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This paper describes a design research study with ten second-grade students who are
part of the Measure Up (MU) research and development project underway at the
University of Hawai ‘i. Students were asked how they counted in multiple bases,
specifically how they knew when to go to a new place value and why it was necessary
to do so. All ten students showed skillfulness in counting and representing the
numbers, but analysis of their responses showed different levels of generalization of
method and explanation of underlying ideas.

INTRODUCTION

Educators and the general public continually lament that children are not prepared for
the challenge of complex and sophisticated mathematics found in high school
mathematics and beyond. To help students attain higher levels of mathematics it is
imperative that we reconsider the foundation that children receive in the early grades.

With this in mind, we began a new study called Measure Up (MU) that focuses on
establishing a different (and stronger) mathematical foundation from which children
can build their understandings in the early grades. One area of early mathematics that
students explore from a different perspective is counting.

Theoretical Foundation of Measure Up and Counting

Children in MU begin their mathematical development from the perspective of
measurement and algebraic representations. V. V. Davydov (1975), a Russian
psychologist, proposed that some of Piaget’s findings (1973) suggested limitations on
children’s learning that could be overcome if instruction (and the mathematical
content associated with it) were changed. Vygotsky’s distinction between
spontaneous and scientific concepts (1978) provided a means by which children
could learn more sophisticated mathematics before we may have thought they were
developmentally ready. Spontaneous or empirical concepts are developed when
children can abstract properties from concrete experiences or instances. Scientific
concepts, on the other hand, develop from formal experiences with properties
themselves and progress to identifying those properties in concrete instances. As an
example, spontaneous concepts progress from natural numbers to whole, rational,
irrational, and finally real numbers, in a very specific sequence. Computations and
other ideas are taught within each number system and are often not connected across
systems. Scientific concepts reverse this idea and focus on real numbers in the larger
sense first, with specific cases found in natural, whole, rational, and irrational
numbers at the same time. Davydov (1975) conjectured that a general-to-specific
approach in the case of the scientific concept was much more conducive to student
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understanding than using the spontaneous concept approach. This idea can be
extended to counting even though counting is thought to be a very specific and
concrete action.

Drabkina (1962, (cited in Davydov, 1975)) and Minskaya (1975) noted that counting
is not a simple act. It involves defining a unit of measure and using it a whole number
of times. Thought of in this way, it is clear that a one-to-one correspondence requires
that a child ‘see’ the unit and think of it as being iterated multiple times.

In one-to-one correspondence counting, children have to first know what unit they
are using to count. Typically, they assume that they are counting ‘one’ thing, but the
object(s) being counted could be grouped so that multiple objects constitute a unit. To
be competent counters, children also have to understand that objects must be counted
with like units. You cannot, for example, count a group of cups and saucers and say 4
when you counted two of them as a cup and saucer set and two as individual cups. A
unit has to be carefully defined. This notion of counting is well developed in MU
before students move to place value and computations involving multi-digit numbers.

If understanding units is a prerequisite of counting, then what should precede the
introduction of number and counting? From the Davydov perspective (1975)
instruction should begin by having students identify traits and attributes of objects
that can be compared. These comparisons can be described without using numbers—
shorter, longer, heavier, lighter, more than, less than, and equal to--and represented
with relational statements, like G > L, that use letters to represent the quantities being
compared. Fundamentally, students realize that if G > L, then it is also the case that L
< G. First-grade students can write these relational statements and understand what
they mean, because the statements describe the results of physical actions that the
children themselves have performed in the comparison process.

These comparisons, based on Davydov’s proposal, can be used to model equivalence
properties, addition, and subtraction. For example, if B> T, then T# B, B# T,and T
< B. As one first-grader noted, ‘if it’s an inequality, then you can write four
statements. If it’s equal, you can only write two.’ [Justin, 2003] From these
comparisons of two unequal amounts, they can be made equal by performing one of
two actions—decrease the greater quantity (subtraction) or increase the lesser
quantity (addition). The quantity added or subtracted is the difference between the
quantities.

All of these ideas are developed before number is introduced in grade 1. Dealing with
a problem in which students must find the relationship between two quantities
requires identifying a unit and then defining the relationship between the unit and the
larger quantity. These experiences establish the need to clearly identify the unit
before counting because its definition has an impact on the counting process and
result. It is only now that number is introduced.

Number introduction is linked to measurement, as a means of representing the
relation between a chosen unit and a larger quantity. Children must identify the unit
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before a numerical value can be used to represent a quantity. The unit used to
measure two or more quantities must be the same if they are to be compared.
Children as young as 6 years old can determine the relationship between units of
measurement if a quantity is measured first with one unit and then with a different
one. For example, if mass F'is measured with mass-unit B first and then by mass-
unit £, the relationships can be expressed as—
F F

— 7

B E
This indicates to students that mass-unit B is larger than mass-unit £ because it took
fewer of the B units to measure the quantity.

- 9

This idea is then extended to grade 2 where students begin to explore place value.
Traditionally, children work with the decimal or base-ten system. Using Davydov’s
ideas, MU introduces place value instead with measurement units. Students may see
proportional measures in a table format that motivate the notion that when you create
a quantity of units, at some designated size, the unit is counted differently. For
example, in a table format like the following, students combine quantities to create a
new quantity. The units (K and N) are defined by columns, the quantities (B, C, and
T) by rows. Next, students explore the exchanging of units, given that a larger
intermediate unit is made up of a specified number of smaller units (see table
below).In the case of the second table, it takes 4 of the K units to make 4, so an
exchange can be made.

A K
K | N
3218 1 > |k
22 ¢ /\1
o
T /
2 |z

This idea is then extended to place value, beginning with bases smaller than 10.
Students are given a scenario such as there exists an extraterrestrial group of
Ternarians that can only use the digits 0, 1, 2, and 3. How would they count? By
exploring the smaller bases first, students create means to exchange units to generate
other successively larger ones. For example, if using area-unit £, in base three, they
realize that it takes three of the area-units E to create a Place II area. Following the
generalization they have made, Place III requires three of the Place II areas; Place IV
requires three of the Place III areas, and so on. The exchanging of the smaller units
for a larger unit helps student develop algorithms for addition and subtraction that
involve regrouping, but it also directly links to counting.
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DESCRIPTION OF THE STUDY

The present study is part of the MU research and development project and focuses on
second-grade students’ ability to count in multiple bases and their understanding of
the underpinnings for a place-value counting system. The ten students (six boys and
four girls) at the Education Laboratory School (ELS) are representative of the larger
student populations in the state. At ELS, for example, student achievement levels
range from the 5th to 99th percentile, with students from low to high socio-economic
status and ethnicities including, but not limited to, Native Hawaiian, Pacific
Islanders, African-American, Asian, Hispanic, and Caucasian. Students at ELS are
chosen through a stratified random sampling approach based on achievement,
ethnicity, and SES.

The project team has engaged in design research since the fall of 2001. Design
research (see Educational Research, Volume 32, No.I) in the domain of MU is
constituted by a focus on developing a theory about children’s learning in elementary
mathematics rather than on ‘testing’ lessons in a write-test-revise cycle. This study
used a one-on-one (teacher-experimenter and student) design so that we could study
the students’ learning in depth and detail (Cobb, Confrey, diSessa, Lehrer, and
Schauble, 2003). Specifically, we interviewed the students using a method similar to
that used by others for curriculum research and development (Rachlin, Matsumoto, &
Wada, 1987). Listening to the student’s explanation of his/her thinking allows us to
analyze student understandings and helps the project team determine approximations
of sophistication and complexity levels of the mathematics that students can handle.

Description of Questions

Of particular concern in this study was the students’ ability to count in multiple bases
and how that ability is connected to an understanding of the structure of a place-value
number system. Students had engaged in a series of tasks designed to give them
experience with place value using multiple bases in the context of measurement. In
lessons previous to the study they had created concrete representations of units using
length, area, volume, and mass, and had had much experience combining, grouping
and exchanging units. In their class work students demonstrated skill in numbering in
multiple bases on number lines and on blank paper. This study was conducted at that
point in the lessons where we needed to know more about how the students were
integrating the tasks that emphasized the conceptual development with those focused
more on building skill and fluidity in counting orally and writing numbers.

The following questions were asked individually of each of the ten students:

1)  When you are writing the numbers in any base, how do you know when
you need to go to the next place?

2)  Explain why you have to go to the next place.
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Because our interest is in the conceptual underpinnings of an overt skill, we
deliberately made the questions general and open-ended to avoid influencing
students’ own thinking. [Need more help here]

Analysis of Response

The responses were analyzed along two dimensions: level of generality and basis of
explanation. Within each dimension the responses fell into two categories.

Level of Generality

Uses a general rule Uses specific examples

Generalizes the method to any base. Responds only using particular bases.
“You can’t use the base number.” “You can’t go up to six in base 6. When
(Dusty) you count six times it means you go to

“You can write whatever number before the next place.” (Bryson)

the base; then you change it.” (Anthony) | “Because one, base 3; two, base 3; one-
zero, base 3. You can’t say ‘three’ in the

“It depends on what base you’re in. You .
[units] place.” (Brooke)

can’t go to the base number. You can go
up to one less.” (Justin)

Basis of Explanation

Uses procedural explanations Uses conceptual explanations
Explains what you do. Refers to the unit of measure.
Explains when you change places. Refers to the structure of the number
Uses ease of communication as a system.

rationale. Relates the base to the supplementary

“You have to do it [move to the next measure £y or place IT unit.

place] to count higher.” (Anthony) Refers to grouping the main measures to

“You might get mixed up. You don’t form the supplementary measure.

know how much it [referring to the “The base tells you how many times to
value of the number] is.” (Justin) use the unit.” (Michael)

“You can’t go past five because it’s in “The base tells you how many units to
base 5.” (Laylie) use.” (Alicia)

Table I: Grade 2 Response Categories with Examples

Responses in which students described a general “rule” for numbering in any base
were considered more advanced than those in which students only referred to
numbering in specific bases. Similarly, when explaining the basis for representing the
numbers, responses that included conceptual reasons were considered more advanced
than those that referred only to procedural ones. See Table I above.
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RESULTS

Table II below summarizes how the students’ responses in both dimensions fell into
the categories. In each domain, responses that contained elements of both categories
were counted with the higher category. For example, with level of generality a
response that used specific bases and gave a generalized rule to explain how one
knows when to move to place II was counted as conceptual.

Level of Level of
Generality: Generality:
Specific General
Basis of
Explanation: 3 3
Procedural
Basis of
Explanation: 1 3
Conceptual

Table II: Second Graders’ Responses by Category

In responding to Question 1, all of the second-grade students knew when they had to
go to the next place when counting and writing numbers in a base. Three students had
to be prompted after the initial question with a more specific context such as, “Let’s
say, you were writing the numbers in base 5.” The group of responses indicates a
progression from responding by counting in a specific base to generalizing a rule for
any base with no specific reference to a particular one. Laylie answered question 1 by
merely counting in base five, “I had to do one, base 5; two, base 5; three, base 5;
four, base 5; one-zero, base 5.” Logan, used specific examples, but his response
indicates the beginnings of generalization. “If I was in base 2, I do ‘one’ and then I
can’t go ‘two’ because I’m in base 2. But if I’'m in base 4, I do...” At this point he
asked for a pencil and some paper and correctly wrote the numbers starting from 14 to
11,4. Justin started by giving a specific example, “In base 3 you can’t go up to three,
you can only go up to two.” He then went on to generalize, “It depends on what base
you’re in. You can’t go to the base number. You can go up to one less.” Dusty started
his response with a general rule and then gave a specific example, “You can’t use the
base number. Like in base 5 you can’t say ‘five-five, base 5.” Anthony’s response
indicates that he is able to make a generalization about counting and numbering,
“You can write whatever number before the base; then you change it.”

Students’ responses to question 2 were procedural, conceptual or a combination of
both. Six of the ten students answered question 2 using only a procedural
explanation. Procedural justifications either indicated an awareness of some
patterning of when to start numbering in place II or referred to ease of
communication. Laylie said, “You can’t go past five because it’s in base 5,” and
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Dusty said, “If you’re in base 6 you go to the five; then you go to the next.” Justin’s
response represents a procedural explanation based on ease of communication: “You
might get mixed up.” Students who used conceptual reasoning referred to one or
more of the following: the main unit, how many units were needed to create the
supplementary unit as determined by the base, or the structure of measures that
comprise a place-value number system. Erin started her reasoning by saying, “You
can’t know which is the number and which is the base,” but added, it [going to the
next place] means you made another amount of four.” As with the their ability to
generalize writing the numbers in a base, students’ explanations of why one goes to
place II showed progressive development toward conceptual justifications.

IMPLICATIONS

The study focused on our interest in students’ counting in multiple bases and their
sense making of the ideas underlying counting. Students’ responses were analyzed
for degree of generality and the nature of explanation. While all ten students
demonstrated skillfulness in their ability to generate and represent counting numbers
in multiple bases, they varied in how they described their methods for writing the
numbers and in their reasoning of how a place value system works. Students ranged
from operating specifically and procedurally to operating generally and conceptually.

The sophistication of the second-grade students’ responses was further verified by
asking the same set of questions to fourth-, fifth-, and seventh-grade students at ELS
who have not been part of the MU project. Of the 7 fourth and fifth graders and 6
seventh graders only one, a seventh grader, referred to the relationship among the
place values. Many fourth and fifth graders responded to the question about how they
know when to go to the next place by asking, “What’s place value?” Three seventh
graders said they just memorized how to count and didn’t think any more about it.

We note that fewer students answered question 2 using the higher category of
response than in question 1. Although the sample is small, we believe these results
have several important implications for our work. First, they challenge us to continue
to find ways to interweave the concept-development experiences students have with
the skill-building ones. Where we once believed that when conceptual understanding
was carefully established, students could engage in the type of exercises that
promoted automaticity without losing these underpinnings, we now appreciate how
much integration of concept and skill development it takes to maintain both.
Additionally, this study reminds us that students’ apparent competence may not
always be supported by robust conceptual understanding. Implications: the need to
interweave the skill but not lose the conceptual understanding.
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