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Abstract

This paper examines item response theory (IRT) scale transformations and IRT scale

linking methods used in the Non-Equivalent Groups with Anchor Test (NEAT) design to

equate two tests, X and Y. It proposes a unifying approach to the commonly used IRT

linking methods: mean-mean, mean-var linking, concurrent calibration, Stocking and Lord

and Haebara characteristic curves approaches, and fixed-item parameters scale linkage.

The main idea is to view any linking procedure as a restriction on the item parameter

space. Then a rewriting of the log-likelihood function together with an appropriately

implemented maximization procedure of the log-likelihood function under linear (or

nonlinear restrictions) will accomplish the linking. The proposed method is general enough

to cover both the dichotomous item response models (the one parameter logistic (1PL)

model, 2PL, and 3PL) and the polytomous unidimensional IRT models like the generalized

partial credit model.

Key words: Item response models, scale transformation, test linking, Non-Equivalent

Groups with Anchor Test Design, nonlinear restrictions, maximization procedures, Lagrange

multipliers
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1. Introduction

The need for equating arises when two or more tests on the same construct or subject

area can yield different scores for the same examinee. The goal of test equating is to allow

the scores on different forms of the same tests to be used and interpreted interchangeably.

Item response theory (IRT, Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980; Thissen

& Wainer, 2001; and many others) has provided new ways to approach test equating. If

IRT is used in the equating process, it is usually also necessary to use some sort of linking

procedure to place the IRT parameter estimates on a common scale.

In this paper we focus on the IRT linking procedures used for data collection designs

that involve “common items.” The data collection designs that use this method are called

here “Non-Equivalent groups with Anchor Test (NEAT)” designs and can have both

internal and external anchor tests (see, for example, von Davier, Holland, & Thayer, 2004;

Kolen & Brennan, 1995).

In the NEAT design there are two populations, P and Q, of test-takers and a sample

of examinees from each. The sample from P takes test X, the sample from Q takes test Y,

and both samples take a set of common items, the anchor test V. This design is often used

when only one test form can be administered at one test administration because of test

security or other practical concerns. The two populations may not be “equivalent” (i.e., the

two samples are not from a common population).

The two tests X and Y and the anchor V are, in general, not parallel. The anchor test

V is usually shorter and less reliable than either X or Y. Angoff (1984/1971) gives advice

on designing anchor tests. For a comparison of a variety of methods for treating the NEAT

design, see Kolen and Brennan (1995), Marco, Petersen, and Stewart (1983), and Petersen,

Marco, and Stewart (1982).

In this paper we examine the IRT scale transformation and IRT linking methods

used in the NEAT design to link X and Y. More exactly, we propose a unified approach

to the IRT linking methods: mean-sigma and mean-mean, concurrent calibration, fixed

parameters calibration, the Stocking and Lord characteristic curves approach, and the

Haebara characteristic curves approach (see Kolen & Brennan, 1995, chapter 6, for a
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detailed description of these methods). Moreover, we believe that our view of IRT linking

can be extended to cover other flavors of IRT scaling/linking procedures.

In our approach, the parameter space is described by all the parameters of the IRT

model fitted to the data from both populations in a marginal maximum likelihood (MML)

framework. Under the usual assumptions for the NEAT design, which are described later,

the joint log-likelihood function for this model on the data from both populations can

be expressed as the sum of two log-likelihood functions corresponding to each of the two

groups of data and parameters.

The main idea in our approach is to view any linking method as a restriction function

on the joint parameter space of the instruments to be equated.

Once this is understood, rewriting the joint log-likelihood function by including a

term for each restriction and an appropriately implemented maximization procedure will

accomplish the linking. The maximization is carried out using a vector of Lagrange

multipliers (see, for example, Aitchison & Silvey, 1958; von Davier, 2003; Glas, 1999).

We will show that the new approach is general enough to cover the usual item response

models (IRMs: the one parameter logistic (1PL), 2PL, and 3PL models) as well as

polytomous unidimensional IRT models like the generalized partial credit model (GPCM).

Some of the advantages of this new perspective on IRT linking are

• providing a common framework for all IRT scale linking methods yields a better under-

standing of the differences between the approaches, which opens paths to more flexible

methods of IRT linking;

• viewing the IRT linking as a restriction function allows us to control the strength of the

restriction. For example, the concurrent calibration is the most restrictive IRT linking

method, as it assumes the equality of all parameters in the anchor test. When such a

strong restriction is not appropriate, the proposed method provides alternatives;

• providing a family of linking functions that ranges from the most restrictive one, the

concurrent calibration, to separate calibration (without additional restrictions, i.e., to

no linking at all);
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• possibly allowing the implementation of a hierarchical structure of the item parameters

in the anchor in a way that might be useful for vertical linking. Such a hierarchical

structure was proposed by Patz, Yao, Chia, Lewis, and Hoskens, 2003; their estimation

method was Markov chain Monte Carlo (MCMC). Later in this paper we propose an

analytical approach. We also think that the approach considered here can be extended

to multidimensional IRT models. However, this is an interesting future research topic;

and

• allowing the development of statistical tests (such as Lagrange multiplier tests) for

checking the appropriateness of different IRT linking methods (following similar prin-

ciples as in Glas, 1999).

In this paper, we focus on the description of the theoretical framework and derivations

of a new approach to IRT linking. The rest of the paper is structured as follows: First we

introduce our notation; we briefly describe the well known IRT linking methods in the next

section. Then we investigate the joint log-likelihood function and the restriction function

more formally and for several IRT linking methods. Finally we discuss the advantages of

this perspective on the IRT linking.

2. The NEAT Design and IRT Linking

2.1. The NEAT Design

The data structure for the NEAT design is illustrated in Table 1 (see also von Davier et

al., 2004).

Table 1
Non-Equivalent Groups With Anchor Test (NEAT) Design

Population Sample X Y V
P 1

√ √

Q 2
√ √

Note that Table 1 describes the data collection procedure and does not refer to the test

scores, as might be the case in observed-score equating. We will denote the matrices of
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observed item responses to the tests X, V, and Y by X, V , and Y . The subscripts P and

Q will denote the populations.

The analysis of the NEAT design usually makes the following assumptions (see also von

Davier et al., 2004):

Assumption 1. There are two populations of examinees P and Q, each of which can take

one of the tests and the anchor.

Assumption 2. The two samples are independently and randomly drawn from P and Q,

respectively.

Table 1 shows that in the NEAT design X is not observed in population Q, and Y is not

observed in population P. To overcome this feature, all linking methods developed for the

NEAT design (both observed-score and IRT methods) must make additional assumptions

of a type that does not arise in the other linking designs.

Assumption 3. The tests to be equated, X and Y, and the anchor V are all unidimensional

(i.e., all items measure the same unidimensional construct), carefully constructed tests, in

which the local independence assumption holds (Hambleton et al., 1991).

These three assumptions are sufficient for our exposition. We will not make any

distributional assumptions.

2.2. Unidimensional IRT Models

IRT models rely on the assumptions of monotonicity, undimensionality, and local

independence (Hambleton et al., 1991). These models express the probability of a response

xni of a given person, n (n = 1, . . . N), to a given item, i (i = 1 . . . , I), as a function of

the person’s ability (latent), θn, and a possibly vector valued item parameter, βi, that is,

Pni = P (X = xni) = f(xni, θn, βi)

In the case of the well known 3PL model (Lord & Novick, 1968), the item parameter is

three-dimensional and consists of the slope, the difficulty, and the guessing parameter, that
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is, βt
i = (ai, bi, ci).

The 3PL model, which serves as the standard example of an IRM in this paper, is given

by

P (xi = 1 | θ, ai, bi, ci) = ci + (1− ci)logit−1 [ai (θ − bi)] ,

with logit−1(x) = exp(x)/(1 + exp(x)).

However, most results presented here do not depend on the specific choice of the IRM

and apply to models for both dichotomous and polytomous data.

2.3. IRT Linking

When conducting scale linking in the NEAT design, the parameters of the IRM from

different test forms need to be on the same IRT scale. If the calibration was carried out

separately on the two samples from the two different populations P and Q, then parameter

estimates for the anchor test will be available for examinees in the two groups. These

separate parameter estimates of the anchor in the two groups serve as the basis for the scale

transformation (mean-mean, mean-sigma methods, or characteristic curves methods, such

as Stocking and Lord or Haebara methods).

As an alternative, the item parameters from X, V (in both populations), and Y can be

estimated jointly, coding the items that an examinee did not take as “not administered”

or “not reached,” since these outcomes were unobserved and are missing by design. This

IRT scaling, in which the item parameters are estimated simultaneously and separate

ability distributions are assumed in the two populations while the parameters of the anchor

are assumed to be identical in both populations, is usually referred to as “concurrent

calibration.” Another calibration method is the “fixed parameters method.” This approach

differs from concurrent calibration in that common items whose parameters are known

(either from a previous year calibration or a separate calibration) are anchored or fixed to

their known estimates during calibration of other forms. By treating these common item

parameters as known, they are not estimated and the item parameters from the uncommon

items are forced onto the same scale as the fixed items. This procedure is even more

restrictive than concurrent calibration.
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For more details the reader is referred to Kolen and Brennan (1995), Stocking and Lord

(1983), Haebara (1980), or Hambleton et al. (1991).

3. A Lagrangean Approach to IRT Linking

Let the sample size of the group from P that takes (X, V ) be denoted by NP , let the

sample size of the group from Q that takes (Y, V ) be NQ, and denote N = NP + NQ.

We will use the following notation for the item parameters in the different test forms

and populations:

βi =



βXPj
, 1 ≤ i ≤ J,

βVPl
, J + 1 ≤ i ≤ (J + L),

βVQl
, (J + L) + 1 ≤ i ≤ (J + 2L),

βYQk
, (J + 2L) + 1 ≤ i ≤ IP,

(1)

where IP= J + 2L + K denotes the total number of items, and J, L, and K are the number

of the items in the tests X, V, and Y, respectively. For example, βXPj
denotes the (possible

vector-valued) item parameter for item j from the set of items from the test X that was

taken be the examinees from P. Similarly, βVPl
denotes the (possibly vector-valued) item

parameter for item l from the set of items from the anchor test V that was taken by the

examinees from P, and so forth.

The total number of the item parameters (TNIP) is the dimension of the vector of the

items parameters times the number of parameters per item. For example, if all items are

modelled via the Rasch model, TNIP = 1× IP; for a 2PL model, TNIP = 2× IP; and for

the 3PL model, TNIP = 3× IP. For mixtures of item model types in one test, TNIP is the

sum of individual item parameter dimensions (1, 2, or 3 for dichotomous items and 2 or

more for partial-credit items) over all items.

3.1. Separate Calibration

When estimating separately, the item and ability distribution parameters for population

P are maximized given data (X, V P ), separately from the item and ability distribution
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parameters for population Q given data (Y , V Q).

Technically, this can be accomplished by fitting one IRT model to the combined

data without assuming that the common items have the same item parameters in both

populations.

As mentioned before, the parameter space is described by all the parameters in the IRT

model fitted to the data from both populations, in a marginal maximum likelihood (MML)

framework.

Let πP and πQ denote the parameters used to model the ability distribution. We

may think of them as πP,Q = (µP,Q, σP,Q) in the case where we assume normal ability

distributions. In somewhat more flexible models, we may assume that the πP,Q is a set

of multinomial probabilities over quadrature points approximating arbitrary distribution

shapes.

Hence, the parameter space is defined by the parameters

ηt = (βXP
, βVP

, πP , βYQ
, βVQ

, πQ). (2)

Given Assumptions 1 and 2 and the properties of the logit and logarithm functions, we

can rewrite the joint log-likelihood function for the IRT model applied to the data from

both populations as the sum of the two log-likelihood functions, that is,

L(η; X, V P , Y , V Q) = L(βXP
, βVP

, πP ; X, V P )

+L(βYQ
, βVQ

, πQ; Y , V Q) (3)

In other words, the two separate models are estimated and the two log-likelihood functions

are maximized jointly using MML.

Now, it is easy to conceive any linking function as a restriction function on the parameter

space and any linking process as a maximization of (3) under the linking restriction. Later

we will illustrate in detail how this approach works for each linking method. Next we will
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illustrate the concurrent calibration method in some detail, then outline how this approach

translates to each of the other IRT linking methods: mean-mean, mean-sigma, Stocking

and Lord, Haebara, and fixed parameters.

3.2. Lagrangean Concurrent Calibration

When estimating concurrently, the item and ability distribution parameters for

population P are maximized given data (X, V P ) simultaneously with the item and ability

distribution parameters for population Q given data (Y , V Q).

Technically, two separate ability distributions are estimated, and the two log-likelihood

functions are maximized jointly with certain restrictions on the item parameters, namely

βVPl
= βVQl

(4)

for l = 1, . . . , L.

Let R denote the L-dimensional restriction function with the components given by

Rl(η) = kl(βVPl
− βVQl

), (5)

with kl = 1 for active restrictions on item l.

For the 2PL and 3PL, the restrictions may be imposed only on the b parameters and

not on the slope and guessing parameters. This can be achieved by first using projections,

h, and then imposing the same constraints, that is, use bV l = h(βV l) and then use

Rl(η) = kl(h(βVPl
)− h(βVQl

)).

Hence, the concurrent calibration refers to maximizing (3) under the restriction

Rl(η) = 0. (6)

This setup, maximizing (3) under the restriction (6), is used whenever certain item

parameters are assumed to be equal across populations, in our case, across P and Q.

Given a vector λ of Lagrangean multipliers, the linking process can be viewed as
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maximizing the modified log-likelihood function

Λ(η, λ; X, V P , Y , V Q) = L(βXP
, βVP

, πP ; X, V P )

+L(βYQ
, βVQ

, πQ; Y , V Q)− λtR(η). (7)

Note that if we choose kl = 0 for all l the restriction functions, Rl(η) are constants, so

that instead of concurrent calibration with equality constraints, maximizing the likelihood

simultaneously yields separate calibrations and allows the item parameters in the anchor

test V to differ between P and Q.

The function in (7) is then maximized with respect to parameters η and λ.

In concurrent calibration, the above equation includes a term Rl for each item

l = 1, . . . , L in the anchor test V . This term enables the imposition of equality constraints

on the parameters βV •.

3.3. Lagrangean Fixed Parameters Scale Linkage

In this method, common items whose parameters are known (for example, from a

previous administration calibration or a separate calibration) are anchored or fixed to

their known estimates, wl, l = 1, .., L, during calibration of other forms. These common

item parameters are treated as known and, therefore, they are not estimated; the item

parameters from the items that are not common to the forms are forced onto the same

scale as the fixed items. This calibration procedure is even more restrictive than concurrent

calibration.

As in Section 3.2, let now R denote the 2L-dimensional restriction function with the

components given by

R(η)t = (RPl(η), RQl(η)) (8)
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where

RPl(η) = kl(βVPl
− wl),

RQl(η) = kl(βVQl
− wl), (9)

with kl = 1 for active restrictions on item l.

Hence, the concurrent calibration refers to maximizing (3) under the restriction

R(η) = 0. (10)

3.4. Lagrangean Mean-mean IRT Scale Linking

If an IRT model fits the data then, any linear transformation1 (with slope A and

intercept B) of the θ-scale also fits these data, provided that the item parameters are also

transformed (see, for example, Kolen & Brennan, 1995, pp. 162–167).

In the NEAT design, the most straightforward way to transform scales when the

parameters were estimated separately is to use the means and standard deviations of the

item parameter estimates of the common items for computing the slope and the intercept

of the linear transformation. Loyd and Hoover (1980) described the mean-mean method,

where the mean of the a-parameter estimates for the common items is used to estimate the

slope of the linear transformation. The mean of the b-parameter estimates of the common

items is then used to estimate the intercept of the linear transformation (see Kolen &

Brennan, p. 168).

Lagrange multipliers may also be used to achieve IRT scale linking according to the

mean-mean approach. Again, maximizing the modified log-likelihood function Λ given

in (7) with a different set of restrictions does the trick. For the mean-mean IRT linking,

the restriction function is two-dimensional with the components Ra and Rb, that is,

Rt = (Ra, Rb). If we want to match the mean of anchor parameters of population P, we

define
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Ra(η) =

(
L∑

l=1

ha(βVQl
)− AP

)
(11)

with a constant term AP =
∑

ha(βVPl
), which is not viewed as a function of the βV P (but

is recomputed at each iteration during maximization) in order to allow unconstrained

maximization for P and enforce the mean of βV Q to match this mean in P . As has been

explained, h is a projection.

The same is done with the difficulty parameters bl = hb(βl), that is,

Rb(η) =

(
L∑

l=1

hb(βVQl
)−BP

)
(12)

This new approach to IRT linking includes also a more general approach that handles

populations P and Q symmetrically using

Ra(η) =

(
L∑

l=1

ha(βVQl
)− ha(βVPl

)

)
(13)

with ha(βi) = ai and

Rb(η) =

(
L∑

l=1

hb(βVQl
)− hb(βVPl

)

)
(14)

with hb(βi) = bi. This avoids the arbitrary choice whether to match P ’s or Q’s slope and

difficulty means on the anchor test V .

3.5. Lagrangean Mean-var IRT Scale Linking

The mean-var IRT scale linkage (Marco, 1977) can obviously be implemented in the

same way, with only a slight difference in the restrictions used. The means and the standard

deviations of the b-parameters are used to estimate the slope and the intercept of the linear

transformation.

Again, a two-dimensional restriction function with components Ra and Rb is needed. In

order to match the mean and variance of the anchor tests difficulty parameter in population

P, we define
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Ra(η) =

(
L∑

l=1

ha(βVQl
)−BP

)
(15)

with a constant term BP =
∑

ha(βVPl
), which again is not viewed as a function of the βVP

.

The same is done with the squared difficulties b2
l = h2

b(βl), that is,

Rb(η) =

(
L∑

l=1

h2
b(βVQl

)−B2
P

)
(16)

where B2
P =

∑
h2

b(βVPl
).

As before, a more general approach handles populations P and Q symmetrically using

Ra(η) =

(
L∑

l=1

hb(βVQl
)−

L∑
l=1

hb(βVPl
)

)
(17)

with hb(βi) = bi and

Rb(η) =

(
L∑

l=1

h2
b(βVQl

)−
L∑

l=1

h2
b(βVPl

)

)
(18)

with h2
b(βi) = b2

i .

3.6. Lagrangean Stocking and Lord Scale Linkage

Characteristic curves transformation methods were proposed (Haebara, 1980; Stocking

& Lord, 1983) in order to avoid some issues related to the mean-mean and mean-var

approaches. For the mean-mean and mean-var approaches, various combinations of the

item parameter estimates produce almost identical item characteristic curves over the range

of ability at which most examinees score.

The Stocking and Lord IRT scale linkage finds parameters for the linear transformation

of item parameters in one population (say Q) that matches the test characteristic function

of the anchor in the reference population (say P ).

The Stocking and Lord transformation finds a linear transformation (i.e., a slope A and

an intercept B) of the item parameters—difficulties and slopes—in one population based

on a matching of test characteristic curves. Expressing this in the marginal maximum
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likelihood framework yields

(A, B) = min

 G∑
g=1

π∗
g

(
L∑

l=1

p (θg, βV P l)− p (θg, B + AβV Ql)

)2
 (19)

where the weights π∗
g of the quadrature points θg for g = 1, . . . , G are given by

π∗
g =

nPgπPg + nQgπQg

nPg + nQg

. (20)

We propose using a method employing the same rationale as the Stocking and Lord

approach, namely optimizing the match of the test characteristic curves between the

anchors VP and VQ. In the proposed framework, the primitive of these functions, which is

the criterion to be minimized to match the two test characteristic functions as closely as

possible, is defined as

RSL(η) =

 G∑
g=1

π∗
g

(
L∑

l=1

p (θg, βV P l)− p (θg, βV Ql)

)2
 . (21)

In order to minimize (21), we implement the Lagrangeans in such a way that

Λ(η, λ) = L(X,VP ) + L(Y, VQ)− λJRSL(η) (22)

or, more explicitly,

Λ(η, λ) = L(X, VP ) + L(Y, VQ)− λT
PJP,RSL(η)− λT

QJQ,RSL(η). (23)

The components of interest of the Jacobian JRSL(η) are defined by components for the

anchor item parameters in P

∂RSL(η)

∂βi,P

=
G∑

g=1

π∗
g

∂p (θg, βV Pi)

∂βiV P

2

[
L∑

l=1

p (θg, βV P l)− p (θg, βV Ql)

]
, (24)
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and for the components representing the item parameters in Q we find

∂RSL(η)

∂βi,Q

= −
G∑

g=1

π∗
g

∂p (θg, βV Qi)

∂βiV P

2

[
L∑

l=1

p (θg, βV P l)− p (θg, βV Ql)

]
(25)

because of the negative sign of all β•,Q terms. The derivatives in the equations above

actually represent vector-valued derivatives if βi,P |Q is vector-valued. For example, we have

∂RSL(η)

∂βi,P |Q
=

(
∂RSL(η)

∂ai,P |Q
,
∂RSL(η)

∂bi,P |Q
,
∂RSL(η)

∂ci,P |Q

)

in the case of the 3PL model.

By maximizing (20), we will find the transformation of the difficulties and the slopes

in one population based on matching test characteristics. Note that in our approach this

transformation need not to be linear (although it will be linear if the model fits the data).

3.7. Lagrangean Haebera Scale Linkage

Haebara (1980) expressed the differences between the characteristic curves as the sum

of the squared differences between the item characteristic functions for each item over

the common items for examinees of a particular ability θn. The Haebara method is more

restrictive than the Stocking and Lord method because the restrictions take place at

the item level (i.e., for each item), while the Stocking and Lord approach poses a global

restriction at the test level.

The slope and the intercept of the linear transformation can be found by minimizing the

expression on the right-hand-side of (26):

(A, B) = min

[
G∑

g=1

π∗
g

L∑
l=1

(p (θg, βV P l)− p (θg, B + AβV Ql))
2

]
, (26)

(see, for example, Kolen & Brennan, 1995, p. 170).

The algorithm we are proposing is similar to the one described previously for the

Stocking and Lord scale linking; the only difference (from the computational point of view)
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is in the form of the restriction function, that is:

RH(η) =

[
G∑

g=1

π∗
g

L∑
l=1

(p (θg, βV P l)− p (θg, βV Ql))
2

]
. (27)

As before, in order to minimize (27), we implement the Lagrangeans in such a way that

Λ(η, λ) = L(X, VP ) + L(Y, VQ)− λJRH (η) (28)

or, more explicitly,

Λ(η, λ) = L(X, VP ) + L(Y, VQ)− λT
PJPRH (η)− λT

QJQRH (η) (29)

where the components of interest of the Jacobian JRH (η) are

∂RH(η)

∂βlP

,
∂RH(η)

∂βlQ

. (30)

Again, the partial derivatives may be vector-valued for each βi,P |Q, so that the dimension of

the restriction is approximately 2L times the average number of item parameter dimensions,

3 if only the 3PL model is used but possibly higher when generalized partial-credit items or

other polytomous item response models are present.

4. Discussion

This paper presents a new perspective on IRT linking. It introduces a unified approach

to IRT linking, emphasizing the similarities between different methods. We show that IRT

linking might consist of a family of IRT linking functions, where restrictions can be “turned

on or off,” according to what the data might suggest. Moreover, this new approach allows

both generalizations and exactly matching implementations of the existing methods, since

the existing IRT linking methods are included as special cases in this new family of IRT

linking functions.

We believe that this approach will allow the development of statistical tests (such as
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Lagrange multiplier tests) for checking the appropriateness of different IRT linking methods

(see Glas, 1999, for a similar approach used for investigating nested IRT models). Such

a test would allow to check whether lifting certain restrictions will yield a significant

improvement in model-data fit, for example in a case where Lagrangean concurrent

calibration is used for all anchor items in a vertical linkage and a certain set of items

exposes parameter drift over time.

This approach to IRT linking can be easily viewed in an MCMC framework, where,

by specifying appropriate prior distributions, the estimation of the modified likelihood

functions is straightforward.

At the same time, the view of any linking function as a restriction function implies a

larger flexibility in the linking process: when dealing with vertical linking, this method can

incorporate the modelling of growth, possibly expressed as a hierarchical structure of the

item parameters in the anchor.

Such a hierarchical structure was proposed by Patz et al.(2003); they used the MCMC

estimation method. The hierarchical approach proposed by Patz et al. is “a more general

version of concurrent estimation of the unidimensional IRT model” (p. 40), and their

motivation has similarities with ours: to unify the two most commonly used linking methods

for vertical equating, the very restrictive concurrent calibration method and separate

calibration followed by a test characteristic curves linking.

If we recast this hierarchical approach of the proficiencies across grades into a

hierarchical structure of the (common) item difficulties, a short summary of the Patz et al.

(2003) approach (slightly generalized) in our notation is

Rl(η) = kl(h(βVPl
)− f(h(βQPl

))), (31)

where kl = 1 for active restrictions on item l, Rl denotes the component l of the restriction

function, h is the projection described before, and f is a function of the common item

parameters of the old administration (or previous grade). In order to obtain the hierarchical
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structure at the level of the difficulties of the common items, we consider

h(βVPl
) = bVPl

.

Following the approach of Patz et al. (2003), the relationship between the difficulty of the

item parameters across grades can be expressed as a quadratic function,

f(h(βQPl
)) = f(bQPl

) = αb2
QPl

+ γbQPl
+ δ, (32)

where α, γ, δ are additional parameters of the model that need to be estimated.

Furthermore, the modified likelihood function, with a restriction function described in (31)

can be maximized using the Lagrange multipliers in the same way as explained for the

other linking methods.

Note that from a computational point of view, this is only a slight generalization of the

restriction functions described for the mean-mean and mean-var linking methods.

Obviously, additional investigations are necessary in order to insure that the model is

identified and to insure the convergence of the maximization algorithm. Although, here we

propose an analytical approach and we will try to use an expectation-maximization (EM)

algorithm, an MCMC estimation method would be straightforward to implement.

Moreover, the approach presented in this paper may easily be extended to

multidimensional IRT models, at least for simple structure multiscale IRT models (like the

one used in NAEP and other large scale assessments); there is no additional formal work

necessary and the method proposed in this report can be readily applied. Patz et al. (2003)

also investigated multidimensional IRT models for vertical linking and used the MCMC

estimation method. However, implementing and maximizing modified likelihood functions

under such restrictions using analytical methods are of interest for future research.

Longitudinal studies might also benefit from these two approaches: one that assumes

a hierarchical structure in the item parameters of the anchor and/or one that assumes a

multidimensionality of proficiencies (or of common item difficulties) across school grades.
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This flexibility may also be a desirable feature in educational large-scale assessments,

where in some instances it is necessary to relax the restriction of equality of all item

parameters. In conclusion, this new approach is very promising for assessment programs

that use IRT linking.
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Notes

1A more general result holds: All strictly monotone transformations of θ are also permissible.

This feature, however, will not be pursued further in the current paper.
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