0.12495 
4   0.030935 4 0.03512 
2   0.009254 1 0.35793 
      

142 2.1478 1.7949 Chi-sq = 1.7642 Alpha  
     (n-1) = 5 d.f. =0.88 

 



Table 3. 

 

 

The data in Table 4 show the number of branches eminating from nonterminal concepts (x) and 

the observed frequency of each number (for example, there were 16 nodes having 2 eminating 

branches)  for students who completed concept maps in Class IV. A chi-square test shows the 

   Data III    
No.  

links Obs Freq Mean Lambda
Trunc 

 Poisson Exp Freq (o-e)^2/e 
1 24   0.4223 23 0.062380 
2 16   0.3235 17 0.123623 
3 8   0.1651 9 0.095032 
4 5   0.0632 3 0.733935 
5 1   0.0193 1 0.002089 
       
       

Total 54 1.944 1.5319 Chi-sq = 1.0170 Alpha= 
     (n-1) =4 df 0.91 

 



empirical and truncated Poisson distributions are very close. One would have to accept a 30% 

chance of being wrong to conclude that the empirical and Poisson distributions were different. 

Table 4. 

 

 

 x Poisson exp freq obs freq (o-e)^2/e 
x-bar=      
1.70149 1 0.514071 34 39 0.60298

 2 0.311063 21 16 1.124577
 3 0.125482 8 6 0.689302
 4 0.037965 3 5 2.372122
lambda= 5 0.009189 1 1 0.23994

1.2102      
      

N=67   chi-sq= 5.02892 alpha=0.30
 



The data in Table 5 show the number of branches eminating from nonterminal concepts (x) and 

the observed frequency of each number (for example, there were 58 nodes having 1 eminating 

branch)  for students who completed concept maps in Class V. A chi-square test shows the 

empirical and truncated Poisson distributions are very close. One would have to accept a 17% 

chance of being wrong to conclude that the empirical and Poisson distributions were different. 

Table 5. 

 

 x Poisson exp freq 
obs 
freq (o-e)^2/e 

x-bar=      
1.73 1 0.502475 50 58 1.196113 

 2 0.313601 31 23 2.22867 
 3 0.130482 13 11 0.3215 
 4 0.040718 4 5 0.211608 
 5 0.010165 1 2 0.951581 
 6 0.002115 0 1 2.940282 
Lambda =      
1.248226      

n=99  chi-sq = 7.849754
k-1 = 
5 d.f. 

alpha= 
0.17 

 



 

BRANCH LENGTH 

The following two tables present the results of goodness-of-fit tests that show how closely 

truncated and modified CMP distributions fit branch length data collected from two classes. 

The data in Table 6 show branch lengths and the observed frequency of each length (for 

example, there were 117 branches of length 2) for students who completed concept maps in 

Class VI. A chi-square test shows the empirical and truncated Poisson distributions are close. 

One would have to accept a 12.4% chance of being wrong to conclude that the empirical and 

modified CMP distributions were different. 

Table 6. 

Branch 
Length 

Obs 
Freq Mean Lambda  Dist 

Exp 
Freq (o-e)^2/e

1 58   0.3 66 0.88 
2 117   0.47 103 1.93 
3 32   0.19 41 2.02 



4 10   0.03 7 0.92 
5 0   0 0 0 
       

Total= 217 1.97 1.57 
Chi-
sq= 5.76 Alpha = 

     
3 

degrees 0.124 

     
of 

freedom  

 

The data in Table 7 show branch lengths and the observed frequency of each length (for 

example, there were 10 branches of length 4) for students who completed concept maps in Class 

VII. A chi-square test shows the empirical and truncated Poisson distributions are close. One 

would have to accept a 11.8% chance of being wrong to conclude that the empirical and 

modified CMP distributions were different. 

Table 7. 

Branch 
Length 

Obs 
Freq Mean Lambda Dist 

Exp 
Freq (o-e)^2/e

1 58   0.28 72 2.58 
2 121   0.48 122 0.01 



3 61   0.2 49 2.83 
4 10   0.03 9 0.24 
5 2   0 1 1.69 
       

Total= 256 2.09 1.72 Chi-sq= 7.35 Alpha = 

     
4 

degrees 0.118 

     
of 

freedom  

 

MATHEMATICAL BACKGROUND 

The complete Poisson distribution may be expressed as 

f x λ,( ) e λ– λx

x!
-------------- x, 0 1 2 …, , ,= =

 

Where   is the probability of observing exactly x occurrences of the event under 

consideration and   is the mean and variance of the number of occurrences. 

f x λ,( )
λ



The probability of zero occurrences is  

 f 0 λ,( ) e λ–=

so the probability of one or more occurrences is  

 1 e λ––

If x=0 is not being considered, the remaining probabilities for x=1, 2, ... are normalized by 

multiplying by  

 

1

1 e λ––
-----------------

Then the Poisson distribution, truncated below 1 is  

 

f x λ,( ) e λ– λx

x!
-------------- 1

1 e λ––
----------------- x,⋅ 1 2 …, ,= =

Or 

 

f x λ,( ) λx

x! eλ 1–( )
------------------------ x, 1 2 …, ,= =

Then 

 

λx

x! eλ 1–( )
------------------------

x 1=

∞
∑ 1=



and 

 

f x λ,( )
f x 1– λ,( )
------------------------- λ

x
---=

and, just as with the complete Poisson distribution  

 

f x λ,( ) λ
x
---f x 1– λ,( )=

The shape of the truncated Poisson distribution is shown in the figure below for various values of 

lambda. 

 

Parameter Estimation 

If  is the mean of a sample from a Poisson distribution with the zero class missing, then the 

maximum likelihood estimate of the population mean is  

x



 

λ x jj 1–

j!
----------- xe x–( )

j

j 1=

∞

∑–=

)
then the maximum likelihood estimate of the population mean is  

 

λ x jj 1–

j!
----------- xe x–( )

j

j 1=

∞
∑–=

)

Or 

 

λ x xe x–– xe x–( )
2

– 3
2
--- xe x–( )

3
–=

 

3
2
--- xe x–( )

3
– 8

3
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The CMP distribution is given by 
 
 

 
 
The truncated CMP distribution is given by 
 



 

f y λ ν, ,( ) λy

y!( )ν
------------ 1

λk

k!( )ν
------------

k 1=

∞

∑
------------------------⋅= y 1 2 …, ,=

The joint distribution has the form 

Where X has a truncated Poission distribution, Y has a truncated CMP distribution, and c is the 
covaiance of X and Y. Note that because the joint distribution must be positive, c must be less 
than the minimum of lambda1 and lambda2. It is clear that the number of branches and branch 
length are positively correlated but the standard error of the covariance c may be small for all 
math and science concept maps. The scoring process would be simplified if a universal constant 
could be used for c. This is being investigated by the author but for now, the population 
covariance should be computed in the traditional way.  

f x y λ1 λ2 ν c, , , , ,( )
λ1 c–( )x λ2 c–( )y

x! y!( )ν
--------------------------------------------=

⎝ ⎠
⎜ ⎟
⎛ ⎞

normalizing× term
 

The above distribution may be used to construct tables of cummulative score 
distributions. Concept map scores may be assigned based on the cummulative values of the 
above joint truncated distribution for various population mean branch length and population 
mean number of branch values are given in the tables below. The tables below give cummulative 
percentages for the joint Poisson / Conway-Maxwell-Poisson distribution. Tables for sums of  
branches from nodes, and sums of branch lengths (that may be used to assign more valid concept 
map test scores) are being investigated. The tables below may be used to quickly assign scores 
for individual concept maps based on one branch and one node selcted from each map. 

CONCEPT MAP CUMMULATIVE PROBABILITY TABLES (for one node and one branch) 

P(X<=x  and Y<=y) 

Mean number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 47 60 62 62 62 62 
number  2 67 86 89 90 90 90 
of 3 73 94 97 98 98 98 
branches (one node) 4 74 96 99 99 99 99 

x 5 75 96 99 100 100 100 
 6 75 96 99 100 100 100 

 

Ave number of branches (X-bar)  = 1.6    



Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 56 68 70 70 70 70 
number  2 75 92 93 94 94 94 
of 3 79 97 99 99 99 99 
branches (one node) 4 80 98 100 100 100 100 

x 5 80 98 100 100 100 100 
 6 80 98 100 100 100 100 

 

Ave number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 66 77 78 78 78 78 
number  2 82 95 96 96 96 96 
of 3 85 98 99 99 99 99 
branches (one node) 4 85 98 99 100 100 100 

x 5 85 98 99 100 100 100 
 6 85 98 99 100 100 100 

 

Ave number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 79 86 87 87 87 87 
number  2 90 98 99 99 99 99 
of 3 91 99 100 100 100 100 
branches (one node) 4 91 99 100 100 100 100 

x 5 91 99 100 100 100 100 
 6 91 99 100 100 100 100 

 

Ave number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.6    

 
Covariance (X,Y) 

= 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 94 96 96 96 96 96 



number  2 97 100 100 100 100 100 
of 3 97 100 100 100 100 100 
branches (one 
node) 4 97 100 100 100 100 100 

x 5 97 100 100 100 100 100 
 6 97 100 100 100 100 100 

 

Ave number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 40 51 53 53 53 53 
number  2 63 81 84 84 84 84 
of 3 71 92 95 95 95 95 
branches (one node) 4 74 95 98 99 99 99 

x 5 74 96 99 99 99 99 
 6 75 96 99 100 100 100 

 

Ave number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 48 59 60 60 60 60 
number  2 71 86 88 88 88 88 
of 3 78 95 97 97 97 97 
branches (one node) 4 79 97 99 99 99 99 

x 5 80 97 99 100 100 100 
 6 80 97 99 100 100 100 

 

Ave number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.6    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 58 67 67 68 68 68 
number  2 79 91 93 93 93 93 
of 3 84 98 99 99 99 99 
branches (one node) 4 85 99 100 100 100 100 

x 5 86 99 100 100 100 100 
 6 86 99 100 100 100 100 



 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.6    

 
Covariance (X,Y) 

= 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 69 75 76 76 76 76 
number  2 88 96 96 96 96 96 
of 3 91 99 100 100 100 100 
branches (one 
node) 4 92 100 100 100 100 100 

x 5 92 100 100 100 100 100 
 6 92 100 100 100 100 100 

 

Ave number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.6    

 
Covariance (X,Y) 

= 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 82 84 84 84 84 84 
number  2 96 98 98 98 98 98 
of 3 97 99 100 100 100 100 
branches (one 
node) 4 97 100 100 100 100 100 

x 5 97 100 100 100 100 100 
 6 97 100 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 45 60 62 63 63 63 
number  2 65 86 90 90 90 90 
of 3 71 94 98 98 98 98 
branches (one node) 4 72 96 99 100 100 100 

x 5 72 96 100 100 100 100 
 6 72 96 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.6    



Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 53 68 70 70 70 70 
number  2 71 91 93 93 93 93 
of 3 75 96 98 99 99 99 
branches (one node) 4 76 97 99 100 100 100 

x 5 76 97 99 100 100 100 
 6 76 97 99 100 100 100 

 

Mean number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 63 76 78 78 78 78 
number  2 78 95 96 96 96 96 
of 3 80 97 99 99 99 99 
branches (one node) 4 81 98 100 100 100 100 

x 5 81 98 100 100 100 100 
 6 81 98 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 74 86 87 87 87 87 
number  2 84 98 99 99 99 99 
of 3 85 99 100 100 100 100 
branches (one node) 4 85 99 100 100 100 100 

x 5 85 99 100 100 100 100 
 6 85 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.6    
Mean branch length (Y-bar) = 1.8    

 
Covariance (X,Y) 

= 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 88 96 97 97 97 97 



number  2 91 100 100 100 100 100 
of 3 91 100 100 100 100 100 
branches (one 
node) 4 91 100 100 100 100 100 

x 5 91 100 100 100 100 100 
 6 91 100 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 39 51 53 54 54 54 
number  2 61 81 84 84 84 84 
of 3 69 92 95 96 96 96 
branches (one node) 4 72 95 99 99 99 99 

x 5 72 96 99 100 100 100 
 6 72 96 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 46 59 60 60 60 60 
number  2 68 86 88 89 89 89 
of 3 75 95 97 98 98 98 
branches (one node) 4 76 97 99 100 100 100 

x 5 76 97 100 100 100 100 
 6 77 97 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 54 66 67 67 67 67 
number  2 75 90 92 92 92 92 
of 3 80 97 98 98 98 98 
branches (one node) 4 80 98 99 99 100 100 

x 5 81 98 100 100 100 100 
 6 81 98 100 100 100 100 



 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 65 75 76 76 76 76 
number  2 82 95 96 96 96 96 
of 3 85 99 100 100 100 100 
branches (one node) 4 86 99 100 100 100 100 

x 5 86 99 100 100 100 100 
 6 86 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 1.8    

 
Covariance (X,Y) 

= 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 76 84 84 84 84 84 
number  2 89 98 99 99 99 99 
of 3 91 100 100 100 100 100 
branches (one 
node) 4 91 100 100 100 100 100 

x 5 91 100 100 100 100 100 
 6 91 100 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 33 44 46 46 46 46 
number  2 56 75 78 78 78 78 
of 3 67 89 93 93 93 93 
branches (one node) 4 71 94 98 98 98 98 

x 5 72 96 99 100 100 100 
 6 72 96 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 1.8    



 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 39 50 52 52 52 52 
number  2 63 80 83 83 83 83 
of 3 73 92 95 95 95 95 
branches (one node) 4 76 96 99 99 99 99 

x 5 76 97 100 100 100 100 
 6 76 97 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 47 57 58 58 58 58 
number  2 70 85 87 87 87 87 
of 3 78 95 97 97 97 97 
branches (one node) 4 80 97 99 99 99 99 

x 5 81 98 100 100 100 100 
 6 81 98 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 1.8    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 56 64 65 65 65 65 
number  2 78 90 91 91 91 91 
of 3 84 97 98 98 98 98 
branches (one node) 4 85 98 99 99 99 99 

x 5 85 99 100 100 100 100 
 6 85 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 1.8    

 
Covariance (X,Y) 

= 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 66 73 73 73 73 73 
number  2 86 94 95 95 95 95 



of 3 90 99 99 99 99 99 
branches (one 
node) 4 91 99 100 100 100 100 

x 5 91 100 100 100 100 100 
 6 91 100 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 38 52 54 54 54 54 
number  2 60 81 84 85 85 85 
of 3 68 92 96 96 96 96 
branches (one node) 4 71 95 99 100 100 100 

x 5 71 96 100 100 100 100 
 6 71 96 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.4    
    length of one branch y  
  1 2 3 4 5 6 
 1 45 58 60 60 60 60 
number  2 66 86 89 89 89 89 
of 3 73 95 97 98 98 98 
branches (one node) 4 74 97 100 100 100 100 

x 5 75 97 100 100 100 100 
 6 75 97 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 53 66 68 68 68 68 
number  2 72 91 93 93 93 93 
of 3 77 97 99 99 99 99 
branches (one node) 4 78 98 100 100 100 100 

x 5 78 98 100 100 100 100 
 6 78 98 100 100 100 100 



 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 62 74 75 76 76 76 
number  2 79 95 96 96 96 96 
of 3 82 98 100 100 100 100 
branches (one node) 4 82 99 100 100 100 100 

x 5 82 99 100 100 100 100 
 6 82 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 1.8    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 72 83 84 84 84 84 
number  2 85 97 98 98 98 98 
of 3 86 99 100 100 100 100 
branches (one node) 4 86 99 100 100 100 100 

x 5 86 99 100 100 100 100 
 6 86 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.2    
    length of one branch y  
  1 2 3 4 5 6 
 1 33 44 46 46 46 46 
number  2 55 75 78 78 78 78 
of 3 66 89 93 93 93 93 
branches (one node) 4 70 94 98 99 99 99 

x 5 71 96 100 100 100 100 
 6 71 96 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 2    

 Covariance 0.4    



(X,Y) =
    length of one branch y  
  1 2 3 4 5 6 
 1 38 50 52 52 52 52 
number  2 62 80 83 83 83 83 
of 3 71 92 95 95 95 95 
branches (one node) 4 74 96 99 99 99 99 

x 5 74 97 100 100 100 100 
 6 74 97 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.6    
    length of one branch y  
  1 2 3 4 5 6 
 1 45 57 58 58 58 58 
number  2 68 85 87 87 87 87 
of 3 76 95 97 97 97 97 
branches (one node) 4 78 97 99 100 100 100 

x 5 78 98 100 100 100 100 
 6 78 98 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 0.8    
    length of one branch y  
  1 2 3 4 5 6 
 1 53 64 65 65 65 65 
number  2 75 90 91 91 91 91 
of 3 81 97 98 98 98 98 
branches (one node) 4 82 98 100 100 100 100 

x 5 82 99 100 100 100 100 
 6 82 99 100 100 100 100 

 

Mean number of branches (X-bar)  = 2    
Mean branch length (Y-bar) = 2    

 
Covariance 

(X,Y) = 1    
    length of one branch y  
  1 2 3 4 5 6 
 1 63 72 73 73 73 73 
number  2 82 94 95 95 95 95 
of 3 86 99 99 100 100 100 



branches (one node) 4 86 99 100 100 100 100 
x 5 86 99 100 100 100 100 

 6 86 99 100 100 100 100 

 


