Aligning the NWEA RT Scale with the Califoria Standards Test (CST)

April 2004

JohnCronin

A technical report fromtheNorthwest EvaluationAssociation

Copyright © 2004 Northwest EvaluationAssodiatior All rights reserved. No part of this document may be reproduced or utilized in any formor by any means, electronic or medhanical, induding photocopying, recording, or by any information storage and retrieval system without witten permission fromNWEA.

Northwest Evaluation
Assoaration
5885 SW Meadows Road,
Suite 200
LakeOswego, OR 970353526
www.nwea.org
Te 503-624-1951
Fax 503-639-7873

Aligning the NWEA RTScale withthe California Standards Test (CST)

April, 2004
JohnCronin, Ph.D. - Northwest EvaluationAssociation
Each year, California students participate in testing as part of the state's assessment program. Students in grades 2 through 8 take tests that assess reading/writing skills and mathematics. These tests serve as an important measure of student achievement for the state's accountability system. Results from these assessments are used to make state level decisions concerning education, to meet Adequate Y early Progress (AYP) reporting requirements of the No Child Left Behind Act (NCLB), and to inform schools and school districts of their performance.

The California Department of Education has developed scales that are used to assign students to one of five performance levels on the state's assessments. These are, from the lowest cut score to the highest: far below basic, below basic, basic, proficient, and advanced. For purposes of NCLB, the proficient level is considered the level that represents satisfactory performance.

M any students who attend school in California also take paper or computerized-adaptive tests developed in cooperation with the N orthwest Evaluation Association (NWEA). These tests report student performance on a single, cross-grade scale, which NWEA calls the RIT scale. This scale was developed using Rasch scaling methodologies. RIT-based tests are used to inform a variety of educational decisions at the district, school, and classroom leve. They are also used to monitor academic growth of students and cohorts. Districts choose whether to include these assessments in their local assessment programs. They are not state mandated.

The versions of NW EA tests in use in California have been specifically aligned to match the content of local and California state curriculum standards. Because of this, we believe there is a good match in content between the NWEA tests and the curriculum standards being used in California.

In order to use the two testing systems to support each other, an alignment of the scores from the state and RIT-based tests is as important as the curriculum alignment. The current study is an expansion of a preliminary study of alignment of the California Standards Tests (CST) that was performed using data from one California school system in June 2003. It is one of an ongoing series of studies that are being conducted to identify the relationships between NWEA tests and state mandated assessments. Studies of assessments in sixteen states have now been completed.

The primary questions addressed in this study are:

- To what extent do the same subject scores for the NWEA test correlate to the content-similar subjects on the CST?
- What fall and spring RIT scores correspond to various performance levels on the CST tests?
- How well can proficient performance on the California assessments be predicted from fall and spring RIT scores?

Method
 Participating School Systems

An email solicitation was sent in January, 2004 to all California school systems who had two or more seasons of experience with NWEA testing prior to spring 2003 in order to secure participants for the study. Based on the response from this solicitation, fall 2002 and spring 2003 CST and NWEA student assessment records in reading, language usage and mathematics were collected from six school systems. These were the Capistrano Unified, Escondido Union, Gilroy Unified, Lake Elsinore Unified, and Visalia Unified school systems. H awthorne School District supplied CST and NWEA data for their spring 2003 testing season.

Data Preparation

For purposes of studying NWEA test alignment with the CST, $2^{\text {nd }}$ through $8^{\text {th }}$ grade student test records from fall 2002 and spring 2003 N WEA assessments were matched with the 2003 CST assessments using district assigned student ID numbers. Because NW EA offers assessments in both reading and language usage, the NWEA records were separately matched to the California CST English Language Assessment. M atched records were then screened to remove invalid scores. Tablel shows the number of matched student records included in the analysis.

Table 1
Reading and Mathematics Tests Induded by Grade

| | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fall Reading | 4983 | 8503 | 8922 | 8928 | 9192 | 9138 | 8257 |
| Spring Peading | 10348 | 10582 | 10871 | 10694 | 10610 | 10637 | 9688 |
| Fall Language | 3278 | 8486 | 8839 | 8902 | 9099 | 9242 | 8349 |
| Spring Language | 9402 | 9376 | 9711 | 9686 | 9723 | 9927 | 8948 |
| Fall Mathematics | 5096 | 8644 | 9023 | 9042 | 9157 | 9086 | 8087 |
| Spring | 10686 | 10726 | 11032 | 10822 | 10840 | 10999 | 9971 |
| Mathematics | | | | | | | |

This the largest pool of students that NWEA has included in a state alignment study to date. We had enough student records at each grade to adequately cover the breadth of the scale and perform a robust analysis near the proficiency point for each NWEA tested subject. The number of records available for fall NW EA testing in second grade was considerably smaller than spring, mainly because many school systems do not administer fall NWEA tests to second grade students.

Because local curricula may vary in its alignment with either NWEA or state assessments, we recommend that schools validate our estimates by cross-checking their own students' performance against our projected cut scores.

Analyses

Pearson correlations. The initial analyses focused on the relationships among the NWEA and California assessment scores at each grade to determine how closely the scores on the NWEA test correlated with same subject scores on the CST. Simple bivariate correlation coefficients were computed among these scores.

Linking CST scores to the RT scales. Fall and spring scores on the RIT scale werelinked separately to the appropriate scale on the CST. Three methods of estimating cut scores for CST levels were used. The most straightforward was simple linear regression (CST $\left.{ }_{\text {pred }}=a(R I T)+c\right)$. Since we sometimes observe departures from a linear relationship on the lower and upper ends of state test scales, a second order regression model was also used $\left(C S T_{\text {pred }}=a\left(\right.\right.$ RIT $\left.\left.^{2}\right)+b(R I T)+c\right)$. For each of these methods, the RIT score was determined by substituting the appropriate CST score for CST $_{\text {pred }}$ and solving the equation for RIT.

A fixed-parameter Rasch model was also used to estimate RIT cut scores. In this method, theCST performance level was treated as a test item. The assumption is that the performance level 'item' should
contain all the information about the difficulty of the test. Student abilities (RIT scores) were the 'fixed parameter' used to anchor the difficulty estimate of the 'status' item to the RIT scale. The resulting 'difficulty estimate' was taken as the RIT cut score for this method. This is referred to as the Rasch Status on Standard (or simply Rasch SOS) method.

Prediding CST performance levels fromRT scores. Fall and Spring RIT scores were first used to predict whether students were likely to achieve performance at or above the proficient performance level on the CST. We make the estimates from this level in order to maintain consistency with prior studies of state test alignment, which make comparisons based on the NCLB reported performance level. This allows us to make accurate comparisons of our alignment with different state tests.

The predictions of CST performance were compared to observed performance in 2×2 contingency tables. A prediction index score was generated to measure the ratio of Typel error to accurate prediction of proficiency status. This score is expressed as

1-(Number of Type I errors/Number of correct predictions)

Higher prediction index numbers generally show more accurate prediction with lower levels of Typel error. Typel error occurs when NWEA assessments predict that a student will achieve above a passing level of performance when the student actually achieves a failing score. This index was generated for the linear, second order, and Rasch SOS methodologies. In general, the highest prediction index score was used to select the RIT cut score to be adapted as the official RIT score we would associate with achieving the passing standard on the corresponding CST assessment for the particular grade level and subject area. We do make exceptions to this rule when the estimated score produces high accuracy rates but inordinately large numbers of Type II errors. This condition indicates a greatly overestimated cut score, so we select a method that produces a more balanced Type I to Type II error ratio in these instances.

In addition, we evaluated the accuracy of predictions of CST levels based on observed RIT scores. The predictions of CST level performance were compared to observed performance in 5×5 contingency tables. Once again a prediction index score was generated to provide an estimate of accuracy.

Content Validity

Formal comparisons of the content of NWEA and California tests were not conducted for purposes of this study. The standards used to construct the NW EA Assessments were the same as those used for the California assessments. Both NW EA assessments and the California assessments include multiple-choice items. The CST also includes short answer and extended response questions. Results from our previous studies indicate that the addition of items in alternate formats generally does not, by itself, materially affect the ability of the N WEA test to generate reasonably accurate predictions of performance levels.

Resilts

Desaniptive Statistics

Tables 2 through 4 review descriptive statistics for the CST and NWEA assessments. The median RIT scores for this sample are generally near or slightly above the NWEA norm in language usage and mathematics.
They are slightly below the NWEA norm in reading. Relative to the CST, average scores are generally near to or above the norm in both English/Language Arts and mathematics.

Alignment studies require data that adequately represents the range of the scales being measured. In this case, we concluded from the descriptive statistics that the sample reflected a reasonably representative population. In addition, the population of students performing near the standards was large and should produce robust predictions of performance near the proficiency standard. We were concerned about the number of students who might perform at the far below basic level of performance, since there seemed to be relatively small numbers of these students in the sample population. No other state that we have studied assigns a similar designation.

Table 2
Means, Standard Deviations, and Medians for the CST and NWEA assessments - Reading

	EA matched to fall			Fall NWEA Reading			EA matched to spring			Spring NWEA Reading		
	Mean	Median	SD									
Grade 2	354.67	357	52.87	176.50	178	16.27	340.01	341	54.28	184.20	185	16.55
Grade 3	335.51	335	60.54	187.32	189	16.68	330.70	331	60.49	195.58	198	16.47
Grade 4	345.81	346	50.14	197.02	199	16.57	34261	340	49.58	20280	205	16.27
Grade 5	33684	337	47.10	204.38	206	16.67	334.22	334	46.23	20893	211	16.39
Grade 6	340.07	338	51.77	208.84	211	16.37	335.80	335	51.61	2126	215	16.79
Grade 7	338.71	339	51.32	214.06	216	15.92	334.56	333	51.51	216.67	219	16.83
Grade 8	33195	333	49.46	217.47	219	16.26	327.19	327	49.79	220.44	223	16.92

Table 3
Means, Standard Deviations, and Medians for the CST and NWEA assessments - Language Usage

	EA matched to fall			Fall NWEA Language			EA matched to spring			Spring NWEA Language		
	Mean	Median	SD									
Grade 2	347.36	349	53.93	177.43	178	14.59	341.44	341	55.29	189.12	191	15.99
Grade 3	335.13	335	60.70	190.60	193	16.10	332.99	331	61.25	199.53	201	16.28
Grade 4	345.87	346	50.13	200.71	203	15.68	344.57	343	50.37	206.32	209	15.60
Grade 5	336.95	337	47.04	20698	209	15.41	335.80	334	47.09	211.91	214	15.02
Grade 6	339.36	338	51.82	21136	214	15.15	337.89	338	51.95	214.97	217	14.94
Grade 7	338.44	339	51.44	215.49	218	14.31	336.84	336	51.76	218.51	220	14.44
Grade 8	33165	333	49.44	218.18	220	14.31	330.30	330	49.69	220.99	223	14.53

Table 4
M eans, Standard Deviations, and M edians for the CST and NWEA assessments - M athematics

	CST Math matched to fall			Fall NWEA Math			CST Math matched to spring			Spring NWEA Math		
	Mean	Median	SD									
Grade 2	338.45	386	75.17	17.02	178	10.38	339.61	341	54.81	188.03	189	13.41
Grade 3	335.74	352	73.23	189.01	190	13.21	330.43	331	60.74	200.64	202	14.11
Grade 4	349.21	348	66.43	200.89	203	13.51	34252	340	49.71	209.33	210	15.12
Grade 5	335.81	324	74.57	209.53	210	15.09	334.30	334	46.44	217.63	218	16.77
Grade 6	337.26	329	62.51	215.96	217	16.78	335.61	335	51.73	22205	223	18.73
Grade 7	330.73	323	57.48	223.25	224	17.84	334.30	333	51.59	227.89	229	20.02
Grade 8	329.80	326	60.58	228.79	230	18.82	326.90	327	49.69	23282	234	21.01

Pearson correlations

Table 5 shows the results of this analysis for each grade. Concurrent validity was tested by examining same subject Pearson correlations between the N WEA and theCST. Same subject correlations were very high. In reading and language arts, all coefficients between the CST and NWEA tests were above .81, with the single exception of the fall grade 2 reading and language tests ($r=.76$ for reading and $r=.77$ for language). In mathematics correlation coefficient generally ranged between . 74 and .85 . Once again the fall grade 2 coefficient for was substantially lower than those for the other tests ($r=.67$). In the upper grades, reading assessments correlated slightly more closely with the ELA portion of the CST, while language usage correlated slightly more closely at the lower grades.

The results suggest that the NWEA tests were generally measuring the same constructs as the CST. We expected spring NWEA tests to correlate more closely with the CST than the tests administered in the prior fall. This was the case in all grades except grade 8 . The lower grade 2 correlations were not surprising. M any $2^{\text {nd }}$ graders in the NW EA test population are taking multiple choice tests for the first time in fall of second grade and standardized tests on the whole do not show the same consistency with second graders as they do in other grades.

Discriminant validity was tested by examining same subject Pearson correlations next to correlations for the alternate subject on the state assessment．In particular，we tested the NW EA and CST math tests against the California ELA Standards Test．We tested the NWEA reading and language usage tests and the Calfornia ELA tests against the CST M ath．In all instances the same subject correlations were higher than correlations against the alternate subject，leading us to conclude that these assessments were more likely to be testing similar constructs than dissimilar．

Table 5
Pearson Correlations for CST and NWEA assessments by Subject

Grade 2								
Assessment	Assessment							
	CSTEA	NWEA Peading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 761	． 810	． 770	． 827	． 760	． 688	． 750
CST Math	． 760	． 616	． 669	． 616	． 698	1.000	． 670	． 752
Grade 3								
Assessment	Assessment							
	CST日A	NWEA Reading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 812	． 837	． 821	． 845	． 798	． 745	． 778
CST Math	． 728	． 682	． 728	． 705	． 751	1.00	． 756	． 818
Grade 4								
Assessment	Assessment							
	CST日A	NWEA Peading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 828	． 833	． 822	． 811	． 782	． 759	． 788
CST Math	． 782	． 700	． 715	． 715	． 710	1.000	． 788	． 833
Grade 5								
Assessment	Assessment							
	CST日A	NWEA Reading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 826	． 817	． 811	． 812	． 72	． 767	． 775
CST Math	． 762	． 700	． 701	． 710	． 718	1.00	． 811	． 845

Assessment	Assessment							
	CST日A	NWEA Peading		NWEA Language		CSTMath	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 841	． 834	． 818	． 814	． 798	． 784	． 792
CST Math	． 798	． 730	． 729	． 724	． 725	1.000	． 839	． 855
Grade 7								
Assessment	Assessment							
	CST日A	NWEA Reading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 832	． 831	． 807	． 807	． 781	． 787	． 784
CST Math	． 781	． 708	． 706	． 708	． 710	1.000	． 851	． 851

Grade 8								
Assessmert	Assessment							
	CST日A	NWEA Reading		NWEA Language		$\begin{aligned} & \text { CST } \\ & \text { Math } \end{aligned}$	NWEA Math	
		Fall	Spring	Fall	Spring		Fall	Spring
CST日A	1.000	． 815	． 800	． 792	． 783	． 707	． 767	． 746
CST Math	． 707	． 658	． 666	． 672	． 657	1.000	． 784	． 772

Analysis of scatterplots suggested that relationships between most NWEA tests and their CST counterpart were strongly curvilinear with a pronounced floor effect at some grades. Figure 1 provides an example from the $8^{\text {th }}$ grade reading sample that illustrates both the scale relationships and the evidence of some breakdown in correlation near the bottom of the CST Scale. Note how the correlation between the two tests flattens for students performing below 300 on the CST. Note also that large numbers of students achieving below 300 on the CST test achieve a widerange of scores (between 160 and 220 RIT) on the corresponding NWEA exam. One possible explanation for this is that the NWEA test, because it is adaptive as opposed to single form, has the capacity to adjust the difficulty to the test to enable more accurate measurement at the low end of performance.

Figure 1 - Scatterplot depiding Grade 8 NWEA math RT against the Grade 8 CST math scale score

Linking CST performance level at scores to the RT scale

The primary purpose of this study was to estimate the fall and spring RIT scale scores that most closely correspond to the cut scores for the different performance levels on the CST. This information allows schools to identify students who may need additional support to reach state standards. It can also help schools identify students who are performing well enough that they are ready to tackle work beyond what the state standards require.

Tables 6 and 7 shows several estimations of the Fall and Spring RIT scores that correspond to the cut scores for the various performance levels on theCST scales. As a rule the three methodologies came to very similar estimates of the cut score for each of the performance levels. Estimates of the two lowest (far below basic and below basic) and highest (advanced) cut score varied more, in part because far fewer students perform at these levels and in part because of the non-linear nature of the relationship. In some grades, calibration of the below and far below basic estimates was inconsistent. For example, second order regression estimated a far below basic/below basic cut score for fall of grade 4 in language usage and grade 6 in mathematics (see table 7) that was lower than the respective prior year's estimates. In some cases this
may have occurred because the estimated fall cut scores the lowest level of the CST were close to the lowest valid scores on the NWEA scale.

Table 6
Estimated points on the RT scale for SPRING that equate to the minimumscores (rounded) for performance levels on the CST

	Linear Regression				Second-order Regression				Pasch Status-on-Standard			
Peading	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	157	170	188	208	154	170	189	206	159	173	188	202
Grade 3	173	186	202	219	172	188	203	216	176	189	202	214
Grade 4	174	186	206	222	166	188	208	220	174	191	208	218
Grade 5	183	194	216	235	179	197	217	229	185	200	215	228
Grade 6	188	199	218	235	188	203	220	232	190	204	219	230
Grade 7	190	204	223	242	188	207	225	238	193	208	223	235
Grade 8	196	209	230	248	194	212	230	242	201	214	229	240
	Linear Regression				Second-order Regression				Rasch Status-on-Standard			
Language Usage	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	163	175	192	210	161	175	193	209	164	178	193	205
Grade 3	177	189	205	221	175	191	206	218	176	193	205	217
Grade 4	179	190	208	224	171	192	210	222	177	196	210	220
Grade 5	188	198	218	235	185	201	218	230	191	204	218	228
Grade 6	192	202	219	235	191	205	221	231	195	207	220	229
Grade 7	195	206	223	240	192	209	225	237	199	210	223	234
Grade 8	198	210	228	245	198	214	230	241	203	215	227	237
	Linear Regression				Second-order Regression				Rasch Status-on-Standard			
Matherratics	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	158	173	185	199	155	173	185	199	12	177	185	196
Grade 3	175	189	202	216	173	190	202	215	176	193	202	212
Grade 4	182	197	212	225	180	198	212	225	184	201	211	223
Grade 5	197	209	224	245	194	211	224	241	198	213	224	239
Grade 6	194	211	231	252	189	214	231	248	192	215	229	245
Grade 7	197	217	239	265	188	219	239	259	200	221	238	257
Grade 8	202	223	246	273	197	225	246	267	208	227	244	264

Table 7

Estimated points on the RT scale for the FALI PRIOR to CST testing that equate to the minimumscores (rounded) for performance levels on the CST

	Linear Regression				Second-order Regression				Pasch Status-on-Standard			
Peading	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	141	155	175	196	137	154	175	195	149	157	176	191
Grade 3	162	175	192	210	160	178	194	208	163	179	193	205
Grade 4	166	179	199	216	155	181	201	214	163	184	201	211
Grade 5	177	189	210	229	172	191	211	224	179	194	210	223
Grade 6	183	194	213	229	181	197	215	227	185	199	214	225
Grade 7	187	200	218	237	184	203	220	234	190	204	218	231
Grade 8	192	205	225	242	189	207	225	237	196	210	224	236
	Linear Regression				Second-order Pegression				Pasch Status-on-Standard			
Language Usage	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	149	160	178	196	149	161	179	197	156	163	178	193
Grade 3	166	179	195	212	164	182	197	211	16	183	196	207
Grade 4	171	183	202	218	161	186	205	217	169	189	204	215
Grade 5	181	192	212	230	178	195	214	225	184	198	212	224
Grade 6	186	197	215	230	187	201	217	228	190	203	217	226
Grade 7	190	202	219	236	187	205	221	233	195	207	220	230
Grade 8	195	206	224	240	195	210	226	237	200	212	224	234
	Linear Regression				Second-order Regression				Pasch Status-on-Standard			
Mathematics	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv	Below	Basic	Prof	Adv
Grade 2	146	159	170	182	138	158	170	183	153	164	172	180
Grade 3	162	176	188	203	151	177	190	203	163	180	189	200
Grade 4	174	188	201	215	168	189	202	213	176	193	203	212
Grade 5	189	201	213	233	188	203	215	230	191	206	215	227
Grade 6	189	204	220	241	183	207	223	238	188	208	221	235
Grade 7	197	212	231	254	193	215	233	250	197	215	231	248
Grade 8	200	217	237	262	196	218	237	257	204	221	236	256

Prediding CST passfail status fromRT scores

Once the spring and fall cut scores were estimated from the three methods, we evaluated each possible cut score to determine how accurately it predicted students' actual performance on the corresponding CST assessment. The most accurate method of prediction was generally used to derive the best estimate of RIT cut scores that equate to the different CST performance levels. Once again a prediction index statistic (described on page 3) scored the accuracy of prediction.

For this study, we first assessed the accuracy of the RIT scale in correctly predicting whether students are likely to reach the proficient level on the corresponding CST test. N ext we assessed the accuracy with which the RIT predicted proper performance level assignment on this test. U se of the prediction index statistic helped assure that the method chosen produced a high ratio of accurate passing pred ictions relative to Type I errors. Typel errors occur when the RIT scale predicts a passing score for a student who actually fails the assessment. These types of errors raise particular concern because they fail to identify students who might need additional support and resources in order to achieve their targets. A high prediction index number indicates that the test maximizes accuracy of prediction while minimizing Typel errors.

In these kinds of studies we want to emphasize that prediction is not used to foretell an inevitable future for the student, rather it is used to help schools plan for instruction and offer appropriate interventions to children who need additional support to be successful. For purposes of the No Child Left Behind Act, schools are judged on their ability to move children to the proficient level and beyond. RIT scores can provide teachers with advance notice about students who may not reach these goals on the California assessment that corresponds to their grade level.

Tables 8,9 , and 10 summarize the results. When using spring RIT scores, all methods accurately predicted proficiency status with average rate of 84% or better in English/Language Arts and 83\% for mathematics. When using fall RIT scores the accuracy rate dropped only slightly, with all methods accurately predicting pass/fail status with an accuracy rate greater than 83% for English/Language Arts and 82% for mathematics. Second-order regression methods were consistently more accurate at predicting proficiency status than the other methods.

Table 8
Accuracy of reading RT scores in predicting CST proficiency status- EA

Grade 2	Fall				Spring			
	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	Typel Eror	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
linear Second Order Rasch	175	79.34\%	11.51\%	. 855	188	82.11\%	10.02\%	. 878
	175	79.34\%	11.51\%	. 855	189	82.46\%	7.67\%	. 907
	176	79.52\%	10.44\%	. 869	188	82.11\%	10.02\%	. 878
Grade 3	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	Typel	Prediction	Cut	Accuracy	Typel	Prediction
			Eror		Score		Eror	
Linear Second Order Pasch	192	82.93\%	10.61\%	. 872	202	85.16\%	8.65\%	. 898
	194	83.65\%	7.57\%	. 909	203	85.17\%	6.04\%	. 929
	193	83.39\%	9.24\%	. 889	202	85.16\%	8.65\%	. 898
Grade 4	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	Typel Fror	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
linear Second Order Rasch	199	83.29\%	11.73\%	. 859	206	84.60\%	10.49\%	. 876
	201	84.24\%	8.66\%	. 897	208	85.20\%	7.55\%	. 911
	201	84.24\%	8.66\%	. 897	208	85.20\%	7.55\%	. 911
Grade 5	Cut	Accuracy	Typel	Prediction	Cut	Accuracy	Typel	Prediction
	Score		Eror	Index	Score		Eror	Index
linear Second Order Pasch	210	84.93\%	7.70\%	. 909	216	84.12\%	7.74\%	. 908
	211	85.17\%	6.22\%	. 927	217	83.83\%	6.33\%	.921*
	210	84.93\%	7.70\%	. 909	215	84.01\%	9.36\%	. 889
Grade 6	Cut	Accuracy	Typel	Prediction	Cut	Accuracy	Typel	Prediction
	Score		Eror	Index	Score		Eror	Index
Linear Second Order Pasch	213	85.65\%	8.61\%	. 899	218	86.03\%	8.62\%	. 900
	215	85.37\%	6.13\%	. 928	220	86.23\%	4.90\%	. 943
	214	85.62\%	7.34\%	. 914	219	86.51\%	7.02\%	. 919
Grade 7	Cut	Accuracy	Typel	Prediction	Cut	Accuracy	Typel	Prediction
	Score		Eror	Index	Score		Eror	Index
linear Second Order Pasch	218	84.80\%	9.16\%	. 892	223	85.44\%	7.81\%	. 909
	220	85.53\%	5.77\%	. 933	225	85.14\%	5.03\%	. 941
	218	84.80\%	9.16\%	. 892	223	85.44\%	7.81\%	. 909
Grade 8	$\begin{aligned} & \text { Cut } \\ & \text { Srore } \end{aligned}$	Accuracy	Typel	Prediction	$\begin{gathered} \text { Cut } \\ \text { Score } \end{gathered}$	Accuracy	Typel	Prediction
linear Second Order Rasch	Score	85	Error	index	Score	\%	Eror	Index
	225	85.65\%	6.71\%	. 922	230	85.41\%	7.01\%	. 918
	224	85.48\%	8.04\%	. 906	229	85.57\%	8.02\%	. 907

Table 9
Acaracy of language usage RT scores in prediding CST proficiency status- EA

	Fall				Spring			
Grade 2	Cut Score	Accuracy	Typel Eror	Prediction Index	Cut Score	Accuracy	Typel Error	Prediction Index
Linear	178	81.15\%	10.22\%	. 874	192	82.02\%	11.67\%	. 858
Second Order	179	81.42\%	8.91\%	. 891	193	82.33\%	10.23\%	. 876
Pasch	178	81.15\%	10.22\%	. 874	193	82.33\%	10.23\%	. 876
Grade 3	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
Linear	195	83.00\%	10.72\%	. 871	205	85.24\%	8.53\%	. 900
Second Order	197	83.60\%	7.97\%	. 905	206	85.31\%	7.13\%	. 916
Pasch	196	83.40\%	9.30\%	. 888	205	85.24\%	8.53\%	. 900
Grade 4	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
Linear	202	82.59\%	12.37\%	. 850	208	83.42\%	12.52\%	. 850
Second Order	205	83.43\%	7.53\%	. 910	210	84.37\%	9.29\%	. 890
Pasch	204	83.13\%	9.43\%	. 887	210	84.37\%	9.29\%	. 890
Grade 5	Cut Score	Accuracy	Typel Eror	Prediction	Cut	Accuracy	Typel	Prediction
Linear	Score	83.96\%	9.28\%	Index	Score	83.70\%	8.72\%	Index
Second Order	214	83.86\%	6.83\%	. 919	218	83.70\%	8.72\%	. 896
Pasch	212	83.96\%	9.28\%	. 889	218	83.70\%	8.72\%	. 896
Grade 6	Cut Score	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
Linear	215	83.62\%	11.06\%	. 868	219	83.03\%	11.19\%	. 865
Second Order	217	84.24\%	7.90\%	. 906	221	84.13\%	7.42\%	. 912
Pasch	217	84.24\%	7.90\%	. 906	220	83.57\%	9.35\%	. 888
Grade 7	Cut Score	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
Linear	219	83.41\%	10.35\%	. 876	223	83.15\%	9.76\%	. 883
Second Order	221	83.48\%	7.10\%	. 915	225	82.87\%	6.69\%	. 919
Pasch	220	83.51\%	8.62\%	. 897	223	83.15\%	9.76\%	. 883
Grade 8	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Prediction Index	Cut Score	Accuracy	Typel Eror	Prediction Index
Linear	224	83.47\%	9.21\%	. 890	228	83.50\%	7.77\%	. 907
Second Order	226	83.71\%	5.77\%	. 931	230	83.12\%	4.80\%	. 942
Pasch	224	83.47\%	9.21\%	. 890	227	83.45\%	9.37\%	. 888

Table 10
Acaracy of mathematics RT scores in predicing CST proficiency status - mathematics

	Fall				Spring			
Grade 2	Cut Score	Accuracy	Type I Error	Prediction Index	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Acaracy	Type I Eror	Prediction Index
Linear	170	7869\%	14.38\%	. 817	184	80.34\%	1169\%	. 85
Second Order	170	7869\%	14.38\%	. 872	185	80.49\%	10.36\%	. 871
Pasch	172	78.5\%	1148\%	. 854	185	80.49\%	10.36\%	. 871
Grade 3	Cut Score	Accuracy	1ypel Error	Prediction Index	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	Accuracy	Iypel Eror	Prediction Index
Linear	188	78.24\%	13.5\%	. 827	201	826\%	10.33\%	. 875
Second Order	190	7881\%	10.08\%	. 872	202	82.61\%	887\%	. 893
Pasch	189	78.75\%	1179\%	. 850	202	82.61\%	887\%	. 893
Grade 4	Cut Score	Accuracy	1ypel Error	Prediction Index	Cut Score	Accuracy	rype\| Eror	Prediction Index
Linear	201	80.02\%	13.62\%	. 829	211	83.61\%	8.46\%	. 899
Second Order	202	80.56\%	1170\%	. 855	212	83.63\%	7.11\%	. 915
Pasch	203	80.51\%	10.35\%	. 871	271	83.6\%	8.46\%	. 899
Grade 5	Cut	Accuracy	typel	Prediction	cut	Accuracy	rypel	Prediction Index
Linear	213	83.53\%	1147\%	. 863	223	86.45\%	884\%	. 898
Second Order	275	84.75\%	7.85\%	. 907	224	86.88\%	7.25\%	. 917
Pasch	215	84.75\%	7.85\%	. 907	224	86.88\%	7.25\%	. 917
Grade 6	Cut	Accuracy	Type I	Preariction	Cut	Accuracy	Typel	Prediction
Grade 6	Score		Eror	Index	Score		Eror	Index
Linear	220	85.19\%	9.22\%	. 892	22	87.63\%	6.86\%	. 922
Second Order	223	85.56\%	4.77\%	. 944	231	87.81\%	5.01\%	. 943
Rasch	22	85.72\%	7.69\%	. 910	229	87.6\%	6.8\%\%	. 922
Grade 7	Cut	Accuracy	1yper	Prearction	Cut	Acaracy	Typel	Prediction
	Score		Error	Index	Score		Eror	Index
Linear	231	86.78\%	7.43\%	. 914	238	87.76\%	7.25\%	. 917
Second Order	233	86.84\%	4.99\%	. 943	239	88.07\%	6.22\%	. 929
Pasch	231	86.78\%	7.43\%	. 914	238	87.76\%	7.25\%	. 917
Grade 8	Cut	Accuracy	Typel	Preaiction Index	${ }_{\text {Cut }}$	Acaracy	1ypel	Prediction
Linear	237	79.93\%	9.60\%	. 880	245	8189\%	9.6\%	. 882
Second Order	237	79.93\%	9.60\%	. 880	246	81.97\%	8.85\%	. 892
Pasch	236	80.04\%	10.71\%	. 866	24	8185\%	10.47\%	. 872

Table 11 summarizes the accuracy of proficiency prediction for this study relative to other state alignment studies. Prediction index scores for California are near average in reading and slightly above average for the Ianguage usage test (relative to predicting results in English/Language Arts). Prediction index scores for mathematics were lower than the average for prior state alignment studies that we have conducted. The table suggests that little accuracy was lost when we used the fall assessment to predict state assessment proficiency status. Prediction index averages for the fall assessment were only slightly lower than spring.

One factor affecting accuracy of proficiency status prediction in California was the state's testing of second grade students. California is the only state we have studied to date that administers their state assessment in second grade. We expected that the accuracy of prediction for second graders would be somewhat lower than third graders and the results reflected our expectations.

Despite this fact, the rates of correct prediction are easily high enough to provide useful information to educators who are planning instruction to ensure all students perform at a level that meets the standards.

Table 11
Prediction Indices (Based on Profidiency Status) for Previous NWEA State Aligrment Studies

State	Reading	State	Lanaguage	State	Math
Texas	. 974	Texas	. 968	Texas	. 970
Washington	. 971	California (spr)	. 913	Wyoming	. 961
Minnesota	. 944	Califoria (fall)	. 913	Colorado '01	. 957
Pennsylvania	. 935	Indiana '01	. 907	Washington	. 949
Wyoming	. 931	Colorado '03	. 903	Illinois	. 946
Colorado '03	. 931	Indiana '03	. 894	Colorado ‘03	. 943
Illinois	. 928	Arizona	. 874	SouthCarolina	. 943
California (spr)	. 925			Minnesota	. 936
Califoria (fall)	. 914			Washington	. 936
Arizona	. 912			Pernsylvania	. 926
Colorado '01	. 910			Arizona	. 919
Nevada	. 902			Califomia (spr)	. 910
SouthCarolina	. 902			Indiama '01	. 899
Indiana '01	. 902			Califorria (fall)	. 895
Indiana '03	. 900			Nevada	. 866
Washington	. 886			Indiana '03	. 860

* Texas results were generated by a study of over 1,000 per grade froma single school district.

Prediding CST Performance Levels fromRT Scores

The CST reports five levels of performance. Four cut scores are set to define these five levels. Analyzing the capacity of RIT scores to predict students' CST performance levels can help educators triangulate information about student performance on their state test, assuring that instructional plans and interventions are adequately reinforced by data. Predictions of performance level are not as accurate as the predictions of proficiency status. This is true in part because tests vary in their ability to measure students at the highest and lowest performance levels. In the case of the California state assessment, predictions of performance level were influenced by the high number of performance levels used for the test (California and M innesota are the only states we have studied that use five) and the small number of students scoring in the lowest category (far below basic) on the state assessment.

When predicting performance levels, a case is identified as accurate when the performance level assigned by the CST and RIT score are the same. A Typel error occurs when the RIT score assigns a performance level that is higher than the student actually achieved on the state test. For example, if the RIT score projects an advanced performance for the student and the CST result is proficient, we declare the case a Typel error because the RIT score overestimated performance.

In addition to assessing the rate of correct prediction, we also assessed accuracy by evaluating the success with which the projected RIT cut scores for the highest and lowest performance levels identified students in these two categories. For example, if 1000 grade 3 students performed at the advanced level in a subject and a RIT score identified 600 students as advanced, then we would say the RIT score was successful at finding 60% of the advanced students. For the highest and lowest performance level, we used this methodology to assign the cut score that would best predict the far below basic and advanced performance levels.

Tables 12,13 and 14 summarize these results.

Table 12
Acaracy of the RT scale in predicting CST performance level - reading

	Fall					Spring				
Grade 2	Accuracy	Type I Fror	Prediction Index	\%Adv. Found	$\begin{aligned} & \text { \% BB. } \\ & \text { Found } \end{aligned}$	Accuracy	Type I Fror	Prediction Index	\%Adv. Found	\%BB Found
Linear	39.9\%	14.6\%	. 633	289\%	0.0\%	53.9\%	23.5\%	. 564	309\%	40.6\%
$2^{\text {d }}$ Order	40.3\%	15.3\%	. 21	30.9\%	0.0\%	54.3\%	229\%	. 579	527\%	49.9\%
Pasch	50.8\%	26.6\%	. 476	6 6 .7\%	27.7\%	54.3\%	25.2\%	. 536	6.0\%	55.0\%
Grade 3	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\% BB. Found	Accuracy	Typel Eror	Prediction Index	\%AdV. Found	\% EB Found
Linear	411\%	19.0\%	. 539	24.4\%	60.1\%	56.1\%	238\%	. 575	34.7\%	525\%
$2{ }^{\text {d }}$ Order	417\%	168\%	. 596	30.6\%	55.9\%	57.0\%	20.9\%	. 63	527\%	49.9\%
Pasch	53.6\%	28.2\%	. 528	65.3\%	55.9\%	57.1\%	23.4\%	. 590	63.8\%	613\%
Grade 4	Accuracy	1ypel Eror	Prediction Index	\%Adv. Found	\%BB. Found	Accuracy	rypel Error	Prediction Index	\%Adv. Found	\% EB Found
Linear	4.7\%	287\%	. 358	37.5\%	43.6\%	57.8\%	227\%	. 607	40.6\%	428\%
$2{ }^{\text {d }}$ Order	46.1\%	28.2\%	. 387	4.6\%	17.0\%	60.2\%	212\%	. 648	58.7\%	286\%
Pasch	58\%\%	223\%	. 20	720\%	43.0\%	59.3\%	213\%	. 641	69.5\%	47.7\%
Grade 5	Accuracy	Typel Eror	Prediction Index	\%AdV. Found	\% BB. Found	Accuracy	1ypel Error	Prediction Index	\%ACV. Found	\% BB Found
Linear	419\%	36.\%	. 127	210\%	33.2\%	59.1\%	223\%	.613	218\%	428\%
$2{ }^{\text {d }}$ Order	43.0\%	380\%	. 115	47.2\%	25.7\%	58.2\%	17.1\%	. 706	50.0\%	317\%
Pasch	57.8\%	221\%	. 617	63.\%	47.6\%	59.3\%	213\%	. 641	69.5\%	47.7\%
Grade 6	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Preaiction Index	\%AdV. Found	\%BB. Found	Accuracy	rypel Error	Preaiction Index	\%AdV. Found	\%BB Found
Linear	480\%	324\%	. 325	47.0\%	422\%	59.1\%	223\%	. 23	365\%	64.2\%
$2{ }^{\text {d }}$ Order	49.2\%	29.8\%	. 394	47.2\%	36.5\%	60.5\%	17.2\%	. 715	57.9\%	54.9\%
Pasch	60.1\%	20.0\%	. 667	69.0\%	57.2\%	60.7\%	20.9\%	. 65	70.8\%	58.1\%
Grade 7	Accuracy	Typel Error	Prediction Index	\%Adv. Found	\% B.B. Found	Accuracy	rypel Error	Prediction Index	\%Adv. Found	\% BB Found
Linear	46.7\%	37.3\%	. 202	33.4\%	29.4\%	58,7\%	218\%	. 28	30.2\%	47.0\%
$2{ }^{\text {d }}$ Order	489\%	34.0\%	. 305	49.0\%	24.9\%	60.0\%	189\%	. 684	54.0\%	43.2\%
Pasch	58.8\%	23.2\%	. 606	65.8\%	50.9\%	59.6\%	217\%	. 636	66\%\%	55.5\%
Grade 8	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\% BB. Found	Accuracy	rypel Eror	Prediction Index	\%AdV. Found	\% BB Found
Linear	45.4\%	317\%	. 300	219\%	33.1\%	56.0\%	24.3\%	. 566	20.7\%	421\%
$2{ }^{\text {d }}$ Order	4.4\%	34.0\%	. 235	462\%	27.9\%	58.2\%	24.5\%	. 579	56.4\%	380\%
Pasch	581\%	228\%	. 608	687\%	512\%	57.7\%	228\%	. 605	63.9\%	66.\%

Table 13
Acaracy of the RT scale in prediding CST performance level - language usage

	Fall					Spring				
Grade 2	Accuracy	Type I Eror	Prediction Index	\%Adv. Found	\% BB. Found	Acaracy	Type I Fror	Prediction Index	\%Adv. Found	\%BB Found
Linear	39.7\%	183\%	. 538	283\%	24\%	55.2\%	25.2\%	. 544	45.5\%	35.1\%
$2{ }^{\text {d }}$ Order	388\%	168\%	. 565	25.2\%	24\%	55.1\%	24.6\%	. 553	45.5\%	23.5\%
Pasch	50.5\%	26.6\%	. 474	60.3\%	325\%	55.0\%	25.8\%	. 531	68\%\%	39.7\%
Grade 3	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\%BB. Found	Accuracy	rypel Error	Prediction Index	\%AdV. Found	\% BB Found
Linear	428\%	187\%	. 562	29.2\%	63.2\%	57.2\%	24.3\%	. 575	45.5\%	35.1\%
$2{ }^{\text {d }}$ Order	43.0\%	16.7\%	. 611	328\%	56.5\%	57.5\%	23.1\%	. 597	568\%	49.8\%
Pasch	53.4\%	25.8\%	. 516	58\%\%	60.4\%	57.3\%	25.3\%	. 558	69.2\%	522\%
Grade 4	Accuracy	rypel Eror	Preaiction Index	\%Adv. Found	\% BB. Found	Acaracy	$\begin{aligned} & \text { rypel } \\ & \text { Eror } \end{aligned}$	Preaiction Index	\%Adv. Found	\% EB Found
Linear	45.8\%	29.6\%	. 355	44.3\%	44.4\%	58\%\%	24.6\%	. 577	516\%	528\%
$2{ }^{\text {d }}$ Order	47.1\%	268\%	. 431	48.5\%	16.2\%	60.6\%	222\%	. 60	63.7\%	30.2\%
Pasch	582\%	221\%	. 20	70.8\%	47.6\%	59.6\%	222\%	. 28	73.8\%	46.5\%
Grade 5	Accuracy	rypel Eror	Prediction Index	\%AdV Found	\% BB. Found	Accuracy	$\begin{aligned} & \text { Type I } \\ & \text { Eror } \end{aligned}$	Prediction Index	\%Adv. Found	\% BB Found
Linear	422\%	37.9\%	. 104	19.8\%	33.6\%	560\%	229\%	. 590	19.1\%	415\%
$2{ }^{\text {d }}$ Order	4.4\%	368\%	. 172	47.9\%	29.2\%	57.9\%	220\%	. 20	50.1\%	45.8\%
Pasch	57.1\%	226\%	. 603	59.6\%	47.7\%	56.8\%	225\%	. 603	63.3\%	510\%
Grade 6	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Preaiction Index	$\begin{aligned} & \text { \%AdV. } \\ & \text { Found } \end{aligned}$	\%BB. Found	Accuracy	$\begin{aligned} & \text { Type I } \\ & \text { Eror } \end{aligned}$	Preaiction Index	\%AdV. Found	\% BB Found
Linear	481\%	33.9\%	. 295	426\%	37.8\%	55.7\%	24.9\%	. 553	327\%	48.4\%
$2{ }^{\text {d }}$ Order	492\%	30.3\%	. 384	55.2\%	39.9\%	57.8\%	20.8\%	. 640	50.1\%	45.8\%
Pasch	57.1\%	216\%	. 22	65.2\%	55.9\%	57.5\%	23.2\%	. 596	69.3\%	58.5\%
Grade 7	Accuracy	rypel Eror	Prediction Index	\%Adv Found	\% BB. Found	Accuracy	$\begin{aligned} & \text { Type I } \\ & \text { Eror } \end{aligned}$	Prediction Index	\%Adv. Found	\% BB Found
Linear	469\%	385\%	. 179	325\%	25.5\%	56.8\%	23.8\%	. 582	29.9\%	40.5\%
$2{ }^{\text {d }}$ Order	49.1\%	35.1\%	. 286	49.9\%	20.7\%	57.3\%	20.5\%	. 642	4.9\%	322\%
Pasch	568\%	227\%	. 601	66.8\%	49.2\%	56.8\%	23.8\%	. 580	6.6\%	50.7\%
Grade 8	Accuracy	rypel Eror	Prediction Index	\%Adv Found	\%BB. Found	Acaracy	rypel Error	Prediction Index	\%Adv. Found	\% BB Found
Linear	45.7\%	34.0\%	. 255	213\%	29.9\%	55.0\%	25.0\%	. 545	227\%	37.4\%
$2^{\text {d }}$ Order	45.7\%	30.1\%	. 340	38.1\%	29.9\%	55.9\%	20.1\%	. 640	38.1\%	37.4\%
Pasch	54.7\%	24.2\%	. 558	611\%	512\%	55.4\%	24.9\%	. 551	๔27\%	50.2\%

Table 14
Accuracy of the RTT scale in prediding CST performance level - mathematics

	Fall					Spring				
Grade 2	Accuracy	Type I Eror	Prediction Index	\%Adv. Found	$\begin{aligned} & \text { \% BB. } \\ & \text { Found } \end{aligned}$	Acaracy	Type I Eror	Prediction Index	\%Adv. Found	\%BB Found
Linear	510\%	288\%	. 434	36.8\%	0.0\%	513\%	268\%	. 478	58.\%	24.5\%
$2{ }^{\text {d }}$ Order	50.3\%	280\%	. 42	529\%	0.0\%	510\%	24.4\%	. 521	53.6\%	14.9\%
Pasch	39.4\%	49.6\%	-. 260	54.1\%	8.2\%	520\%	25.7\%	. 505	70.3\%	40.4\%
Grade 3	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\% BB. Found	Accuracy	rypel Error	Prediction Index	\%AdV. Found	\% BB Found
Linear	489\%	29.3\%	. 401	45.5\%	40.1\%	55.2\%	24.3\%	. 560	789\%	55.9\%
$2{ }^{\text {d }}$ Order	49.6\%	27.3\%	. 451	58.2\%	266\%	56.1\%	216\%	. 615	789\%	60.4\%
Pasch	429\%	427\%	. 03	528\%	37.9\%	56.4\%	222\%	. 607	69.5\%	55.6\%
Grade 4	Accuracy	rypel Eror	Preaiction Index	\%Adv. Found	\%BB. Found	Acaracy	$\begin{aligned} & \text { rypel } \\ & \text { Eror } \end{aligned}$	Prediction Index	\%Adv. Found	\% EB Found
Linear	513\%	283\%	. 47	49.2\%	363\%	56.4\%	25.0\%	. 558	73.8\%	56.6\%
$2{ }^{\text {d }}$ Order	528\%	29.0\%	. 450	625\%	19.8\%	56\%\%	226\%	. 601	76.5\%	60.5\%
Pasch	489\%	26.7\%	. 454	65.4\%	39.4\%	56.2\%	227\%	. 596	69.2\%	523\%
Grade 5	Accuracy	$\begin{aligned} & \text { 1ypel } \\ & \text { Eror } \end{aligned}$	Prediction Index	\%AdV. Found	\%B.B. Found	Acaracy	$\begin{aligned} & \text { Type II } \\ & \text { Error } \end{aligned}$	Preaiction Index	\%AdV. Found	\%BB Found
Linear	517\%	24.3\%	. 530	36.8\%	46.2\%	56.7\%	20.4\%	. 640	85.3\%	29\%
$2{ }^{\text {d }}$ Order	53.9\%	19.6\%	. 637	529\%	425\%	58.7\%	16.6\%	. 717	782\%	66.9\%
Pasch	46.9\%	221\%	. 529	54.1\%	54.7\%	585\%	19.8\%	. 661	682\%	60.7\%
Grade 6	Accuracy	$\begin{aligned} & \text { Typel } \\ & \text { Eror } \end{aligned}$	Preaiction Index	$\begin{aligned} & \text { \%AdV. } \\ & \text { Found } \end{aligned}$	\% BB. Found	Accuracy	$\begin{aligned} & \text { Type I } \\ & \text { Eror } \end{aligned}$	Preaiction Index	\%AdV. Found	\% BB Found
Linear	57.7\%	24.0\%	. 584	45.5\%	417\%	612\%	20.5\%	. 665	88.4\%	413\%
$2{ }^{\text {d }}$ Order	59.6\%	19.3\%	. 66	58.2\%	26.6\%	64.0\%	16.7\%	. 739	80.6\%	47.2\%
Pasch	50.4\%	218\%	. 567	528\%	37.9\%	63.3\%	19.9\%	. 685	69.7\%	43.5\%
Grade 7	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\% BB. Found	Accuracy	$\begin{aligned} & \text { Type I } \\ & \text { Error } \end{aligned}$	Preaiction Index	\%AdV. Found	$\% B B$ Found
Linear	60.8\%	221\%	. 637	43.8\%	424\%	614\%	227\%	. 630	426\%	34.7\%
$2{ }^{\text {d }}$ Order	61\%	19.2\%	. 691	64.0\%	311\%	68\%	221\%	. 648	66.1\%	15.3\%
Pasch	49.6\%	17.8\%	. 640	43.5\%	43.4\%	60\%	20.6\%	. 667	73.7\%	43.3\%
Grade 8	Accuracy	rypel Eror	Prediction Index	\%Adv. Found	\%BB. Found	Accuracy	Typel Eror	Prediction Index	\%AdV. Found	\% BB Found
Linear	53.7\%	24.9\%	. 536	34.8\%	40.6\%	529\%	26.5\%	. 499	187\%	389\%
$2{ }^{\text {d }}$ Order	53.4\%	27.0\%	. 495	54.5\%	311\%	529\%	27.2\%	. 479	44.5\%	25.9\%
Pasch	49.9\%	219\%	. 562	427\%	49.8\%	523\%	25.9\%	. 504	60.1\%	529\%

Table 15
Predicion index scores by performance level assignment for previous NWEA state aligrment Studies

State	Reading	State	Math
Washington	.874	Washington	.928
Texas	.868	Texas	.900
Indiana	.860	Illinois	.888
Colorado	.840	Colorado	.808
Illinois	.804	Washington	.805
Nevada	.776	Indiana	.804
Pernsylvania	.770	Pennsylvania	.769
SouthCarolina	.757	SouthCarolina	.764
Arizona	.756	Arizona	.756
Washington	.698	Nevada	.742
Mirnesota	.627	Minnesota	.611
California	.600	California	.565

Best estimates of CST performance level at scores

To determine the RIT scores that best predict the cut scores for the various California performance levels we did the following:

- For the proficient and basic RIT cut score, we selected the methodology that produced the highest overall performance index score.
- For the far below basic RIT score and the advanced RIT score, we selected the cut scores that correctly predicted the largest proportion of students who actually achieved these levels of performance on the CST.

The methodology that was ultimately applied to determine cut scores is bolded in Tables 12 through 14. Tables 16 and 17 (see following page) summarize the recommended cut scores for each performance level on the CST.

Analysis of the performance level at scores

We hope that the projected cut scores provide useful information to educators who use NWEA data to help students succeed in learning and on their state test. In addition to information that can be used to plan student programs, the study also provides a helpful external look at some important aspects of the California Standards Test. Some of these include the difficulty of the standards relative to other states, dither difficulty of the state's mathematics standards relative to the ELA standards, and the calibration of the state's standards between grades.

Table 16
Projected MinimmRTT Scores for FAlL PRIOR that are Equivalent to Performance Levels on CST (scores under the below basic at score project to far below basic NWEA percentile rark is in parenthes)

Grade	Reading to CSTEA				Language to CSTEA				Math			
	Below Basic	Basic	Proficient	Advanced	Below Basic	Basic	Proficient	Advanced	Below Basic	Basc	Proficient	Advanced
2	149(2)	155(9)	175(43)	191 (78)	156 (2)	161 (10)	179(48)	193(79)	153(2)	158(3)	170(24)	180(62)
3	162 (8)	178(23)	194(59)	205 (86)	166 (7)	182 (24)	197(61)	207 (87)	162 (8)	177 (15)	190 (49)	203(87)
4	166 (4)	184(17)	201 (53)	211 (81)	169 (4)	189(18)	204(55)	215 (86)	176(4)	193 (25)	203 (57)	212 (84)
5	179 (6)	194(20)	210 (59)	223 (91)	184 (6)	198(21)	212 (60)	224 (92)	191 (9)	203 (31)	215 (68)	227 (92)
6	185(6)	199(20)	214 (56)	225 (85)	190 (6)	203 (21)	217 (61)	226 (87)	189(5)	207 (28)	223 (70)	238 (94)
7	190(6)	204 (16)	218 (56)	231 (89)	195 (7)	207 (23)	220 (61)	230 (90)	197 (8)	215 (35)	233 (77)	250 (97)
8	196(8)	210 (20)	224(62)	236 (90)	200 (8)	212 (27)	224(64)	234(91)	204(10)	221 (35)	236(61)	257 (96)

Table 17
Projected MinimumRT Scores for SPRING that are Equivalent to Performance Levels on CST (scores under the below basic at score project to far below basic NWEA percertile rark is in parenthed

Grade	Reading to CSTEA				Language to CST ELA				Math			
	Below Basic	Basic	Proficient	Advanced	Below Basic	Basic	Proficient	Advanced	Below Basic	Basic	Proficient	Advanced
2	159(7)	170(16)	188(50)	202 (83)	164(7)	175(20)	193(59)	205(86)	162(2)	173(11)	185(39)	196(74)
3	176(10)	188 (25)	203(61)	214 (88)	176(9)	191 (26)	206 (66)	217 (91)	173(3)	190 (22)	202 (56)	215(90)
4	174(4)	191 (18)	208(56)	218 (82)	177 (4)	192(16)	210(59)	220 (86)	180(3)	198(21)	212 (59)	225 (89)
5	185(6)	200 (22)	217 (65)	228 (90)	191 (7)	201 (19)	218(65)	228 (92)	194(8)	211 (36)	224(69)	245 (97)
6	190(6)	204(20)	220 (60)	230 (86)	195 (8)	205(20)	221 (54)	229(80)	189(3)	214(32)	231 (71)	252 (96)
7	193(5)	208 (21)	225 (64)	235 (89)	199(7)	209(22)	225 (68)	234(86)	200(7)	221 (35)	238(71)	257 (95)
8	201 (8)	214(24)	230(67)	240 (91)	203 (9)	214(26)	230(75)	237 (91)	208(10)	227 (35)	244(67)	264(95)

Comparing Califomia proficiency standards with the estimated standards reported in other state test alignment studies

N orthwest Evaluation Association tests have been aligned with the cut scores for the state proficiency test in 16 states. To get an estimate of the difficulty of the California standards in relation to other state tests, we evaluated the standard used as the cut score for NCLB reporting or the proficient performance level and compared it to the cut score representing the same standard in these other states. Although the number of states studied is rapidly increasing, the states studied may not reflect what is typical in regard to these kinds of standards.

The results are summarized in Table 18. California's cut scores in both reading and mathematics are well above the NWEA's national median scores in both reading and mathematics and rank among the most challenging of the state standards studied, generally requiring that students perform between the $55^{\text {th }}$ and $70^{\text {th }}$ percentile (with the notable exceptions of grade 2 and grade 10. We'd recommend caution about drawing any judgments about the quality of California's standards from this information alone. States establish standards for different purposes. Some states, Washington might be an example, set standards at a level they believe appropriate for students pursuing post-secondary education. Others may set standards at a lower level that reflects the literacy needed to be successful in the workplace. The N o Child Left Behind Act requires schools to set targets that would result in all students achieving a proficient level of performance in about 11 years. While a few communities in California are no doubt close to achieving this already, many will have to improve the performance of large proportions of their students to reach this challenging goal. Our point is that standards should be judged on how well they align with the purposes the community originally wanted to reflect, not purely on how high or low the "bar" is set. The primary thing the tables make clear is that proficiency standards vary widely from state to state and that proficiency is not yet a concept that h as a shared definition.

Relative diffialty of the mathematics and EA standards

Educators may assume that state standard setting processes are designed to produce standards across subjects that are equal in difficulty. Our previous studies show that this is not always the case. Arizona's math standards, for example, have been considerably more challenging than their standards for reading, although the state is taking steps to bring closer alignment between the two subjects. In general, California's standards for M ath and English/Language Arts are similar to each other in difficulty.

Table 18- Cutscores representing profidientor "neetstandards' level of performance on 16 state aspesperts

Reading																							
Grade 3			Grade 4			Grade 5			Grade 6			Grade 7			Grade 8			Grade 9			Grade 10		
State	Cut Score	\%ile	State	Cut Score	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	$\begin{gathered} \text { Stat } \\ e \end{gathered}$	Cut Score	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \\ & \hline \end{aligned}$	\%ile
SC	205	6	WY	214	73	SC	220	73	SC	21	63	SC	227	70	WY	232	74	MT	24	43	OR	236	77
CA	203	61	SC	213	70	CA	217	65	CA	220	60	WA	226	67	SC	230	68	A	224	43	WA	227	53
NV	202	58	CA	208	56	NV	215	59	MT	211	35	CA	225	64	CA	230	68	ID	21	37	ID	22	44
MN	193	35	WA	207	53	PA	212	50	ID	211	35	MT	218	43	OR	27	58	CO	204	9	MT	24	44
OR	193	35	ID	200	34	AZ	210	45	IN	210	32	IA	216	37	AZ	22	49				IA	23	42
ID	193	35	MT	196	26	OR	209	42	IA	209	30	ID	215	35	PA	223	46				CO	209	15
MI	193	35	IA	196	26	IL	201	31	TX	208	28	TX	210	24	IN	219	35				CA	208	14
IL	193	35	CO	191	18	MT	206	35	CO	197	11	CO	206	18	MT	219	35						
IN	192	32				ID	206	35							IA	219	35						
IA	191	31				IA	205	32							ID	218	32						
AZ	190	29				MN	204	30							IL	218	32						
TX	179	13				TX	204	30							MN	218	32						
CO	179	13				CO	197	18							CO	206	12						

Mathematics

Grade 3			Grade 4			Grade 5			Grade 6			Grade 7			Grade 8			Grade 9			Grade 10		
State	Cut Score	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	State	Cut Score	\%ile	State	$\begin{aligned} & \text { Cut } \\ & \text { Score } \end{aligned}$	\%ile	State	Cut Score	\%ile	State	Cut Score	\%ile	State	Cut	\%ile	State	Cut Score	\%ile
SC	208	75	WY	21	83	SC	227	76	SC	235	78	SC	242	78	WY	257	89	MT	242	47	WA	257	73
CA	202	56	WA	218	76	CA	22	69	CA	231	71	WA	242	78	SC	251	80	IA	241	44	MT	247	40
NV	203	59	SC	27	74	AZ	220	59	IN	21	47	CA	238	71	AZ	248	75	ID	240	42	IA	247	40
IN	201	50	CA	212	59	NV	216	48	ID	219	42	ID	25	44	CA	244	6	CO	235	32	OR	245	33
OR	199	46	ID	205	39	PA	216	48	IA	28	40	MT	22	42	PA	231	53				ID	242	25
AZ	199	46	IA	205	39	OR	215	46	MT	218	40	IA	272	38	OR	235	50				CO	233	14
MN	198	42	MT	205	39	ID	213	41	CO	207	19	TX	21	35	ID	233	46				CA	232	13
MT	197	39				MT	212	38				CO	216	26	MN	231	42						
IA	197	39				IA	212	38							IN	231	42						
ID	196	36				MN	210	33							IL	230	40						
IL	193	29				IL	210	33							MT	228	36						
						TX	209	31							TA	278	36						
						CO	201	15							CO	25	31						

- Indiana tests students in the fall. Their cut scoreswere adjusted to reflect equivalent spring performance
- Colorado usesthe partially proficient level of performance for NCIB reporting. To maintain consistency we report the level each state usesfor NCLB reporting here.
- The Texas esimate is based on the level for proficiert performance that will be implemented in 2005.

Calibration of the Califomia Standards Across Grades

When we say a standard should be calibrated across grades, we mean that a standard have the same difficulty at every grade level. Standards for grade 8 should not be considerably easier or more difficult than the standards for grade 3. Here are the reasons we take this position:

- If standards are used to evaluate the effectiveness of teacher or school performance, equity requires that the standards be the same for all. It is simply unfair to hold some teachers and students to a higher standard than others simply because they work at different grade levels. From a practical point of view, teachers will be reluctant to accept teaching assignments at a grade level if it becomes known that the standards associated with that grade level are considerably more difficult to achieve than those imposed at othe grades. If you doubt us, call any Arizona middle school principal and ask if it has been easier to fill $6^{\text {th }}$ or $8^{\text {th }}$ grade math positions in the last couple of years.
- If standards are used to tell teachers and students whether students are on-track to meet community expectations, it's important that proficiency at third grade truly projects to proficiency at eighth grade, assuming proficient children achieve normal growth. When this is not the case, teachers, students, and their parents receive an inaccurate message about the true performance of their children. In other words, if the third grade standard is considerably easier than the eighth grade standard, reports will tell some third grade families that their children are proficient, when, in fact, their performance is very likely to fall short of proficiency in the future.

There are significant issues relative to the calibration of standards within the California State Tests. The most significant problem is that the standards for performance in theupper grades (grades 6,7 , and 8) are substantively higher than they are at the younger grades (grades 2,3 , and 4). Let's use mathematics to illustrate the problem.

Figure 2 (see following page) shows the percentile score associated with proficiency on the spring NW EA mathematics test. It shows that the percentile score required for passing the test at grades 2 through 4 is much lower than the near $70^{\text {th }}$ percentile score required to pass the test at grades 6,7 , and 8 . Were these patterns to hold up over time, about 13% of the total testing population identified as proficient in $3^{\text {rd }}$ grade would fail to meet the standard in $8^{\text {th }}$ for no reason other than lack of calibration in the standard.

Figure 3 is a line graph that compares the RIT score that actually meets the standard each grade with the score that would be required at every grade for a student to be on-track to meet the $8^{\text {th }}$ grade standard. The figure shows that the score currently required by the standard ranges from 3 to 9 points less than the projected $8^{\text {h }}$ grade cut score in grades 2,3 , and 4 . While these differences do not immediately seem large, when applied over an entire state they result in thousands of students being identified as proficient in grades 2,3 , and 4 who will grow normally and not achieve proficiency at grade 8. This can result in the delay of needed interventions for these students and can wreak havoc on the stability of adequate yearly progress statistics.

Figure 2 - NWEA spring percentile score projecting to proficient level of performance on CST in mathematics

Figure 3 - RT score projected to adieve proficient score on one grade's CST vs. RT score required to project to adrieve a proficient score on the $8^{\text {hh }}$ grade CST

Using RT scores to estimate student probability of achieving pasing performance on the CST

Helping students pass the state test is not the primary reason our members use NW EA assessments. We hope they are used to provide teachers information that will allow them to improve the learning of all students. Nevertheless, state test results are important and failing to do well on them can have deleterious effects on students and their schools. Because of this, we believe educators would benefit from knowing more about the probability that a student's RIT score would lead to a passing score on theCST. This would allow educators to more reliably identify students who will need additional resources to reach this level of performance. Equally important, however, it will allow educators to know which students are "safe" against California standards so they can focus their time with these students on providing new challenges that better suit their current needs.

Tables 19 through 24 on the following pages, and the accompanying graphs show the proportion of students at each RIT level who earned scores at or above the proficient level on the CST assessments. Using Table 19 as an example, we find that about 12% of the $5^{\text {th }}$ grade students who achieved a reading RIT score between 205 and 209 went on to achieve a passing score on the California ELA assessment. A $5^{\text {th }}$ grade teacher with ten students performing in this range would know that only about one in ten of these students will be proficient on theCST unless they work harde, receive more focused instruction, or have access to additional resources.

On the other hand, about 92% of $5^{\text {th }}$ grade students performing at 225 to 229 level achieved proficiency on the ELA assessment. Teachers should feel free to focus their efforts with these students on new and more difficult challenges than the basic fifth grade standards might provide.

Table 19
Proportion of students achieving proficient performance level on the CST English/ Language Arts assessment based on PRIOR FALL RT score - Reading

RT Score	Grade 2	Grade :	Grade 2	Grade !	Grade 6	Grade ;	
14C	4.35\%						
145	4.67\%						
15C	7.32\%						
155	13.51\%	0.33\%					
16 C	21.59\%	2.03\%	0.00\%				
1EF	29.02\%	2.25\%	2.16\%				
17C	39.34\%	4.23\%	1.08\%	0.00\%	0.00\%		
175	52.78\%	7.94\%	0.82\%	0.59\%	1.16\%		
18C	66.32\%	12.84\%	3.17\%	0.94\%	0.81\%	0.00\%	
185	79.00\%	23.18\%	7.77\%	2.11\%	0.88\%	2.04\%	0.00\%
19	90.49\%	42.46\%	14.01\%	5.93\%	0.83\%	1.47\%	1.78\%
195	95.92\%	65.23\%	31.37\%	15.88\%	1.40\%	1.06\%	0.61\%
20 C	98.50\%	83.98\%	55.79\%	34.83\%	5.88\%	2.53\%	1.48\%
$20 E$	100.00\%	93.80\%	79.18\%	58.44\%	17.73\%	6.28\%	1.60\%
21C		98.51\%	90.77\%	81.40\%	40.91\%	18.71\%	6.33\%
215		99.38\%	97.77\%	94.04\%	68.37\%	39.19\%	12.02\%
2 C		98.28\%	99.76\%	98.17\%	87.01\%	68.57\%	35.48\%
225		100.00\%	100.00\%	99.45\%	96.23\%	88.77\%	62.88\%
23 C				100.00\%	99.33\%	96.95\%	84.45\%
235					100.00\%	99.76\%	96.08\%
24C						100.00\%	98.23\%
245							99.04\%
25C							100.00\%

Table 20
Proportion of students adieving proficient perfommance level on the CST English/ Language Arts assessment based on same SPRING RT score - Reading

RT Score	Grade 2	Grade :	Grade 2	Grade !	Grade '	Grade ${ }^{\text {] }}$	
14C							
145	211\%						
15 C	0.90\%						
155	282\%						
16C	299\%		0.00\%				
16	5.06\%		0.65\%				
17С	7.57\%		100\%	0.00\%			
175	1245\%	0.5\%	0.63\%	0.5\%	0.00\%		
18 C	2292\%	224\%	122\%	0.95\%	139\%		
185	40.5\%\%	4.73\%	142\%	0.75\%	106\%		
19C	6197%	9.61\%	4.16\%	0.34\%	122\%	194\%	
195	77.30\%	23.13\%	8.98\%	259\%	0.93\%	0.66\%	0.65\%
20 C	89.68\%	47.97\%	2106\%	6.02\%	174\%	184\%	138\%
205	96.41\%	69.27\%	45.98\%	1273\%	5.78\%	3.40\%	139\%
21C	99.31\%	89.07\%	7252\%	3218\%	15.05\%	6.8\%\%	227\%
215	98.18\%	96.09\%	88.99\%	55.45\%	37.58\%	20.82\%	6.38\%
22.	96.6\%\%	99.35\%	97.73\%	80.43\%	68.46\%	4.77\%	14.10\%
275	100.00\%	99.24\%	9895\%	9241\%	87.32\%	70.15\%	36.78\%
23C		100.00\%	100.00\%	99.39\%	96.04\%	89.28\%	60.06\%
235				99.45\%	99.24\%	96.97\%	86.88\%
24.				100.00\%	99.31\%	98.10\%	94.36\%
245					100.00\%	100.00\%	9868\%
25C							9898\%
255							100.00\%

Figure 4 - Proportion of students adieving proficient performance level on the CST English/ Language Arts aspesment based on PRIOR FAll RT score - Reading

Figure 5 - Proportion of students adieving proficient performance level on the CST English/ Language Arts aspespmert based on same SPRING RT score - Reading

Table 21
Proportion of students achieving proficient performance level on the CST English/ Language Arts assessment based on PRIOR FAlL RTT score - Language Usage

RT Score	Grade 2	Grade :	Grade ${ }^{\text {L }}$	Grade 5	Grade (Grade ${ }^{\text {- }}$	Grade ₹
145	0.00\%						
15C	273\%						
155	6.23\%	0.00\%	0.00\%				
16C	9.01\%	0.76\%	121\%				
16	19.6\%	201\%	112\%				
17C	28.5\%	190\%	138\%				
175	4290\%	5.52\%	106\%				
18 C	6193\%	7.85\%	0.86\%	0.00\%			
185	80.98\%	15.58\%	3.39\%	0.83\%		0.00\%	
19 C	89.38\%	29.07\%	8.25\%	0.58\%	104\%	0.4\%	0.00\%
195	94.09\%	50.86\%	1864\%	3.50\%	174\%	0.94\%	106\%
20 C	96.53\%	74.91\%	40.48\%	10.48\%	3.58\%	161\%	0.88\%
205	100.00\%	90.80\%	64.02\%	24.05\%	1131\%	5.06\%	132\%
21C		96.71\%	83.35\%	47.65\%	26.76\%	14.44\%	4.43\%
215		99.68\%	94.52\%	7206\%	5246\%	34.76\%	15.16\%
22.		9884\%	9865\%	90.64%	79.13\%	603\%	33.77\%
225		100.00\%	99.50\%	96.21%	95.17\%	85.59\%	64.32\%
23C			100.00\%	100.00\%	9868\%	94.72\%	84.48\%
235					99.44\%	9865\%	95.55\%
24.					100.00\%	100.00\%	99.33\%
245							9868\%
25C							100.00\%

Table 22
Proportion of students achieving proficient performance level on the CST English/ Language Arts assessment based on same SPRNNG RT score - Language Usage

RT Score	Grade 2	Grade :	Grade ${ }^{\text {L }}$	Grade :	Grade 6	Grade ${ }^{\text {] }}$	Grade ₹
16 C	0.70\%						
16	217\%						
17C	7.02\%						
175	1239\%						
18C	2242\%	0.86\%					
185	4621\%	3.39\%	10\%\%	0.00\%			
19C	63.61\%	5.59\%	124\%	0.72\%			3.33\%
195	8188\%	1396\%	4.2\%	0.72\%		186\%	183\%
20 C	94.20\%	2880\%	126\%	159\%	248\%	0.98\%	131\%
205	97.92\%	57.38\%	33.75\%	6.8\%\%	3.9\%\%	251\%	159\%
21 C	97.35\%	80.25\%	59.75\%	24.02\%	1278\%	5.96\%	3.09\%
215	94.9\%\%	9253\%	80.31\%	46.75\%	3232\%	19.16\%	7.58\%
22 C	93.10\%	97.05\%	93.29\%	7178\%	57.84\%	43.76\%	1865\%
225	100.0\%	9882\%	97.58\%	9113\%	83.26\%	6.31\%	43.75\%
23 C		9130\%	986\%\%	96.45\%	94.98\%	90.69\%	7238\%
235		9231\%	100.00\%	9895\%	9892\%	96.63\%	8836\%
24C		100\%		100.0\%\%	100.00\%	9838\%	96.46\%
245					9697\%	99.19\%	9831\%
25C					100.00\%	100.00\%	9841\%
255							100.00\%

Figure 6
Proportion of students adieving proficient performance level on the CST English/ Language Arts assesment based on PRIOR FALL RT score - Language Usage

Figure 7
Proportion of students adieving proficient perfommance level on the CST English/ Language Arts assessment based on same SPRING RT score - Language Usage

Table 23
Proportion of students adieving profidient performance level on the CST mathematics assessment based on PRIOR FALI RT score - Mathematics

RT Score	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
140	000\%						
145	9.09\%	0.00\%					
150	25.30\%	7.35\%					
155	2186\%	246\%					
160	3280\%	150\%					
165	3884\%	7.33\%					
170	56.48\%	833\%	0.00\%	000\%			
175	74.60\%	15.62\%	147\%	076\%	0.00\%		
180	9160\%	25.88\%	135\%	105\%	0.42\%		
185	96.96\%	40.11\%	631\%	188\%	104\%		
190	98.52\%	59.13\%	1114\%	15\%	0.82\%		
195	99.36\%	80.96\%	28.39\%	198\%	0.71\%		
200	97.56\%	90.81\%	46.91\%	4.46\%	5.01\%	0.41\%	000\%
205	100.00\%	97.53\%	68.60\%	1395\%	1142\%	0.71\%	073\%
210		100.00\%	89.47\%	3122\%	28.56\%	125\%	170\%
215			96.03\%	57.6\%	53.88\%	5.43\%	5.93\%
220			99.40\%	8034\%	76.44\%	1125\%	1149\%
225			100.00\%	9374\%	89.88\%	28.39\%	24.52\%
230				97.84\%	96.98\%	50.20\%	37.60\%
235				100.00\%	99.71\%	73.90\%	5227\%
240					100.00\%	87.91\%	63.81\%
245						97.84\%	70.92\%
250						99.68\%	8192\%
255						100.00\%	9193\%
260							98.53\%
265							99.08\%
270							100.00\%

Table 24

Proportion of students adieving proficient performance level on the CST mathematics aspesment based on same SPRING RT score - Mathematics

RT Score	Grade 2	Grade :	Grade 4	Grade :	Grade (Grade ${ }^{\text {a }}$	
145	000\%						
15C	4.76\%						
155	471\%						
16C	301\%						
165	7.2\%						
17 C	9.80\%	0.00\%				000\%	
175	17.78\%	108\%	000\%	0.00\%		256\%	00\%\%
18C	2203\%	191\%	0.8\%\%	0.7\%\%	0.00\%	139\%	417\%
185	38.69\%	4.42\%	0.5\%	0.00\%	0.68\%	179\%	139\%
19 C	56.28\%	1146\%	222\%	0.32\%	107\%	094\%	28\%\%
195	79.27\%	27.60\%	434\%	0.20\%	0.28\%	068\%	088\%
200	93.62\%	54.31\%	13.69\%	18\%	134\%	08\%\%	037\%
205	97.8\%\%	76.17\%	30.12\%	232\%	109\%	198\%	33\%
21 C	99.05\%	9188\%	54.99\%	684\%	140\%	0.89\%	148\%
215	98.71\%	97.46\%	74.68\%	14.50\%	5.74\%	083\%	208\%
22 C	95.95\%	98.41\%	89.47\%	3250\%	15.6\%	28\%\%	276\%
225	97.8\%\%	97.93\%	97.22\%	57.68\%	35.25\%	7.84\%	7.78\%
23C	100.00\%	96.52\%	9834\%	80.26\%	63.58\%	17.49\%	17.08\%
235		9250\%	100.00\%	94.11\%	80.33\%	3868\%	25.18\%
24C		84.62\%	99.22\%	9886\%	93.72\%	59.58\%	4337\%
245		100.00\%	100.00\%	99.37\%	9883\%	8271\%	5278\%
25 C				100.00\%	99.70\%	9249\%	59.75\%
255					100.00\%	9851\%	74.06\%
26 C						99,12\%	8865\%
265						99.33\%	95.78\%
27C						99.12\%	9870\%
275						9667\%	100.00\%
28 C						100.00\%	

Figure 8
Proportion of students adieving proficient performance level on the CST mathematics assesmert based on PRIOR FAll RT score - Mathematics

Figure 9
Proportion of students adieving proficiert performance level on the CST mathematics assessment based on same SPRING RT score - Mathematics

Using RT scores and data fromthis alignment study to set individual growth targets

NW EA encourages educators and parents to collaborate on setting individual growth targets for students based on what we call a "hybrid-growth model". The proficient standard cut score for each grade reflect benchmarks that students who are "on-target" would meet if they were to achieve the state's benchmark for the No Child Left Behind Act. For students who are behind this benchmark, we recommend a growth target that would reflect the norm for their grade and RIT range (see the 2002 NWEA norms study for this information) plus some proportion of the gap between their current performance and the benchmark that the student would try to close during this school year. For those students whose performance is ahead of the benchmark, we suggest a target that reflects their current RIT range norm.

This approach assures that each student has a growth target that is challenging. It also assures that low performing students have targets that will assure they eventually reach proficiency standards. Schools that achieve high rates of success on these kinds of targets will assure that no child is left behind (to borrow a phrase) while also making sure that all children have the opportunity to get ahead, regardless of where they stand against a standard. M ore information on this approach can be obtained by contacting the Research team at NWEA.

Summary and Condusions

This study investigated the relationship between the scales used for the CST assessments and the RIT scales used to report performance on N orthwest Evaluation Association tests. The study determined RIT score equivalents for the CST performance levels in English/Language Arts and mathematics. Test records for more than 73,000 students were included in this study.

Three methods generated an estimate of RIT cut scores that could be used to project CST performance levels. Rasch SOS and second-order regression methods generally produced the most accurate projections of cut scores. Accuracy of predicting proficient performance on the CST from spring NW EA assessments was above 83\% for all grades and above 82\% for all grades when fall NWEA scores were used.

Readers should exercise some caution about generalizing these results to their own settings. Curricular or instructional differences unique to your districts may influence the accuracy with which the estimated cut scores reflect actual performance in your setting. With this limitation in mind, we would encourage educators to use this data as one tool to inform standards-based decisions.

The information gathered in this study came from measures employing the NWEA RIT Scale. Because all of the research that we have to date indicates that scores generated from computer-based tests and Achievement Level Test (ALT) scores are virtually interchangeable, readers should feel comfortable applying the results of this study in any setting that uses the RIT scale.

We hope that data from this study provides useful information to help California educators use NW EA assessments to better inform, plan and deliver student instruction. Good information, when matched with the professionalism and commitment of our colleagues, will assure that every student has the opportunity to reach their aspirations.

