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Abstract 

We consider the problem of classifying an unknown observation into one of several populations 

using tree-structured allocation rules.  Although many parametric classification procedures are 

robust to certain assumption violations, there is need for discriminant procedures that can be 

utilized regardless of the group-conditional distributions that underlie the model.  The tree-

structured allocation rule will be discussed.  Finally, Monte Carlo results are reported to observe 

the performance of the rule in comparison to a discriminant and logistic regression analysis. 
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Classification Based on Tree-Structured Allocation Rules 

 

Purpose 

 Many areas in educational and psychological research involve the use of classification 

statistical analysis.  For example, school districts might be interested in attaining variables that 

provide optimal prediction of school dropouts.  In psychology, a researcher might be interested 

in the classification of a subject into a particular psychological construct.  The purpose of this 

study is to investigate alternative procedures to classification other than the use of discriminant 

and logistic regression analysis.  A nonparametric classification rule will be examined, and 

misclassifications compared to equivalent discriminant and logistic regression analyses. 

 

Theoretical Framework 

 The problem of classifying an observation arises in many areas of educational practice.  

Multivariate discriminant analysis is a commonly used procedure, as is logistic regression.  

However, each procedure has various assumptions which should be met for proper application of 

the analysis.  Discriminant analysis typically has the more stringent assumptions: multivariate 

normality of the classification variables and equal covariance matrices among the groups (Hair, 

Anderson, Tatham, & Black, 1988).  Logistic regression is recommended in the cases where the 

multivariate normality assumption is not met (Tabachnick & Fidell, 2001).  Yet, use of a 

traditional logistic regression approach requires the researcher to limit classification to only two 

groups.  Also, logistic regression tends to require larger sample sizes for stable results due to the 

maximum likelihood approach (Fan & Wang, 1999).  And both techniques are not meant to 

handle analysis of complex nonlinear data sets.  Thus, there is need for a nonparametric 
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classification rule.  This paper will consider the issue of classification using a nonparametric 

tree-structured method (Breiman, Friedman, Olshen, & Stone, 1984).   

 

Brief Review of the Tree Method 

 The goal of classification trees is to predict or explain responses on a categorical 

dependent variable from their measurements on one or more predictor variables.  Tree-structure 

rules are constructed by repeated splits of predictor variables into two or more subsets.  The final 

subsets form a partition of the predictor variables.   

 Here is a simple illustration of a classification tree: imagine that you want to devise a 

system for sorting coins (pennies, nickels, etc.) into different groups.  You wish to devise a 

hierarchical systems for sorting the coins, so you look for a measurement on which the coins 

differ − such as diameter.   If you construct a device with various slots cut (first for the smallest 

(dime), then next smallest (penny), and so on), you can roll the coin down the track.  If the coin 

falls through the first slot, you would classify the coin as a dime.  Otherwise, it would continue 

down the track until it falls through a particular slot.  This would be the construction of a 

classification tree.  The decision process used by this classification tree provides an effective 

method for sorting coins.   

 The use of classification and regression trees is an increasingly popular method in 

modern classification analysis.  The methodology has many advantages (Breiman, Friedman, 

Oshen, Stone, 1984): 

• It is a nonparametric technique which does not require distributional assumptions. 
• It can be used for both exploratory and confirmatory analyses easily. 
• It can be used with data sets that are complex in nature. 
• It is robust with respect to outliers. 
• It can handle data with missing independent variables better than traditional classification 

methods. 
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 Our consideration of the regression tree approach will focus on the traditional method of 

construction labeled CART (Classification and Regression Trees) (Breiman et al, 1984).  As in 

the case of linear regression and discriminant function analyses, the analysis requires data on the 

attributes (or independent variables) and the classification outcome (or dependent variable).  

Unlike linear regression analysis, where the outcome is a prediction equation, the outcome of 

CART is a tree, specifically a binary tree.  A binary tree consists of a set of sequential binary 

decisions, applied to each case, that leads to further binary decisions or to a final classification of 

that case.  Each partition is represented by a node on the tree.  The independent variables can be 

either qualitative (nominal, ordinal) or quantitative (interval, ratio) variables, which provides 

great flexibility for possible analyses.  Figure 1 shows an example of a classification tree for a 

medical data set involving survival analysis (Loh & Shih, 1997). 

------------------------------------- 
Insert Figure 1 about here. 

------------------------------------- 
 

 The measurement of p predictor variables of the entity is notated by the p-dimensional 

vector ( 1, , p )x x ′=x … .   If x is an ordered variable, this approach searches over all possible 

values of c for splits in the form of x c≤ .  A case is sent to the left subnode if the inequality is 

satisfied, and to the right subnode if not.  If x is a categorical variable, the search is over all splits 

of the form x A∈ , where A is a non-empty subset of the set of values taken from x.   

The CART procedure actually computes many competing trees and then selects an 

optimal one as the final tree.  This is done, optionally, in the context of a “10-fold cross-

validation” procedure (see Breiman et al., 1984, Chapter 11) whereby 1/10 of the data is held 
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back and a classification tree is grown.  The procedure is repeated nine times and the final tree 

obtained by taking into consideration the ten different trees.  The fit of the tree to the data, that is, 

how well it classifies cases, is measured by a misclassification table for the chosen tree. 

 A resultant tree can be used to classify new cases where the dependent variable is not 

available.  Given a classification tree, new cases are “filtered down” the tree to a final 

classification.  For the example in Figure 2, the researchers were interested in the classification 

of teachers by high and low response rates on surveys (Shim, Felner, Shim, Brand, & Gu, 1999).   

------------------------------------- 
Insert Figure 2 about here. 

------------------------------------- 
 

Decisions about which direction the data goes within the tree structure are based upon whether 

cases meet the specific criterion of the node.  Among the predictor variables used in the model, 

percentage of students eligible for free lunch was selected as the first branches of the tree.  That 

is, the first decision of Node 1 is based on the percentage of students eligible for free lunch.  The 

following question is posed:  “Is the percentage of students eligible for free lunch 25.9% or 

less?”  If we continue down the tree on the left, we note the next question asks: “Is the 

percentage of students eligible for free lunch 10.4% or less?”  If the answer is “yes,” then the 

case is deposited in the left terminal node.  All terminal modes on the left are classified as “high 

return rate,” while terminal nodes on the right are classified as “low return rate.”  This 

methodology of classification is carried out for all tree paths.  For example of a “low return rate” 

classification, we note that cases where the percentage of students eligible for free lunch fall 

between 10.4% and 25.9% and the total number of students are more than 478.5 are deposited in 

a right terminal node.  Similar to discriminant analysis, we can evaluate the fit of the model by 
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examining the cross-validated misclassification table, which shows joint occurrence of actual and 

predicted classification and probability. 

 The generation of a classification tree generally involves four steps (StatSoft, 2004): 

1. Specifying the criteria for predictive accuracy. 
2. Selecting splits. 
3. Determining when to stop splitting. 
4. Choosing the “right-sized” tree. 

 

Like in the case of discriminant analysis, one can use the concept of priors to establish the 

criteria for predictive accuracy.  One may also consider misclassification costs and case weights, 

which go beyond the simple idea of minimizing misclassification rates and beyond the scope of 

this instructional module.  We consider the typical specification of priors as being proportional to 

the class sizes. 

 Splits are selected one at a time using a variety of methods, such as CART, QUEST, and 

so on.  We consider only CART in the current paper.  Using the CART method, all possible 

splits for each predictor variable at each subset are examined to find the split producing the 

largest improvement in goodness of fit.  For categorical predictor variables with k levels present 

at a subset, there are 2(k-1) - 1 possible contrasts between two sets of levels of the predictor.  For 

ordered predictors with k distinct levels present at a subset, there are k -1 midpoints between 

distinct levels.  To determine the improvement in goodness of fit, the developers of CART 

(Breiman et al., 1984) suggest using a measure called the Gini index.  This index is given by 

21 j
j

Gini p= −∑  

where  is the proportion of cases in category j.  This index is 0 when the set contains all cases 

in a single dependent variable.  The CART method does an exhaustive search until the split 

maximizes the reduction in the value of this fit measurement. 

jp
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There is actually no limit on the number of splits in the tree method.  Normally, some 

criteria must be set.  Total purification of the nodes is unreasonable if the variables are assumed 

to be measured with some degree of error.  One option for controlling when splitting stops is to 

allow splitting to continue until all terminal nodes are pure or contain no more than a specified 

minimum number of cases or objects.  Splitting will stop when all terminal nodes containing 

more than one class have no more than the specified number of cases or objects.   Another option 

for controlling when splitting stops is to allow splitting to continue until all terminal nodes are 

pure or contain no more cases than a specified minimum fraction of the sizes of one or more 

classes. 

In choosing the right-sized tree, cross-validation (CV) can be used.  In CV, the 

classification tree is computed from the learning sample, and its predictive accuracy is tested by 

applying it to predict class membership in the test sample.  If misclassifications for the test 

sample exceed the misclassifications for the learning sample, this indicates poor CV and that a 

different sized tree might cross-validate better.  While there is nothing wrong with choosing the 

tree with the minimum CV misclassifications as the optimal sized tree, there will often be several 

trees with CV misclassifications close to the minimum.  A smaller tree might be desirable for 

parsimony.  Breiman et al. (1984) proposed a "1 SE rule" for making this selection.  This rule 

chooses the smallest-sized tree whose CV misclassification does not exceed the minimum CV 

misclassification plus one times the standard error of the CV misclassification for the minimum 

CV misclassification tree.  

 A review of literature has found only one study that has compared tree classification to 

traditional parametric analyses (Lim & Loh, 2000).  However, this study did not consider the 

effect of assumption violations, and only used existing data sets for their comparison.  There is 
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need for further research into the use of tree structures and the rate of misclassifications under 

various conditions, especially in comparison to traditional classification methods. 

 

Educational Importance 

 A possible implication of the study is a classification procedure more robust to 

violation of assumptions than traditional parametric analysis procedures.  The tree-structured 

approach could be an alternative procedure to use in cases of severe assumption violations for 

discriminant and logistic regression analyses if it is shown to be comparable in accuracy.  

Complex nonlinear data sets could possibly be analyzed with less misclassification than 

traditional parametric analyses.  As mentioned previously, very little study has been conducted 

comparing alternative nonparametric classification methods to parametric methods.  Tree-

structured approaches are widely used in many circles (such as business and medical 

applications), and with more thorough comparisons with traditional approaches, could become a 

viable alternative for many educational practitioners. 

Some researchers have already approached the analysis of their research questions using 

tree methods.  While the use of classification trees is not widespread in educational research (as 

compared to other disciplines), the technique has been used in a variety of ways with good 

success.  Williamson et al (1998) used classification trees for quality control processes in 

automated constructed response scoring.  Yan, Lewis, and Stocking (1998) showed the use of 

classification trees in item response theory.  In particular, the authors develop a nonparametric 

adaptive testing algorithm for computerized adaptive testing.  They show that a classification tree 

approach outperforms an IRT approach when the assumptions of IRT are not met. 
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Shim et al (1999) used the CART method to classify teacher survey response rates (low 

response group versus high response group) based on school demographic characteristics.  The 

researchers indicate that discriminant or cluster analysis might be appropriate in situations that 

assumptions (such as equal covariance matrices), but that classification trees are much more 

accurate in situations in which these assumptions are not met.  The authors also mention how the 

tree method is more useful for explanatory purposes than traditional approaches.  No evidence is 

given to either of these claims, and this is where this research attempts to fill that void.   
 

Method 

 The design of this study closely mirrors that of Fan & Wang (1999).  In this study, the 

authors compared the classification rates of discriminant analysis to logistic regression.  Their 

study looked at only three of the four conditions of this study (not considering normality since 

this issue had been investigated in detail for these two analyses).  Data sets will first be 

constructed using Monte Carlo simulations in regard to four conditions:  normality violation, 

homogeneity of covariance matrices violation, varying sample size (n = 60, 100, 200, and 400), 

and varying prior probabilities (0.50:0.50, 0.25:0.75, and 0.10:0.90).    The Monte Carlo 

simulations will be conducted using the statistical software R.  Assumptions will be checked for 

both data sets to insure that violations are only present in the all but the first data set.  For each 

condition examined in the Monte Carlo study, 1000 classification replications will be simulated.  

The design for the various data structures, with 1000 replications in each cell, requires the 

generation and model-fitting of 48000 ([2 2 4 3] 1000)× × × ×  samples. 
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 Linear discriminant, logistic analyses, and tree-structured allocation rules will then be 

conducted in R for all data sets.  Since group membership information will be available, 

misclassifications will be calculated for each.   

 

Data source 

 All data for this study will be derived through Monte Carlo simulation (Fan, Felsovalyi, 

Sivo, & Keenan, 2002).  Various data sets will be constructed via Monte Carlo methods using R.  

Table 1 presents the data structure pattern, which is modeled after the one presented by Fan & 

Wang (1999).  Three predictors are arbitrarily simulated according to the correlation pattern 

matrix presented in Table 1, with respected means and variances.  The degree of group 

separation in multivariate space (as measured by the Mahalanobis Distance) is presented as well. 

------------------------------------- 
Insert Table 1 about here. 

               ------------------------------------- 

All multivariate normal data was simulated through the matrix decomposition method (Kaiser & 

Dickman, 1962) with linear transformations.  Non-normal data was generated by using 

Fleishman’s power transformation method (Fan et al, 2002).  The degree of skewness and 

kurtosis for each simulated predictor is also shown in Table 1. 

 For each sample, a simulated population is first constructed which is 20 times larger than 

the size of the sample.  Each simulated population is constructed for normal and non-normal 

data, as well as equal and unequal covariance matrices.  From each population, varying sample 

sizes are randomly drawn (n = 60, 100, 200, and 400), and the proportions for the two groups 

vary according to the prior probabilities (0.50:0.50, 0.25:0.75, and 0.10:0.90).   
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 For each sample that is drawn, the data is fitted to the linear discriminant, logistic 

regression, and tree method.  The classification error rates are also obtained.  For LDA, the “lda” 

function in R was used; for logistic regression, the “glm” function is used; and for the tree 

method, the “tree” function is used (which closely models the CART method in R).  The code for 

the “tree” function gives misclassifications for both groups, so the code had to be modified to 

also print the misclassifications for each group separately.  To correct for the upward bias in 

classification, the “leave-one-out” approach was incorporated in the classification rates in R. 

 

Results and conclusions 

 The results of the study parallel the findings of Fan & Wang (1999) in regard to the 

discriminant and logistic regression.  The comparisons between these two methods will not be 

discussed in this paper.  Instead the focus will be on the tree method compared to the other two 

methods. 

 The classification error rates for Group 1 (the smaller or equal of the two groups) are 

presented in Table 2.  These figures show that under almost all conditions, the tree method 

outperforms both discriminant and logistic regression approaches. 

------------------------------------- 
Insert Table 2 about here. 

------------------------------------- 
 

Table 2 first presents the conditions of multivariate normality and equal covariance matrices.  

For equal population proportions (priors = 0.50), we note that LDA and LR have similar 

misclassification rates (roughly 10%) regardless of sample size.  In comparison, the tree method 

has a consistently lower error rate (roughly 7%).  As Group 1 becomes smaller in size (smaller 

prior), there is a rapid increase in misclassification for both the LDA and LR procedures.  The 
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LDA procedure has about 14% misclassification rate for a prior of 0.25, and about 20% 

misclassification for a prior of 0.10.  For this condition, LR classification rate was not as stable, 

with about 16% misclassification rate for a prior of 0.25, and about 25% misclassification for a 

prior of 0.10.  The tree method performed better than LR, but equally good to the LDA.  For a 

prior of 0.25, the tree misclassification rate was about 13%, and about 20% misclassification for 

a prior of 0.10.  The classification rates in Table 2 also indicate that in general the tree method 

performs better than either method as the prior becomes smaller, except in the case of larger 

sample sizes.  For small priors and large sample sizes, the tree method performed slightly worse 

than both LDA and LR.  However, for small sample sizes, the tree method was substantially 

better than both methods. 

 For the condition of multivariate normality and unequal covariance matrices, both the 

LDA and LR performed worse.  As Fan & Wang (1999) indicate, this should be expected since 

this condition is confounded with the group separation.  That is, the nature in which the 

covariances were made unequal reduces the group separation.  Of particular interest, however, is 

the robustness of the tree procedure under this condition.  While both LDA and LR dramatically 

increased, the misclassification rates for the tree method were about the same (and sometimes 

better).  For LDA, the misclassification rates increased from about 14% to 30% as the prior 

decreased.  The LR’s misclassification increased from about 10% to 35%.  In both cases, the 

misclassification rates for the unequal covariance condition were similar to the equal covariance 

condition for LDA and LR, yet each did have higher error rates.  In comparison, the tree method 

seemed robust to the unequal covariance condition.  The error rates ranges from 3% to 15% as 

the priors decreased.  The tree method was actually more accurate under the condition of unequal 

covariances. 
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 The non-normality condition is also presented in Table 2.  The findings are similar to the 

previous discussion, except that LR has slightly better misclassification rates as compared to 

LDA.  Yet, in the non-normality condition (for both equal and unequal) covariance condition, the 

tree method outperformed the other methods.  The only exception to this was for the case of 

small priors and large sample sizes for equal covariance condition.  In this situation, there is no 

visible difference between any of the three methods.  When the covariance matrices were 

unequal, however, the tree method was visibly better than both LDA and LR (sometimes more 

than half the misclassification rate). 

 The findings indicate that LDA and LR are equally good when the prior probabilities are 

approximately equal, yet the LR seems more accurate than LDA in classification when 

predicting for smaller groups.  The best classification rate, regardless of assumptions of 

normality or covariance matrices, is found with the tree method.  This method is robust in regard 

to most conditions, and has consistent misclassification rates regardless if the group gets smaller.  

In situations in which large samples are taken and the covariance assumption is assumed to be 

met, then the results indicate that any of the three methods do equally good.   In all other 

situations, the tree method appears to be more accurate. 

 The classification error rates for Group 2 (the equal or larger of the two groups) are 

presented in Table 3.  In a similar fashion to the previous results, these figures show that under 

almost all conditions, the tree method outperforms both discriminant and logistic regression 

approaches. 

------------------------------------- 
Insert Table 3 about here. 

------------------------------------- 
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 We note that for both normality and non-normality conditions, LDA and LR had similar 

misclassification rates for equal priors for the equal covariance condition.  This pattern continued 

under the equal covariance condition even as the group became larger.  However, for the unequal 

covariance condition, LDA was more accurate when the groups were approximately equal, and 

performed more like LR as the group became larger.  When considering the tree method, we note 

that the misclassifications were typically better than both the LDA and LR.  The LR approach 

appears to have a slight advantage over LDA for classification of small groups, while LDA tends 

to perform slightly better for larger groups.  Yet, in both cases, the tree method had lower 

misclassification rates.  The tree method appears to be the method of choice for classification 

involving both small and large groups. 

 The classification error rates for both groups are presented in Table 4.  Once again, these 

figures show that under almost all conditions, the tree method outperforms both discriminant and 

logistic regression approaches. 

------------------------------------- 
Insert Table 4 about here. 

------------------------------------- 
 

As noted in the results in Table 2, for situations in which the groups differ in size by extreme 

proportions (priors of 0.10:0.90), the tree method is not visibly better than the other two methods 

when large samples are taken and the covariance assumption is assumed to be met.  In all other 

conditions, the tree method has better accuracy in classification. 

 It is interesting to note that sample size appears to have little effect on both LDA and LR 

analysis.  While misclassification decreased slightly for both methods as sample size increased, 

both methods appear to be consistent across sample size.  The tree method is shown to be 

consistent across sample size as well, except in the equal covariance condition for extreme sized 
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groups.  Under this situation, the tree method tended to have higher misclassifications as the 

sample size increased. 

 

Practical Implications 

 As Fan and Wang (1999) indicate, educational studies are prone to have one group 

smaller than another.  This can be for a variety of reasons, including students who drop from the 

study, or from considering groups which have smaller population sizes (e.g. dropouts).  Thus, of 

practical importance to educational studies is the accuracy of classification for smaller groups.  

The results of this study indicate that the tree method appears to be the most accurate in the 

classifications for smaller groups, with LR being the second best technique.  The best 

classification rate, regardless of assumptions of normality or covariance matrices, is found with 

the tree method.  This method is robust in regard to most conditions, and has consistent 

misclassification rates regardless of how small the group is.  If a researcher is involved in a study 

that has large samples and the covariance assumption is assumed to be met, then the results 

indicate that any of the three methods do equally good.   In all other situations, the tree method 

appears to be more accurate.  That is, if an educational researcher is considering a classification 

for which there are high-stakes and costs associated with misclassification, then the tree method 

should be utilized in that case over LDA and LR techniques. 

 Recall that the LR approach appears to have a slight advantage over LDA for 

classification of small groups, while LDA tends to perform slightly better for larger groups.  Yet, 

in both cases, the tree method had lower misclassification rates.  In situations that the researcher 

is more interested in classification for a larger group, then the tree method seems to be the best 
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procedure, followed by LDA.  The tree method appears to be the method of choice for 

classification involving both small and large groups. 

 The hindrance to using the tree method is the availability of software that includes this 

procedure.  Many statistical programs, such as SAS, include these procedures in their data 

mining software, which is usually not available to the common researcher (and is often much 

more expensive than the base software).  There are add-on modules for some popular statistical 

packages.  For instance, SPSS has an optional add-on called “Answer Tree” which can perform 

classification tree analysis.  Thus, while the tree method seems to be the most accurate method in 

terms of classification rates, its use is somewhat limited to the practitioner since the technique is 

often not included in the base programs of most major statistical software.  One solution is the 

use of the program R, which was used in this study.  The “tree” function provides a CART-like 

methodology, and the program and function are free to any user. 

 

Limitations and Future Study 

 This study only considered typical conditions and assumptions for discriminant and 

logistic regression.  No consideration of complex data sets involving extensive missing data or 

variables was given.  The researchers felt that the tree method should be compared to typical data 

that is found in research.  Some researchers believe that the tree method will be substantially 

better for complex data, yet we felt that this approach limited the application of tree methods to 

unusual conditions which are not always found in practice.  However, we feel that such studies 

should now be done to determine how the various methods compare in regard to extreme data 

sets including the issue of missing data and predictors. 
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 The number of techniques was limited in the study.  For example, there are other 

parametric classification methods other than LDA and LR.  These methods should be considered 

in any replication of the results.  In addition, many new classification tree methods have surfaced 

in recent years.  A promising new technique is the QUEST method of classification trees.  

Studies should be made to determine the effect of these newer methods as well. 

 Some research has indicated that using real data could yield different classification results 

than simulated data.  Further research should be done to see if the results of this study are 

consistent with the analysis of real data.  The predictors in this case were continuous variables.  

A future study might consider the effect of binary and polytomous categorical predictors, and 

how these effect the misclassifications for the techniques given.  While techniques such as LR 

can be modified to include binary and polytomous categorical predictors, the inclusion of such 

variables can present challenges in interpretation for some practitioners.  The tree method might 

not only provide better classifications in such an instance, but also be much simpler to interpret.  

In addition, this study limited its emphasis on two-group classification.  This study could be 

extended to consider misclassifications for more than two-groups.   

 Finally, the authors used a similar data pattern as used by Fan and Wang (1999) to 

provide a point of replication with the emphasis on the tree method.  But as these authors point 

out, varying the data patterns and dimensions would be of great benefit for future research.  In 

particular, the results indicated that the non-normality condition had little effect on the results of 

any technique.  Upon reflection of the data generation, one will notice that the amounts of 

skewness and kurtosis are somewhat moderate and not extreme for the non-normality condition.  

These values should be modified to consider the effect of the degree of non-normality on the 

techniques.  The effect of extremely non-normal data would be interesting to consider, although 
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the researchers hypothesize that in such a condition the misclassifications for LDA and LR will 

be worse while the tree method robust.  The amount of group separation can also be varied to see 

how the techniques differ in classifying groups that are similar versus vastly separated. 

 

Summary and Conclusions 

 This study compared the performance of the linear discriminant analysis (LDA), logistic 

regression (LR), and a tree-classification approach (CART) for a two-group classification 

analysis.  Four conditions were considered in this study:  mulitivariate normality (two levels), 

covariance matrices (two levels), sample size (four levels), and prior probabilities (three levels).  

The findings indicate that LDA and LR are equally good when the prior probabilities are 

approximately equal, yet the LR seems more accurate than LDA in classification when 

predicting for smaller groups.  The best classification rate, regardless of assumptions of 

normality or covariance matrices, is found with the tree method.  This method is robust in regard 

to most conditions, and has consistent misclassification rates regardless if the group gets smaller.  

In situations in which large samples are taken and the covariance assumption is assumed to be 

met, then the results indicate that any of the three methods do equally good.   In all other 

situations, the tree method appears to be more accurate. 

 We note that for both normality and non-normality conditions, LDA and LR had similar 

misclassification rates for equal priors for the equal covariance condition.  This pattern continued 

under the equal covariance condition even as the group became larger.  However, for the unequal 

covariance condition, LDA was more accurate when the groups were approximately equal, and 

performed more like LR as the group became larger.  When considering the tree method, we note 

that the misclassifications were typically better than both the LDA and LR.  The LR approach 
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appears to have a slight advantage over LDA for classification of small groups, while LDA tends 

to perform slightly better for larger groups.  Yet, in both cases, the tree method had lower 

misclassification rates.  The tree method appears to be the method of choice for classification 

involving both small and large groups. 
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Table 1 

Data Structure Simulated in the Study 

 
Data Structure

   
Skewa

 
Kurtosisa

 
X1 1.00   

 
0.75 

 
0.80 

X2 0.30 (0.34)b 1.00  −0.75 0.80 
X3 0.50 (0.53) 0.40 (0.51) 1.00 0.75 2.40 

 
µ1 5.00 5.00 5.00c

  

µ2 9.00 9.00 9.00d   
 
σ2 4.00 4.00 4.00e

  

σ2 16.00 16.00 16.00f   
 
Group Separation (the Mahalanobis Distance:  2 1

1 2 1 2( ) ' ( )µ µ µ−= − Σ −D µ  
  

 Equal Σs: D2 = 6.70    

 Unequal Σs: D2 = 2.68  (for priors:  0.50:0.50)   

a Skewness and kurtosis parameters for non-normal transformations. 
b Intermediate correlations for non-normal data given in parentheses. 
c Mean vector for Group 1. 
d Mean vector for Group 2. 
e Set of variances for both groups for the condition of equal covariance matrix. 
f Set of variances for group 2 for the condition of unequal covariance matrix (group  
 1 remains unchanged)
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Table 2 
Classification Error Rates for Group 1 (Smaller or Equal Group) 

    Sample Size 
Priors N Σ Method 60 100 200 400 
0.50 Yes Equal LDA .10 (.05) .10 (.03) .10 (.02) .10 (.06) 

   LR .11 (.04) .11 (.03) .10 (.02) .10 (.05) 
   TREE .07 (.05) .06 (.04) .06 (.04) .08 (.04) 

0.25   LDA .15 (.08) .14 (.06) .14 (.04) .14 (.03) 
   LR .18 (.08) .16 (.06) .15 (.04) .14 (.03) 
   TREE .13 (.09) .11 (.07) .12 (.06) .14 (.06) 

0.10   LDA .21 (.17) .20 (.12) .19 (.08) .18 (.06) 
   LR .31 (.16) .26 (.11) .21 (.07) .19 (.05) 
   TREE .14 (.12) .22 (.14) .20 (.10) .21 (.09) 

0.50  Unequal LDA .14 (.04) .14 (.03) .14 (.02) .14 (.02) 
   LR .12 (.04) .11 (.03) .10 (.02) .10 (.02) 
   TREE .05 (.04) .04 (.03) .03 (.02) .03 (.02) 

0.25   LDA .22 (.07) .21 (.05) .20 (.04) .20 (.03) 
   LR .22 (.08) .20 (.06) .20 (.04) .18 (.03) 
   TREE .10 (.08) .08 (.06) .08 (.04) .07 (.04) 

0.10   LDA .35 (.23) .32 (.17) .30 (.11) .28 (.07) 
   LR .42 (.18) .37 (.14) .33 (.09) .31 (.06) 
   TREE .13 (.12) .15 (.13) .16 (.09) .15 (.08) 

0.50 No Equal LDA .09 (.04) .09 (.03) .09 (.02) .09 (.02) 
   LR .10 (.04) .09 (.03) .09 (.02) .09 (.02) 
   TREE .04 (.04) .03 (.02) .03 (.03) .03 (.02) 

0.25   LDA .16 (.08) .15 (.06) .14 (.04) .14 (.03) 
   LR .16 (.08) .13 (.06) .11 (.04) .11 (.03) 
   TREE .09 (.07) .06 (.05) .05 (.04) .07 (.05) 

0.10   LDA .29 (.18) .27 (.13) .24 (.09) .24 (.06) 
   LR .24 (.18) .20 (.13) .13 (.08) .10 (.05) 
   TREE .09 (.10) .12 (.10) .10 (.07) .09 (.06) 

0.50  Unequal LDA .12 (.04) .12 (.03) .12 (.02) .12 (.02) 
   LR .10 (.04) .09 (.03) .08 (.02) .08 (.01) 
   TREE .03 (.04) .03 (.03) .02 (.02) .01 (.01) 

0.25   LDA .21 (.06) .20 (.05) .19 (.04) .19 (.02) 
   LR .17 (.07) .14 (.05) .12 (.04) .11 (.03) 
   TREE .08 (.07) .05 (.05) .03 (.03) .03 (.03) 

0.10   LDA .42 (.22) .39 (.16) .35 (.11) .34 (.07) 
   LR .27 (.16) .22 (.11) .16 (.06) .13 (.04) 
   TREE .08 (.10) .11 (.10) .08 (.07) .06 (.05) 

Note.  N = multivariate normality; Σ = covariance matrix; LDA = linear discriminant analysis; 
 LR = logistic regression; TREE = tree method (analogous to CART)
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Table 3 
Classification Error Rates for Group 2 (Equal or Larger Group) 

    Sample Size 
Priors N Σ Method 60 100 200 400 
0.50 Yes Equal LDA .10 (.05) .10 (.04) .10 (.02) .10 (.02) 

   LR .11 (.04) .11 (.03) .10 (.02) .10 (.02) 
   TREE .08 (.05) .07 (.04) .07 (.03) .08 (.04) 

0.75   LDA .07 (.03) .06 (.02) .06 (.02) .06 (.01) 
   LR .07 (.03) .07 (.02) .06 (.02) .06 (.01) 
   TREE .04 (.03) .04 (.03) .03 (.02) .04 (.02) 

0.90   LDA .04 (.02) .04 (.02) .04 (.01) .04 (.01) 
   LR .04 (.02) .04 (.02) .04 (.01) .04 (.01) 
   TREE .02 (.02) .01 (.01) .02 (.01) .02 (.01) 

0.50  Unequal LDA .03 (.03) .03 (.03) .02 (.02) .02 (.01) 
   LR .08 (.04) .07 (.03) .07 (.02) .06 (.01) 
   TREE .06 (.05) .06 (.04) .06 (.03) .07 (.03) 

0.75   LDA .05 (.03) .04 (.02) .04 (.02) .04 (.01) 
   LR .06 (.03) .06 (.02) .06 (.02) .06 (.01) 
   TREE .04 (.03) .04 (.02) .03 (.02) .04 (.02) 

0.90   LDA .05 (.02) .05 (.02) .05 (.02) .05 (.01) 
   LR .05 (.02) .05 (.02) .05 (.01) .04 (.01) 
   TREE .03 (.02) .02 (.02) .02 (.01) .02 (.01) 

0.50 No Equal LDA .09 (.04) .08 (.03) .08 (.02) .08 (.02) 
   LR .09 (.04) .09 (.03) .08 (.02) .08 (.02) 
   TREE .05 (.05) .04 (.03) .04 (.03) .05 (.03) 

0.75   LDA .06 (.03) .05 (.02) .05 (.02) .05 (.01) 
   LR .05 (.03) .05 (.02) .05 (.02) .05 (.01) 
   TREE .01 (.02) .02 (.02) .02 (.01) .02 (.02) 

0.90   LDA .04 (.03) .03 (.02) .03 (.01) .03 (.01) 
   LR .03 (.02) .03 (.02) .03 (.01) .03 (.01) 
   TREE .01 (.02) .01 (.01) .01 (.01) .01 (.01) 

0.50  Unequal LDA .03 (.03) .03 (.03) .03 (.02) .03 (.01) 
   LR .07 (.04) .07 (.03) .07 (.02) .07 (.01) 
   TREE .04 (.04) .03 (.03) .03 (.02) .03 (.02) 

0.75   LDA .03 (.03) .03 (.02) .03 (.02) .03 (.01) 
   LR .04 (.03) .04 (.02) .04 (.01) .04 (.01) 
   TREE .02 (.02) .02 (.02) .02 (.01) .02 (.01) 

0.90   LDA .05 (.03) .05 (.02) .05 (.02) .05 (.01) 
   LR .02 (.02) .02 (.02) .02 (.01) .02 (.01) 
   TREE .01 (.02) .01 (.01) .01 (.01) .01 (.01) 

Note.  N = multivariate normality; Σ = covariance matrix; LDA = linear discriminant analysis; 
 LR = logistic regression; TREE = tree method (analogous to CART)
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Table 4 
Classification Error Rates for Both Groups 

    Sample Size 
Priors N Σ Method 60 100 200 400 

0.50:0.50 Yes Equal LDA .10 (.04) .10 (.03) .10 (.02) .10 (.01) 
   LR .11 (.04) .11 (.03) .10 (.02) .10 (.02) 
   TREE .07 (.03) .07 (.02) .07 (.02) .08 (.01) 

0.25:0.75   LDA .09 (.04) .08 (.03) .08 (.02) .08 (.01) 
   LR .10 (.04) .09 (.03) .08 (.02) .08 (.01) 
   TREE .06 (.02) .06 (.02) .05 (.01) .06 (.01) 

0.10:0.90   LDA .05 (.03) .05 (.02) .05 (.01) .05 (.01) 
   LR .06 (.03) .06 (.02) .05 (.01) .05 (.01) 
   TREE .04 (.02) .03 (.01) .03 (.01) .03 (.01) 

0.50:0.50  Unequal LDA .10 (.03) .09 (.03) .09 (.02) .09 (.01) 
   LR .10 (.04) .09 (.03) .09 (.02) .08 (.01) 
   TREE .06 (.02) .05 (.02) .05 (.01) .05 (.01) 

0.25:0.75   LDA .10 (.04) .09 (.03) .09 (.02) .09 (.01) 
   LR .10 (.04) .10 (.03) .09 (.02) .09 (.01) 
   TREE .05 (.02) .05 (.02) .05 (.01) .05 (.01) 

0.10:0.90   LDA .07 (.03) .07 (.02) .07 (.02) .07 (.01) 
   LR .08 (.03) .07 (.03) .07 (.02) .07 (.01) 
   TREE .04 (.02) .03 (.01) .03 (.01) .03 (.01) 

0.50:0.50 No Equal LDA .09 (.04) .09 (.03) .09 (.02) .08 (.01) 
   LR .10 (.04) .09 (.03) .09 (.02) .09 (.01) 
   TREE .04 (.02) .04 (.01) .03 (.01) .04 (.01) 

0.25:0.75   LDA .08 (.04) .08 (.03) .08 (.02) .08 (.01) 
   LR .08 (.04) .07 (.03) .07 (.02) .06 (.01) 
   TREE .03 (.02) .03 (.01) .03 (.01) .03 (.01) 

0.10:0.90   LDA .06 (.03) .06 (.02) .05 (.02) .05 (.01) 
   LR .05 (.03) .04 (.02) .04 (.02) .03 (.01) 
   TREE .02 (.02) .02 (.01) .02 (.01) .02 (.01) 

0.50:0.50  Unequal LDA .08 (.03) .08 (.03) .08 (.02) .08 (.01) 
   LR .08 (.04) .08 (.03) .08 (.02) .07 (.01) 
   TREE .04 (.02) .03 (.01) .02 (.01) .02 (.01) 

0.25:0.75   LDA .08 (.03) .08 (.03) .08 (.02) .08 (.01) 
   LR .08 (.03) .07 (.03) .06 (.02) .06 (.01) 
   TREE .03 (.02) .03 (.01) .02 (.01) .02 (.01) 

0.10:0.90   LDA .08 (.03) .08 (.03) .07 (.02) .07 (.01) 
   LR .05 (.03) .04 (.02) .04 (.01) .03 (.01) 
   TREE .02 (.02) .02 (.01) .02 (.01) .02 (.01) 

Note.  N = multivariate normality; Σ = covariance matrix; LDA = linear discriminant analysis; 
 LR = logistic regression; TREE = tree method (analogous to CART) 
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Figures 

Figure 1. 
Sample Classification Tree Diagram 
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Figure 2 

Classification of Response Rate of Teachers 
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