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EFFECTS OF MISBEHAVING COMMON ITEMS  

ON AGGREGATE SCORES AND AN APPLICATION OF THE  

MANTEL-HAENSZEL STATISTIC IN TEST EQUATING1 

Abstract 

Consistent behavior is a desirable characteristic that common items are expected to 
have when administered to different groups. Findings from the literature have established 
that items do not always behave in consistent ways; item indices and IRT item parameter 
estimates of the same items differ when obtained from different administrations. Content 
effects, such as discrepancies in instructional emphasis, and context effects, such as changes 
in the presentation, format, and positioning of the item, may result in differential item 
difficulty for different groups. When common items are differentially difficult for two 
groups, using them to generate an equating transformation is questionable. The delta-plot 
method is a simple, graphical procedure that identifies such items by examining their 
classical test theory difficulty values. After inspection, such items are likely to drop to a non-
common-item status.  

Two studies are described in this report. Study 1 investigates the influence of 
common items that behave inconsistently across two administrations on equated score 
summaries. Study 2 applies an alternative to the delta-plot method for flagging common 
items for differential behavior across administrations.  

The first study examines the effects of retaining versus discarding the common 
items flagged as outliers by the delta-plot method on equated score summary statistics. For 
four statewide assessments that were administered in two consecutive years under the 
common-item nonequivalent groups design, the equating functions that transform the Year-
2 to the Year-1 scale are estimated using four different IRT equating methods (Stocking & 
Lord, Haebara, mean/sigma, mean/mean) under two IRT models—the three- and the one-
parameter logistic models for the dichotomous items with Samejima’s (1969) graded 
response model for polytomous items. The changes in the Year-2 equated mean scores, mean 
gains or declines from Year 1 to Year 2, and proportions above a cut-off point are examined 
when all the common items are used in the equating process versus when the delta-plot 
outliers are excluded from the common-item pool. Results under the four equating methods 

                                                 
1 The author would like to thank Edward Haertel for his thoughtful guidance on this project and for reviewing this 
report. Thanks also to Measured Progress Inc. for providing data for this project, as well as John Donoghue, Neil 
Dorans, Kyoko Ito, Michael Jodoin, Michael Nering, David Rogosa, Richard Shavelson, Wendy Yen, Rebecca 
Zwick and seminar participants at CTB/McGraw Hill and ETS for suggestions. Any errors and omissions are the 
responsibility of the author.  
Results from the two studies in this report were presented at the 2003 and 2005 Annual Meetings of the American 
Educational Research Association. 
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were more consistent when a one-parameter rather than when a three-parameter logistic 
model was fitted. In two of the four assessments, the treatment of outlying common items 
had an impact on aggregate statistics: equated mean scores, mean gains and proportions 
above a cut-off differed considerably. Factors such as the number of outlying items, their 
type (dichotomously or polytomously scored), their level of difficulty, the direction and the 
amount of their change from Year 1 to Year 2, and the IRT model and equating 
transformation fitted to the data are discussed with regards to their influence on equated 
summary statistics.  

The differential behavior of common items can be considered as a special case of 
Differential Item Functioning (DIF); the two different groups that respond to a common item 
can be regarded as the focal and reference groups, and their performance can be compared 
for DIF. Study 2 applies the Mantel-Haenszel statistic (Mantel & Haenszel, 1959), which is 
widely used for DIF analysis, on one statewide assessment that was administered to two 
consecutive annual cohorts of students. Sixty-nine common items, including nine 
polytomous items, are analyzed first with the delta-plot method and then with the Mantel-
Haenszel procedure. A scheme for flagging dichotomous items for negligible, intermediate, 
or large DIF takes into account both the significance of the Mantel-Haenszel statistic and the 
effect size of the log-odds ratio; an alternative scheme developed specifically for polytomous 
items utilizes Mantel’s chi-square statistic (Mantel, 1963) and the Standardized Mean 
Difference (e.g., Dorans & Schmitt, 1991/1993). The Mantel-Haenszel procedure flagged 
three common items, including one polytomous, for intermediate DIF. The delta-plot 
identified two dichotomous items only; one of which was flagged by both procedures. 
Assumptions are examined and it is argued that the Mantel-Haenszel procedure is more 
appropriate for comparing the performance of two groups because differences in the 
distributions of ability of the two cohorts are taken into account. The availability of schemes 
that classify items according to the amount of DIF they exhibit can be informative for the 
judgmental decision on how to deal with flagged items. However, some caveats relating to 
test construction and implementation of the equating design are noted if the proposed 
procedures are to be applied effectively. The same common items and an adequately large 
number of them must be presented in corresponding forms across administrations. This is 
pertinent especially for assessments employing a matrix-sampling design, where the 
common-items are spread among many forms. 

 

Introduction 

Large-scale testing programs provide scores for individual student achievement, 
and aggregate scores for classrooms, schools, districts, or states. Scores are often derived 
from different versions of a test administered over multiple occasions. Not all 
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examinees respond to the same test form. While this is a way to guard against the 
overexposure of the content and ensure the security of the test, it creates the problem of 
interchangeability of the scores. Alternate test forms will be differentially difficult for 
examinees; however for the sake of fairness, it should not matter to them which test 
form they take (Lord, 1980). Test equating methods are statistical adjustments that 
establish comparability between alternate forms built to the same content and statistical 
specifications by placing scores on a common scale (American Educational Research 
Association, American Psychological Association, National Council on Measurement in 
Education, 1999; Kolen & Brennan, 2004). In the common-item nonequivalent groups 
design, two forms are equated through a subset of common items embedded in both 
forms. Performance on the common items is used to establish the linking relationship 
between groups taking the alternate forms.  

A key assumption made when equating is performed under the common-item 
nonequivalent groups design is that the statistical properties of the anchor items are 
stable across forms; when two groups respond to two alternate forms, the common 
items must function similarly in both forms (Hanson & Feinstein, 1997; Wainer, 1999). If 
two groups of examinees respond differently to the same item, then that item might not 
be appropriate to be included in the equating process. If an equating item demonstrates 
a large change in its difficulty index or its Item Response Theory (IRT) parameter 
estimates, it raises suspicion, and calls for inspection. Upon inspection, analysts seek to 
determine possible reasons for why the item functions differentially. They can speculate 
whether the differential performance is related to the purpose of measurement, i.e., if it 
reflects a true change in the proficiency of the examinee cohorts, or if it is due to 
irrelevant circumstances, such as a change in the position of the item in the test form. It 
may be discarded from the equating item pool and treated as a regular, non-common 
item, as if there was no connection between the item in the first and the item in the 
second form. Inclusion or exclusion of an item from the equating pool is a matter of 
judgment and affects the equating function. 

In the next section, a review of the existing literature reveals that characteristic 
indices of items change and item parameters are not invariant across different 
administrations – although IRT models that are usually fitted to test data rest on the 
assumption of parameter invariance. For example, variations in instruction and 
curricular emphasis result in items having differential difficulty for different groups of 
examinees. Apart from content reasons, item parameter drift might be due to context 
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effects such as changes in item position or inadvertent changes in the precise wording 
or formatting of items. 

IRT or classical item statistics may be used to examine whether embedded 
common items are functioning differentially for groups taking different test forms 
(Kolen & Brennan, 2004). In practice, a procedure used to examine the volatility of 
equating items’ difficulty values is the delta-plot method, a simple and comprehensible 
method for studying the item-by-group interaction, which makes use of the classical 
test theory difficulty indices, the p-values (Angoff, 1972). It is a graphical procedure that 
flags outliers in a scatter plot of transformed p-values of the common items obtained 
from two groups of examinees. The points that lie at a distance from the “cloud” of the 
majority of the points represent the common items whose p-values differ by an 
unexpectedly small or large amount. Those items are candidates for exclusion from the 
common-item pool. The delta-plot method is widely implemented because it is practical 
and does not involve IRT calibrations, which would be the case if IRT parameters were 
compared, and because it provides prima-facie evidence regarding anomalous changes 
in item difficulties across administrations. 

The first study in this report investigates if, and to what extent, decisions on 
whether to keep or discard the outlying items of the delta-plot from the common-item 
pool impact the equating transformations and the resulting score distribution 
summaries. The effects on the equating transformation and the equated score 
aggregates are examined, when all common items are used versus when misbehaving 
items identified by the delta-plot method are discarded from the common item pool. 

Although practical, the delta-plot method is a crude procedure in the sense that it 
summarizes the information from an item in a single number, its p-value, and looks at 
how that number is related to the p-values of the remaining common items. It also 
transforms the p-values through an inverse normal transformation, which changes their 
distribution in a somewhat arbitrary way.  

The problem of inconsistent behavior of common items across administrations 
can be viewed as an instance of differential item functioning (DIF), where the two 
groups taking two different forms with some items in common are the focal and the 
reference groups. Mantel and Haenszel (1959) proposed a common odds ratio to assess 
the strength of association in three-way 2x2xK contingency tables. The ratio estimates 
how stable the association between two factors is in a series of K partial tables (the strata 
of a third factor.) Originally proposed by Holland (1985) as a potential method for 



5 

studying DIF in any two groups of examinees, Holland and Thayer (1988) published a 
paper that popularized the Mantel-Haenszel statistic as a measure of DIF. It can be used 
to test the null hypothesis 
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Namely, the odds for answering correctly item j for the reference group R are 
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The focal and reference groups are matched on ability, the third factor, using a 
test score interval as a proxy. The procedure provides a chi-squared test statistic as well 
as an estimator of j across the K 2x2 tables. The latter—one of the strengths of the 
Mantel-Haenszel method—is a measure of the effect size, or how much the data depart 
from H0, an important feature since conventional statistical significance can be easily 
obtained with large enough samples.  

The Mantel-Haenszel procedure may be implemented in the context of equating 
to identify which common items behave differentially across administrations by 
considering the two annual examinee cohorts as the focal and reference groups. In 
contrast to the delta-plot method, the proposed alternative can provide a measure of 
how much an item departs from consistency, by comparing examinees of similar 
proficiency in the two cohorts. The second study in this report describes an 
implementation of the Mantel-Haenszel procedure to detect differential item 
performance permitting more meaningful comparisons of item behavior across 
administrations.  

In summary, this report looks at statistical problems associated with the selection 
of common items in the context of IRT equating of assessments under the common-item 
nonequivalent groups design. The following two research questions are addressed: 
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1. What is the effect of keeping in versus discarding from the common-item 
pool common items flagged as outliers by the delta-plot method on 
equated score summaries? 

2. How can the Mantel-Haenszel procedure be applied to investigate 
differential item performance across test forms? How does it compare to 
the currently used delta-plot method? 

IRT, Assumptions, and the Promise of Parameter Invariance 

Test equating is a component of a larger, cyclic, measurement process that 
involves test development, administration, analysis, scoring, reporting, and evaluation 
(Hattie, Jaeger, & Bond, 1999). When a model, such as any IRT model, provides the 
conceptual measurement framework for this process, the results depend on how well 
the data fit that model.  

Parameter invariance, the property of IRT item parameter estimates to remain 
unchanged across various groups of examinees, and ability estimates to remain 
invariant across groups of items, gives IRT its applicability and usefulness (Allen, 
Ansley, & Forsyth, 1987; Hambleton, Swaminathan, & Rogers, 1991; Linn, 1990; Lord, 
1980). According to parameter invariance, if the IRT model fits the data perfectly, then 
parameters will be invariant across administrations, except for sampling fluctuations 
that introduce random error in the responses of examinees. In that case, the changes in 
the behavior of item parameter estimates would follow a systematic pattern depending 
on the changes in the size and proficiency of the different examinee groups.  

IRT makes strong assumptions and its promise for invariance depends on the 
degree that the model assumptions, and particularly unidimensionality, hold (Miller & 
Linn, 1988). Violation of the unidimensionality assumption is potentially a major source 
of problems for IRT equating (Skaggs & Lissitz, 1986). Suppose estimation of item 
parameters using data from two different groups of examinees yields different item 
parameters, or equivalently, that two test-characteristic curves exist for the same test.2 
Examinees in the two groups who get equal ability estimates from the model would 
have different probabilities of answering items correctly. According to Lord (1980), if a 
test discriminates between examinees of the same ability, it actually measures a 

                                                 
2 Because item parameters are invariant only up to a linear transformation of the ability scale, item parameter 
estimates obtained using different examinee groups would need to be transformed to place them on a common scale. 
This illustration refers to differences in item parameter estimates that remain after such rescaling has been carried 
out. 
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dimension other than the intended ability. Unidimensionality is not defensible and the 
assumption of invariance is then dubious. Even though unidimensional models do not 
fit to educational settings where multiple proficiencies are engaged simultaneously in 
tasks of interest, common practice employs unidimensional models to analyze 
educational tests.3  

To make an argument for unidimensionality, a dominant component affecting 
test performance would suffice (Hambleton, et al., 1991). However, empirical findings 
have been consistent in pointing to departures from unidimensionality that are usually 
large, thus casting doubt on the underlying assumptions and the inferences drawn from 
the model. Differential instruction or dissimilar emphases in curricula, for example, 
introduce additional dimensions to the dimensions that the test is built to measure, such 
as the opportunity to learn specialized topics, or time lapsed since a topic was taught. If 
content tested by one item is emphasized by one instructional program more than 
another, then the item will likely be differentially difficult for the two groups (Masters, 
1988). Context effects, such as the position of a common item in two test forms, are 
likely to introduce systematic differences in the item parameters as well (Kolen & 
Brennan, 2004). 

Traub (1983) described thought experiments and numerical examples for 
conditions that would cause the assumption of unidimensionality to fail. Differences in 
instruction, such as differential emphasis for training in one topic versus another, 
would lead to differentiation of constructs, and would require more than one number, 
or one dimension, to describe examinee proficiencies. Similar effects would appear as a 
result of content-irrelevant skills, including the ability to work through items quickly 
under speeded test conditions, and the propensity of students to guess when they are 
not sure about the correct answer. Variations across students in these characteristics 
would introduce additional dimensions to the test. He concluded that “[n]o 
unidimensional item response model is likely to fit educational achievement data” 
(p.65); a simple model should not be expected to characterize complex constructs 
accurately.  

Large changes or differences in instructional experience may be needed to 
produce practically significant violations of assumptions, and the effects may be very 
specific and limited to few items of a test (Linn, 1990). However, IRT models are 

                                                 
3 Some researchers have argued that the use of latent trait models should be reconsidered because they suffer from 
serious defects and contestable assumptions (Goldstein, 1980). 
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approximations at best. And thus anomalous item behavior may not be ruled out, even 
if models perform sufficiently well to justify their continued use.  

The problem becomes more profound in test equating when equating functions 
are derived from item parameters of the common items. It is not unusual to come across 
a few common items that do not follow the behavior of the majority of common items. 
Those misbehaving items are checked for possible reasons that caused their anomalous 
behavior. It is then a judgmental decision whether to keep or discard them from the 
equating pool. An obvious explanation might exist for that behavior, such as modified 
wording of a question, or differential emphasis on the content of the item, or there may 
be no immediate compelling reason triggering that behavior. In any case, keeping those 
items in the equating will place one group at a slight advantage over the other. It may 
be more appropriate that they be discarded from the common item pool and treated as 
different items in the two administrations.  

Curricular Effects on Item Parameter Estimates 

Many empirical studies address the adequacy of IRT models by examining 
whether parameter invariance or unidimensionality holds using real or simulated data. 
Miller and Linn (1988) examined the effect of differential instructional coverage on item 
characteristic functions. They clustered students who participated in the Second 
International Mathematics Study into curriculum clusters based on their teachers’ 
ratings of their opportunity to learn each item during the previous year. Item 
characteristic curves for the arithmetic and algebra items for each of the curriculum 
clusters were compared. Large differences were detected between the curves, indicating 
that item parameters were influenced by variations in opportunity to learn. 

Masters (1988) provided evidence for differential item performance caused by 
the opportunity to learn particular content in high- versus low-level mathematics 
classes. For example, items on content that one group had more opportunity to learn 
had different difficulty parameters when separate calibrations were made for each 
group. If the two groups’ responses were calibrated simultaneously, the difficulty 
parameter would fall between the previous two values, and the discrimination 
parameter would be higher if the group that had more opportunity to learn was on 
average of higher ability. 

Content analysis may help explain findings of item parameter drift (Linn, 1990).  
Bock, Muraki and Pfeiffenberger (1988) found differential linear drift of the item 
location parameters in items of a College-Board Physics Achievement Test over ten 
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years. They associated the direction of the drift with the content of the items in a pattern 
that reflected a changing emphasis in secondary school physics curricula. Item 
parameter drift is more likely in subjects that change easily over time. Considering a 
lack of substantial drift in English items over that same time period, they attributed the 
noticeable drift in physics items to the greater likelihood of change in physics curricula. 
Among 29 mechanics items, 11 that referred to basic concepts became easier over time, 
while the difficulty of 10 other items less related to basic concepts increased. Their 
evidence suggests a decreased emphasis on advanced and specific topics, which may 
reflect a back-to-basics approach in physics textbooks. A pair of mechanics items on the 
difference between mass and weight, one of which used metric and the other English 
units, exhibited drift in opposite directions. The cases moved in a direction that 
reflected the introduction of metric units at the end of the 1970s. Apart from systematic 
item location drift, Bock, et al. (1988) observed occasional anomalies in some items. 
They suggested that such cohort-specific effects are unexpected in large nationwide 
samples, but may reflect special attention given to some topics by the media or 
publications accessible to physics teachers. 

Sykes and Fitzpatrick (1992) classified a large number of items from consecutive 
administrations of a professional licensure examination into four content categories. In 
one of the four categories, they detected a significantly greater drift of Rasch b 
parameter estimates. They hypothesized that the “differential change in b values is 
attributable to shifts in curriculum emphasis, with the most pronounced shift occurring 
for the content covered in this category” (p.210). 

A series of studies by Mehrens and Phillips suggested that differential 
instruction and textbook effects are not a serious concern for test validity. Neither the 
different textbook series used in Grades 3 and 6 for reading and mathematics, nor the 
degree of instruction-test match based on teachers’ ratings were found to impact 
standardized test scores significantly (Mehrens & Phillips, 1986). The small impact of 
these two curricular factors on unidimensionality was evaluated by a factor analytic 
method: the percentage of variance for the large first factor did not change noticeably, 
and the second factor remained relatively small across groups with different curricula 
(Phillips & Mehrens, 1987). In a third paper, they reported that item p-values and Rasch 
difficulty parameter estimates were similar across student groups using different 
textbook series (Mehrens & Phillips, 1987). The authors list a number of potential 
reasons for the lack of curricular impact, including the lack of power to detect 
differences, the precision of teachers’ ratings of instruction-test match (Phillips & 
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Mehrens, 1987), and emphasis on general competence versus specific details related to 
curricular objectives. Linn (1990) further comments on the findings by Mehrens and 
Phillips that their studies were done in elementary grades with widely used textbooks, 
in contrast to studies in higher grades that have qualitatively more different 
instructional experiences, and which found a demonstrated impact on test performance. 

Much research on item parameters emerged from studies of customized tests and 
the validity of estimates drawn from actual or simulated customizations. In the early 
1980s, national tests were often customized by local authorities and adjusted to extract 
national normative scores for the local examinees. The validity of such inference has 
been questioned. Consistent findings indicate that item calibrations are not invariant 
across samples. Yen, Green, and Burket (1987) present a case where the IRT difficulty 
parameter estimates in the national calibration of a mathematics test changed 
systematically at the local level; in a local calibration the measurement items were 
relatively more difficult, while the numeration items were relatively easier, suggesting 
that different local curricular and/or instructional characteristics influenced parameter 
estimates.  

Allen, et al. (1987), Linn (1990), Way, Forsyth, and Ansley (1989), and Yen, et al. 
(1987) provide examples of the effects that customized tests non-representative of the 
original tests can have on ability estimates. Tests customized by selecting specific 
content areas gave systematically higher ability estimates than estimates based on the 
full test; the same was not true when content was sampled representatively. The 
magnitude of the overestimates seemed dependent on the number of items deleted 
from the full test (Way, et al., 1989). 

Context Effects on Item Parameter Estimates 

Apart from the content of items, the context in which they are presented also 
influences the estimates of item parameters. “A context effect occurs when a change in 
the test or item setting affects student performance” (National Research Council, 1999). 
Masters (1988) considers (a) opportunity to answer, due to speeded tests, and fatigue, 
and (b) test wiseness as sources of differential item performance reflected in item 
parameters. The two factors pertain to different examinee groups and introduce 
measurement disturbance. Items that appear at the end of a test and items that are 
sensitive to test wiseness skills will favor students of higher ability and thus produce 
inflated discrimination parameters. Had the items appearing at the end of the test been 
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presented earlier, they would have been attempted by more examinees and would have 
likely exhibited lower discriminations. 

Kingston and Dorans (1984) examined location effects for 10 item types on the 
GRE test. They found changes in the IRT equatings when those items were moved to a 
different position in the test. The effects were larger for the Quantitative subtest than for 
the Verbal, and even more profound for the Analytical. Practice and fatigue effects 
clearly depended on the location of an item and seemed to interact with the type of the 
item (analytical, quantitative, or verbal). 

Yen (1980) reports that the location of an item in a booklet frequently affected the 
value of its difficulty parameter. Items placed at the end of a test had higher parameter 
estimates than when presented at the beginning. Item location only partially explained 
parameter change in her paper. Similarity of item arrangements seemed to be another 
factor. The booklets “with the most similar item sequences tended to have more 
strongly related item parameter estimates than the booklets with the least similar item 
sequences” (p.308). Discrimination parameters seemed to be influenced slightly by the 
number of items being calibrated. Yen did not, however, find systematic patterns for 
discrimination parameters. In contrast, Sykes and Fitzpatrick (1992) reported that 
changes of item location parameters were unrelated to changes in the booklet or the test 
position, and item type (tryout or scorable).  

A requirement for sound equating is that the equating function must be 
population invariant; the choice of (sub) populations to estimate the equating 
relationship between two tests should not produce large discrepancies (Dorans & 
Holland, 2000). Performance on items (common items when the common-item 
nonequivalent groups design is used) drives equating functions. Differential item 
performance between groups would cause dependency of the equating relationship on 
the population. In a study of traditional equating methods, Kingston, Leary, and 
Wightman (1985) looked at the equating functions between subgroups that took two 
different forms of the GMAT. Equated scores derived from the male and female 
subgroups were very similar, as were those derived from age or random subgroups. In 
a comparable study on the GRE and sex, race, field of study, level of performance and 
random subgroups, Angoff and Cowell (1985) also found support for the population 
invariance of equating (both studies reported in Cook and Petersen, 1987). 

A third study by Cook, Eignor and Taft (1988) reached different conclusions. 
What was special about this study was that the samples employed to generate the 
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equating transformation did not come from the same test administration, but from fall 
versus spring administrations of the test, and thus subgroups used to link the tests were 
dissimilar. Cook, et al. (1988) demonstrated that when curriculum-related biology 
achievement tests were given to groups of students at different points in time after 
learning the content, item parameter estimates were unstable. For instance the 
correlation coefficient between the delta values4 of 58 common items in two consecutive 
fall administrations was 0.99 as opposed to 0.79 between the fall and the spring 
administration values. Groups taking the test at different points in their coursework 
could not be considered as samples from the same population; recency of instruction, 
the time lapsed from when the material was taught, appeared to influence item 
parameter estimates. In addition, both linear and nonlinear, including IRT, equating 
methods were not robust in such cases, giving very disparate scaled score summary 
statistics. In contrast, the statistics from equating forms administered at the same time 
period in consecutive years, i.e., fall of the first year and fall of the second year, were 
similar under all equating methods.  

Disclosure of, or familiarity with items is another potential cause for changes in 
item location parameters. A security breach could have unpredictable effects on 
equated scores depending on whether the items exposed are common or not, and on the 
magnitude of the breach (Brennan & Kolen, 1987). A study simulating increasing levels 
of anchor item disclosure by randomly selecting and changing incorrect to correct 
responses resulted in an increasing drift in difficulty parameters as disclosure moved 
from low to moderate levels (Mitzel, Weber, & Sykes, 1999). More importantly, even at 
modest exposure levels, IRT equated score distributions altered considerably. Under a 
traditional Tucker linear equating method, Gilmer (1989) found modest effects on the 
passing rates on a certification test due to simulated item disclosure. 

Desirable Characteristics of the Common Items 

Common items provide the statistical means for equating test forms and making 
scores from different administrations of the same testing program comparable. Since 
tests need to be built to the same content and statistical specifications for the 
comparisons to be meaningful, the anchor items should proportionally reflect the 
specifications of the total test if they are to reflect group differences adequately 
(Brennan & Kolen, 1987; Cook & Petersen, 1987; Kolen & Brennan, 2004). For a 

                                                 
4 Delta values are transformed proportion correct values defined as the inverse normal transformations of the p-
values rescaled by multiplying by -4 and adding 13. 
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nonrandom, common-item equating design Budescu (1985) noted that a high 
correlation between the anchor subtest and the two total tests is a necessary condition 
for stable and precise equating. Klein and Jarjoura (1985) argued that “it is important 
that the common items directly reflect the content representation of the full test forms. 
A failure to equate on the basis of content representative anchors may lead to 
substantial equating error” (p.205). In contrast, in a simulation study, IRT equating was 
fairly robust to violations of the representativeness of the set of common items (Béguin, 
2002); although the equating was based on a unidimensional model, with the addition 
of a second dimension in the non-common items, it performed at least as well as a 
multidimensional model. 

Adequate numbers of common items need to be included to reduce random 
equating error, particularly in educational tests, which are not strictly unidimensional. 
As a rule of thumb, at least 20 items or 20% of the length of a moderately long test 
should be used as anchors (Angoff, 1971; Kolen & Brennan, 2004). The longer the anchor 
test, the more reliable the equating will be (Budescu, 1985). Additional precautions to 
avoid systematic influences on anchor items relate to their positioning, which should be 
approximately the same in the alternate forms (Cook & Petersen, 1987), and their 
presentation, which should be identical, i.e., without changing the text (Cassels & 
Johnstone, 1984) or the order of multiple-choice options (Cizek, 1994). The researchers 
making these caveats have shown, as have most of the studies previously reviewed, 
that performance on items is sensitive to such variations. 

Before they are judged appropriate for the equating process, anchor items must 
pass additional analyses after the administration of the tests to scrutinize their behavior, 
as reflected in item parameter estimates. Items that behave consistently over multiple 
administrations are appropriate for use in the test equating process. Items indicating 
anomalous parameter changes over time are rejected from the linking item pool and 
treated as regular, non-common items. Hence, the number of anchors in the test should 
be sufficiently large to effectively complete the equating task after the rejection of some 
items. 

IRT is utilized to study the performance, and hence the appropriateness, of the 
linking items. A common approach is to scale two to-be-equated forms separately. Each 
calibration yields item parameter estimates that are used to generate a transformation to 
place the tests on a common scale. For example, a scatter plot of the common items’ 
difficulty parameters estimated in the calibration of the first form versus that of the 
second would show an approximately straight line under a satisfactory IRT model fit. 
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Some random variation is expected, but clear outliers would suggest that the 
assumptions of the model are not met. On a second scatter plot of classical item 
difficulties of the common items, any outliers, i.e., items with difficulty indices differing 
notably in the two forms, are likely to be excluded from the common item pool and 
considered as non-common items in the respective test forms. 

Studies on the effect of simulated item parameter drift, i.e., the differential 
change in item parameters over time, on estimates of examinee proficiency have shown 
that individual ability estimates are fairly robust to non-common item parameter drift. 
When drift contaminates the common-item pool ability, estimates are influenced. Stahl, 
Bergstrom, and Shneyderman (2002) simulated increasing levels of item parameter drift 
and observed the impact on Rasch estimates of examinee measures. Under conditions of 
simulated increase in difficulty of various groups of items, and by varying the number 
of drifted items and the direction of the drift, ability estimates were robust. By setting a 
pass/fail cut-score, the majority of the misclassifications were within the 95% 
confidence band of the cut-score, “indicating that the misclassifications may be due 
purely to error of measurement and not to the effect of drift” (p.8). Wells, Subkoviak, 
and Serlin (2002) applied a 2PL IRT model, and in addition they examined what the 
effect was on ability estimates when drifted items were excluded from equating; they 
found little effect. Fitting a 3PL model, Huang and Shyu (2003) simulated conditions of 
drift in the discrimination and difficulty parameters, varied the sample sizes and the 
percentage of the common items with drifted parameters and performed equating with 
or without the drifted items. When drifted items were excluded from equating, the 
equated scores did not differ much from the baseline scores; they did affect mean and 
passing scores when they were kept in the common item pool. Large increases in the 
difficulty parameters and when the drifted items constituted half of the common item 
pool had the more profound consequences, especially with a small sample size of 500. 

The above studies of impact of item drift on estimates of ability—whether 
equated or not—were all simulation studies, modeling usually unrealistically large drift 
in item parameters, typically in one direction and for a large number of items (common 
or not.) In real data, there are only few common items that demonstrate large changes in 
their item parameters. And those changes are not unidirectional; an item may become 
easier while two others become more difficult, thus partially negating some of the effect 
of item drift. Therefore, in real situations the effects of change in estimated parameters 
will probably be much less. It remains true though that the effect, if any, on aggregate 
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scores will still be much more profound than on individual examinee scores, and may 
be considerable. 

Implications of Dealing With Common Items With Anomalous Behavior 

The analysis of linking items to determine their appropriateness for use in 
equating gives rise to a number of concerns regarding the valid interpretation and use 
of equated test scores. Stable performance of students on tests is not necessarily a 
desirable property. Educational systems expect and seek progress in their students’ 
learning, not only as a result of normal educational practice, but also through the 
implementation of innovative programs, reallocation of resources, new policies and 
reforms in the curriculum or administrative procedures. Annual cohorts of students 
with different educational experiences cannot be regarded as randomly equivalent – 
hence, a nonequivalent groups design with common items is appropriate for equating 
their scores. If an accountability system successfully encourages the reallocation of 
instructional resources, then some common items answered by both groups could 
appear anomalous possibly because they are indicating real effects: that the reform 
initiative has indeed made a difference and performance on the relevant items has 
changed. Consequently, their classical and IRT parameter estimates change as well. 
When the items reflecting the results of the reallocation are removed on statistical 
grounds because of presumed violations of model assumptions, such as parameter 
invariance, the effects of the reform may be adjusted away.  

There are reasons to believe that the measurement practice outlined above 
pertains to the validity of the test; the soundness of interpretations given to the equated 
test scores is jeopardized. “If items that are found to be most sensitive to instruction are 
eliminated so that the IRT assumptions are better satisfied, there is a real danger that 
IRT will do more to decrease than to increase the validity of achievement test scores” 
(Linn, 1990, p.136). If items examining certain curricular domains – and particularly 
those domains at which recently implemented policies would be targeted – are deleted 
from the linking pool, the content domain that the test is constructed to measure is 
redefined in ways that cannot be determined and limited to those items that do not 
disturb the model’s assumptions. The removal of anomalously behaving common 
items, which capture a change in emphasis in a domain, is in discordance with the value 
placed by the system on that particular domain. As with the process of construction of 
good tests, items cannot be chosen merely on the basis of their psychometric attributes. 
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Content would be a legitimate consideration in deciding which items remain in the 
anchor pool. 

Test score gains or drops are pervasively used for evaluations of innovative 
programs and policies as well. But the validity of test scores as indicators of purposive 
change becomes contestable since, ironically, the equating practice might remove the 
effects of curricular changes the testing program purports to evaluate. 

Study 1: Effects Of Delta-Plot Outliers On Equated Score Summaries 

Overview 

Consistent behavior as denoted by item indices is a desirable characteristic for 
the common items in test equating. The delta-plot method is a practical procedure that 
identifies common items with anomalous changes in their item difficulties across two 
administrations, compared to the rest of the common items; these misbehaving items 
are flagged as outliers on a scatterplot and are likely to drop to a non-common item 
status.  

The outliers need to be inspected to determine plausible causes for the observed 
inconsistencies. Even though it may be difficult to identify content or context effects that 
have influenced item performance with certainty, considering a range of plausible 
explanations can help to decide whether a misbehaving item should be discarded from 
the common-item pool or not. If the content of an outlying item strongly suggests that it 
has captured a “real” change in examinee proficiency on the measured construct, then 
that item might still be kept in the common-item pool. How to deal with the delta-plot 
outliers is not simply a statistical issue. The final decision involves judgment. Study 1 
looks at what happens to equated score distributions when the outliers are either kept 
in or discarded from the common-item pool. It examines how the equating would vary 
depending on whether outliers were included in the common-item pool or not, without 
trying to determine why they behave as outliers. 

The data sets and the methodology used in Study 1 are described in the 
following sections. The results section presents the effects of outliers on equated mean 
scores, mean gains or declines, and proportions above a cut-off point, followed by a 
discussion of the findings. 
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Data Sources  

For the first study, data from four statewide assessment programs from three 
states were analyzed. For confidentiality reasons, the names of the states cannot be 
disclosed, and thus will be called States 1, 2, and 3. These assessments were 
administered to different grades and the subjects included mathematics, science, and 
social studies. All three states had had their testing programs in place for at least two 
years prior to the administration of the assessments. 

For each of the four assessments, there were data from two successive annual 
administrations, referred to as Year-1 and Year-2 assessments respectively. Each Year-2 
assessment can be linked to the corresponding Year-1 assessment through a set of 
embedded common items.  

Table 1.1 gives characteristics of the assessments. The populations tested 
constituted the annual cohort of students graduating from the respective grade in each 
state and are relatively large, ranging from 7128 to 17371. 
 

Table 1.1  

Information for the Four Assessment Data Sets Analyzed 
Number of examinees  

Subject Grade State 
Year 1  Year 2 

Mathematics 8 1  7258  7128 

Science  11 2 14244 14565 

Social Studies 6 3 17126 17371 

Science 6 3 17128 17371 

 

A single administration at the end of a school year consisted of multiple test 
forms. Each examinee responded to one random test form and received a test booklet 
consisting of two blocks of items: a block that was included in all booklets, and a 
matrix-sampled block that was specific only to one form. Each block included both 
dichotomously (0 or 1) and polytomously (0 to k, k>1) scored items. In a typical data 
matrix for a test for one year, examinee responses were arranged in rows and item 
responses in columns as shown in Figure 1.1. For example, examinees taking Form 3 
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took the common block and the matrix-sampled Block 3, represented by the two shaded 
cells. The common block should not be confused with the common/equating items. The 
common block of items across the forms in one year consists of items that adhere to the 
test specifications on content coverage and, at the same time, serves the purpose of 
placing all forms on a single scale on a simultaneous calibration of all forms. The 
common items used for equating, the common-item pool that appeared in the previous 
year administration, were arranged in the matrix-sampled blocks. 
 

Matrix-sampled blocks of items Common 
block 1 2 3 4 5 6 7 8 

 
Form 

           
          Form 1 
          Form 2 
          Form 3 
          Form 4 
          Form 5 
          Form 6 
          Form 7 
          Form 8 
 Common/equating items are arranged in the 

matrix-sampled blocks 
  

 
Figure 1.1. Matrix-sampled design for an eight-form annual administration. 

 

Both dichotomous and polytomous items comprised the common-item pool as 
well. Since they were arranged in the matrix-sampled part of each form, each examinee 
encountered only a subset of the common items. The number of forms, the total number 
of items and the number of common items in each assessment appear on Table 1.2.  

 



19 

Table 1.2 

Item Information for the Four Assessment Programs 

Assessment 
Number of 
forms (Year 

1/Year 2) 

Total number of 
items (Year 1/Year 2) 

Number of 
common items 

between           
Year 1 and Year 2 

Mathematics 8 8/8 139/137 44 

Science 11 12/12 126/138 45 

Social Studies 6 8/12 124/95 56 

Science 6 8/12 123/95 50 

 

Methodology 

Overview 

The delta-plot method uses item difficulties of the common items to identify the 
items with unexpected change in their difficulty across administrations. The Year-1 and 
the Year-2 administrations are calibrated separately to obtain item and ability 
parameter estimates. The estimates of the common items are used to derive an equating 
transformation that will rescale the Year-2 scale to the Year-1 scale. A second 
transformation is derived when the common item parameters of the outliers are 
discarded. The effects of the outliers on the equating of Year-2 score distribution will be 
examined by looking at the average of the equated distributions and the percentage of 
students above certain cut-points under the two common-item sets. This procedure is 
followed for each of the four assessments and applying (a) the Stocking and Lord, (b) 
the Haebara, (c) the mean/sigma, and (d) the mean/mean IRT equating methods. A 
3PL IRT model for the dichotomous items and a graded response model for the 
polytomous items is used to calibrate the data. In addition, a 1PL model is fitted and 
equating is carried out with the same equating methods. In total, there are four 
assessments and eight model-by-equating method combinations. The procedures are 
described in detail below.  
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The Delta-Plot Method 

In the delta-plot procedure, pYj, the proportion correct of a common item j in 
administration Y (here Y=1,2) is transformed to the delta metric through a linear 
transformation of the inverse normal equivalent (Dorans and Holland, 1993). 

 
 )(413 1

YjYj p−Φ−=δ         (1.1)  

In the delta metric, a p-value of 0.5 is transformed to 13, larger delta values 
correspond to more difficult items and smaller delta values to easier items, as opposed 
to the proportion correct scale, which is bounded between 0 and 1 with easier items 
having higher values than more difficult ones. 

Two groups respond to the same items, the item p-values, pYj, for each group are 
calculated, transformed to the delta metric with Equation 1.1, and plotted on a 
scatterplot. Each point corresponds to an item with a delta value, 1j, for the Year-1 
group plotted on the horizontal axis and a delta value, 2j, for the Year-2 group plotted 
on the vertical axis. Outliers denote items that are functioning differentially for the two 
groups with respect to the level of difficulty. 

A handy rule to determine which items are outliers is by drawing a “best-fit” line 
to the points and calculating the perpendicular distances of each point to the line. The 
fitted line is chosen to minimize the sum of squared perpendicular distances (not the 
sum of squared vertical distances as in ordinary least squares regression) of the points 
to the line.5 Any point lying more than three standard deviations of the distances away 
from the line is a candidate for exclusion from the common item pool. Such items call 
for inspection to determine plausible causes for the differential performance in the two 
groups. 

To carry out the delta-plot procedure the Year-1 and Year-2 p-values for each 
common item were calculated. For the dichotomous items, the p-value is the proportion 
of correct responses; for the polytomous items, it is the mean score that all examinees 
obtained on the item divided by the maximum possible score. For each pair of 
administrations, e.g., the Mathematics Grade 8 in Year 1 and Year 2, a delta-plot was 
constructed graphing the Year-1 versus the Year-2 p-values transformed to the delta 

                                                 
5 This is know as “principal components” or “principal axis” regression and unlike ordinary least squares regression, 
it is symmetric: the line obtained by regressing the independent on the dependent variable and the line obtained by 
regressing the dependent on the independent variable are identical. 
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metric with Equation 1.1. A straight line was fitted in each plot to identify outlying 
points as shown in Equation 1.2. The slope for the best-fit line was estimated by the 
ratio of standard deviations of the Yjδ , and the intercept was determined such that the 
line passes through the point where the abscissa is the mean of the transformed p-
values for Year 1 and the ordinate is the mean of the transformed p-values for Year 2. 
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The distance of each point to the best-fit line was then calculated. Any points 
lying more than three standard deviations of all distances away from that line were 
flagged as outliers. Thus, two sets of items are defined: (a) all common items, and (b) 
the non-outlying common items. If the equating transformations based on the two sets 
differ markedly, then the inclusion or exclusion of outliers from the common-item pool 
could be influential on the results of equating. 

Test Calibrations and IRT Models 

Prior to estimating equating transformations, each assessment was calibrated 
separately with PARSCALE 3.0 (Muraki & Bock, 1997). The assessments came in 
multiple forms every year with certain items embedded in all those forms – in addition 
to the common items embedded across years for equating cohort scores. Concurrent 
calibration of all forms for a single year automatically places them on one scale.  

PARSCALE 3.0 allows calibration of tests that consist of both dichotomous and 
polytomous items. First, a 3PL IRT model (Birnbaum, 1968) was fitted to the 
dichotomous data as in Equation 1.3. 
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Pj( i) is the probability that an examinee i with ability level i responds to item j 
correctly. D is a constant equal to 1.7. For each item j, the model provides estimates for 
the three parameters aj, bj, and cj; the discrimination, difficulty or location, and 
pseudoguessing or lower asymptote parameters, respectively. It also provides an 
estimate of the examinee’s ability level i. The dichotomous and the polytomous items 
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were all scaled together. For the polytomous items, a graded response model 
(Samejima, 1969) was fitted. The graded response model applies to items that are scored 
in ordered categories with higher categories representing better performance than 
lower categories. The probability of an examinee scoring in a category k (k=0,…,m) is 
equal to the probability of obtaining a score of k or above, )(θ+

jkP , minus the probability 
of obtaining a score of k+1 or above, )(1, θ+

+kjP . Its logistic form given by Muraki and 
Bock (1997) is 
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where Pjk( ) is the probability that an examinee with ability level  obtains a score k on 
an item j with m+1 scoring categories; dk is the category parameter, with ∑

=

=
m

k
kd

0
0 , and 

01 ≥− +kk dd . The difference bj-dk is referred to as the category-threshold parameter, the 
location on the scale that separates two adjacent scores. The probability of responding 
in one of the two extreme categories or above is defined as 1)(0 =+ θjP  and 0)(1, =+

+ θmjP . 
A polytomous item has m category-threshold parameters (separating the m+1 scoring 
categories), as opposed to a single location parameter for a dichotomous item. When a 
polytomous item appears in a common-item pool, it will contribute all its category-
threshold parameters, and will thus have more weight in the IRT equating 
transformation than the dichotomous items. This is not undesirable, since a polytomous 
item carries more weight, i.e., may contribute more score points, in the estimation of an 
individual examinee’s score. 

A 1PL model was also fitted, 

 

 )(
1

)(
)(

ji

ji

ij bD
e

bD
eP

−

−

+
= θ

θ
θ          

by fixing the aj parameters at 1 and excluding the cj from the model. The graded 
response model (Equation 1.4 with the aj parameters fixed at 1) was fitted to the 
polytomous data.  

PARSCALE 3.0 estimates the parameters of the models by marginal maximum 
likelihood and the EM algorithm is used in the solution of the likelihood equations 
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(Muraki & Bock, 1997). Often the calibrations in PARSCALE 3.0 did not converge. Some 
items that had large standard errors in their IRT location parameters, or for which very 
few examinees had selected one of the responses, were dropped from the calibration to 
enable the convergence of the procedure. The parameters of the dropped items were 
fixed to the initial values and were not estimated after each EM cycle. In the data sets 
presented in this study none of the dropped items was a common item.6 

Equating Methods 

When two tests with embedded common items are independently calibrated, 
and their ability and difficulty parameter scales arbitrarily fixed, their scales are not 
identical, but linearly related (Lord, 1980) and a linear transformation of the latent scale 
does not affect the predicted probability of correct response to an item. If I and J are the 
two scales (or groups), then the ability  and IRT bj parameters of the two scales are 
related linearly 

 
 BA IiJi += θθ ,        (1.5) 

 BAbb IjJj += ,        (1.6) 

for individuals i and items j. Assuming a 3PL IRT model, the aj and cj parameters are 
related as follows: 

 

 
A

a
a Ij

Jj = ,         (1.7) 

 IjJj cc =          (1.8) 

Moments methods make use of the means and standard deviations of the 
common item parameters to estimate the constants A and B. The mean/sigma method 
(Marco, 1977) uses the moments of the bj parameter estimates in place of the parameters 
below: 

                                                 
6 More than the four assessments presented here were available for analysis, but their calibrations were more 
problematic: either they did not converge, or when they did, some of the common items had to be skipped, which 
implies that the parameter estimates of the skipped items were not estimated but retained their initial values. 
Equating transformations are derived based on common-item parameter estimates. Badly estimated parameters 
would influence equating in extraneous ways. The four data sets in this study can be considered as relatively “well-
behaved” in this respect. The problematic data sets were not analyzed further. 
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The mean/mean method (Loyd & Hoover, 1980) estimates the intercept B in the 
same way, but the slope A as the ratio of the means of the IRT aj parameter estimates 
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Characteristic curve transformation methods consider information from all item 
parameters simultaneously by minimizing the difference between item characteristic 
curves. From Equations 1.5 to 1.8, two scales J and I are related by 
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for examinee i and item j. When the estimates of A and B are used, the above equality 
does not hold exactly for all items and examinees (Kolen & Brennan, 2004). 
Characteristic curve transformation methods estimate the A and B such that the 
difference between the left and the right part of the equation is minimum. The method 
developed by Haebara (1980) minimizes the sum over all examinees i of the sum of 
squared differences between item characteristic curves over all the common items j  
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The Stocking and Lord (1983) procedure chooses the constants A and B such that the 

function  

 ∑ ∑ ∑ 







+−=

i j j
IjIj

Ij
JiijJjJjJjJiij cBbA

A
a

PcbaP
N

F
2

)ˆ,ˆ,
ˆ

;()ˆ,ˆ,ˆ;(1 θθ  

is minimized over i examinees and j common items 
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Stocking & Lord, Haebara, mean/sigma, and mean/mean were the four 
equating methods used in this study. The first two methods are characteristic curve 
transformation methods and estimate the equating coefficients to minimize the area 
between item characteristic curves, weighted according to the examinee ability 
distribution. Under a 3PL IRT model, all three parameter estimates of the common 
items are taken into account.7 The 1PL IRT model does not allow for guessing, and 
constrains the discrimination parameters to unity; the item characteristic curves differ 
only with respect to their location.  

The latter two methods are based on the moments of the item parameters. The 
mean/sigma depends only on the difficulty parameter estimates, while the mean/mean 
incorporates information from the both the difficulty and the discrimination 
parameters. The mean/mean method may not be appropriate with a 1PL IRT 
calibration since discrimination parameters are fixed to one for all times. 

Different combinations of item parameters in the 3PL IRT model can result in 
similar item characteristic curves (Hulin, Lissak, & Drasgow, 1982). Given an empirical 
item characteristic curve, there is an interaction in the estimates of the three item 
parameters. The variety of item parameters that can be described by a given item 
characteristic curve is more pronounced for easy and hard items, because there are less 
data available in large sections of the ability scale to define the item characteristic curve. 
IRT alignment procedures that rely on individual item parameters, such as the 
mean/sigma and the mean/mean equating methods, as opposed to the more 
informative item characteristic curves alignment methods, are more sensitive to trade-
offs in the item parameter estimates. To improve the stability of the discrimination and 
the difficulty parameters (aj, bj) estimates on which moments equating methods rely on, 
the lower asymptote (cj) estimates of the common items derived from the Year-1 
calibration were held fixed in the Year-2 calibration (W. Yen, personal communication, 
June 24 2003). 

The equating transformations were estimated using the ST software (Hanson & 
Zeng, 1995), which takes the common-item parameter and the ability distribution 
estimates from two administrations as input. The output returns estimates for the slope 
and intercept of the linear transformations (see Appendix 1) In the 3PL cases, each 
common item contributed three parameter estimates: discrimination, difficulty and 

                                                 
7 As will be described shortly, because the lower asymptote parameters were constrained in the Year-2 calibration to 
their Year-1 values to improve the software’s estimation procedures, it is the discrimination and difficulty parameter 
estimates of the common items that differ across years. 
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lower asymptote. In the 1PL case, all common item discriminations were equal to one 
and all lower asymptotes to zero. Polytomous items contributed more than just one set 
of parameters. Those items were typically scored from zero to four, so they had four 
category-threshold estimates. In the ST input file one such item would have four entries, 
one for each category-threshold estimate. The discrimination parameter estimate was 
entered four times as an identical value, while the lower asymptote was kept to zero. 

Results 

Delta-Plots 

Figure 1.2 displays the delta-plots for each of the four assessments. Each graph 
depicts the Year-1 and Year-2 delta values for the common items, the best-fit line, and 
the outliers identified with square markers. All the outliers were dichotomous items 
with the exception of the two rightmost outlying items on the Science 11 assessment. 
Flagged points that appear below the line represent items that became unexpectedly 
easier in the second administration of the assessment, while those that appear above the 
line stand for items that increased in their difficulty from Year 1 to Year 2. 

Ability Distributions Before Equating 

The theoretical distribution of the ability parameters is normal with mean zero 
and standard deviation one. The moments of the estimated examinee ability 
distributions for each administration, prior to equating, are presented in Table 1.3. The 
upper panel tabulates the moments for the distributions obtained from a 3PL IRT model 
fit. All ability distributions have estimated means that are just below zero, and standard 
deviations that are less than one. They are all negatively skewed and slightly more 
peaked than the normal distribution. The moments of the ability distributions estimated 
by a 1PL IRT model appear on the lower panel of Table 1.3. The eight distributions are 
centered closer to zero than those under the 3PL model, but have much smaller 
standard deviations. Hence, they have large kurtosis values; they are very peaked and 
most of them are negatively skewed. 
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Figure 1.2. Delta-plots of the common items for the four assessments. 
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Figure 1.2. Delta-plots of the common items for the four assessments (continued). 
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Table 1.3  

Moments of the Ability Distributions 

Assessment Year Mean Standard 
deviation

Skewness Kurtosis  N 

 
Calibration with a 3PL IRT model 

2 -0.002 0.957 -0.259  0.169 7128Mathematics 8 
1 -0.121 0.855 -0.397  0.425 7258
2 -0.002 0.931 -0.111 -0.110 14565Science 11 
1 -0.126 0.930 -0.436  0.451 14244
2 -0.187 0.944 -0.301  0.469 17371Social studies 6 
1 -0.047 0.948 -0.370  0.361 17126
2 -0.107 0.908 -0.436  0.637 17371Science 6 
1 -0.033 0.923 -0.360  0.469 17128

  
Calibration with a 1PL IRT model 

2  0.014 0.665  0.016 0.616 7128Mathematics 8 
1  0.018 0.704 -0.198 1.284 7258
2 -0.010 0.536  0.121 0.247 14565Science 11 
1 -0.008 0.584 -1.008 3.610 14244
2  0.006 0.542 -0.606 3.131 17371Social studies 6 
1  0.010 0.587 -0.601 2.214 17126
2  0.009 0.577 -0.663 2.657 17371Science 6 
1  0.007 0.568 -0.546 2.294 17128

 

The spread and location of the IRT  scale are arbitrarily determined in each 
calibration. The Year-1 and Year-2 scores of an assessment are not comparable when 
they are calibrated separately. If an appropriate equating transformation is applied on 
the Year-2 scale, the scores on the two scales will be interchangeable. When a scaling 
transformation based on information from the common items is applied on the Year-2 
scale, the scores on the two scales will be interchangeable.  

For each of the four assessments, two models are fitted (3PL and 1PL), resulting 
in eight pairs (Year-1 and Year-2) of distributions. Equating of the Year-2 scores to the 
Year-1 scale is performed either using all the common items to estimate the slope and 
intercept of the linear transformations or using only the non-outlying delta-plot 
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common items. The transformations are calculated with four different methods. 
Appendix 1 presents the ST output files with the slopes and intercepts of the equating 
transformations.  

Effects of the Common-Item Set Used on the Year-2 Means and Annual Gains 

A series of four tables that follow illustrate the effect of equating using all the 
common items, versus excluding the delta-plot outlying items, on the Year-2 equated 
mean score. The effect is examined under eight conditions: two types of IRT models by 
four IRT equating methods. Once the Year-2 mean score is scaled to the anchor scale by 
a linear transformation ( *

2 2
ˆ ˆA Bθ θ= + ), it can be directly compared with the previous 

year mean, 1̂θ . Gain (or decline) is the difference of the two means. The standard error 
of this quantity, treating the coefficients A and B as fixed, is calculated as shown below: 

 

( ) ( ) ( ) ( )* * *
2 1 2 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆSE Var Var Varθ θ θ θ θ θ− = − = + =  

( ) ( ) ( ) ( )2
2 1 2 1

ˆ ˆ ˆ ˆVar A B Var A Var Varθ θ θ θ+ + = + =  

2 12

2 12 2
1 12 1

1ˆ ˆ
N N

i i
i i

A Var Var
N N

θ θ
= =

   
+ =   

   
∑ ∑  

( ) ( )
2 12

2 12 2
1 12 1

1ˆ ˆ
N N

i i
i i

A Var Var
N N

θ θ
= =

+ =∑ ∑  

 ( ) ( )
2

2 1
2 1

1ˆ ˆA Var Var
N N

θ θ+   

The tables finally show a ratio that compares the gain under equating with all 
common items to the gain under equating with the non-outliers, taking the latter as the 
baseline. 

Table  1.4(a) displays results for the Mathematics Grade 8 assessment. There 
were three outliers on the delta-plot of this assessment, all in the lower end of the 
difficulty scale: two common items were much easier and one was more difficult for the 
Year-2 cohort. When these outliers are included in the equating, the Year-2 mean is 
higher than when they are not; the Year-2 cohort shows better performance overall 
when the outliers are included and hence the estimated transformations (under any 
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method or model) favors them. Similarly the gain from Year 1 to Year 2 is slightly larger 
(or the decline is smaller) when the outliers are included in the equating. There is a 
discrepancy between the two fitted models. The 1PL model shows positive gains at the 
magnitude of twice the standard error of the gain under all four methods consistently. 
The use or not of the outliers affects gains in the expected direction but only minimally 
as can be seen from the ratio of gains under the two sets of common items. In contrast, 
results are not consistent when a 3PL IRT model is fitted. There is a very small decline 
when the Stocking & Lord method is used, but a larger one with the Haebara and the 
mean/mean methods and a similar in magnitude gain with the mean/sigma method. 

 

Table 1.4(a)  

Means and Gains for Mathematics 8 

IRT model 3PL 1PL 

Equating method S-L1 H1 M/M1 M/S1 S-L H M/M M/S 

Year-2 mean  
(all items) 

-0.1221 -0.1364 -0.1331 -0.1049 0.0431 0.0430 0.0383 0.0359 

Year-2 mean 
(non-outliers) 

-0.1294 -0.1449 -0.1340 -0.1108 0.0428 0.0427 0.0379 0.0353 

 
Gain/decline2  
(all items) 

-0.0013 -0.0155 -0.0123 0.0159 0.0247 0.0247 0.0200 0.0176 

SE 0.0142 0.0143 0.0142 0.0139 0.0115 0.0116 0.0114 0.0115 

 
Gain/decline 
(non-outliers) 

-0.0085 -0.0241 -0.0131 0.0100 0.0244 0.0243 0.0195 0.0170 

SE 0.0142 0.0143 0.0141 0.0139 0.0115 0.0116 0.0114 0.0115 

 
Ratio of gains 0.15 0.65 0.93 1.59 1.01 1.01 1.02 1.04 

1S-L: Stocking & Lord, H: Haebara, M/M: mean/mean, M/S: mean/sigma 

2Year 1 means appear on Table 1.3 
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Results for the Science 11 assessment appear on Table 1.4(b). There were three 
delta-plot outliers below the best-fit line, i.e., decreased in difficulty for the Year-2 
examinees. Two of them were polytomous items; polytomous items weigh more in the 
equating since they contribute multiple category-threshold parameters (in this case, 
four each.) As expected, retaining the outliers in the common-item pool results in higher 
Year-2 means than when only non-outlying items are used. Irrespective of which 
method or model is applied, there are large gains in Year 2, but when the outliers are 
discarded, the gains are much smaller and in some cases result in minor declines.  
  

Table 1.4(b) 

Means and Gains for Science 11 

IRT model 3PL 1PL 

Equating 
method 

S-L H M/M M/S S-L H M/M M/S 

Year-2 mean 
(all items) 

-0.0874 -0.0751 -0.0991 -0.0744 0.0379 0.0330 0.0424 0.0418 

Year-2 mean 
(non-outliers) 

-0.1493 -0.1412 -0.1754 -0.1200 0.0018 0.0049 -0.0114 0.0020 

 
Gain/decline 
(all items) 

0.0384 0.0508 0.0267 0.0514 0.0457 0.0408 0.0502 0.0496 

SE 0.0107 0.0107 0.0106 0.0104 0.0066 0.0067 0.0066 0.0066 

 
Gain/decline 
(non-outliers) 

-0.0235 -0.0154 -0.0496 0.0058 0.0096 0.0127 -0.0036 0.0098 

SE 0.0108 0.0107 0.0108 0.0103 0.0066 0.0066 0.0066 0.0065 

 
Ratio of gains -1.64 -3.30 -0.54 8.88 4.74 3.21 -14.04 5.04 

 

The delta-plot for the Social Studies 6 assessment showed two outliers, both 
dichotomous items; one was above the best-fit line and one below. As shown on Table 
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1.4(c), the Year-2 mean is very similar whether the outliers are kept in the common-item 
pool or not. All four equating methods under both IRT models show a consistent 
decline from Year 1 to Year 2 that ranges from 2 to 3.5 times the standard error of the 
gain. The ratios of gains demonstrate that the influence of the decision on how to treat 
the delta-plot outliers is negligible. 

In Science Grade 6 there was just one delta-plot outlying item of moderate 
difficulty on which the Year-2 cohort performed strikingly better then their Year-1 
counterparts. The Year-2 mean score is higher if that outlier is retained in the equating 
than when it is not. The gain is also larger (or the decline smaller.) As can be seen in 
Table 1.4(d), with a 1PL calibration the gains are consistent across methods. With a 3 PL 
calibration the Haebara method shows a gain, while the other methods and particularly 
the moments methods show a decline from Year 1 to Year 2. 
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Table 1.4(c) 

Means and Gains for Social Studies 6 

IRT model 3PL 1PL 

Equating 
method 

S-L H M/M M/S S-L H M/M M/S 

Year-2 mean 
(all items) 

-0.0730 -0.0706 -0.0770 -0.0711 -0.0088 -0.0057 -0.0101 -0.0104 

Year-2 mean 
(non-outliers) 

-0.0730 -0.0702 -0.0772 -0.0710 -0.0093 -0.0061 -0.0105 -0.0108 

 
Gain/decline 
(all items) 

-0.0260 -0.0236 -0.0300 -0.0241 -0.0190 -0.0159 -0.0203 -0.0206 

SE 0.0101 0.0101 0.0101 0.0100 0.0061 0.0061 0.0061 0.0061 

 
Gain/decline 
(non-outliers) 

-0.0260 -0.0232 -0.0302 -0.0240 -0.0195 -0.0163 -0.0206 -0.0210 

SE 0.0101 0.0101 0.0101 0.0100 0.0061 0.0061 0.0061 0.0061 

 
Ratio of gains 1.00 1.02 0.99 1.00 0.98 0.97 0.98 0.98 
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Table 1.4(d) 

Means and Gains for Science 6 

IRT model 3PL 1PL 

Equating 
method 

S-L H M/M M/S S-L H M/M M/S 

Year-2 mean 
(all items) 

-0.0511 -0.0166 -0.0792 -0.0752 0.0173 0.0140 0.0211 0.0224 

Year-2 mean 
(non-outliers) 

-0.0559 -0.0204 -0.0838 -0.0800 0.0159 0.0123 0.0200 0.0213 

 
Gain/decline 
(all items) 

-0.0177 0.0169 -0.0458 -0.0418 0.0107 0.0074 0.0145 0.0158 

SE 0.0095 0.0096 0.0095 0.0094 0.0062 0.0063 0.0062 0.0061 

 
Gain/decline 
(non-outliers) 

-0.0225 0.0130 -0.0504 -0.0466 0.0093 0.0058 0.0134 0.0147 

SE 0.0095 0.0096 0.0095 0.0094 0.0062 0.0063 0.0062 0.0061 

 
Ratio of gains 0.79 1.30 0.91 0.90 1.16 1.29 1.08 1.07 

Effects of the Common-Item Set Used on the Percent Above a Cut-Off 

The percent above a cut-off is a statistic that educators often refer to in the 
context of testing. For the purposes of standards-based reporting, individuals are 
assigned to performance categories based on their achievement on an assessment 
program. These performance categories have labels such as “below basic,” “basic,” 
“proficient,” and “advanced” associated with them, as well as performance descriptions 
of what a student is expected to be capable of doing within each category. The cut-off 
points on the achievement scale that serve as borderlines between two adjacent 
categories are determined through standard setting procedures. The percentage of 
students in a category or above has become a popular descriptor of how well a school, a 
district, or a state is doing. In addition to more traditional ways of score reporting 
(averages and longitudinal gains for a population and its subpopulations), progress is 
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tracked through the trends in the percentage of students at, above, or below a category. 
Also, targets are set with respect to how high a percentage should be reached within a 
time period. 

Cut-off points between categories are not fixed; they are specific to individual 
assessments. For illustration purposes, two points on the theta scale 0 and 0.5 will serve 
as arbitrary cut-offs to examine how the percentage varies in the Year-2 ability 
distribution depending on whether the delta-plot outliers are kept in the common-item 
pool or not. The percentage is empirically determined by counting the number of 
examinees with an estimate of ability (after equating) above the cut-off point and 
dividing by the total number of examinees. For ease of presentation, only two of the 
four equating methods, the Stocking & Lord and the mean/sigma, are presented. 

In the Mathematics Grade 8 assessment under a 3PL IRT model, the percents 
above a cut-off decrease in Year 2 compared to Year 1 (Table 1.5(a)). The decrease is 
larger when the outliers are discarded from the common-item pool. In the previous 
section, Table  1.4(a), inclusion of the common items resulted in larger gains or smaller 
decreases in the mean score. But the mean/sigma method showed a small increase in 
the mean, while the percent above θ̂ =0 goes down from Year 1 to Year 2 by more than 
1%. This might be due to the different shapes of the two ability distributions. The Year-1 
distribution is more leptokurtic and negatively skewed than the Year-2 distribution. 
With a 1PL calibration, the percents above a cut-off increase in Year 2 compared to Year 
1; they are slightly higher when outliers are kept in the equating.  
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Table 1.5(a) 

Percentage Above Cut-Off for Mathematics 8 
 IRT model 3PL 1PL 

 
Equating 
method 

S-L M/S S-L M/S 

    

Year 1 47.00% 50.84% 

Year 2 
(all items) 

45.37% 45.88% 51.89% 51.40% 
Percent 
above  
θ̂ =0 Year 2 

(non-outliers) 
44.88% 45.62% 51.87% 51.36% 

    

Year 1 23.23% 23.22% 

Year 2 
(all items) 

23.33% 22.94% 23.99% 23.53% 
Percent 
above  
θ̂ =0.5 Year 2 

(non-outliers) 
22.95% 22.71% 23.99% 23.51% 

 

Results for Science Grade 11 on Table 1.5(b), as in the case of mean scores, show a 
large influence of the outlying common items on the percent above a cut-off. Across 
models and methods, inclusion of the outlying common items seems to benefit 2-3% of 
the population by re-classifying them above instead of below the cut-off. 
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Table 1.5(b) 

Percentage Above Cut-Off for Science 11 
 IRT model 3PL 1PL 

 
Equating 
method 

S-L M/S S-L M/S 

    

Year 1 46.70% 51.68% 

Year 2 
(all items) 

46.75% 47.11% 51.76% 52.10% 
Percent 
above  
θ̂ =0 Year 2 

(non-outliers) 
44.02% 44.74% 48.99% 49.04% 

    

Year 1 25.26% 16.46% 

Year 2 
(all items) 

26.29% 25.12% 18.87% 18.99% 
Percent 
above  
θ̂ =0.5 Year 2 

(non-outliers) 
24.38% 22.71% 16.92% 15.92% 

 

Table 1.5(c) tells the same story as Table 1.4(c) with a minimal influence of the 
outliers on the percent above a cut-off. All model-by-method results are consistent in 
showing a decrease in the Year-2 percents. 
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Table 1.5(c). 

Percentage Above Cut-off for Social Studies 6 
 IRT model 3PL 1PL 

 
Equating 
method 

S-L M/S S-L M/S 

    

Year 1 50.30% 52.60% 

Year 2 
(all items) 

47.99% 48.03% 49.87% 49.76% 
Percent 
above  
θ̂ =0 Year 2 

(non-outliers) 
47.99% 48.03% 49.85% 49.73% 

    

Year 1 28.98% 18.87% 

Year 2 
(all items) 

26.99% 26.83% 15.52% 15.48% 
Percent 
above  
θ̂ =0.5 Year 2 

(non-outliers) 
27.01% 26.83% 15.49% 15.47% 

 

For Science 6, keeping the outlying common items has a small positive influence 
on the percent above θ̂ =0 and θ̂ =0.5 of less then 0.3%. When a 3PL model was fitted 
the percents declined in Year 2, as opposed to an increase when a 1PL model was fitted. 
The patterns on Table 1.5(d) are consistent with those on Table 1.4(d). 

Discussion 

This study explored the effects of common item selection on aggregate score 
results. Two clusters of common items were considered in each of four statewide 
assessments: use of all common items to produce the equating transformation and use 
of those that do not indicate anomalous behavior on the delta-plot. Excluding items on 
which student cohorts perform too differentially compared to their performance on 
other items is an issue of face validity and fairness. Given that the delta-plot procedure 
is just a handy method to identify the few items that behave anomalously across cohorts 
of students, and that the “three standard deviations away from the line” rule is 
somewhat arbitrary, it might deserve more consideration whether the delta-plot outliers 
should be discarded from or kept in the common-item pool. 
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Table 1.5(d) 

Percentage Above Cut-off for Science 6 
 IRT model 3PL 1PL 

 
Equating 
method S-L M/S S-L M/S 

    

Year 1 50.31% 51.86% 

Year 2 
(all items) 

50.23% 48.89% 53.51% 53.87% 
Percent 
above  
θ̂ =0 Year 2 

(non-outliers) 50.00% 48.62% 53.38% 53.75% 

    

Year 1 28.67% 17.83% 

Year 2 
(all items) 25.85% 23.97% 18.55% 18.34% 

Percent 
above  
θ̂ =0.5 Year 2 

(non-outliers) 
25.58% 23.67% 18.50% 18.28% 

 

The analysis presented in this study relied on real data. There were no controlled 
simulated conditions that would demonstrate which characteristics of the common 
items are influential on summary statistics such as the mean, the mean gain across 
years, and the percent above a cut-off point. However, these four actual cases suggest a 
number of possible characteristics that would help predict whether exclusion of items 
from the common-item pool would be influential or not. These characteristics include 
the number of outlying common items, their type (dichotomous or polytomous), 
whether the outliers lie above, below, or on both sides of the best-fit line, the level of 
difficulty of the outliers, the IRT model used for calibration of the data, and the 
equating method. 

Very few common items, less than 7% of the common-item pool in all the cases 
presented above, were identified as outliers. The number of the outliers by itself though 
is not very informative as to what the influence might be on equated summary statistics. 
In the case of Science 11 two of the three outliers were polytomous and each one of 
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those contributed four sets of parameter estimates in the equating transformation. If 
there are polytomous items in the common-item pool which behave differentially across 
administrations, discarding them from the equating process will likely have a 
considerable impact on aggregates, more so than dichotomous items, as was seen in the 
Science 11 assessment results. 

Inclusion of outlying common items benefits the group that performs better on 
them. In the Science 11 assessment all three outliers were below the scatter of the other 
items; this meant that the Year-2 cohort performed substantially better on them than did 
the Year-1 cohort, so including them in the common-item pool gives an advantage to 
the Year-2 cohort. In contrast, the two outliers in the Social Studies Grade 6 assessment 
lay on both sides of the best-fit line. It is likely that in this case their effects canceled out 
and as a result, the summary statistics did not vary much with regard to the treatment 
of the outliers. 

The location of an outlier on the difficulty scale could also determine how 
influential it is; this idea is similar to the notion of leverage in regression analysis. If an 
item is very easy or very difficult and is also flagged as an outlier, then it will probably 
be more influential than an outlier of moderate difficulty. This conjecture is supported 
by the comparison between the one assessment that demonstrated large effects on 
summary statistics and the two that did not. The Science 11 involved three outliers that 
were above the average difficulty. In contrast, the Social Studies 6 involved two outliers 
one of which was relatively easy and the other relatively difficult, and the Science 6 test 
just one outlier, which although it was very distant from the rest of the items and thus 
would be expected to exert high influence on the transformation, lay at the middle of 
the difficulty scale and had a rather small impact on the aggregates. The Mathematics 8 
test involved three outliers of low difficulty, but one was above the line and the other 
two below and this may have offset their influence. 

In the Science 11 assessment where the treatment of the outliers had an obvious 
effect on the summary statistics, as well as in the Social Studies 6 test where their 
influence was small, all equating methods and both the 3PL and 1PL calibrations 
tended to show consistent outcomes. In the other two assessments the methods under 
the 1PL calibration were consistent, but when a 3PL model was fitted to the data, the 
different methods did not always produce similar results. A plausible explanation 
might relate to how accurately item parameters are estimated. With a 1PL IRT model, 
only item difficulties are estimated as opposed to the 3PL where more parameters need 
to be estimated. Thus when equating methods use information from more than one 
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parameter, or the item characteristic curve, they maybe incorporating more information, 
however they are more sensitive to the uncertainties of the estimation of those 
parameters.  

Some caveats are in order: the comments outlined above are merely conjectures 
that arise from the analysis and from knowledge of how outliers affect relationships. 
More formal analytical work, or simulations that control the above conditions, would be 
needed to establish more definite conclusions as to how delta-plot outliers affect 
equating. A second warning relates to the fact that the delta-plot outliers are 
determined from item p-values. Equating transformations are estimated from IRT 
parameter estimates or item characteristic curves. The p-values and the IRT b values are 
related – they are both difficulty indices. But the procedure carried out in this study, 
and which can be found in actual practice, involves two steps that function under two 
different frameworks. In theory, a delta plot outlier (based on p-values) might 
nonetheless satisfy the IRT parameter invariance assumption, whereas an item that 
looked fine in the delta plot might violate the invariance assumption. 

The decision of how to deal with outliers has in some cases considerable effects 
on equating. In the study that follows an application of an alternative procedure for 
flagging outlying common items is presented. It is less crude, but still computationally 
easy to carry out, and enables more meaningful comparisons of performance on items, 
because item performance is examined for similar groups of examinees, not for overall 
student cohorts. 

Study 2: The Mantel-Haenszel Procedure as an Alternative to the Delta-Plot Method 

Overview 

A straightforward and practical procedure used to flag items that do not behave 
similarly across administrations, groups, or years is the delta-plot method. It relies on 
item p-values and identifies items of inconsistent level of difficulty through outlier 
analysis. In this study a new method known in psychometrics for its applications to 
studies of DIF will be proposed for this purpose. The Mantel-Haenszel statistic (Mantel 
& Haenszel, 1959) estimates and tests the strength of association between two variables 
across levels of a third variable. In test analysis, it has been used to identify items that 
function differentially across gender, ethnicity, or other subpopulations; the association 
between performance on an item and membership in a subpopulation is studied across 
strata of examinees matched on some proxy of their proficiency. 
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Test administrations and their corresponding cohorts of students can be 
considered subpopulations and common items administered to more than one 
subpopulation can be examined for differential performance through Mantel-Haenszel 
procedures in a manner similar to the studies on DIF. For each common item, which 
will be referred to as the studied item, a 2x2 table can be constructed. The counts of 
correct and incorrect responses to the item in each one of two administrations/cohorts 
are tabulated in that table. The baseline administration group is called the reference 
group, and the other is called the focal group. A third variable, called the matching 
variable that is available for all subgroup members is used to match examinees on a 
measure of their proficiency. For each of the levels of the matching variable, there is a 
2x2 table that contains counts for examinees of similar ability. Thus, the association 
between performance on the studied item and subgroup membership is examined for 
matched individuals. 

Study 2 implements the Mantel-Haenszel procedure to flag common items that 
behave differentially across administrations. In the following sections, the data sources 
and the methodology used in Study 2 are first presented. Then, the results are reported 
and discussed. A comparison between the proposed and the delta-plot procedure 
explicates advantages and disadvantages of the new method. 

Data Sources 

Study 2 investigates the application of the Mantel-Haenszel procedure as an 
alternative to the delta-plot method to detect items that behave differentially across two 
administrations. A Visual and Performing Arts (VPA) Grade 4 statewide assessment is 
analyzed with both methods. Subjects covered include music, visual arts, dance, and 
theater. Students are assessed according to standards on creativity and expression, 
cultural heritage, and criticism and aesthetics.8  

The test consisted of 12 forms and a total of 84 items. Each form comprised 7 
items, of which 6 were multiple-choice dichotomous items, scored 0 or 1, and one was a 
polytomous, constructed-response question, scored on a scale of 0 to 4. The test was 
administered in both Year 1 and Year 2. Of the 84 items, 69 were common over the two 
annual administrations and distributed across the forms according to Table 2.1. The 
numbers of examinees taking each form are also presented on the same table. 

                                                 
8 A non-typical assessment, such as VPA was selected for practical reasons discussed in the “Test design and 
implementation issues” section. 
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Methodology 

Overview 

First, the delta-plot procedure was applied to the test data and the outlying 
common items were identified, by plotting the p-values transformed to the delta metric 
and flagging outliers on the plot as described in study 1. 

The Mantel-Haenszel procedure was applied next. The examinees taking Form X 
in Year 1 and those taking Form X in Year 2 constitute the reference and focal groups 
respectively. A number correct score for each examinee is derived by summing their 
scores on the common items. For example, the examinees taking Form 9 had number-
correct scores ranging from 0 to 9, because there were 1 polytomous and 5 dichotomous 
common items in that particular form. The number-correct score serves as the matching 
criterion j. 
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Table 2.1 

Characteristics of the 12 Forms of the VPA Grade 4 Assessment 

Form 
Total number of 
common items 

across years 

Number of 
polytomous 

common 
items 

Examinees 
taking the 

form in Year 1 

Examinees 
taking the 

form in Year 2 

1  5 1  1341  1335 

2  6 1  1309  1316 

3  7 1  1300  1316 

4  6 1  1324  1300 

5  5 0  1335  1312 

6  7 1  1299  1297 

7  5 1  1360  1323 

8  6 -  1346  1308 

9  6 1  1339  1311 

10  5 1  1343  1313 

11  6 1  1343  1315 

12  5 0  1301  1296 

Total 69 9 15940 15742 

 

Treatment of the Dichotomous Items 

For each dichotomous common item i in a form, a 2x2xK three-dimensional table 
was constructed. One variable was the group each examinee belonged to (Year-1 or 
Year-2) and the second was his/her score on the dichotomous item i (0 or 1). The 
matching variable was the third dimension j of that table, j=0,…, K, where K is the 
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maximum number-correct score on the common items of the form. As can be seen in 
Table Table 2.2, for one such partial table j for the dichotomous common item i, the 
counts of the correct (Aj or Cj) and incorrect (Bj or Dj) responses for each of the two 
examinee cohorts were recorded. For example, Aj would be the number of examinees in 
the Year-1 cohort with a number-correct score j on the common items of a form, who 
responded to item i correctly; Bj would be the number of examinees from that same 
group who got the item wrong.  

 

Table 2.2 

Counts for the jth Partial Table for a Dichotomous Common Item i 
Score on item i  

1 0  Total 
Year 1 Aj Bj N1j 
Year 2 Cj Dj N2j Group 
Total M1j M0j Tj 

 

The estimate of the Mantel-Haenszel common odds ratio for a common item i is 
then given by 
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The common odds ratio takes values from 0 to infinity; with a 1=MHθ , there is no 
differential item performance between the two groups, and larger values imply that the 
item favors the reference group.  

It is useful to refer to the natural logarithm of the common odds ratio, the “log-
odds” for which there are approximate variance expressions. The log-odds ratio has a 
symmetric distribution centered at zero and for positive values of the log-odds the 
reference group performed better than matched examinees of the focal group; for 
negative values the opposite is true. Holland and Thayer (1988) report the following 
approximation of the variance of the log-odds derived by Phillips and Holland (1987) 
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The quotient of the log-odds ratio with its standard deviation can be compared to 
the standard normal distribution for statistical significance. Both the magnitude and the 
statistical significance of the log-odds are considered when deciding on whether an item 
is functioning differentially across subpopulations. A scheme is described in a later 
section. 

Treatment of the Polytomous Items 

The polytomous items were initially treated as dichotomous, after the scores 
were dichotomized to “0” for scores 0 and 1 and “1” for scores 2, 3, and 4. A different 
dichotomization was examined with “0” for scores 0, 1, and 2 and “1” for scores 3 and 4. 
These dichotomizations are both arbitrary. The former gave p-values for the 
dichotomized polytomous items that were closer to the values of mean over the 
maximum score on the polytomous items than the latter. Under this treatment, a 
common odds ratio, log-odds and the variance of the log-odds can be computed for 
each polytomous item and entered into the scheme for deciding whether to flag an item 
for DIF or not. 

There are extensions of the Mantel-Haenszel procedure for cases where the levels 
of a variable are more than two. In addition to their 2x2xK analysis, Mantel and 
Haenszel (1959) proposed a generalized statistic for more than two response categories 
in a variable. A chi-square test for the case of T ordered response categories, where T 
can assume values larger than 2, was provided by Mantel (1963). Scores need to be 
assigned to each category, and a deviation of the sum of cross products from the 
expectation, and its variance conditioned on all marginal totals can be computed. Table 
2.3 demonstrates how the data can be arranged in general and in the case of a 0-4 scored 
polytomous item i on a jth partial table. 
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Table 2.3 

Counts for the jth Partial Table for a Polytomous Common Item i 
Score on item i 

        
 

0  1 …  4  Total 
 Y1 Y2 … YT  

Year 1 N10j N11j … N1Tj N1+j 
Year 2 N20j N21j … N2Tj N2+j Group 
Total N+0j N+1j … N+Tj N++j 

 

According to Mantel (1963) the chi-square statistic under the null hypothesis of 
no association is 
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The variance terms in the denominator of 2.3 are 
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Under the null hypothesis of the common odds equal to one, Mantel’s 2 has a 
chi-square distribution with one degree of freedom. For the purposes of differential 
item behavior, rejecting the null hypothesis suggests that members of two 
subpopulations matched on a measure of proficiency differ in their mean performance 
on the item under investigation (Zwick, Donoghue, & Grima, 1993). 

As in the case of the dichotomous items, judgments as to whether or not a 
polytomous item exhibits DIF take into account a measure of effect size in addition to 
statistical significance. Dorans and colleagues (Dorans & Kulick, 1986; Dorans & 
Schmitt, 1991/1993) proposed a measure of the standardized mean differences, which 
compares item performance of two subpopulations adjusting for differences in the 
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distributions of the two subpopulations. Zwick, et al. (1993) reformulated the 
Standardized Mean Difference (SMD) as follows: 
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The first term in the SMD is the mean performance on the item for the Year-2 
group. Subtracted from that is the mean item performance for the Year-1 group 
weighted by the Year-2 group distribution of the matching criterion. 

Zwick and Thayer (1996) provided a standard error for the SMD based on 
Mantel’s (1963) multivariate hypergeometric model and one based on a two-
multinomial model. The former performed better in their simulation study. In a 
comparative study by Zwick, Thayer, and Mazzeo (1997), the SMD as a descriptive 
index performed best among three descriptive statistics of polytomous item DIF and 
together with the former standard error, as good as other 5 inferential methods when 
the two subpopulations had the same distribution. The hypergeometric variance of the 
SMD (Equation 2.6) is reported in this study 
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The variance terms are defined as in Equation 2.4. 

Some Remarks on the Matching Criterion 

The performance of comparable members of the two groups is contrasted to 
detect differential item behavior. Holland and Thayer (1988) define comparability as 
“identity in those measured characteristics in which examinees may differ and that are 
strongly related to performance on the studied item” (p.130). In the test analyzed in 
Study 2 all examinees that take a form in Year 1 are compared to the examinees taking 
the corresponding form in Year 2. Corresponding forms have a number of common 
items embedded in them. Matching is done based on the number correct score on a set 
of common items administered to both groups of examinees, summing all item scores, 
without rescaling the scores on the polytomous items (Zwick, et al., 1993). The number-
correct score is the usual choice in studies of DIF (Welch & Miller, 1995). 
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Because of the use of a score on a test in which the studied item appears and 
which includes the score on the studied item, the Mantel-Haenszel procedure involves 
some circular reasoning in what it purports to do: evaluation of differential 
performance on an item that taps a construct after controlling for a proxy for the 
performance on a domain that includes the same construct. However, the choice of a 
total test score may be the best available matching criterion because it is a common 
measure that exists for all examinees; it is typically reliable as long as the test is 
validated for its intended purposes; and it is more reliable than individual items 
(Dorans & Holland, 1993). In Study 2 the score on common items was used as a 
matching criterion since that was the longest, common measure that both Year-1 and 
Year-2 subgroups had taken.  

Another issue that arises in Mantel-Haenszel studies of DIF is whether the 
studied item should be included in the matching criterion. Holland and Thayer (1988) 
conjectured that when an item is analyzed for DIF it should be included in the matching 
criterion, but if it exhibits substantial DIF it should be excluded when examining other 
items. They showed that under the Rasch model when the studied item is included in 
the matching score the null hypothesis for the Mantel-Haenszel holds in the population; 
when the studied item is excluded and there is no DIF, the procedure does not behave 
correctly. Zwick (1990) concurred with Holland and Thayer’s findings and argued that 
inclusion of the studied item improves the behavior of the odds ratio with more general 
models as well. Donoghue, Holland, and Thayer (1993) showed that inclusion of the 
studied item in the matching variable results in reducing the number of false positives, 
i.e., items that do not behave differentially being flagged as exhibiting non-zero DIF. In 
general, there is agreement that the studied item must be included in the matching 
criterion.9 

An underlying assumption with the use of the Mantel-Haenszel procedure for 
the study of DIF is that the items studied are homogeneous and unidimensional 
(Angoff, 1993). Unidimensionality is more than an assumption for studies of DIF; it is a 
part of the definition of item bias (Shepard, 1982). An item that functions differentially 
for a group is an item that measures a construct that departs from what the matching 
criterion measures. If it did not, then performance of the group on that item would not 

                                                 
9 Additional analyses where conducted in which the matching criterion was purified (Dorans & Holland, 1993), i.e., 
the items that were flagged with intermediate DIF were excluded from the calculation of the number correct score 
on the common items. The same items, and no other common items, were flagged in the same DIF category under 
the refined criterion (see Michaelides, 2005). 
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be expected to depart from that predicted by the group's performance on the overall 
criterion. 

While items that are scored on a scale with multiple points, such as essay 
prompts or performance assessments, are considered to capture important aspects of 
student knowledge that are difficult to assess with more traditional testing formats, 
they are likely to introduce additional dimensions unrelated to the measured construct. 
These other dimensions may be sources of differential group performance. The 
dimensionality of the matching is always a concern; it is perhaps more crucial when 
there are polytomous items involved. Because of the more complicated nature of open-
ended performance tasks, Zwick, et al. (1993) state that construct-irrelevant factors 
could interfere with the intended construct and lead to larger differences between 
groups. Nonetheless, they generalize from Holland and Thayer’s (1988) dichotomous 
case that polytomous items should be included in the matching variable by simply 
summing the scores on all dichotomous and polytomous, items. For practical reasons, 
this could be the only option, since tests that include polytomously scored tasks tend to 
have fewer items (Welch & Miller, 1995). If a matching criterion consists of very few 
items, the reliability of the stratification on ability will be low. Finding an appropriate 
matching criterion may be difficult (Dorans & Schmitt, 1991/1993), in fact impossible, if 
the some of the available items are not used because they are polytomous. 

A Scheme for Flagging Items for Differential Behavior 

The Mantel-Haenszel procedure provides information about the statistical 
significance of the log-odds. With large enough samples, even small departures from 
the null hypothesis of the common odds (or the log-odds) could result in statistical 
significance. A more complete judgment of whether an item behaves differentially 
across subpopulations would take into account both the results of hypothesis testing 
and the magnitude of the ratio. 

The Educational Testing Service (ETS) has developed a scheme for classifying 
items into categories of DIF that considers the statistical significance and the magnitude 
of the log-odds ratio. That scheme is applied in Study 2. 

ETS uses the delta metric for item difficulties by applying the transformation 
)(413 1 p−Φ−=δ  to the p-value, p (Dorans & Holland, 1993). The log-odds ratio is 

transformed to the delta metric, and referred to as the Mantel-Haenszel delta difference 
(MH D-DIF), by  
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 ( )MHnlDIFDMH θ̂35.2−=−  

Note that -2.35 is an approximation of -4/1.7. The constant -4 appears in the 
function that transforms p-values onto the delta metric; the constant 1.7, which also 
appears in equations defining the 1PL, 2PL, and 3PL IRT models, serves to convert 
between the logit (as with log-odds) and probit (as with delta transformation) metrics. 

If MH D-DIF is equal to 1.0 for an item, then that item was easier for the focal 
than for the reference group by one delta point. For items of moderate difficulty, a 
difference of one delta represents an approximate difference of 10 points on the 
percentage-correct scale (Zieky, 1993). Items that were easier for the reference group 
have a negative MH D – DIF value. 

The approximate standard error for the log-odds ratio is the square root of the 
expression in Equation 2.2. The estimated standard error for the MH D-DIF is the log-
odds standard error multiplied by 2.35 (Dorans & Holland, 1993).  

 

 )]ˆ([35.2)( MHnlVarDIFDMHSE θ=−  

A dichotomous item is classified into one of three categories: A, B, and C, which 
correspond to negligible, intermediate, and large DIF. The classification rules10 (Dorans 
& Holland, 1993; Zieky, 1993) are as follows: 

� A dichotomous item is classified in Category A if the MH D-DIF is not 
significantly different from zero ( 05.0≥p ), or if its absolute value is less than 
1.0. 

� A dichotomous item is classified in Category B if the MH D-DIF is 
significantly different from zero, and its absolute value is at least 1.0, and its 
absolute value is either less than 1.5 or not significantly greater than 1.0. 

� A dichotomous item is classified in Category C if the MH D-DIF is 
significantly greater than 1.0 in absolute value, and its absolute value is at 
least 1.5. 

                                                 
10 The rules were developed empirically, based on what constitutes large enough difference in performance on an 
item by the two groups. Such a decision is judgmental. 
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One approach to analyzing polytomous items would be to dichotomize them by 
choosing a cut-point on the scoring scale and assigning a correct response to the scores 
above the cut, and an incorrect for the scores below. Then they can be treated as 
dichotomous with the same scheme.  

Since statistics have been developed to deal with DIF with polytomous items, 
similar empirical rules exist to guide decisions on whether a polytomous item exhibits 
DIF or not. The rules combine statistical significance given through Mantel’s chi-square 
statistic (Equation 2.3) and a measure for the magnitude of the difference between the 
performances of the two groups. The effect size is the SMD (Equation 2.5) divided by 
the within-group standard deviation of the studied item, pooled over the two groups. A 
generalization of the scheme for the dichotomous items is used in the National 
Assessment of Educational Progress (NAEP) to classify the polytomous items for DIF 
(U.S. Department of Education, Office of Educational Research and Improvement, 
National Center for Education Statistics, 2001). The corresponding rules for category 
assignment are: 

� A polytomous item is classified in Category AA if either Mantel’s chi-square 
is not significantly different from zero )05.0( ≥p , or if the absolute value of 
the effect size is less than or equal to 0.17. 

� A polytomous item is classified in Category BB if Mantel’s chi-square is 
significant and the absolute value of the effect size is over 0.17 and less than 
or equal to 0.25. 

� A polytomous item is classified in Category CC if Mantel’s chi-square is 
significant and the absolute value of the effect size is over 0.25 (J. Donoghue, 
personal communication, June 17, 2003). 

Results 

The Results of the Delta-plot Method 

The delta-plot of the common items in the Visual and Performing Arts Grade 4 
assessment appears in Figure 2.1. The delta-plot procedure flagged two dichotomous 
items as outliers: 4.1 and 7.1. The former was the first common item in form 4 and was 
easier for the Year-1 cohort (p-value=0.59, delta-value=12.07 compared to 0.49 and 13.14 
respectively for the Year-2 cohort.) The latter was the first common item in form 7 and 
was easier for the Year-2 cohort (p-value=0.51, delta-value=12.90 compared to 0.42 and 
13.82 respectively for the Year-1 cohort.)   
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With the delta-plot method, the decision to flag an item as an outlier is 
confounded with the differences in the shape of the ability distributions of the two 
examinee groups. The Mantel-Haenszel procedure circumvents this problem by 
comparing the item performance of examinees with similar proficiency scores, thus 
adjusting for differences in the shapes of the ability distributions of the two groups.  
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Figure 2.1. Delta-plot for the Visual and Performing Arts Grade 4 assessment. 
 

The Results of the Mantel-Haenszel Procedure 

For each common item, the relevant statistics were calculated: odds and log-odds 
ratio, and the standard deviation of the log-odds for the dichotomous items; for each 
polytomous item two analyses were carried out: one that treats it as a dichotomous item 
and presents the same statistics for the dichotomous case, and an alternative table with 
the multiple ordered response categories with the associated SMD, its standard 
deviation, and Mantel’s chi-square statistic. 
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Appendix 2 lists the MH D-DIF and the associated standard errors for the sixty-
nine common items of the assessment. Considering only the significance of the log-odds 
ratio, or equivalently of the MH D-DIF, at the 0.05 level twenty-four items would be 
flagged for DIF. With the application of the ETS DIF classification scheme for 
dichotomous items the number of the flagged items dropped considerably. Sixty-five 
items did not function in a significantly different way for the two cohorts and were 
classified in Category A. Four items, two dichotomous and two polytomous, were 
flagged as exhibiting intermediate or large DIF. Their statistics appear on Table 2.4. One 
of the polytomous items was classified in the “large DIF” category. 
 

Table 2.4 

Common Items Flagged for DIF Under the Dichotomous Treatment 

Item Item type MH D-DIF 
Standard Error 

(MH D-DIF) 

ETS 

Category 

5.1 Dichotomous -1.2380 0.3131 B 

7.1 Dichotomous  1.3175 0.2147 B 

7.5 Polytomous -1.4494 0.2493 B 

9.6 Polytomous -1.5405 0.2693 C 

 

The four flagged items had an absolute value of MH D-DIF larger than one. 
Three of those had negative values, which means that they favored the reference, Year-
1, group. The fourth item, 7.1, which was identified by the delta-plot, was easier for the 
focal group. Item 4.1, which was flagged by the delta-plot, was not flagged by the 
Mantel-Haenszel procedure; although it satisfied the significance criterion, its absolute 
value did not exceed the effect size threshold of one. 

Table 2.5 presents results of the analysis of the polytomous data without the 
dichotomization. For each item, the SMD statistic, its standard deviation, the item 
standard deviation pooled over the two groups, the effect size which is the ratio of the 
SMD over the pooled standard deviation, as well as the Mantel chi-square are listed. 
The category in which each item is classified according to the NAEP classification 
scheme used by ETS appears in the last column. An SMD of 0.1 represents a difference 
of about one tenth of a score point in the group item means. Negative values indicate 
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that the reference group had a higher item mean score than the focal group. The 
standard deviations of the SMD were very low. Item 7.5 shows a moderate difference of 
–0.1716 and is flagged as exhibiting intermediate DIF. Item 9.6 was flagged under the 
dichotomized treatment but not under the polytomous-item scheme. 
 

Table 2.5 

Statistics and Category Classifications for Polytomous Common Items 

Item 
SMD 
(SE)1 

Item standard 
deviation 
(pooled) 

Effect size 
Mantel 
CHI-SQ 

ETS 
Category

1.5 
-0.0840 
(0.0245) 

0.9796 -0.0857 12.17 AA 

2.6 
0.0853 

(0.0239) 
0.8372 0.1019 12.32 AA 

3.7 
-0.1079 
(0.0261) 

0.9119 -0.1183 17.94 AA 

4.6 
-0.0749 
(0.0248) 

0.9453 -0.0792 10.30 AA 

6.7 
-0.0229 
(0.0226) 

0.7562 -0.0303  0.91 AA 

7.5 
-0.1716 
(0.0236) 

0.9489 -0.1809 53.06 BB 

9.6 
-0.0612 
(0.0233) 

0.7986 -0.0766  5.49 AA 

10.5 
-0.1199 
(0.0260) 

1.0017 -0.1197 24.36 AA 

11.6 
-0.0485 
(0.0265) 

0.9851 -0.0492  3.46 AA 

 1 The standard deviation of the SMD (Equation 2.6) appears in parentheses. 

 

Departures from unidimensionality could arise if items are measuring different 
skills and could result in flagging more items for DIF (Welch & Miller, 1995). To 
investigate the dimensionality of the data principal components, analysis of the scores 
on the common items within each form are presented in Appendix 3. In 19 of the 24 
cases (12 forms for 2 years) only one principal component was extracted with an 
eigenvalue larger than one. Two principal components were extracted in 4 forms that 
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included a polytomous item and in one form with dichotomous items only. In those 
cases, the loadings of items on the two principal components did not differentiate 
between the types of items. Finally, histograms of the number-correct score on a form 
showed that the distributions of the matching criterion between Year 1 and Year 2 are 
very similar (see Michaelides, 2003). 

Discussion 

Simpson’s (1951) paradox is an instructive example that helps clarify the 
difference between the delta-plot method and the Mantel-Haenszel procedure. Dorans 
and Holland (1993) describe a hypothetical situation where a Group A had a higher 
proportion correct on an item than a Group B; however upon inspection of the 
performance of three strata in which the distributions of examinees were sliced (the 
strata could be formed by a common ability clustering in the two groups), all Group-B 
subgroups had higher proportion correct indices than their matched Group-A 
subgroups. In essence, while Group A is actually at a disadvantage as it is shown by the 
stratified results, the measure of overall performance implies that it is at an advantage.   

When two groups do not perform equally well on an item, then the item exhibits 
differential impact with respect to the two groups. Impact is often stable and could 
replicate in other similar items, since overall ability attributes will contribute to this 
disparity. When the differences in ability distributions are accounted for by matching 
the groups on a relevant characteristic, if there are still differences between the similar 
subgroups, these are unexpected, given the similarity of the groups on an attribute that 
the item and the matching ability proxy are supposed to measure (Dorans & Holland, 
1993). Matching on a relevant third variable and then comparing what is comparable 
has become a central concern in the study of DIF; it is crucial in making the distinction 
between differences in item p-values attributable to differences in item functioning 
versus differences in group ability (Dorans & Schmitt, 1991/1993). 

Conditioning on a criterion is common to most methods of studying DIF. The 
delta-plot method, which was originally proposed as a technique for detecting and 
studying item-by-group interactions (Angoff, 1972) takes into account changes in the 
mean and standard deviation of the item difficulties by fitting a best-fit line. It 
disregards however further information about differences in the distributions of ability, 
and thereby confounds group differences in ability distributions with group differences 
in how examinees of a given ability find an item. The more the shapes of two ability 
distributions differ, the more the confounding is amplified when two single numbers, 
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the p-values, are compared. It is now considered to be technically flawed for examining 
item bias (Angoff, 1993).  

Hence, the Mantel-Haenszel procedure, as well as IRT-based methods, has taken 
over in studies of DIF.11 If two administrations of a test form with common items 
embedded in both are considered as subgroups in a DIF-like study, then the Mantel-
Haenszel procedure could provide more refined comparisons between examinees that 
are similar, and flag items that exhibit either homogeneous odds greater than or less 
than 1 across all levels of ability, or certain differential patterns of odds across ability 
levels. 

Interpretation of Results 

The content of the assessment analyzed in Study 2 could raise concerns about 
dimensionality. A test assessing skills on topics such as visual arts, music, and theater 
for children in Grade 4 includes questions that address quite different content, 
proficiency, or skill, especially when polytomous items are added to the common-item 
pool. The subjectivity involved in scoring items for creativity, cultural understanding, 
and aesthetics could also result in inconsistent scoring. The scorers of the Year-1 and the 
Year-2 administrations could be quite different in their scoring patterns, thus 
introducing additional dimensions in the scores. 

For the particular assessment the Mantel-Haenszel procedure seemed to work 
well. More items were flagged as exhibiting DIF than outliers identified by the delta-
plot. There was some overlap between the two methods since one of the two delta-plot 
outliers was flagged by the Mantel-Haenszel procedure, too. The latter flagged three 
additional items. Principal component analysis and histograms of ability distributions 
did not raise serious concerns about departures from dimensionality that could result in 
detecting false-positive occurrences of DIF. 

The idiosyncratic features of the Visual and Performing Arts assessment might 
have been expected to lead to many items being flagged for DIF. However, very few 
items were flagged. With more common items embedded in corresponding forms the 
stratification of the ability variable could be more refined, matching subgroups that 
were even more similar in ability, increasing sensitivity of the Mantel-Haenszel 
procedure to actual DIF versus false-positives. 

                                                 
11 IRT-based methods require IRT calibrations. In contrast, the Mantel-Haenszel procedure relies on raw scores and 
thus is easier to program and compute. 
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The delta-plot did not identify any polytomous items. The Mantel-Haenszel 
procedure flagged two polytomous items when polytomously scored items were 
dichotomized, and one item when they were treated as polytomous. Item 7.5 identified 
by both treatments, had a SMD of -0.1716 which suggests that there is some moderate 
difference in the performance (or scoring) of the two cohorts. As with all flagged items, 
the next step would be to inspect it through analysis of the content to detect whether it 
is unique compared to other items in the matching criterion. Scoring analysis of 
polytomous items can reveal whether the observed differential performance was due to 
inconsistent scoring and not due to actual examinee responses. The Year-2 scorers could 
re-score randomly selected responses of Year-1 examinees and compare their scoring 
practice with the Year-1 scores to detect any differential patterns. 

Test Design and Implementation Issues 

There are certain requirements on the test design that need to hold to apply the 
Mantel-Haenszel procedure for the study of differential behavior of common items 
across administrations. The Visual and Performing Arts Grade 4 assessment analyzed in 
this study was the only test out of more than twenty statewide assessments inspected 
that did not violate requirements of a Mantel-Haenszel implementation. All 
assessments were constructed under a matrix-sampling design; there were multiple test 
forms in each of two annual administrations. A form in the Year-2 administration 
corresponded to a form in the Year-1 administration because they shared a set of 
common items, the items that would equate the two annual scales. However, for 
purposes of linking the Year-2 to the Year-1 assessment, it is not two corresponding 
forms that are equated, but all alternate forms of one year to all alternate forms of the 
other year. What happened in most available data sets was that a common item 
appearing in a form X in Year 1 would be moved to a different form Y in Year 2. In 
essence, the common-item pools were not stable within all forms, a possibly unsound 
practice given the research findings on context effects reviewed earlier. If unstable 
common-item form assignments led to serious violations of parameter invariance 
assumptions due to context effects, it would be expected that larger numbers of items 
would be flagged, even using the delta-plot procedure. No evidence of such problems 
was found. In other cases, the testing program would change the number of alternate 
forms from one year to the next, rearranging some of the common items to newly 
introduced forms. Yet a few data sets that avoided moving common items around 
forms had as few as three or four common items in corresponding forms. Some writing 
assessments had only polytomous items as common. The assessment that was 
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eventually analyzed was the only one that for all forms had a proper matching criterion, 
i.e., for all forms, all the common items of a Year-1 form appeared in the corresponding 
Year-2 form, and which consisted of a number of items that was not prohibitively low. 

In typical studies of DIF these problems are not likely to emerge because the 
groups usually compared, gender or ethnicity groups, take the same test form, thus all 
test items, not just the common items, can be part of the matching criterion. In the case 
of equating and using Mantel-Haenszel to study the behavior of the common items, 
design issues are more complicated. The matching criterion can only be as long as the 
common-item pool, i.e., a fraction of the total test. Provided that the size of the 
common-item pool is large enough, the matching criterion could be refined enough to 
provide many strata for reliable matching. But if the common items are spread across 
many forms, as is the case of matrix-sampling designs, and especially if there are 
polytomous items in the assessment, the number of items used to form the matching 
variable is severely limited.  

Conclusions 

The choice of items to include as common in a common-item nonequivalent 
groups design influences the equated scores and their accuracy. In the first study it was 
shown that the treatment of few common items that behaved in unexpected ways across 
administrations, i.e., the outliers flagged by the delta-plot method, could have 
substantial influence on equated score summaries. In two out of four assessments 
analyzed, mean scores, annual gains, and proportions above a cut score differed 
significantly depending on whether the outlying items were included in the equating or 
not.  

In the second study, the Mantel-Haenszel procedure, widely used in studies for 
identifying DIF, was proposed as an alternative to the delta-plot method and applied in 
the context of test equating for flagging common items that behaved differentially 
across cohorts of examinees. The Mantel-Haenszel procedure has the advantage of 
conditioning on ability when making comparisons of performance of two groups on an 
item. There are schemes for interpreting the effect size of differential performance, 
which can inform the decision as to whether to retain those items in the common-item 
pool, or to discard them. However, there may be some test-design limitations that 
preclude the application of this procedure in a test-equating framework.  

Testing programs repeatedly administer different versions of the same test, and 
it is a matter of fairness to individual examinees to preserve comparability of the 
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different test forms. Equating methods provide the statistical adjustments for placing 
scores on a common scale. Common scales are also useful for tracking trends in group 
performance over time, indicating how examinee cohorts perform compared to their 
counterparts. The significance of measuring trends accurately has recently received 
much attention. Under the No Child Left Behind Act of 2001, educational institutions 
are expected to demonstrate adequate yearly progress in reading and mathematics. 
There are rewards and sanctions attached to their progress. Equating is an essential part 
of linking achievement scores across years and maintaining a common longitudinal 
scale. To implement the legislation, and measure the magnitude of gains or declines 
from one year to the next properly, the equating must be accurate.  

There are many methods to perform equating, which are usually applied within 
a common-item design. The effect that some misbehaving common items can have on 
group-level statistics–and to a much lesser degree on the variability of individual 
scores–is large enough to warn about the consequences of ignoring the findings from 
the first study, concerning variability in estimates for aggregate scores. 

It is not easy to provide strict guidelines on how to deal with common items 
flagged for differential behavior across two forms. The content tested by a common 
item and its relevance to both the curriculum framework and actual instruction comes 
into the decision as to how to treat it, if it behaves in unexpected ways. As in the case of 
DIF studies where an instance of an item functioning differentially for two groups does 
not necessarily imply that the item is biased and should be discarded from a test (Linn, 
1993), finding a common item that fails to function consistently across administrations 
does not imply that it is inappropriate for equating. If a common item is flagged by the 
Mantel-Haenszel procedure (or the delta-plot method) as behaving differentially in any 
two forms, it does not mean that it should be automatically discarded from the common 
item pool and treated as a new, non-common item in the second form. Content experts 
and test developers may be able to offer plausible explanations for the differential 
behavior. If a context effect has, for example, been discovered, then it is probably 
legitimate to say that it is unrelated to the construct that the test is measuring. However, 
as regards to equating, even in obvious cases of discrepant performance due to 
irrelevant circumstances, discarding a common item is not as straightforward. Common 
items are chosen to meet certain content and statistical specifications, and to 
proportionally represent the properties of the total test. Discarding a common item 
might violate those guidelines and introduce a different kind of bias in the equating 
transformation. 
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Even though this judgmental step is involved in the equating process, the 
practice can be improved in different ways. For example, the impact of including or 
excluding an item on the specifications and the content representation of the common-
item pool can be examined. If exclusion of an item violates those specifications 
seriously, e.g., if it is the single item from a particular area of the tested subject, then 
discarding it may not be not be advisable. Another instructive piece of information is 
the effect that a single common item can have on the equating transformation and the 
equated scores. With knowledge of a common item’s leverage, the decision on how to 
deal with it can be more informed. A third way would be the kind of information given 
by the schemes for flagging items for DIF implemented in Study 2. Inclusion of the 
effect size of the differential behavior, in addition to the statistical significance, to 
characterize the amount of DIF and labeling it as negligible, intermediate, or large, can 
be useful in deciding whether a flagged item should be discarded or not. 

Limitations and Future Research 

Beyond the extent of influence that misbehaving common items can have on 
equating results, the reasons behind the unexpected behavior are worthy of 
investigation. The content and the context of the common items were not examined in 
the aforementioned studies, although they have some bearing on the decision as to how 
to deal with the outliers, as has been discussed. The fact that there are very few, if any, 
extreme outliers in a delta-plot of common items, suggests that those outliers that do 
appear are probably caused by random, context and, from an educational perspective, 
uninteresting events, as opposed to intentional curriculum and policy changes.12 A 
broad, statewide modification of the content standards for example would probably 
affect the behavior of many items over a long time period, while an isolated incident 
between two administrations that sensitized one of the examinee populations, or a 
change in the presentation of an item from one form to the next, would likely affect the 
behavior of the relevant item only. Nevertheless, outlying common items need not be 
the only studied items in this context. If a new policy is implemented between two 
administrations, then its effects can be examined on all common items, whether they 
exhibit large, small, or no differential behavior. Since educational policies often require 
longer time periods to implement and produce results, such a study could be 

                                                 
12 Some causes of inconsistent item behavior across administrations can be predicted and limited. Context effects in 
particular are easier to control. As testing programs develop, they should incorporate sound equating habits that 
would avoid undesirable practices, such as changes in the format or the position of an item. Other effects probably 
cannot be anticipated and avoided. 
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longitudinal rather than just between two administrations, and would provide support 
for the link between educational policies and educational outcomes, reflected as 
changes in item (or item-cluster) performance. 

The uniqueness of each testing program and the specific situations under which 
items are administered make it difficult to devise preset rules for dealing with 
misbehaving common items. As in studies of DIF, numbers by themselves cannot 
provide definite decision rules with regard to the complicated and sensitive issues of 
DIF and fairness (Zieky, 1993). Equating practice can be augmented, however, by more 
informative procedures. How to apply a Mantel-Haenszel procedure to flag items with 
a real data set has been empirically demonstrated in Study 2. Characterizing effect size 
of the differential behavior of items further facilitates judgments as to how to treat 
them. An additional useful tool would be a procedure for evaluating the leverage of 
each item, given its characteristics: type of item, position on a scatterplot, distance from 
a best-fit line, etc. Studies that simulate realistic situations would provide insight on the 
importance of item characteristics that affect the leverage of outliers. Vukmirovic, Hu, 
and Turner (2003) ran one such simulation, but defined outliers on a scatterplot of IRT b 
parameters instead of p-values on a delta-plot. Using such information together with 
the plausible causes of differential item behavior—content, context, or unidentifiable—
the decision to keep or discard a common item can be more defensible.  

Effects of outlying common items on equated scores can be examined with other 
equating methods, such as the IRT fixed parameter method, or non-IRT methods, in 
addition to the four IRT methods with equating transformations reported in Study 1. 
The occasional differences among methods that were observed could be investigated 
further. In combination with the IRT model used for test calibration there were some 
discrepancies between equating method results, in particular with a 3PL model for the 
dichotomous items. The score distributions given by the 1PL and the 3PL models were 
quite different in their characteristics. Comparison of the two models with respect to 
their scoring outcomes is another critical aspect of test analysis. 
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APPENDIX 1: ST Output – Equating Transformations 

 
Appendix 1 presents item parameter statistics and equating transformation constants: 

(a) under four equating methods: Stocking & Lord, Haebara, mean/mean, and 
mean/sigma as given by the ST software (Hanson & Zeng, 1995),  

(b) for each of the four assessments analyzed in study 1: Mathematics 8, Science 11, 
Social Studies 6, and Science 6,  

(c) under a 3PL IRT and a 1PL IRT calibration, and  
(d) using all versus using only the non-outlying common items. 
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MATHEMATICS 8, 3PL, ALL COMMON ITEMS 
 

ST 1.0.2 
Input file: c:\data\equate\param\8m_all_st_in.txt 
 
Number of common items: 65 
 
     Item Parameter Means 
        a     b    c 
New Form   0.8713  0.6970  0.1033 
Old Form   0.9830  0.4868  0.1033 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.2718  1.3984  0.0973 
Old Form   0.2700  1.1832  0.0973 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.119995  -0.134256  -0.131011  -0.102949 
Slope     0.883241  0.896178  0.886359  0.846100 
 
 
MATHEMATICS 8, 3PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: c:\data\equate\param\8m_NONOUTLIERS_st_in.txt 
 
Number of common items: 62 
 
     Item Parameter Means 
        a     b    c 
New Form   0.8687  0.7227  0.1001 
Old Form   0.9879  0.5036  0.1001 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.2633  1.4259  0.0980 
Old Form   0.2717  1.2084  0.0980 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.127278  -0.142774  -0.131884  -0.108832 
Slope     0.881048  0.897917  0.879361  0.847461 
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SCIENCE 11, 3PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\11C_ALL_ST_IN.TXT 
 
Number of common items: 63 
 
     Item Parameter Means 
        a     b    c 
New Form   0.8020  0.5610  0.1121 
Old Form   0.8587  0.4271  0.1121 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.1987  1.0474  0.1029 
Old Form   0.2295  0.9324  0.1029 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.085172  -0.072817  -0.096918  -0.072329 
Slope     0.956795  0.953115  0.933978  0.890149 
 
 
SCIENCE 11, 3PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\11C_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 54 
 
     Item Parameter Means 
        a     b    c 
New Form   0.8002  0.5970  0.1263 
Old Form   0.8300  0.4024  0.1263 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.2133  0.9841  0.0999 
Old Form   0.2343  0.8579  0.0999 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.146993  -0.138975  -0.173123  -0.117985 
Slope     0.971272  0.955871  0.964080  0.871721 
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SOCIAL STUDIES 6, 3PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6S_ALL_ST_IN.TXT 
 
Number of common items: 89 
 
     Item Parameter Means 
        a     b    c 
New Form   0.7503  0.1937  0.0732 
Old Form   0.7620  0.2982  0.0732 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.1526  1.3775  0.0793 
Old Form   0.1503  1.3350  0.0793 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.110536  0.111957  0.107489  0.110490 
Slope     0.979559  0.974644  0.984664  0.969167 
 
 
SOCIAL STUDIES 6, 3PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6S_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 87 
 
     Item Parameter Means 
        a     b    c 
New Form   0.7514  0.2013  0.0725 
Old Form   0.7629  0.3056  0.0725 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.1527  1.3923  0.0800 
Old Form   0.1512  1.3492  0.0800 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.110608  0.112376  0.107311  0.110518 
Slope     0.979903  0.974575  0.984975  0.969038 
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SCIENCE 6, 3PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6C_ALL_ST_IN.TXT 
 
Number of common items: 80 
 
     Item Parameter Means 
        a     b    c 
New Form   0.6625  0.3067  0.0815 
Old Form   0.7259  0.2987  0.0815 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.1542  1.5461  0.0895 
Old Form   0.1650  1.3963  0.0895 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.048868  0.085721  0.018857  0.021818 
Slope     0.930364  0.951653  0.912738  0.903081 
 
 
SCIENCE 6, 3PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6C_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 79 
 
     Item Parameter Means 
        a     b    c 
New Form   0.6637  0.3109  0.0807 
Old Form   0.7274  0.2979  0.0807 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.1549  1.5554  0.0898 
Old Form   0.1655  1.4051  0.0898 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.044031  0.081835  0.014229  0.017038 
Slope     0.929829  0.951510  0.912375  0.903341 
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MATHEMATICS 8, 1PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\8M_1PL_ALL_ST_IN.TXT 
 
Number of common items: 65 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.3117  0.0000 
Old Form   1.0000  0.3356  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.8343  0.0000 
Old Form   0.0000  0.8410  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.028459  0.028299  0.023941  0.021442 
Slope     1.017464  1.026623  1.000000  1.008017 
 
 
MATHEMATICS 8, 1PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\8M_1PL_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 62 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.3323  0.0000 
Old Form   1.0000  0.3558  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.8488  0.0000 
Old Form   0.0000  0.8557  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.028158  0.027924  0.023530  0.020835 
Slope     1.018189  1.027399  1.000000  1.008111 
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SCIENCE 11, 1PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\11C_1PL_ALL_ST_IN.TXT 
 
Number of common items: 63 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.2334  0.0000 
Old Form   1.0000  0.2858  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.8303  0.0000 
Old Form   0.0000  0.8325  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.047937  0.043177  0.052410  0.051799 
Slope     1.005713  1.020442  1.000000  1.002619 
 
 
SCIENCE 11, 1PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\11C_1PL_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 54 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.2409  0.0000 
Old Form   1.0000  0.2395  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.7974  0.0000 
Old Form   0.0000  0.7548  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.011760  0.014734  -0.001398  0.011484 
Slope     0.993381  0.985601  1.000000  0.946528 
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SOCIAL STUDIES 6, 1PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6S_1PL_ALL_ST_IN.TXT 
 
Number of common items: 89 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.2040  0.0000 
Old Form   1.0000  0.1880  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.9950  0.0000 
Old Form   0.0000  0.9965  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.014749  -0.011598  -0.016018  -0.016331 
Slope     0.999557  0.991314  1.000000  1.001538 
 
 
SOCIAL STUDIES 6, 1PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6S_1PL_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 87 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.2096  0.0000 
Old Form   1.0000  0.1933  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  1.0057  0.0000 
Old Form   0.0000  1.0073  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   -0.015205  -0.012009  -0.016393  -0.016731 
Slope     0.999516  0.991176  1.000000  1.001613 
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SCIENCE 6, 1PL, ALL COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6C_1PL_ALL_ST_IN.TXT 
 
Number of common items: 80 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.1525  0.0000 
Old Form   1.0000  0.1644  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.9497  0.0000 
Old Form   0.0000  0.9412  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.008022  0.004502  0.011876  0.013243 
Slope     1.012413  1.030590  1.000000  0.991040 
 
 
SCIENCE 6, 1PL, NON-OUTLYING COMMON ITEMS 
 
ST 1.0.2 
Input file: C:\DATA\EQUATE\PARAM\6C_1PL_NONOUTLIERS_ST_IN.TXT 
 
Number of common items: 79 
 
     Item Parameter Means 
        a     b    c 
New Form   1.0000  0.1556  0.0000 
Old Form   1.0000  0.1664  0.0000 
 
 Item Parameter Standard Deviations 
        a     b    c 
New Form   0.0000  0.9554  0.0000 
Old Form   0.0000  0.9470  0.0000 
 
Transformation Functions 
 
      Stocking-Lord  Haebara  Mean/Mean Mean/Sigma 
Intercept   0.006575  0.002854  0.010801  0.012160 
Slope     1.012654  1.031380  1.000000  0.991272 
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APPENDIX 2: Mantel-Haenszel Procedure and ETS Scheme for Flagging 

Dichotomous Items for DIF 

FORM 
 

ITEM 
 

POLYTOMOUS 
 

MH D-DIF 
 

SE 
(MH D-DIF) 

ETS  
CATEGORY 

1 1  0.2700 0.2088 A 
 2  0.2385 0.2796 A 
 3  0.1447 0.2162 A 
 4  0.4703 0.2051 A 
 5 POLYTOMOUS1 -0.5566 0.2466 A 
 

2 1  -0.3680 0.2132 A 
 2  -0.5767 0.2213 A 
 3  -0.0700 0.2110 A 
 4  -0.3526 0.2196 A 
 5  0.2477 0.2074 A 
 6 POLYTOMOUS 0.5820 0.2493 A 
 

3 1  -0.2969 0.3500 A 
 2  0.3344 0.2202 A 
 3  0.4139 0.2214 A 
 4  -0.5456 0.2956 A 
 5  0.3910 0.2101 A 
 6  0.6510 0.2128 A 
 7 POLYTOMOUS -0.8932 0.2325 A 
 

4 1  -0.6997 0.2153 A 
 2  0.7030 0.2453 A 
 3  0.7346 0.2356 A 
 4  -0.3773 0.2792 A 
 5  0.9568 0.2447 A 
 6 POLYTOMOUS -0.9968 0.2467 A 
 

5 1  -1.2380 0.3131 B 
 2  0.2152 0.2254 A 
 3  0.1892 0.2513 A 
 4  0.2934 0.2475 A 
 5  0.0543 0.2444 A 
 

6 1  -0.1766 0.2505 A 
 2  -0.5405 0.2741 A 
 3  0.5747 0.2227 A 
 4  -0.1526 0.2369 A 
 5  -0.0277 0.2257 A 
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 6  0.4206 0.2350 A 
 7 POLYTOMOUS -0.0803 0.2723 A 
 

7 1  1.3175 0.2147 B 
 2  0.5587 0.2337 A 
 3  0.0788 0.2278 A 
 4  0.5504 0.2709 A 
 5 POLYTOMOUS -1.4494 0.2493 B 
 

8 1  -0.5309 0.2227 A 
 2  0.4051 0.2170 A 
 3  -0.3416 0.2794 A 
 4  0.4061 0.2231 A 
 5  0.1936 0.2218 A 
 6  -0.3080 0.2343 A 
 

9 1  -0.0846 0.2149 A 
 2  0.1191 0.2342 A 
 3  0.3330 0.2125 A 
 4  -0.0793 0.2123 A 
 5  0.3961 0.2086 A 
 6 POLYTOMOUS -1.5405 0.2693 C 
 

10 1  0.3003 0.2130 A 
 2  0.4034 0.2164 A 
 3  0.1308 0.2092 A 
 4  0.7631 0.2196 A 
 5 POLYTOMOUS -0.8708 0.2747 A 
 

11 1  0.4784 0.2052 A 
 2  -0.2745 0.2430 A 
 3  0.1310 0.2024 A 
 4  -0.3016 0.2546 A 
 5  0.3624 0.2073 A 
 6 POLYTOMOUS -0.5489 0.2386 A 
 

12 1  -0.2703 0.2370 A 
 2  -0.0749 0.2200 A 
 3  -0.3764 0.2374 A 
 4  0.3104 0.2409 A 
 5  0.4108 0.2310 A 

1Polytomous items scored 0-4 are dichotomized to incorrect if score is 0 or 1 and correct if the 
score is 2, 3, or 4 
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APPENDIX 3: SPSS Output for Principal Components of Responses to Common 

Items by Form and Year 

 
Appendix 3 includes the results of principal components analysis on the common-item 
responses for each form per year. The eigenvalues, the percentage of variance explained 
by each principal component, and the loadings of each item on the extracted principal 
components are presented. 
 



83 

Form 1 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.537 30.748 30.748 1.537 30.748 30.748
2 .963 19.253 50.000     
3 .892 17.832 67.833     
4 .830 16.594 84.426     
5 .779 15.574 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F1I1Y1 .516 
F1I2Y1 .600 
F1I3Y1 .603 
F1I4Y1 .376 
F1I5PY1 .637 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 

 
Form 1 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.455 29.097 29.097 1.455 29.097 29.097
2 .949 18.986 48.082     
3 .902 18.034 66.117     
4 .859 17.174 83.291     
5 .835 16.709 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F1I1Y2 .473 
F1I2Y2 .578 
F1I3Y2 .542 
F1I4Y2 .484 
FII4PY2 .607 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 2 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.691 28.175 28.175 1.691 28.175 28.175
2 .991 16.520 44.696     
3 .891 14.843 59.539     
4 .830 13.834 73.373     
5 .805 13.409 86.782     
6 .793 13.218 100.000     

Extraction Method: Principal Component Analysis. 

 Component Matrix(a) 

  Component 

  1 
F2I1Y1 .513 
F2I2Y1 .500 
F2I3Y1 .541 
F2I4Y1 .562 
F2I5Y1 .455 
F2I6PY1 .602 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 

Form 2 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.542 25.699 25.699 1.542 25.699 25.699
2 1.009 16.818 42.517 1.009 16.818 42.517
3 .921 15.352 57.870     
4 .903 15.057 72.927     
5 .867 14.443 87.370     
6 .758 12.630 100.000     

Extraction Method: Principal Component Analysis. 

 Component Matrix(a) 

Component 
  1 2 
F2I1Y2 .571 -.220 
F2I2Y2 .480 -.451 
F2I3Y2 .481 .470 
F2I4Y2 .526 -.228 
F2I5Y2 .386 .694 
F2I6PY2 .573 -.056 

Extraction Method: Principal Component Analysis. 
a 2 components extracted.
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Form 3 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.838 26.254 26.254 1.838 26.254 26.254
2 1.018 14.537 40.791 1.018 14.537 40.791
3 .948 13.536 54.327     
4 .886 12.659 66.986     
5 .804 11.481 78.467     
6 .777 11.094 89.560     
7 .731 10.440 100.000     

 
 Component Matrix(a) 

Component 
  1 2 
F3I1Y1 .466 -.603 
F3I2Y1 .504 .119 
F3I3Y1 .602 .314 
F3I4Y1 .564 -.471 
F3I5Y1 .390 .511 
F3I6Y1 .445 .242 
F3I7PY1 .580 -.015 

a 2 components extracted. 
 
Form 3 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.650 23.569 23.569 1.650 23.569 23.569
2 1.045 14.930 38.498 1.045 14.930 38.498
3 .958 13.684 52.182     
4 .893 12.751 64.933     
5 .847 12.104 77.036     
6 .835 11.934 88.970     
7 .772 11.030 100.000     

 Component Matrix(a) 

Component 
  1 2 
F3I1Y2 .410 -.573 
F3I2Y2 .566 -.085 
F3I3Y2 .595 .151 
F3I4Y2 .505 -.460 
F3I5Y2 .345 .443 
F3I6Y2 .463 .524 
F3I7PY2 .468 .064 

a 2 components extracted. 
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Form 4 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.789 29.809 29.809 1.789 29.809 29.809
2 .974 16.230 46.039     
3 .901 15.025 61.064     
4 .823 13.724 74.788     
5 .785 13.081 87.869     
6 .728 12.131 100.000     

Extraction Method: Principal Component Analysis. 

 Component Matrix(a) 

  Component 

  1 
F4I1Y1 .530 
F4I2Y1 .601 
F4I3Y1 .308 
F4I4Y1 .527 
F4I5Y1 .630 
F4I6PY1 .613 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 

Form 4 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.714 28.565 28.565 1.714 28.565 28.565
2 .988 16.463 45.028     
3 .914 15.227 60.255     
4 .848 14.139 74.393     
5 .811 13.516 87.909     
6 .725 12.091 100.000     

Extraction Method: Principal Component Analysis. 

 Component Matrix(a) 

  Component 

  1 
F4I1Y2 .537 
F4I2Y2 .577 
F4I3Y2 .297 
F4I4Y2 .520 
F4I5Y2 .643 
F4I6PY2 .566 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 5 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.780 35.603 35.603 1.780 35.603 35.603
2 .939 18.772 54.375     
3 .809 16.176 70.550     
4 .750 15.001 85.551     
5 .722 14.449 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F5I1Y1 .639 
F5I2Y1 .373 
F5I3Y1 .646 
F5I4Y1 .675 
F5I5Y1 .600 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 

 
Form 5 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.732 34.640 34.640 1.732 34.640 34.640
2 .888 17.767 52.407     
3 .852 17.031 69.437     
4 .790 15.800 85.237     
5 .738 14.763 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F5I1Y2 .587 
F5I2Y2 .506 
F5I3Y2 .590 
F5I4Y2 .615 
F5I5Y2 .637 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 6 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.928 27.543 27.543 1.928 27.543 27.543
2 .959 13.703 41.246     
3 .921 13.153 54.399     
4 .862 12.319 66.719     
5 .821 11.729 78.448     
6 .768 10.979 89.427     
7 .740 10.573 100.000     

 
 Component Matrix(a) 

  Component 
  1 
F6I1Y1 .513 
F6I2Y1 .410 
F6I3Y1 .478 
F6I4Y1 .551 
F6I5Y1 .556 
F6I6Y1 .634 
F6I7PY1 .503 

a 1 components extracted. 
 
Form 6 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.837 26.248 26.248 1.837 26.248 26.248
2 .999 14.277 40.526     
3 .925 13.216 53.742     
4 .856 12.232 65.974     
5 .838 11.971 77.945     
6 .805 11.505 89.450     
7 .738 10.550 100.000     

 Component Matrix(a) 

  Component 
  1 
F6I1Y2 .508 
F6I2Y2 .309 
F6I3Y2 .536 
F6I4Y2 .561 
F6I5Y2 .574 
F6I6Y2 .613 
F6I7PY2 .420 

a 1 components extracted. 
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Form 7 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.777 35.539 35.539 1.777 35.539 35.539
2 .896 17.924 53.462     
3 .837 16.739 70.201     
4 .787 15.739 85.940     
5 .703 14.060 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F7I1Y1 .481 
F7I2Y1 .603 
F7I3Y1 .641 
F7I4Y1 .647 
F7I5PY1 .594 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 

 
Form 7 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.737 34.744 34.744 1.737 34.744 34.744
2 .885 17.700 52.444     
3 .858 17.153 69.597     
4 .787 15.739 85.336     
5 .733 14.664 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F7I1Y2 .503 
F7I2Y2 .580 
F7I3Y2 .610 
F7I4Y2 .640 
F7I5PY2 .605 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 8 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.586 26.429 26.429 1.586 26.429 26.429
2 1.001 16.679 43.108 1.001 16.679 43.108
3 .907 15.120 58.228     
4 .897 14.951 73.179     
5 .833 13.887 87.065     
6 .776 12.935 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

Component 
  1 2 
F8I1Y1 .484 -.157 
F8I2Y1 .383 .685 
F8I3Y1 .643 .083 
F8I4Y1 .521 .249 
F8I5Y1 .458 -.649 
F8I6Y1 .557 -.129 

Extraction Method: Principal Component Analysis. 
a 2 components extracted. 
 
Form 8 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.541 25.691 25.691 1.541 25.691 25.691
2 .995 16.591 42.282     
3 .953 15.880 58.162     
4 .909 15.157 73.319     
5 .835 13.916 87.234     
6 .766 12.766 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F8I1Y2 .454 
F8I2Y2 .459 
F8I3Y2 .627 
F8I4Y2 .594 
F8I5Y2 .309 
F8I6Y2 .531 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 9 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.599 26.650 26.650 1.599 26.650 26.650
2 .977 16.276 42.927     
3 .949 15.815 58.741     
4 .883 14.710 73.452     
5 .810 13.502 86.953     
6 .783 13.047 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

Componen
t 

  1 
F9I1Y1 .494 
F9I2Y1 .616 
F9I3Y1 .370 
F9I4Y1 .551 
F9I5Y1 .390 
F9I6PY1 .619 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 
Form 9 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.357 22.616 22.616 1.357 22.616 22.616
2 1.067 17.785 40.400 1.067 17.785 40.400
3 .936 15.600 56.000     
4 .919 15.309 71.309     
5 .904 15.068 86.377     
6 .817 13.623 100.000     

Extraction Method: Principal Component Analysis. 

 Component Matrix(a) 

Component 
  1 2 
F9I1Y2 .444 -.509 
F9I2Y2 .624 -.196 
F9I3Y2 .318 .582 
F9I4Y2 .505 .086 
F9I5Y2 .307 .637 
F9I6PY2 .566 -.134 

Extraction Method: Principal Component Analysis. 
a 2 components extracted. 
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Form 10 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.419 28.373 28.373 1.419 28.373 28.373
2 .986 19.711 48.084     
3 .927 18.535 66.619     
4 .906 18.115 84.735     
5 .763 15.265 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F10I1Y1 .460 
F10I2Y1 .613 
F10I3Y1 .444 
F10I4Y1 .381 
F10I5PY1 .698 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 

 
Form 10 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.387 27.735 27.735 1.387 27.735 27.735
2 .990 19.792 47.528     
3 .906 18.119 65.647     
4 .887 17.732 83.379     
5 .831 16.621 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F10I1Y2 .502 
F10I2Y2 .560 
F10I3Y2 .418 
F10I4Y2 .557 
F10I5PY2 .579 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
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Form 11 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.691 28.176 28.176 1.691 28.176 28.176
2 .978 16.308 44.484     
3 .914 15.227 59.710     
4 .872 14.534 74.244     
5 .815 13.579 87.824     
6 .731 12.176 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F11I1Y1 .431 
F11I2Y1 .641 
F11I3Y1 .429 
F11I4Y1 .584 
F11I5Y1 .514 
F11I6PY1 .553 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 
Form 11 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.548 25.804 25.804 1.548 25.804 25.804
2 .985 16.413 42.217     
3 .942 15.705 57.922     
4 .891 14.846 72.769     
5 .851 14.183 86.951     
6 .783 13.049 100.000     

Extraction Method: Principal Component Analysis. 
 Component Matrix(a) 

  Component 

  1 
F11I1Y2 .392 
F11I2Y2 .649 
F11I3Y2 .354 
F11I4Y2 .577 
F11I5Y2 .470 
F11I6PY2 .542 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 



10 

Form 12 Year 1 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.552 31.044 31.044 1.552 31.044 31.044
2 .964 19.283 50.327     
3 .892 17.830 68.157     
4 .817 16.336 84.494     
5 .775 15.506 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F12I1Y1 .662 
F12I2Y1 .519 
F12I3Y1 .472 
F12I4Y1 .535 
F12I5Y1 .580 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 

 
Form 12 Year 2 
 Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 1.561 31.224 31.224 1.561 31.224 31.224
2 .951 19.016 50.240     
3 .913 18.268 68.508     
4 .794 15.881 84.390     
5 .781 15.610 100.000     

Extraction Method: Principal Component Analysis. 
 
 Component Matrix(a) 

  Component 

  1 
F12I1Y2 .646 
F12I2Y2 .467 
F12I3Y2 .440 
F12I4Y2 .558 
F12I5Y2 .648 

Extraction Method: Principal Component Analysis. 
a 1 components extracted. 
 

 


