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Abstract 

This research applied a cognitive model to identify item features that lead to irrelevant variance on 

the Test of Spoken English™ (TSE®). The TSE is an assessment of English oral proficiency and 

includes an item that elicits a description of a statistical graph. This item type sometimes appears 

to tap graph-reading skills—an irrelevant construct; TSE raters report that many examinees 

perform worse on this item type than they do on the other 11 items in the test. We adapted a 

cognitive theory of graph comprehension to predict the degree to which TSE graph items tap 

irrelevant skills such as graph reading. Through analyses of existing TSE data as well as an 

experiment, we show how the theory provides specific, empirically justified recommendations on 

the construction of graph items that minimize the influence of extraneous skills. 

  

Key words: communicative competence, graph description task, visual processing, Test of 

Spoken English™ (TSE®) 
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Introduction 

How do we know whether an item introduces construct-irrelevant variance to a test score 

and, if it does, what can we do about it? Psychometrics offers several methods for investigating 

the validity or reliability of scores at the item level, including differential item functioning and 

inspection of item-total correlation. These and other methods have proven worthwhile for 

detecting possible construct-irrelevant variance, but they provide no guidance on how to improve 

the measurement of weak items. Test developers must decide whether to discard weak items or 

to modify them, with the latter typically based on intuition or guidelines stemming from 

accumulated expertise. 

Cognitive psychology, combined with psychometrics, can fill this gap. Modeling the 

information processing demands of test items vis-à-vis their psychometric properties can provide 

guidance on how to modify items so that they are more likely to tap the constructs of interest. 

Rather than informal rules-of-thumb, such models are built around empirically supported 

theories concerning the structure and limits of human information processing. 

This paper takes the unique approach of modeling the extraneous skill thought to 

introduce irrelevant variance. If we know what characteristics of tasks make the tasks more 

likely to require the extraneous skills, we can provide guidelines to test development that avoid 

these pitfalls. We adapted a cognitive model to identify item features that lead to irrelevant 

variance on a particular type of item from the Test of Spoken English™ (TSE®), an assessment 

of English oral proficiency. 

The TSE includes an item that presents a statistical graph and prompts examinees to 

describe the information presented. This question type—one of 12 items in the TSE—is 

illustrated in Figure 1.1 Test-takers are given one minute to complete their response. Only the 

communicative quality of the response is scored—the degree to which the description reflects 

“the ability of nonnative speakers of English to communicate orally in a North American English 

context” (ETS, 2001, p. 4). Even though the accuracy of the description is not scored, one might 

still suppose that an examinee’s skills in reading graphs contributes to the score, potentially 

hindering (or helping) performance. 
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The graph below shows what people of two age groups value about their 
work. Describe the information given in the graph. 

 

Figure 1. Illustrative TSE graph question. 

This graph-description question has posed problems for scoring. Anecdotally, TSE raters 

report that some graph items appear to elicit performance that is inconsistent with examinees’ 

performance on the remainder of the test. In other words, certain graphs elicit speech that 

demonstrates a lower (or higher) ability in English than would be expected based on responses to 

other test questions. Raters also report that some graph items elicit unratable speech, such as 

simple listings of numbers depicted in the graph. In informal interviews, raters and test 

development staff provide many possible explanations for the observed problems with TSE 

graph items, including examinees being unfamiliar with, or uninterested in, the content of a 

graph (e.g., bicycle sales) and the visual complexity of a graph causing confusion for some 

examinees. 

Whereas TSE raters report these difficulties, statistical analyses of TSE data have not 

revealed any systematic weakness in the TSE graph item type. Such analyses instead support the 

generally high internal consistency of TSE items, with most of the items contributing equally to 

measurement (Myford & Wolfe, 2000; Powers, Schedl, Leung, & Butler, 1999; Wang, Bradlow, 

& Wainer, 2000). 
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Critical to the TSE is the issue of which characteristics of a graph lead to descriptions 

that best indicate communicative skill. If a graph is hard to describe, it might give an unfair 

advantage to test-takers with better graph-reading skills (i.e., a more sophisticated “graph 

schema,” Pinker, 1990), who can make sense of poorly constructed graphs. A test-taker’s ability 

to read and interpret graphs should not influence their score on a graph question. As pointed out 

earlier, the accuracy of a person’s response to a graph item is not considered in the score; rather, 

the score reflects the degree to which the person demonstrates certain competencies associated 

with spoken English. The challenge is to create graphs that contain enough information so as not 

to trivialize the description (which would potentially narrow any differences between test-

takers), yet are straightforward enough to describe, allowing a test-taker to show off his/her 

communicative skill without other factors getting in the way.  

Given the difficulties raised with the TSE graph item, one might reasonably ask whether 

a graphical description task belongs in an assessment of general speaking proficiency. However, 

there are several compelling reasons to keep the TSE graph item. The item mirrors the types of 

descriptive and interpretative tasks undertaken by healthcare professionals and teaching 

assistants in their day-to-day work. Many of the test-takers are going into fields in which 

reading, describing, and interpreting graphs are an important part of their jobs. Thus, the task has 

a degree of face validity. Furthermore, in contrast to more verbal prompts, the graph item 

conveys information without providing language for the test-taker to quote. Because the 

information is largely visual, most of the language must come from the test-taker, providing a 

good measure of the test-taker’s language usage. 

The paper is structured as follows. In the next section, we present background 

information on the TSE and its scoring. The section following addresses the question of which 

characteristics of graph items make them better or worse indicators of communicative skill. We 

then present two investigations that support our characterization of the features of graphs that 

affect their quality as measures of general speaking proficiency. Finally, we present 

recommendations for the construction of TSE graph items. 

Background: The Test of Spoken English 

The Test of Spoken English (TSE) is designed to measure a test-taker’s communicative 

competence in Northern American English (Douglas & Smith, 1997). It is taken by 
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approximately 30,000 non-U.S. citizens each year, who are seeking to become teaching 

assistants or healthcare professionals in the United States. The test consists of 12 questions that 

elicit a range of language functions (e.g., describe, compare, state opinion). Most of the 

questions consist of verbal prompts, but a few questions utilize more visual prompts, such as 

pictures, maps, or graphs. The questions are presented visually in a booklet, and delivered 

verbally by a pretaped interviewer; the test-takers’ spoken responses are recorded. Trained raters 

score responses by employing a well-defined scoring rubric that draws on a well-known model 

of communicative language ability (Bachman & Palmer, 1996) and includes four language 

competencies: functional, discourse, sociolinguistic, and linguistic. 

Responses to TSE prompts are scored according to the published “TSE Score Band 

Descriptor Chart” (ETS, 2001). This scoring rubric defines four key communicative 

competencies: discourse, functional, sociolinguistic, and linguistic competence. The chart also 

specifies typical response characteristics for these competencies at each of the five possible score 

bands (20, 30, 40, 50, and 60). Although these several competencies are considered during 

scoring, each response receives a single, holistic score representing the raters’ judgment of 

which score band level was best evidenced in the response. The score band chart and associated 

training materials were developed based on major models of communicative language ability and 

analyses of linguistic features of sample responses that represent different proficiency levels 

(Bachman & Palmer, 1996; Douglas & Smith, 1997).  

Two communicative competencies are particularly relevant to the issue of graph 

comprehension: discourse competence and functional competence. 

Discourse competence relates to the coherence and cohesiveness of a response. Is the 

response well organized and well developed, and does the speaker cue the listener to the 

organization (e.g., “First we see that…,” “In contrast…”)? For the graph in Figure 1, a partial 

response demonstrating low discourse competence follows (ellipses refer to short pauses in 

speech):2 

 

(1) 
the good hours...ah for age...ah,...between age...50 and 60 is ten 
percent....And...the pleasant...colleagues...for...ah...for age...20 to 30...is ten 
percent...and...ah for...50 to 60 is twenty percent.... 
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Responses low in discourse competence tend to be list-like, consisting of phrases 

connected by “and” but showing neither a strong organizing structure nor development. A 

response showing stronger discourse competence is: 

 

 

(2) 

...for adults...uh,...between age two,...20 to 30,...they value interesting work as 
their most important thing...well...for the old man...that’s not 
important....Other points I should compare is uh,...is the low stress...for the old 
man they...they prefer low stress and...while for the younger men... 

 

This response better guides the listener by using discourse markers such as “for the old 

man…” and “Other points I should compare…”. 

Functional competence is the ability to use appropriate language to transfer information 

and ideas to accomplish a goal. It is demonstrated by the extent to which a person communicates 

an intended goal. For the graph in Figure 1, a partial response demonstrating low functional 

competence follows:  

 

(3) 
Ok, people...around the age...20 to 30...I guess started like...ah...just 
youngsters...they are...um... they good hours up like twenty 
percent...and...only...ah...at the age of 20 to 30...the people who are 
interested...are only forty percent 
 

This response does not communicate the information provided in the graph, partially 

because the speaker misrepresents the meaning of “good hours” and “interesting work.” 

Response (1), in contrast, does a good job of describing the information and therefore, was rated 

higher on functional competence than was response (3). 

The other two competencies appear less likely to be affected by the particular 

characteristics of a graph. Sociolinguistic competence is the ability to demonstrate an awareness 

of audience and situation. Linguistic competence refers to speech features such as vocabulary 

use, syntax, pronunciation, and fluency. 

The remainder of this paper focuses on identifying the characteristics of the graph items 

that lead to higher or lower quality items. If we understand which features of graphs lead to 

items that poorly assess communicative competence—that is, graphs that require more graph-

reading skills than others—then we can make recommendations to test development staff on the 
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crafting of TSE graph items. First, drawing from research on the cognitive processes underlying 

graph comprehension, we present the visual chunks theory, which asserts that people tend to 

describe graph items in terms of visually identifiable graph features in the data, and which 

defines how to identify these features in a graph. Second, based on previous research on the 

cognitive processes underlying graph comprehension, we hypothesize that the number of visual 

chunks will predict item quality—the more that needs to be described and integrated to support 

the communication of major points in a graph, the lower the communicative quality of a 

response. Finally, we present two investigations of this hypothesis: a regression analysis of 

existing TSE data, and a controlled experiment that specifically manipulates the number of 

visual chunks in a graph. 

Applying Theories of Graph Comprehension: The Visual Chunks Hypothesis 

At the time this project was conducted, there were 39 TSE graph items for which 

administration data were available (those administered between July 1997 and August 2000). 

The items included 8 pie charts, 19 bar charts, 8 line graphs, 2 items including both a bar and a 

line graph, 1 unidentified graph (the test form on which it appeared was not available), and 1 

table. However, within these general types are a variety of story contexts (e.g., bicycle sales, 

electricity usage, family budgets), visual formalisms (tic marks, shading, labeling) and data types 

(single function or multiple function), and x-axis scales (continuous, discrete). For example, 

there are items that present the comparison of two pie charts, sometimes with individual pie 

sections shaded or sometimes without shading. Some bar charts show the level of an individual 

variable over several months (e.g., number of books checked out) while other bar charts show 

how two different types of data change over time (e.g., the relative popularity of different college 

majors). From this wide array of graph types, formalisms, and data types, a theoretical model can 

point out the important and unimportant differences among the graphs. 

There is a large body of literature on the comprehension and interpretation of statistical 

graphs, stemming from research in cognitive psychology, statistics, education, and 

management to name a few fields. Much of this research consists of either expert discussion on 

what makes a good graph (e.g., Tufte, 1983; Wainer, 2000) or empirical studies of the relative 

comprehensibility (typically measured via narrow laboratory tasks) of graphs containing 

different visual features (e.g., see reviews in Friel, Curcio, & Bright, 2001; Lewandowsky & 
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Behrens, 1999; Shah & Hoeffner, 2002). Additionally, several authors (Carpenter & Shah, 

1998; Kosslyn, 1989; Lohse 1993; Pinker 1990) have compiled their and others’ empirical 

results into comprehensive theories that specify, the detailed cognitive processes underlying 

graph comprehension. Although the various theories may differ in details, there is much 

agreement on the broad outlines of how people go about comprehending statistical graphs. 

Most theories of graph comprehension include the processes of (1) encoding a visual 

feature of the graph or data (sometimes referred to as a “visual chunk”) and (2) interpreting 

that feature with respect to basic graph knowledge (e.g., a line going up means something is 

increasing) and specific graph content (e.g., “bicycle sales are increasing”). Carpenter and 

Shah (1998) provide evidence that comprehension occurs through repeated cycles of encoding 

and interpretation, building up more inclusive understanding of the graph. Through reaction 

time studies and analyses of eye movements during graph comprehension, the researchers 

show that the more information (the greater the number of visual chunks) in a graph to 

integrate, the longer it takes to comprehend a graph. Furthermore, several empirical studies 

have shown that people tend to describe graphs in terms of these visual chunks (Carswell, 

1993; Shah, Hegarty, & Mayer, 1999). 

We hypothesize that fewer visual chunks will similarly lead to higher quality 

descriptions. Having fewer pieces of information to be described potentially leaves more time 

and cognitive resources for participants to monitor their language and organize their response. 

To apply the theory to the TSE graph items requires strict definitions of the visual chunks 

represented in the graphs. Because the relevant literature focuses on bar and line graphs, we limit 

our discussion to these graph types (approximately three quarters of TSE graph items). This 

focus is justified as, anecdotally, test development staff report fewer difficulties associated with 

scoring pie charts as compared to bar and line graphs. Thus, the pragmatic need is to understand 

how to create “good” bar and line graphs for TSE graph items. 

What are the visual chunks in line graphs? Carpenter and Shah (1998) provide empirical 

evidence that each line forms a separate chunk, unless the lines are parallel. That is, if a graph 

has more than one line (e.g., Figure 23), each line is a separate visual chunk. Carswell (1993) 

builds on this claim by showing that reversals in a line—such as the switching of the slope from 

positive to negative—breaks a line into separate visual chunks. In contrast, other features of a 

line such as the number of points represented in a line or a simple change in rate (but not 
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direction) of slope does not add further information (i.e., something else to describe). Thus, 

Figure 2 contains four visual chunks—each line represents two visual chunks because there is 

one reversal in each line. Figure 3 contains two visual chunks because neither line has reversals. 

 

0

2

4

6

8

10

January March May July September November

Year 1
Year 2

 
Figure 2. Graph with two data series and four total visual chunks. 
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Figure 3. Graph with two data series and two total visual chunks. 
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What are the visual chunks in bar charts? We consider first bar charts having discrete 

categories listed across the x-axis (i.e., a nominal scale; see Figure 9 for an example of a nominal 

scale of response categories). Shah, Hegarty, and Mayer (1999) demonstrated that each group of 

bars associated with a particular value along the x-axis form a visual chunk. Consistent with this 

theory, the researchers showed that descriptions of bars within a graph tend to be organized 

around these chunks—people tend to describe one group of bars, then the next, and so forth, 

rather than describing information associated with a particular shade of bar as it occurs in several 

groups. Thus, Figure 4 contains five visual chunks—each group of bars can be described as a 

simple unit of information (e.g., “For Category 1, Year 2 is greater than Year 1”). 

 

0
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Year 1 Year 2
 

Figure 4. Graph with two data series and five visual chunks (one per x-axis group). 

Bar charts containing a continuous scale on the x-axis (e.g., years) may be treated the 

same as line graphs. That is, one can imagine a line connecting the tops of the bars of a particular 

shade to create a line graph. Thus, Figure 5 shows a bar graph representing four visual chunks—

although there is an individual data series, three reversals are present in the data. For clarity, 

Figure 6 shows the same figure as a line graph with the visual chunks highlighted. Figure 7 

shows a bar graph containing two visual chunks, one for each “line,” neither of which has a 

reversal. 
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Figure 5. Graph with one data series and four visual chunks. 
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Figure 6. Previous figure with visual chunks highlighted. 
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Figure 7. Graph with two data series and two visual chunks. 

Using the rules outlined above, one can determine the number of visual chunks in almost 

any bar or line graph. Note that these rules are objective, requiring no qualitative judgments to 

determine the number of visual chunks in a graph. 

The next sections present two investigations of the visual chunks hypothesis: do more 

visual chunks lead to lower-quality items? First, we present a regression analysis that tests the 

predictive strength of two factors derived from the theory (number of visual chunks; individual 

or multiple data series) on the quality of the resulting item. Next, to supplement this correlational 

analysis, we present an experiment in which the number of visual chunks in a graph was 

systematically manipulated.  

Study 1: Modeling the Quality of TSE Graph Items 

The goal of the regression analysis is to test the strength of the visual chunks theory to 

predict the quality of TSE graph items. In the following analysis, we use the visual chunks 

theory to classify the features of the 29 bar and line graphs among the set of administered items 

described earlier. By “item quality,” we refer to the degree to which a graph item elicits a speech 

sample consistent with performance on the remainder of the test. 

As noted earlier, TSE raters report that some graph items elicit performance that is lower 

than what would be expected given examinees’ performance on the rest of the test. These 

anecdotal reports suggest a novel measure of item-whole comparisons: discrepancy scores.4 We 

define a discrepant case as one where an examinee’s score on an item is five or more points 
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below the average of the other items. This criterion was chosen because five points represents 

half a score band (TSE items are scored on a scale of five points ranging from 20 to 60 in 

increments of 10). If a graph item elicits a high percentage of discrepant cases, it suggests that 

the item might be tapping skills different than those assessed by the other items in the test. 

Method 

Independent Variables 

According to the theories presented earlier, people comprehend graphs through repeated 

cycles of encoding, and then interpreting, the visual chunks in a graph. Carpenter & Shah (1999) 

showed that more visual chunks lead to a greater cognitive processing load, and, we speculate, 

will similarly lead to lower quality descriptions of TSE graph items. Graphs also differ in the 

ease with which people can interpret the visual chunks, that is to say, relating the quantitative 

relationships shown in visual patterns to variables. For example, if the visual chunks represent 

quantitative information about different variables, people might need to refer to a graph’s legend 

to interpret each chunk. Lohse (1993) showed how people’s eye movements return to the legend 

of a graph in a pattern consistent with the idea that they are refreshing their memory of how to 

interpret a symbol or portion of a graph. For example, the graph in Figure 5 should pose little 

cognitive load when a person interprets each chunk because each of them refers to the same 

entity: there is only one shade of bar (one data series). In contrast, Figure 7, which has two data 

series, should introduce greater cognitive load because a person needs to refresh his or her 

memory of the meaning of each bar shade by referring to the legend when attempting to describe 

the visual chunks. 

Two independent variables were used in this analysis: 

• Number of visual chunks. This variable encodes the number of visual chunks 

presented in a graph. The number of chunks was determined by the rubric 

presented earlier. Among the 29 items considered, the number of visual chunks 

ranged from one to six. 

• Data series type (individual/multiple). This variable encodes whether the graph 

shows an individual or a multiple series of data. An individual series is a graph 

with a single line or a single set of bars. Multiple-series graphs include more than 
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one line and more than one set (shading) of bars and, as a result, are expected to 

impose a greater cognitive load because of the need to refresh one’s memory 

regarding the meaning of each line or bar shade (Lohse, 1993). Among the 29 

items considered, 13 consisted of an individual data series, 14 depicted two data 

series, and one graph each contained three and four data series. Because the 

sample did not contain a wide enough range of number of series, we simplified 

this variable to encode only individual versus multiple data series. In the analysis, 

an individual series was coded as “0” and a multiple series was coded as “1.” 

Items 

As noted earlier, the items considered for this analysis include the TSE graph items 

containing either a bar or a line graph. However, the number of items used in the regression 

analysis was reduced because of an artificial interdependence between the two predictors of 

number of visual chunks and data series type. As described earlier, each data series adds an 

additional visual chunk. Therefore, graphs with one visual chunk cannot have more than one data 

series. Such a restriction does not exist for graphs with more than one visual chunk (e.g., a graph 

showing two visual chunks could consist either of an individual or multiple data series). To 

simplify the regression analysis, we included data only from the 23 items having graphs with two 

or more visual chunks. We acknowledge that this restriction limits the generality of the results 

and in the discussion separately consider the case of graphs with only one visual chunk. 

Dependent Variable 

The percentage of discrepant cases was used as the dependent measure in the regression 

analysis. This measure potentially avoids the scaling issues inherent in comparing unequated 

scores across test administrations and provides greater variability than item-total correlation. 

Among the items analyzed, the percentage of discrepant cases ranged from 6.3 to 26.8 with a 

mean of 14.8 and standard deviation of 5.9. 

Results 

Figure 8 plots the number of visual chunks and data series type by the measure of item 

quality. Higher percentages indicate more discrepant cases elicited by an item, and therefore, 

indicate an item of lower quality.  
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Figure 8. Scatterplot for regression analysis. 

The two predictors are both strongly correlated with the measure of item quality (see 

Figure 8). More complex graphs (more visual chunks and multiple data series) tend to elicit 

discrepant performance. The two factors are only weakly correlated with each other, suggesting 

unique potential predictive power of each (see Table 1). 

 

Table 1 

Intercorrelations of Dependent and Independent Measures 

 Percentage of  
discrepant cases 

Number of 
visual chunks 

Data series type 

Percentage of discrepant cases — 0.690* 0.535* 
Number of visual chunks  — 0.110 
Data series type   — 

*p < 0.01. 
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To investigate the relative contributions to prediction of the two factors, we conducted a 

hierarchical regression analysis in which we incrementally added each factor, plus their 

interaction, to the model. The results of the hierarchical regression analysis are shown in Table 2 

Each of the two main-effect factors contributes significantly to prediction, although the 

interaction effect does not add significant predictive power. Overall, the regression model 

accounts for approximately 70% of the variance in the measure of item quality. 

 

Table 2 

Hierarchical Multiple Regression Analysis Results 

Step Predictor added Cumulative R2 Change R2 F df 
1 Number of visual chunks 0.476 0.476 19.1* 1, 21 
2 Data series type 0.690 0.214 13.8* 1, 20 
3 Visual chunks-by-data series 0.695 0.005     .35 1, 19 

*p < 0.001. 

Discussion 

These results provide strong support for the visual chunks theory. The two factors 

derived from the theory predicted 70% of the variance in item quality among the bar and line 

graphs containing two or more visual chunks. 

Items with only one visual chunk (and therefore having an individual data series) 

evidence a wider range of quality than would be expected, eliciting from 7%–17% discrepant 

cases. We might speculate that when there is not enough information to describe (i.e., only one 

visual chunk), examinees cast about for other aspects of the graph to talk about. As a result, other 

characteristics of the graph such as content, predictability of the data, and so forth, might have a 

stronger influence on performance. 

Despite the strong results as predicted by the visual chunks hypothesis, this analysis has 

some limits. The analysis included a relatively small number of types of graph items: the bar and 

line graphs administered in the TSE. A wider range of graph items might show more variability 

that is not as well modeled by the two factors. The analysis was limited to graphs with more than 

one visual chunk and so the results cannot be generalized to graphs having one visual chunk. 
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Finally, the analysis is correlational and does not provide support for the idea that more visual 

chunks causes changes in performance. The next experiment explores the potential causal 

relationship between visual chunks and language quality of the elicited descriptions. 

Study 2: Experimental Investigation of Visual Chunks Hypothesis 

In this experiment, we systematically manipulated the organization of a graph to create 

two versions of graphs that differed in the number of visual chunks. For example, the graphs 

shown in Figure 1 and Figure 9 represent the same data set, but the variables represented along 

the x- and z- (bar shades) dimensions are switched. Which should be easier to describe? Figure 1 

incorporates fewer visual chunks than does Figure 9 (two vs. five), so according to our 

hypothesis, that graph should elicit descriptions with higher communicative quality. Figure 1 has 

two groups of bars, each with one category that is much higher than the rest: describing this 

feature succinctly summarizes the data represented in the group. Thus, a straightforward 

description would be to make the global comparison within one age group (e.g., “For ages 20–

30, interesting work is the most important”), and then the other age group. While such a response 

does not necessarily capture every nuance of the data, it does capture the essential difference 

between the two groups. Note that it is important that the fewer visual chunks in Figure 1 each 

include a visually obvious maximal value. Otherwise, each group might be perceived as separate 

chunks (each bar), potentially diminishing the quality of descriptions that the graph elicits. 

Figure 9, in contrast, has five visual chunks: the relative height of the bars within each category. 

Thus, more time is needed to comprehend the graph, and the communicative quality of any 

descriptions of this graph should be lower than those of Figure 1. 

There is another way, however, in which these graphs may be interpreted. Although there 

are fewer visual chunks in Figure 1, the graph introduces five different shade-category mappings 

that might need to be either remembered or refreshed by looking at the legend (Lohse, 1993). 

The results of the previous regression analysis supported this notion of added complexity from 

additional data series (admittedly, however, the regression compared individual vs. multiple data 

series and the two graphs in this discussion both have multiple data series). From this alternative 

task analysis, Figure 1 might impose a heavier working-memory burden than Figure 9 because 

the latter has only two shades representing the two age groups. This alternative task analysis 

predicts that Figure 9 would elicit descriptions of superior communicative quality.  
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Figure 9. Alternative form of Figure 1 (more visual chunks). 

To test the visual chunk hypothesis, we conducted an experiment that manipulated two 

factors with the potential to affect the descriptive ease of a graph. For the first factor, we created 

two graph organizations for each of four data sets by switching the variables represented along 

the x-axis and by the differently shaded bars (the z-variable). One graph organization presents a 

smaller number of visual chunks (two to three chunks depending on the data set) than the other 

organization (four to six chunks). These two graph organizations will be referred to as the few-

chunks (e.g., Figure 1) and many-chunks (e.g., Figure 9) graphs. The few-chunks graphs’ 

organization minimizes the amount of information to be described, and is therefore predicted to 

elicit better descriptions. The second factor manipulated participants’ attention to selected 

portions of the graphs. An alternative to the visual chunks hypothesis is that a comparison 

between two groups is simply a more natural way to describe a graph. In other words, any 

superiority of the few-chunks graphs might be due to a particular descriptive strategy.  

This alternative hypothesis suggests the possibility of drawing participants’ attention to 

the fewer chunks even within a many-chunks graph (e.g., seeing the maximal values for the two 

age groups in the many-chunks graph). To investigate this possibility, we introduced alternative 

task prompts. Open-ended prompts were the same for all graphs and asked the participant to 

“Describe the information given in the graph.” Directive prompts identified the critical contrast  
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in the graph, suggesting more directly what should be described. For example, for Figure 1, the 

prompt was “Describe the changes in work values between the two age groups.” 

Method 

Participants  

Thirty-nine students (19 female, 18 male5) participated in the experiment. Ten students6 

were recruited from each of four universities in the U.S., and students participated at their local 

institution.7 Eighty-five percent of participants were doing graduate or post-graduate work; 

others were juniors or seniors. Participants ranged in age from 21 to 45, with an average age of 

29. Students’ reported fields of study were medicine (31%), math or science (26%), business 

(23%), humanities (10%), and social science (10%). 

Each institution was asked to recruit eight nonnative English speakers and two native 

English speakers. Most of the participants were native speakers of a Chinese dialect (n = 19); 

other languages were reported by no more than two or three participants (a mix of Asian, 

European, and Middle Eastern languages). There were seven native English participants because 

one institution recruited only one native English speaker instead of the requested two. Most of 

the students had been living in the United States for fewer than 2 years (n = 22); the remaining 

students were evenly split between those that had lived in the United States 10 or more years (n 

= 9) and between 2 and 10 years (n = 8). 

Materials 

We constructed four data sets to be graphed as bar charts. Each data set had its own story 

line, which had been reviewed by professional test developers for comprehensibility to nonnative 

speakers of English. The data represented the interaction of two independent variables, with one 

variable having fewer levels (2–3) than the other (3–5). The variables with fewer levels were 

either years or age groups (as in Figure 1). The other variables were either nominal categories 

(e.g., work values) or intervals (e.g., hours in a day). 
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We created two graphs from each data set, for a total of eight graphs. One graph in a pair 

placed the 2–3 level variable along the x-axis and represented the other variable on the z 

dimension (the different shades of bars)—this organization created the few-chunks graphs. The 

many-chunks graph was created by switching the variables on the x and z dimensions. 

Design 

The independent variables of graph organization (few visual chunks vs. many visual 

chunks) and prompt directness (open vs. directed) were implemented in a completely within-

subjects design: each participant received four graph items corresponding to both levels of both 

independent variables. For each participant, the organization type alternated, with half the 

participants receiving few-chunks graphs first and half receiving many-chunks graphs first. For 

the prompt directness variable, because of the possibility of one prompt type influencing the 

next, that variable was implemented using reverse counterbalancing, whereby each participant 

received both prompt types first in one order and then in the reverse order (sometimes called an 

ABBA design, where “A” and “B” refer to the two levels of the independent variable). Half the 

participants received an open-ended prompt first, and half received a directive prompt first. 

Table 3 shows the full design of the experiment. As mentioned earlier, each participant 

received four graph items, each consisting of a different data set (and corresponding story line). 

Participants from each school responded to the items in the order shown in the table. Thus, 

participants at School 1 received the few-direct (graph organization and prompt directness, 

respectively) version of Data Set A first, then the many-open version of Data Set B, and so forth. 

Participants from Schools 3 and 4 received precisely the same graph items, as did participants 

from Schools 1 and 2, respectively, just in a different order. Preliminary analyses suggested no a 

priori differences among the participants from each school in terms of their communicative 

competence in English or in their familiarity with reading graphs.8  
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Table 3 

Design of the Experiment 

 Data Set A Data Set B Data Set C Data Set D 
School Chunks Prompt Chunks Prompt Chunks Prompt Chunks Prompt 

1 Few Direct Many Open Few Open Many Direct 
2 Many Open Few Direct Many Direct Few Open 

 

 Data Set C Data Set D Data Set A Data Set B 
School Chunks Prompt Chunks Prompt Chunks Prompt Chunks Prompt 

3 Few Open Many Direct Few Direct Many Open 
4 Many Direct Few Open Many Open Few Direct 

 

Procedure 

Each university conducted one data collection session of 10 students. Sessions were 

typically conducted in a language lab or similarly equipped facility. Besides a test booklet, each 

student had a tape recorder and headphones. Students heard the prompts over their headphones 

and spoke their responses, which were recorded on audiotape.  

The items were administered in two sets, with a short break between the sets; each set 

included nine nongraph items followed by two of the experimental items. After both sets were 

administered, students received a brief demographic questionnaire. 

Measures 

We obtained three types of dependent measures from each response: response latency, 

holistic scores, and four component scores. Response latency is the number of seconds between 

the end of the spoken prompt and when the participant began speaking. The timing was done by 

a research assistant unaware of the purpose of the experiment, using an on-line stopwatch while 

listening to each taped response.  

Highly experienced TSE raters scored each response using the TSE scoring rubric. Raters 

produced a holistic score using the identical procedures used to score actual TSE responses. To 

provide finer-grain scores than the five-level scale described earlier, each rater was asked to 

indicate whether a score fell into the high, middle, or low end of the score band. Thus, raters 
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provided scores such as “high 40” or “low 60.” This approach divides each 10-point score band 

into three sub-bands. Raters often discuss responses in this way, so producing this additional 

information was not difficult.  

In converting these relative rankings into scores, “middle” scores were unadjusted to 

facilitate comparison between these scores and the typical score scale for the TSE. As a result, in 

the analyses presented below, a “high” score adds 3.3 (one third of the 10 point score band) to 

the band level (e.g., “high 40” becomes 43.3), whereas a “low” score subtracts 3.3 from the band 

level (“low 60” becomes 56.7).  

After providing the holistic scores for all of his or her assigned responses, each rater was 

asked to listen to each response again and provide a score for each of the component 

competencies in the TSE Score Band Chart, as described earlier. Thus, in addition to a holistic 

score, each response received a discourse, functional, sociolinguistic, and linguistic score. These 

scores were rated on the typical five-level (20–60) scale.  

Results 

We look at the effects of graph organization (few or many visual chunks) and prompt 

type (open or directive prompt) from three perspectives. First, what are the effects on response 

latency? According to Carpenter and Shah (1998), a greater number of visual chunks should lead 

to longer latencies because of the greater number of encode-interpret cycles needed for 

comprehension. Second, what are the effects on holistic scores? As we are looking at within-

subject performance, any effects suggest an influence other than a person’s own communicative 

competence on the score (i.e., variance irrelevant to the construct intended to be measured). 

Finally, as a follow-up to the effects on holistic score, we look at the effects on the components 

of the score—the individual scores on discourse, functional, sociolinguistic, and linguistic 

competence. 

We ran a 2 x 2 repeated-measures ANOVA, with graph organization (few- or many-

chunks graphs) and prompt type (directive or open) as within-subjects factors and response 

latency as the dependent measure (see Table 4). There was a significant main effect of graph 

organization: participants spent less time inspecting the few-chunks graphs before responding  

(M = 5.5; SD = 3.7) compared to the many-chunks graphs (M = 6.8; SD = 4.6). However, the 

effect size measure (η2, the proportion of the total variance that is attributed to an effect) 
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suggests that this statistically significant effect might not be practically significant; we address 

this issue in the discussion. The main effect of prompt type was not significant nor was the 

interaction of graph organization and prompt.  

 

Table 4 

Response Latency ANOVA 

Source df F η2 p 
Graph organization   1    4.9* 0.12 0.03 

Graph organization by subjects (within-group error) 37a (13.4)   

Prompt type   1    0.67 0.02 0.42 

Prompt type by subjects (within-group error) 37 (10.0)   

Graph organization by prompt type   1    0.03 0.00 0.87 

Graph organization by prompt type by subjects 
(within-group error) 

37 (7.9)   

Note. Values enclosed in parentheses represent mean square errors. 
aDue to technical difficulty, one participant’s latency was not obtained. 
*p < 0.05. 
 

Similar results were obtained for holistic scores (see Table 5). An identical 2 x 2 

repeated-measures ANOVA revealed a significant effect of graph organization: participants 

received higher scores when responding to the few-chunks graphs (M = 47.7; SD = 9.1) 

compared to the many-chunks graphs (M = 46.1; SD = 9.5). Again, although statistically 

significant, the effect size was small. The main effect of prompt type was not significant nor was 

the interaction of graph organization and prompt. 

The effects of graph organization on response latency and holistic scores were also 

observed in the subsample of seven native English speakers, albeit attenuated due to ceiling 

effects. Native speakers were quicker to respond to few-chunks graphs (3.6 sec) than to many-

chunks graphs (4.2 sec) and produced better responses to those with few-chunks (60.7 versus 

59.5). These trends are consistent with the idea that the effects of graph organization are not 

limited to nonnative speakers of English, and suggest a degree of generality of the results. 
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Table 5 

Holistic Score ANOVA 

Source df F η2 p 

Graph organization   1 8.08* 0.18   0.007 

Graph organization by subjects (within-group error) 38 (12.1)   

Prompt type   1 0.34 0.01 0.56 

Prompt type by subjects (within-group error) 38 (16.9)   

Graph organization by prompt type   1 0.00 0.00 0.96 

Graph organization by prompt type by subjects  
(within-group error) 

38 (27.5)   

Note. Values enclosed in parentheses represent mean square errors.  
*p < 0.01. 

 

Which components of participants’ language ability tend to be affected by graph 

organization? Are responses to few-chunks graphs more expressive or more linguistically 

precise? While we might expect graph organization to affect how well organized a response is 

(i.e., discourse competence), it might be the case that a poorly organized graph increases 

working memory load, thus, impinging on all language competencies. 

Table 6 shows the effect of graph organization on each of the competency scores. As 

expected, discourse scores were significantly higher (via two-tailed, paired-samples t-test) for 

the few-chunks graphs: responses to these graphs were rated as more coherent and cohesive. 

There was an almost significant difference on the functional scores, whereby participants’ 

responses to few-chunks graphs reflected language more appropriate to the task than did their 

responses to many-chunks graphs. There were no differences between the graph types in 

participants’ ability to demonstrate their awareness of audience and situation (sociolinguistic 

competence), and in their pronunciation, grammar, and fluency as a whole (linguistic 

competence). 
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Table 6  

Mean (SD) Scores by Graph Type 

Graph organization  
Competence component 

Few-chunks Many-chunks t(37) p da 
Discourse 47.1 45.3* 2.2 0.03 0.19 

 (8.6) (9.9)    

Functional 47.1 45.8 1.7 0.11 0.14 
 (8.7) (9.9)    

Sociolinguistic 46.2 45.5 1.5 0.14 0.08 
 (8.8) (9.1)    

Linguistic 48.0 47.2 1.0 0.30 0.09 
 (8.8) (8.5)    

Note. Each graph type score is the mean of the two scores for each participant. N = 38  
per cell because one participant’s component scores were unavailable. 
aCohen’s d is a measure of effect size calculated as the difference between the two means  
divided by the pool standard deviation. Cohen (1988) refers to effect sizes of 0.20 and  
below as “small.” 
*p < 0.05. 
 

Thus far, the results are consistent with the hypothesis that better performance is 

achieved with graphs that have fewer visual chunks. But are participants describing the visual 

chunks predicted by the theory? That is, for the fewer-chunks graph in Figure 1, participants’ 

descriptions should include the global comparison between the highest category in a bar group 

and the other bars in that group (e.g., “Interesting Work is most important for the 20–30 year 

olds”). For the many-chunks graph in Figure 9, descriptions should instead include discrete 

comparisons within a category (e.g., “Interesting Work is more important to the 20–30 year olds 

than 50–60 year olds”). 

To address whether participants are describing the expected visual chunks for these two 

graphs, we analyzed the first piece of information mentioned in their response to the graphs. 
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Given the speeded nature of the task, the first graph feature mentioned should be the most salient 

to the participant. 

Participants’ descriptions were consistent with their describing the two graphs in terms of 

the predicted visual chunks (see Table 7). Participants mentioned first the global features of the 

data significantly more often when the graph was organized to accentuate these features (fewer-

chunks graph) and mentioned first the discrete comparisons (the relative-height visual chunks) of 

the many-chunks graph (χ2(1) = 11.8, p< 0.001).  

 

Table 7 

Graph Type by First Description 

Graph type Global 
comparison 

Discrete 
comparison 

Few-chunks 
(Figure 1) 19   1 

Many-chunks 
(Figure 9)   8 10 

 

Discussion 

The results provide further support for the hypothesis that graphs with fewer visual 

chunks are easier to describe. Participants took less time to scan the few-chunks graphs before 

speaking, which replicates Carpenter and Shah’s (1998) results. Graphs with fewer chunks also 

elicited descriptions of better overall communicative quality. Furthermore, the organization of a 

graph had a very specific influence on the descriptions provided by participants: graphs with 

fewer visual chunks led to more cohesive and coherent descriptions. If the many-chunks graphs 

were worse because of lower overall comprehensibility, we would expect more aspects of 

descriptive competence to be affected. Interestingly, incorporating a directive prompt had no 

influence on participants’ descriptions. Although it is dangerous to draw conclusions from null 

results, this lack of effect is consistent with the idea that visual chunks are a visual processing 

phenomenon and might not be influenced by directions on problem-solving strategy. 
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The results for graph organization (number of visual chunks) might seem modest 

compared with the results of the regression analysis presented earlier. While statistically 

significant, the effect sizes were small (all less than .20): one might reasonably ask whether a 1.3 

second difference in latency and a 1.6 score difference reflects an effect that is significant for 

practice. However, in interpreting these results, one should keep in mind two facts regarding the 

experimental situation. First, the contrasts were between highly similar graphs—the typical TSE 

graphs differ more widely than those used in the current experiment. The regression analysis 

presented earlier showed a much wider range of visual chunks leading to large differences in 

item quality. Second, the experiment deliberately included controls (two versions of the same 

data set, within-subjects comparisons) that might minimize the effects. These controls helped 

rule out alternative explanations of the results, allowing us to focus on the main purpose: to test 

whether, consistent with the visual chunks hypothesis, the quality of responses could be affected 

by the graphs independent of the relevant construct (communicative competence). 

Furthermore, these small average differences mask a good deal of variability. For 

example, of the 39 participants, approximately half (19) demonstrated superior performance on 

the fewer-chunks graphs, ranging from 1.7 to 11.7 with a mean of 4.3. Thus, to the extent that 

fewer chunks lead to better performance for an individual, we might expect on average half a 

score band difference. While this would not affect people in the middle range of a band, this 

difference is important to examinees on the lower end of each score band. To the extent there is 

an effect, the number of visual chunks is certainly enough to shift, for example, a low 40 

response to the 30 score band level. 

A limitation of this study should be noted. For logistical reasons noted early, the 

experimental design had each school receive a unique order of graph items (see Table 3) instead 

of spiraling the order of test items within a school. This latter design would have minimized the 

likelihood that any results were due to an interaction between the particular order of items and 

the characteristics of the potential test-takers at a school. Whereas the within-in subject design 

lessens the chances of such an effect (because each participant acts as his or her own control), 

such a possibility is not eliminated. However, further inspection of the data provides support for 

our intended interpretation of the results. Within the subsample of each school, the mean scores 

on few-chunks graph items are always higher than the scores on the many-chunks items, 

replicating the overall result reported earlier. Furthermore, at each school, approximately half  
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of the participants (4–6) performed better on the fewer-chunks graphs, consistent with the 

analysis presented in the previous paragraph. Thus, it appears unlikely that the effects reported in 

the Results section are due to unintended differences between participants at the different 

schools. 

General Discussion: Recommendations 

The visual chunks hypothesis—fewer visual chunks leading to descriptions of higher 

communicative quality—has practical implications, suggesting desirable characteristics of graph 

description tasks for the Test of Spoken English. For example, two or three visual chunks in a 

graph might be the limit of what is reasonably possible to describe within one minute. For multi-

variable bar graphs as used in the current experiment, this recommendation would mean limiting 

the number of bar-groups placed along the x-axis. Other recommendations include: 

• Line graphs. Line graphs should contain no more than three visual chunks. These chunks 

may consist either of an individual line with one reversal or two nonparallel lines with no 

reversals.  

• Bar charts. Bar charts come in two varieties based on the x-axis scale. If the x-axis is a 

continuous scale, then the bar chart may be treated as a line graph, following the same 

recommendations provided above. If the x-axis is a discrete scale (i.e., nominal categories), 

there should be no more than two or three categories, and each of those categories should 

contain a visual pattern that can be described simply. If each group contains only two bars, 

each pair should be either clearly equal or clearly unequal. If each group contains more 

than two bars, either the bars should form a trend (assuming the different bars are on a 

continuous scale, such as years) or one of the bars should be much greater or much lesser 

than the others in the group (creating a clear maximal or minimal value). 

Note that these specific, empirically supported recommendations leave open a variety of 

visual design elements in creating graphs. Within these guidelines, graphs may have whatever 

content that test development guidelines deem appropriate for the examinee population. 

Different types of graphs might be combined in a single item, such as presenting both a (one 

chunk) bar graph and a (one chunk) line graph as was done once in the past. Thus, the 

recommendations, while simply stated, are not as restricted as their brevity might imply. 
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To avoid discrepant items, test development should follow the prescriptions of the visual 

chunks theory, creating graphs that present only two or three chunks of information. This 

approach should lead to graph items that uniformly contribute to the assessment of 

communicative competence. 
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Notes 
1 This graph was created expressly for the experiment presented later in this report. To preserve 

item confidentiality, none of the graphs in this report are actual TSE items. Some figures 

contain graphs that have been used previously on the TSE, but for the report all content 

information (e.g., axes labels) were removed. 
2 The three samples in this discussion are portions of actual responses collected during the 

experiment described later. As will be explained below, all of the responses in the experiment 

were scored with respect to the four communicative competencies individually, in addition to 

the usually holistic scores. The samples were selected to illustrate each competence based on 

these component scores. 
3 As noted earlier, to protect the confidentiality of TSE items, the figures in this section contain 

no content related to the original TSE item on which they are based. Instead of “Year 1” or 

“Category 1” would be an actual year or category, such as the name of a college. 
4 We thank Hunter Breland for conceiving the notion of discrepancy analysis. 
5 Two students chose not to list their gender. 
6 Due to technical difficulties, one participant's data were lost, so one school contributed only 

nine students. 
7 The local institutions comprised Drexel University, The Ohio State University, University of 

Buffalo, Wayne State University. 
8 A stronger design would have been to spiral the four orders of items within each school. 

However, this improvement was not logistically feasible because the experiment was 

conducted in the context of a pilot for an ETS operational test. 
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