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USING IRT DIF METHODS TO EVALUATE 

THE VALIDITY OF SCORE GAINS 

Daniel M. Koretz, CRESST/Harvard Graduate School of Education 

Daniel F. McCaffrey, CRESST/RAND 

Abstract 

Given current high-stakes uses of tests, one of the most pressing and difficult problems 
confronting the field of measurement is to develop better methods for distinguishing 
between meaningful gains in performance and score inflation.  This study explores the 
potential usefulness of adapting differential item functioning (DIF) techniques for this 
purpose.  We distinguish between reactive and nonreactive changes in DIF over time 
and relate these to the framework for validating scores under high-stakes conditions 
offered by Koretz, McCaffrey, and Hamilton (2001).  We contrast score-anchored and 
item-anchored approaches to DIF in terms of their potential for this purpose.  We 
explored changes in the distribution of DIF in the NAEP eighth-grade mathematics 
assessment between 1990 and 2000 in five low-gain and five high-gain states, in each 
case treating all other participating states as the reference group.  We used the score-
anchored method of DIF analysis implemented in BILOG-MG (Bock & Zimowski, 
2003b), which allows only item difficulties to vary across groups.  This exploration 
indicated that the approach has potential but confronts several substantial difficulties.  
Further exploration using data from high-stakes testing programs is recommended. 

One of the most pressing and difficult problems confronting the field of 
measurement today is to develop more powerful methods for distinguishing 
meaningful cohort-to-cohort gains in performance from score inflation.  Score 
inflation is defined here simply as increases in scores not accompanied by 
commensurate increases in the aspects of achievement about which score-based 
inferences are drawn.  Studies of a number of high-stakes testing programs have 
shown that the inflation can be very large when educators are held accountable for 
scores.  In some cases, observed gains on high-stakes tests have been several times as 
large as gains on other measures, while in other cases, gains on high-stakes tests 
have been accompanied by no improvement whatever on other measures (e.g., 
Jacob, 2002; Klein, Hamilton, McCaffrey, & Stecher, 2000; Koretz & Barron, 1998; 
Koretz, Linn, Dunbar, & Shepard, 1991).  The current pervasiveness of high-stakes 
uses of tests raises the prospect of widespread score inflation that could mislead 
policymakers and the public about the condition of education.  Moreover, to the 
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extent that score inflation is non-uniform, inferences about the relative effectiveness 
of schools and the impact of educational interventions may be fundamentally 
incorrect.  The result may be inappropriate application of rewards and sanctions and 
a misdirection of innovation. 

Most empirical studies of the validity of gains in scores on high-stakes (or focal) 
tests have examined the degree to which these gains generalize to other (audit) 
measures, such as the National Assessment of Educational Progress (NAEP), that 
have not been the explicit focus of test preparation (e.g., Klein et al., 2000; Koretz & 
Barron, 1998; Koretz et al., 1991).  However, this approach is informative only when 
there is a very large disparity in trends on the two tests (Koretz, 2002).  The degree to 
which generalizability is to be expected depends on the specific inferences users 
base on scores and the consistency of both measures with those inferences.  Because 
systematic information about these considerations is rarely available, modest 
differences in trends are difficult to interpret. 

Accordingly, Koretz, McCaffrey, and Hamilton (2001) argued that to evaluate 
the validity of gains in scores on high-stakes tests more precisely, one would need to 
identify the specific sources of gains in scores and compare these to the inferences 
based on score gains.  The validity of an inference about gains then depends on the 
degree of concordance between the specific patterns of gains shown by the elements 
included in the test and the patterns of gains assumed by the inference.  Applying 
this framework requires identifying the elements that make large contributions to 
gains in scores. 

This study explores the potential utility of differential item functioning (DIF) 
methods for identifying the sources of score gains between cohorts of students from 
the same educational unit (state, school district, or school).  Specifically, we explore 
one class of IRT-based DIF methods.  The methods are tested using state-level NAEP 
data in eighth grade mathematics from 1990 through 2000.  The report discusses 
within- and between-state distributions of DIF, but the arguments would pertain to 
any unit of analysis within which score inflation might occur and sufficient data 
exist for conducting the analyses. 

The report is divided into several sections.  The first sections reconceptualize 
score inflation in terms of DIF, introduce the concepts of reactive and non-reactive 
DIF, and link these to the IRT methods chosen for this study.  The middle sections 
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describe some technical details of the methods used in this study and present the 
principal findings.  The final section discusses implications for future research. 

A Model of Validity Under High-Stakes Conditions 

Koretz, McCaffrey, and Hamilton (2001) consider the inferences that can be 
derived from aggregate cohort-to-cohort gains over time in standardized test scores.  
They conceptualize the validity of inferences about gains under high-stakes 
conditions (VIHS) in terms of performance elements.  This term refers to all of the 
aspects of performance that underlie both performance on a test and inferences 
based on it.  Some of these performance elements are substantive and contribute 
either explicitly or tacitly to the definition of the construct or domain about which 
inferences are drawn.  Others are nonsubstantive.  For example, the use of particular 
item formats may be nonsubstantive and therefore can introduce construct-
irrelevant variability in performance. 

Although evaluation of tests traditionally focuses on the cross-sectional 
correlations among items, VIHS depends also on the potential for performance on 
elements to vary independently over time.  As Koretz et al. (2001) point out, 
performance elements that are correlated in cross-section may nonetheless change 
independently over time.  For example, in a typical secondary-school mathematics 
test, performance in algebra and geometry will typically be highly collinear.  
Nonetheless, if schools increased instruction in algebra by requiring it for all 
students but made no changes to instruction in geometry, performance in algebra 
would be expected to change independently of performance in geometry over time.  
A concrete example of the importance of this fact is found in a study of score gains 
in Kentucky by Koretz and Barron (1998).  The authors compared school-level 
performance on the ACT and the state’s high school accountability test.  Over a 
period of 3 years, means on the two tests among students who took both diverged 
by roughly 0.7 standard deviation, but the school- and student-level correlations 
between mathematics scores on the state test and the ACT remained stable. 

Both a test and inferences based on scores assign weights—that is, varying 
degrees of importance to the various performance elements they comprise.  Koretz 
et al. (2001) defined the “effective test weight” of a performance element as the 
sensitivity of the test score to changes in performance on that element.  Specifically, 
where the score θ  is any function of the vector of performance elements , π
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(1) ( )fθ = π  

the effective weight of element iw iπ  is: 
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∂
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They note that these weights can depend on many factors, some of which can 
be unintended by test developers and are therefore not necessarily the same as 
suggested by test specifications.  Similarly, users of tests assign “inference weights” 
to performance elements in drawing inferences about student achievement, 
although these weights are usually poorly formed and partially tacit.  The composite 
of elements with substantial inference weights was labeled the “target of inference” 
by Koretz et al. (2001).  Because the items included on tests are usually very limited 
samples from large domains, elements that are important for an inference may be 
given little or even no weight in a test.  Such elements are called “implicit” 
performance elements by Koretz et al. (2001).   

From this perspective, the validity of gains can be seen in terms of the 
concordance between changes on tested elements and changes on elements with 
large inference weights.  Increases in scores will stem from changes in performance 
on certain elements—in particular, those with particularly large gains, particularly 
large weights, or both.  Users will draw inferences about a partially overlapping set 
of elements, necessarily if implicitly assigning weights to them.  Inflation occurs 
when increases in performance on the elements emphasized by the test become 
unrepresentative of the domain in the sense that they do not warrant inferences 
about commensurate changes in the set of elements with large inference weights.  
The latter set is likely to include some implicit elements.  

Inflation can then arise from either of two general mechanisms.  One 
mechanism is biases in the estimates of individual iπ -- that is, overestimates of the 
increase in performance on specific elements.  A wide variety of responses to high 
stakes can cause these biases (see Koretz et al., 2001, for a taxonomy of methods of 
test preparation).  For example, it can arise from simple cheating or from instruction 
that emphasizes test-taking tricks.  In addition, it can arise from the responses that 
Koretz et al. (2001) label “coaching,” of which they distinguish two types: 

Substantive coaching refers to an instructional emphasis on narrow aspects of substantive 
performance elements to comport with the style or emphasis of test items….Non-

substantive coaching refers to forms of test preparation that focus instruction on elements 
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of the test that are largely or entirely unrelated to the definition of the domain the test is 
intended to represent. (Koretz, McCaffrey, & Hamilton, 2001, pp. 20-21) 

The second mechanism by which scores become inflated need not entail any 
bias in estimates of individual iπ  but generates bias when the iπ  are aggregated into 

scores.  One such process was labeled “reallocation” by Koretz et al. (2001).  
Educators can reallocate instructional resources from elements with low test weights 
to elements with larger test weights.  If the deemphasized elements have substantial 
inference weights, this reallocation creates inflation when the performance elements 
are aggregated into a test score.  It is for this reason that implicit elements are 
potentially much more problematic for the validity of VIHS than for the validity of 
cross-sectional score-based inferences under lower stakes conditions.  High stakes 
can create incentives to deemphasize material not emphasized by the test. 

Thus, score inflation can be seen as an issue of the dimensionality of changes in 
scores.  Scores become inflated when increases in performance along dimensions 
well measured by the test do not imply commensurate increases along dimensions 
less well measured but still important for inferences.  Because changes in 
performance dimensions can be uncorrelated even when cross-sectional correlations 
among them are high, change scores can be multidimensional even if the test is 
effectively unidimensional according to conventional tests of dimensionality. 
Conventional tests of the dimensionality of scores (e.g., scree tests) are cross-
sectional.  They do not evaluate the degree to which changes in performance are 
multidimensional and therefore cannot rule out inflation.   To identify score inflation 
we need to develop methods for identifying multidimensionality in changes in 
scores.  Differential Item Functioning (DIF) may provide such a method.  

Differential Item Functioning 

DIF analysis is one way of exploring dimensionality in cross-sectional data, and 
this report explores the usefulness of extending it to the analysis of change under 
high-stakes conditions.  DIF refers to group differences in the statistical functioning 
of an item among individuals who have been matched on an index of the proficiency 
the test is intended to measure.  DIF is most often used to explore possible item bias.  
For that purpose, comparisons are made between a subgroup that is a focus of 
concern, called the focal group, and a subgroup for whom the test is assumed to be 
acceptable, called the reference group.  Items that show sufficient DIF are typically 
candidates for deletion.  However, cross-sectional DIF analysis can be applied to a 
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much wider range of problems.  DIF analysis can be applied to group differences 
without assumptions about the adequacy of measurement in reference groups, and 
can be used to create between-group adjustments in scores rather than as a basis for 
screening items for deletion.  For example, King, Murray, Salomon, and Tandon 
(2004) used DIF methods to generate adjustment factors to increase the cross-
national comparability of responses to survey questions about disabilities. 

The existence of DIF need not imply item bias, but it does indicate that the test 
at issue is multidimensional.  If a test were truly unidimensional, a single overall 
proficiency scale would account for all systematic variations in performance, and 
one would find only random differences within groups matched in terms of 
proficiency.  Of course, no broad test of achievement is truly unidimensional; the 
question for most purposes is the degree to which a test violates this assumption.  
Cross-sectional DIF analysis evaluates the extent of one type of possible deviation 
from cross-sectional unidimensionality.  DIF arises when there is at least one 
dimension of proficiency other than the primary dimension measured by the test 
that is distributed differently in two groups and causes individuals in those groups 
with similar proficiency to perform differentially on specific items.   

The study reported here represents an effort to extend the logic and method of 
DIF to the evaluation of score inflation.  It is an exploration of the extent to which a 
specific type of multidimensional model is needed to address changes in 
performance under high-stakes conditions.  This extension is not straightforward.  
Because score inflation is only one of many sources that could produce a change in 
DIF over time, it is necessary to compare changes in DIF in at least two settings that 
differ in the propensity for the behavioral changes that can cause inflation.  This is 
described below. 

Over the past several decades, a wide variety of methods have been devised for 
exploring DIF (see, for example, Camilli & Shepard, 1994; Holland & Wainer, 1993).  
The most common approaches are the Mantel-Haenszel chi-square, logistic-
regression methods, and methods based on IRT models.  A substantial literature 
compares these approaches (e.g., Angoff, 1993; Zwick, 1990), but for our purposes, 
the differences among them are not of primary importance, as they are conceptually 
and in some instances mathematically similar.  We have chosen to use IRT-based 
methods for several reasons, including the convenience of the theta metric, the 
ability over the longer term to examine DIF affecting item discrimination as well as 
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item difficulty, and the ability to perform item-anchored as well as score-anchored 
analyses, as described below. 

Score-Anchored and Item-Anchored Approaches to DIF 

More important for our purposes is the conceptual difference between what we 
call score-anchored and item-anchored approaches to DIF.  Score-anchored analyses use 
some variant of the test score as the criterion for matching individuals across 
groups—for example, a total number-right score, a score obtained by deleting the 
particular item under investigation, or a theta estimate based on the entire test.  The 
large majority of DIF analyses in the measurement literature are score-anchored, and 
many discussions of DIF take this as a given and do not address item-anchored 
approaches.  The assumption underlying score-anchored approaches is that the 
particular score used as the matching criterion has the same meaning across the 
groups being compared.  Many observers (e.g., Angoff, 1993) have pointed out that 
there is an inherent logical inconsistency in the score-anchored approach.  At 
different points in the analysis, any given item is used both as the target of DIF 
analysis and as part of the matching criterion for testing for DIF in other items.  
Items are treated as acceptable when they are used for matching but as questionable 
when they are the focus of investigation. 

The alternative approach we call item-anchored.  In this approach, certain 
items are selected on some basis to be DIF-free, that is, to function similarly across 
groups.  The basis for this selection could be design, theory, empirical data, or a 
combination of the three.  Rather than using a total score to match individuals, these 
DIF-free items are used as an anchor. The item-anchored approach was used, for 
example, by King et al. (1994), who designed vignettes specifically to be free of 
cross-national differences in response patterns and adjusted responses to survey 
items based on responses to these vignettes, using a Rasch DIF approach. 

Although the score- and item-anchored DIF approaches differ in concept, they 
actually anchor two ends of a continuum, and many DIF analyses fall in between.  In 
response to the logical inconsistency inherent in the score-anchored approach, some 
investigators use an iterative score-anchored approach in which items that exhibit 
DIF are gradually eliminated from the score used for matching.  This results in a 
“purified” matching criterion.  One could see this iterative process as a modification 
of the score-anchored approach, but one could also see it as an entirely ad hoc, 
empirical procedure for identifying the items to be used in an item-anchored 
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approach.  In practice, this purification procedure usually bears more resemblance to 
the score-anchored approach.  The percentage of items eliminated is often small, 
leaving the majority of items in the purified matching criterion.  In contrast, the 
item-anchored approach can be carried out with only a small number of items used 
as anchors.  For example, Wang and Yeh (2003) found in a simulation study that 
increasing the number of anchor items from 4 to 10 provided only modest 
reductions in the frequency of Type I error and very small increases in power.  
Moreover, the purified-DIF approach employs typically estimation methods used 
with score-based methods, whereas purely item-anchored analyses often employ 
different estimation methods, as explained below. 

The distinction between score- and item-anchored approaches was placed in an 
IRT context by Thissen, Steinberg, and Wainer (1993), albeit with a different 
terminology.  Thissen et al. (1993) labeled  as “IRT-D2” a score-anchored IRT method 
that is implemented in the DIF and DRIFT procedures in BIMAIN and BILOG (see 
also Bock and Zimowski, 2003a, 2003b).  In this approach, two calibration runs are 
compared: one that pools the two groups in question into a single group, and a 
second calibration that treats the two groups as distinct.  In the latter, the asymptotes 
and guessing parameters are held constant across groups, but the difficulty 
parameters are allowed to differ between them.  However, the intent is to test only 
for interactions between item and group.  Therefore, the group means of the item 
difficulty estimates are set to be equal.  This is done by subtracting the mean 
difference in difficulties between the focal and reference group from the difficulty 
estimates for each item in the focal group.  Thus, where f and r index the focal and 
reference groups, DIF for item i is: 

(3) ( )ˆ ˆ ˆ ˆ
if if if ir f rDIF b b b bδ= = − − − . 

The statistical significance of DIF across all items is tested by comparing the two 
calibrations using the standard likelihood ratio test. 

It may not be immediately apparent why this procedure, which places a 
constraint on item parameters, is a score-anchored method.  In any IRT model, b and 

θ  are on the same scale.  In the calibration in which the b parameters are free to vary 
across groups, these scales are not initially the same in the two groups.  (Indeed, 
they will be different by construction if the two groups differ in mean proficiency 
because the scaling procedure will set either the mean of bi or the mean of θ  to zero 
in both groups.)  Setting the mean bi to be equal is one means of linking the initially 
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arbitrary scales across the two groups; it places θ on the same scale in both groups 
but leaves the distribution of θ  free to vary between the groups.  The result is to 
treat differences in the theta distribution as meaningful differences in proficiency 
(Bock & Zimowski, 2003a, 2003b).  That is, because the difficulty estimate for the 
average item is constrained to be constant between the groups, any difference in 
performance between groups on the average item must represent differences in 
proficiency.  But now suppose that one item generates a different b in the two 
groups, even after the means of the bi estimates are adjusted to be equal.  That means 
that the item is harder for individuals in one group than for individuals in the other 
group who have the same θ .  Thus, individuals across groups have been matched 
on θ , and this anchor reflects all items, regardless of whether they demonstrate DIF. 

Thissen et al. (1993) contrasted this with an item-anchored approach that they 
termed “general IRT-LR.”  In this approach, some items are selected (by whatever 
criterion) to be treated as free of DIF.  The two groups are calibrated together, 
holding the parameters of the DIF-free anchor items fixed and allowing the 
parameters of the other items to differ across the two groups (see also Thissen, 2003).  
This approach is readily generalized to tests of all three parameters in a 3-PL model. 

The two approaches differ fundamentally in the assumptions they make in 
anchoring the scales in the two groups.  The IRT-D2 method allows any item to 
display DIF and incorporates it into the matching criterion regardless by of holding 
constant across groups the mean difficulty of all items.  It is thus is consistent with 
all DIF methods that condition on a total-score measure.  Like all such score-
anchored methods, it suffers from the logical inconsistency noted by Angoff (1993) 
and others.  Moreover, this logical inconsistency has a practical consequence: if DIF 
is actually primarily in one direction, score-anchored methods will attenuate the 
magnitude of this DIF and generate spurious DIF in the opposite direction.  This is a 
consequence of the fact that the interactions tested by the model sum to zero.  For 
example, suppose true DIF, if accurately measured, favored the reference group on 
10% of items on a given test and that all other items are in (unmeasured) fact DIF-
free.  The DIF showed by the 10% of items would depress the mean score of the focal 
group.  Because the performance of focal group members would be conditioned on 
this downwardly biased mean, the estimated magnitude of DIF on the 10% would 
be attenuated, and other items with no true DIF would necessarily show spurious 
DIF favoring the focal group.  Moreover, as explained below, score-anchored 
methods are not ideal for examining DIF caused by score inflation. 
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In contrast, item-anchored DIF approaches such as the general IRT-LR method 
require no assumption about mean differences in performance.  They avoid the 
logical inconsistency inherent in score-anchored approaches, and for the same 
reason, they avoid the empirical problems that this inconsistency entails.  In 
addition, if they were practical, they would circumvent the specific weaknesses of 
score-anchored methods for the investigation of score inflation.  However, they do 
require either an assumption or empirical evidence that differences in performance 
on the specific items chosen as anchors are meaningful and are not a result of 
construct-irrelevant DIF.  In many cases, there is no basis for such an assumption.   

DIF and Score Inflation 

This framework for describing validity under high-stakes conditions (VUHSC) 
and score inflation can be re-expressed readily in terms of DIF.  Score inflation may 
occur when increases in performance are differential across the performance 
elements with substantial inference weights.  More precisely, while not all increases 
that are differential across these elements will cause score inflation, all score 
inflation entails differential increases.  These differential gains will create 
multidimensionality, which will appear as DIF if they are non-uniform across 
identifiable groups that can be compared.  Consider both the mechanisms of score 
inflation noted earlier, and for this example ignore the spurious offsetting DIF that 
score-anchored methods create.  If a group—say, a school or a state—inflates scores 
by means of activities that inflate estimates of an element 1π , the result will be 
positive DIF affecting items measuring 1π  but no DIF affecting other items.  If that 
same group creates inflation by reallocation, this would show up as positive DIF 
affecting items measuring any 1π  that receives additional emphasis and negative 
DIF affecting items measuring any 1π  that it deemphasized.  Thus if we have two or 
more groups that might differ in their responses to testing, DIF analyses might be 
used to identify potential score inflation. 

The difficulty in treating score inflation as DIF is a variant of a problem that 
affects most DIF analysis: the lack of an unambiguous basis for matching individuals 
to identify differential performance.  If score inflation affects some elements and 
items more than others, we expect students in groups with and without inflation 
who are matched on “true” proficiency to perform differentially across performance 
elements and different items.  “True” performance here refers to performance as 
measured by an instrument unaffected by inflation.  Such an instrument would have 
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to include the elements relevant to the inference, assign them effective test weights 
consistent with inference weights, and be free of the biases in estimates of individual 
elements caused by coaching or cheating.  Even though the measure could not be 
exhaustive, it would need to include implicit elements given large inference weights, 
if those elements were at risk of de-emphasis because of test preparation.  Clearly, 
such an ideal matching criterion will not be available.  The way in which students 
are matched using a proxy for this unavailable measure will determine our estimates 
of DIF.  

Indeed, in most cases, there will be no external matching criterion available, 
and the analyst will have to make do with internal measures constructed from the 
test being analyzed.  There are two primary alternatives for constructing an internal 
matching criterion.  The first is score anchoring: matching individuals on some 
measure of overall performance on the test, generally using the effective weights in 
the operational test.  The second is item anchoring: matching individuals on their 
performance on specific items chosen to be free of possible distortions from test 
preparation.  In the context of periodic testing over time with partially new forms, 
two groups of items are obvious candidates for item-anchored DIF analysis: reused 
items that appeared in previous administrations and new items that are used for the 
first time on the test under study.   

Matching on some function of total scores has the advantage of not requiring 
any assumptions about individual test items.  Moreover, procedures for score-
anchored DIF analysis are numerous and well known.  However, score anchoring 
also has several important disadvantages.  One, noted above, is that the matching 
criterion is contaminated by the DIF one is attempting to measure.  As in many DIF 
analyses, there is the possibility that much or all of the test is biased for some reason 
and that score anchored methods therefore fail to show DIF.  In the context of 
potential score inflation, this might occur if inflation were caused by reallocation 
away from implicit performance elements with sizable inference weights but low 
test weights.  Another problem with this method is that because DIF must average 
zero, any substantive DIF in either direction must necessarily be offset by apparent 
DIF in the other direction on other items.  Therefore, the absolute value of the DIF 
statistic for a given item is not directly interpretable, and one can only identify 
relative differences in performance. 

If one could identify items free of inflation to serve as anchors, one might 
ameliorate these problems but not necessarily eliminate them.  For example, 
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suppose one could identify items on which performance is free of distortion from 
coaching or cheating.  Performance on these items would nonetheless be flawed as a 
matching criterion to the extent that inflation stems from reallocation away from 
elements with large inference weights that are not included in the test (and therefore 
not in the item anchor set).  Moreover, it is not clear how feasible it will be to 
identify even items that are free of the effects of coaching and cheating. 

A common approach to linking scales over time uses as anchors items that are 
kept secure and reused over time.  One might similarly use these items as anchors in 
an item-anchored DIF approach.  However, this does not seem tenable because the 
necessary assumption that the true difficulty of a linking item is constant is not 
warranted.  (More precisely, the necessary assumption is that the relationship 
between the difficulty of these items and the latent proficiency is constant.)  To the 
extent that the content and style of secure items is remembered, they can serve as the 
basis of inappropriate test preparation despite test security, and this will change the 
relationship between item difficulty and the latent proficiency.  Koretz and Barron 
(1998) showed evidence suggestive of coaching on reused items and argued that this 
process, when used to link over time, would build score inflation into the scale.  By 
the same token, coaching on reused items could obscure inflation-based DIF.  
Anchoring on reused items also is potentially problematic because the reused items 
cannot cover the entire range of performance elements with significant inference 
weights.  Differences in performance on elements included in the test and in the 
inference space but excluded from the anchor items could appear as DIF.  This DIF 
identifies multidimensionality but not necessarily score inflation. 

Conversely, one might argue that new items should be free of any biases 
stemming from test preparation and that these could be used as anchors.  However, 
this assumption may also prove untenable.  Most tests show strong similarities in 
both content and style over time.  In part, this is intentional when tests must be 
linked over time, but it may also be unintended.  Therefore, the effects of 
inappropriate test preparation focused on reused items may generalize to varying 
degrees to new items, and therefore using new items as anchors might lead to an 
underestimate of inflation-related DIF. 

Thus, in this application as in others, findings of DIF are relative to the 
matching criterion.  Moreover, as explained below, changes in DIF stemming from 
score inflation may be confounded changes in DIF that result from other changes in 
the educational system, for example curriculum changes.  What DIF will identify is 
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differential performance that can identify dimensions in the test.  These will require 
additional investigation to be attributed to score inflation. 

Because of the inherent limitations of score-anchored DIF methods, we expect 
that in the long run, item-anchored methods may be more useful in evaluating the 
validity of gains.  Using this approach may require modifications to the design of 
testing programs to provide items specifically designed for anchoring, such as items 
that have high weights but that are by design different from earlier items in terms of 
irrelevant aspects of content, format, and style.  However, at present, given both the 
lack of empirical information about the mechanics of score inflation and the items 
designed to be anchors, it appears that a score-anchored method may be more 
reasonable for initial explorations.  Therefore, in the work reported here, we used 
the IRT-D2 method. 

Reactive vs. Non-Reactive DIF 

To use DIF methods to explore possible score inflation, we need to expand on 
the traditional IRT notion of variations in the estimated difficulty of any given item i, 

.  In common practice, three sources of variation in b  are considered: model 

specification (the choice of IRT model, the selection of an estimation method, and 
decisions about priors in the case of Bayesian methods), simple errors of estimation, 
and violations of the assumption of unidimensionality.  Systematic differences 
between groups in b , holding constant 

îb î

î θ , are a violation of the assumption of 

unidimensionality and appear as DIF.  Variations in  other than those stemming 

from DIF are treated as unsystematic error of estimation. 
îb

For our purposes, however, we have to distinguish between two types of 
systematic differences among groups: those caused by responses to testing and all 
others.  The key to the validity of score gains is systematic differences stemming 
from responses to testing. 

We use the term non-reactive DIF to refer to differences between groups in item 
difficulty (holding constant proficiency) that do not stem from reactions to testing.  
Non-reactive DIF can arise from item bias, curricular differences, or other factors 
that are not responses to the test in question.  In large-scale educational assessments, 
non-reactive DIF is typically analyzed for gender, racial/ethnic subgroups, and 
sometimes language proficiency.  It is occasionally analyzed for geographic 
subgroups, such as states or nations (e.g., King et al., 2004; O’Connor, 2000).  Such 
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DIF is most often considered a nuisance to be minimized, if necessary by deletion of 
items.  However, it can also provide insight into substantive differences in the 
performance of subgroups (e.g., Wolfe, 1997). 

In contrast, reactive DIF refers to differences in item difficulty that arise 
specifically as a result of responses to testing.  A certain class of items—say, items 
involving pictorial representations of algebraic equalities and inequalities, as used in 
recent forms of the Massachusetts assessment—may become easier relative to other 

items in group that focus test preparation specifically on this type of item, either 
through coaching or reallocation.  Similarly, reallocation can make other classes of 
items relatively harder, by means of reduced instructional emphasis.1 

Distinguishing between reactive and non-reactive DIF requires only minor 
elaboration of the IRT-D2 model.  Recall that this model explores interactions 
between group and item and that mean differences in performance between groups 
are absorbed in the distribution of θ  rather than the distribution of b. In a 
conventional cross-sectional application of IRT-D2, the distribution of the estimated 
item difficulties in the focal group f are recentered to have the same mean as the item 
difficulties estimated in the reference group: 

(4) ( )* ˆ ˆ ˆ .• •= − −
if if f rb b b b  

DIF for item i, δ i , is then defined as: 

(5)  * ˆδ = −i ifb bir

and therefore 
1 0δ =∑ i
in

, that is, the mean DIF over items is by construction zero.  

Note that while the sign of the DIF statistic is arbitrary, in this method, the DIF 
statistic is negative when the item is easier in the focal group.  We follow that 
convention throughout this report. 

Rearranging equations 4 and 5, one can express the estimated, unadjusted 
difficulty of item i in the focal group as the sum of its estimated difficulty in the 
reference group, the recentering adjustment, and DIF: 
                                                 
1These variations in relative item difficulty are often ignored in scaling and linking, although doing 
so may seriously bias inferences based on the resulting scale when the test preparation is 
inappropriate.  For example, Koretz and Barron (1998) noted that common IRT equating methods 
based on the assumption that the true difficulty of items remains constant across forms will build 
score inflation into the scale when items become easier as a result of inappropriate test preparation. 
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(6) ( )ˆ ˆ ˆ ˆ .δ• •= + − +if ir f r ib b b b  

However, δ i  can be either reactive or non-reactive and can change over time. 

Thus the unadjusted estimated difficulty can be expressed more completely as: 

(7) ( )ˆ ˆ ˆ ˆ
if ir f r if ifb b b b ν γ• •= + − + + , 

where 
ifν  is non-reactive DIF on item i and itγ  is reactive DIF.  These two sources of 

DIF cannot be distinguished with a single year of data.  However, we expect that 
with multiple years of data we might be able distinguish the two sources of DIF 
because they should behave differently over time.  With multiple years of data the 
model for estimated item difficulty parameters is 

(8) ( )ˆ ˆ ˆ ˆ ν γ• •= + − + +ift irt ft rt ift iftb b b b . 

When an assessment is new, there has not yet been an opportunity for teachers 
and students to react to it, so all 1 0ifγ = .  Thus, the first year of an assessment can 

serve as a baseline, and the distribution of DIF apparent in that year is a combination 
of non-reactive DIF and estimation error.  Reactive DIF will be apparent in changes 
in DIF over time, as teachers and students have opportunities to respond to the 
pressures of the test. 

DIF may change over time for reasons unrelated to the test.  That is, iftν may not 

be constant over time, and changes in iftν would then be confounded with reactive 

DIF.  However, if the test is high stakes, it seems reasonable to assume that changes 
in DIF over time stem in substantial part from responses to it.  Therefore, it appears 
to be a reasonable simplification to hold non-reactive DIF constant and to assume 
that changes in DIF over time represent reactive DIF.  Moreover, for evaluating the 
validity of gains, it is not necessarily important to distinguish between reactive DIF 
and changes in non-reactive DIF.  Any local gains on some items that do not 
generalize to others have the potential to undermine validity.  (Here and throughout 
the report, we use “local” in the psychometric sense of performance specific to part 
of the test, not to geographically local patterns.) 

Expected Patterns of DIF 

Given this discussion, one method for potentially identifying score inflation is 
to use multiple years of data from two or more groups that might have responded 
differently over time to testing. For example, comparing school districts within a 
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state using multiple years of state tests or comparing different states using the 
National Assessment of Educational Progress (NAEP). If this approach were 
followed then what patterns might be expected in the distribution of DIF across 
items?  The distribution of non-reactive DIF at baseline is not predictable.  One can 
estimate the contribution of estimation error to the distribution of DIF, but the 
contribution of other factors, in particular variations in the curricular alignment of 
the test, is generally unknown.  Therefore, neither the typical within-group, initial 
distribution of DIF across items nor the variability of these initial distributions 
across groups can be predicted.  Similarly, non-reactive changes in DIF cannot be 
predicted a priori.  For example, consider using NAEP data and states to identify 
inflation and suppose that the NAEP were to add a content area that had previously 
not been tested.  Major changes of this sort have been made to mathematics 
assessments a number of times over the past several decades, for example the 
addition of estimation items and “data analysis and statistics” to many of them.  
Now suppose that some states had added these content areas to their instruction 
before the change in the test, while others had not.  The result would be an initial 
increase in the variability of non-reactive DIF across states.  Depending on the 
number of states in each group and the method used to detect DIF, this might show 
up as DIF favoring one group, disfavoring the other, or both.  One can similarly 
imagine changes in the match between testing and curriculum that would reduce 
either the amount of non-reactive DIF or its variability across states. 

This brings us to the crux of the dilemma alluded to earlier: score-anchored 
methods are weak tools for investigating the effects of score inflation.  One can make 
only weak predictions about the impact of inflation on the distribution of DIF.  Item 
anchored methods might provide a somewhat stronger tool, but we lack a firm basis 
for selecting item anchors. 

One might expect inflation to increase the within-state variability of DIF, as it 
adds another source of variance.  However, conditions might arise in which the 
effect could be the reverse.   Specifically, variance will increase if the increased 
emphasis underlying inflation is distributed randomly across items.  If teachers 
focused greater emphasis on items with negative DIF—that is, items on their 
students show relatively stronger performance, holding proficiency constant—the 
absolute value of this DIF would increase, and the variance of DIF would increase 
further.  However, if teachers focused greater emphasis on items with positive DIF, 
those items would become relatively easier, reducing the absolute magnitude of DIF 
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on those items and, absent other changes, reducing the variance of DIF.2 Thus in 
theory, reactive changes in DIF could appear as a wide variety of changes in the 
distribution of DIF.  In the case of many assessments, however, and particularly in 
the case of the NAEP, it is hard to see how teachers could discern DIF.  To do so 
would require that they compare the relative performance of their students on a 
given item to their relative performance on others, taking into account the 
distortions caused by the percent-correct metric typically used to report item-level 
results to educators. This seems implausible.  Recall also that when using a score-
anchored method, the mean of the DIF statistic is always zero by construction, and a 
real change in DIF in any direction will be both attenuated and accompanied by 
offsetting changes in the other direction on other items.  Therefore, it seems 
reasonable to expect that reactive DIF would increase the within-state variance of 
the distribution of the DIF statistic over time. 

In contrast, more localized changes in DIF could appear as changes in the 
skewness of the distribution of the DIF statistic.  For example, assume that teachers 
in a given state focus considerable effort on improving performance on knowledge 
and skills that are emphasized by a small number of previously used items and that 
similar items appear in newer forms, also in small number.  Assume also that this 
instruction or coaching is effective but that its effects do not generalize a great deal 
to other items.  The result would be to make these items relatively easier, making the 
signed value of their DIF statistics lower.  Because the number of items is small, 
these changes would be offset by much smaller positive changes in the DIF statistic 
spread over a larger number of items.   

Although these changes would likely make the signed value of DIF lower, the 
effect on the absolute value of skewness is less predictable.   If the change in 
performance were sufficiently large, it could appear as an increase in left skew—that 
is, a negative change in skewness—as selected items become relatively much easier 
in that particular state.  This would likely increase the absolute value of skew as 
well.  In contrast, if teachers for some reason focused their efforts on items that were 
previously atypically hard in that state, the result could be to pull in right-hand 
outliers.  This would again lower the signed value of skew, but it would also 
decrease its absolute magnitude. 
                                                 
2In statistical terms, the variability in DIF across items will depend the variance of νift, the variance of 
γift, and the correlation between them. 
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Test preparation may be evident in a difference in the distributions of the DIF 
statistics for new and reused items.  As noted earlier, one cannot know a priori the 
extent to which the impact of coaching aimed at old, reused items will generalize to 
new but similar items.  In the absence of this generalization or non-reactive changes 
in instruction that affect DIF, new items should appear relatively more difficult and 
reused items relatively easier in jurisdictions that focus test preparation specifically 
on old items.  In a score-anchored approach, because the mean of all DIF statistics 
must be zero, this reactive DIF will affect the DIF distributions of both new and 
reused items, shifting new items to the right and old items to the left.  To the extent 
that coaching focused on old items does generalize to new ones, this difference in 
DIF distributions will be attenuated. 

Methods 

We tested the proposed approach for exploring score inflation using state-level 
data from the National Assessment of Educational Progress (NAEP).  We used 
Grade-8 mathematics scores from the 1990, 1992, 1996 and 2000 state 
administrations.  We purposively chose the 10 states to be tested for DIF.  These 
include the 5 states with largest increases in their NAEP scores between 1990 and 
2000 (Indiana, North Carolina, Ohio, Texas, and West Virginia) and the five states 
with the smallest increases in their NAEP scores during this period (District of 
Columbia, Nebraska, New Mexico, North Dakota, and Wyoming).  

Data from the NAEP have both advantages and disadvantages for testing these 
methods.  They have the obvious disadvantage that until recently, teachers had little 
reason to prepare students specifically for the NAEP, so inflation from that source 
would likely be minimal.  However, we reasoned that states with the highest gains 
might show local gains on portions of the item set such as one would see under 
conditions of score inflation.  This might occur, for example, if a state worked to 
align its own tests with the NAEP, causing a spillover of test preparation aimed at 
the former.  Moreover, the NAEP offers a major advantage relative to other available 
data.  As we noted earlier, state-level DIF will be present to varying degrees for non-
reactive reasons, and indeed DIF can change over time for non-reactive reasons, 
such as state-level curricular changes that are not a response to NAEP.  Therefore, 
we wanted a set of comparisons that would provide some indication of the range of 
non-reactive DIF and non-reactive changes in DIF.  NAEP is ideal for this purpose. 
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We carried out separate calibrations for each of the 10 target states for each of 
the 4 years, in each case treating the target state as the focal group and all other 
states participating in the state-level NAEP as a single reference group.  This is a 
departure from the NAEP procedure, which scales all states participating in state 
NAEP together in single pooled calibration.  The reference groups for each focal 
state were the same for all years other than 1996, when Ohio did not participate in 
state NAEP.  All analyses were weighted.  We used the NAEP “student weight 
overall” (ORIGWT), normalized so that the sum of weights for each state was 2500 
(NAEP’s approximate sampling target).  That is, for each student i in state j, our 
weight, NORMSTWTij, was: 
 

(9) 
2500 ORIGWT

NORMSTWT
ORIGWT

ij
ij

ij
i

=
∑

 

The purpose of normalization was to give each state equal weight in each reference 
sample. 

Data for the individual focal states were very sparse for estimation of 3-PL 
models.  We responded to this problem in two ways.  First, we imposed tight priors 
on guessing parameters, as described below.  Second, we calibrated all items 
together in a single run.  In contrast, NAEP calibrates items separately within 
subtests and creates its final scale as a weighted composite of the scales created 
within subtests.  To explore the impact of calibrating items together rather than in 
subtests, we pooled 1996 data from nine of our sample states into a single sample to 
provide enough data to calibrate the subtests separately.  We then calibrated these 
data twice, once with all subtests pooled and a second time with each subtest 
calibrated separately.  The difficulty estimates from the two calibrations were nearly 
perfectly correlated (r = .997), with no outliers.  Given that only difficulty estimates 
are pertinent to this study, this finding suggests that pooling across subtests did not 
affect our results. 

All IRT estimation was conducted with BILOG-MG Version 3.0 software 
(Scientific Software International, 2003).  BILOG-MG was selected to permit use of 
NAEP sample weights, to facilitate the use of the IRT-D2 approach (which is 
implemented by the DIF command in BILOG-MG), and to mirror NAEP estimation 
methods as closely as possible.  The major cost of this decision was that polytomous 
items had to be excluded because BILOG-MG can only estimate binary response 
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models.  (Constructed-response items scored 0,1 by NAEP were included.)  The 
numbers of items included were 137, 193, 138, and 132 in 1990, 1992, 1996, and 2000 
respectively.  These numbers are slightly lower than the number of binary items 
reflected in NAEP reports because several items used by NAEP caused convergence 
problems in one or more states and were therefore deleted.3 

Paralleling NAEP’s calibrations, we used a 2-parameter logistic model for all 
constructed response items and a 3-parameter logistic model for multiple choice 
items because the lower asymptotes of the empirical item characteristic curves of 
these items are typically well above zero.   

The estimation method used was MMAP (marginal maximum a posteriori).  
Estimates equal the modes of the marginal posterior distributions of the item 
parameters given the observed responses and prior distributions for the parameters 
and theta distribution.  The posterior integrates over theta to focus estimation 
during the calibration of the model only on the item parameters.  Only the EM 
algorithm was used to determine the posterior modes.  The Newton cycles that 
BILOG-MG normally runs after EM convergence would not run with these data and 
model specifications because of software limitations.  To compensate, we established 
a very tight convergence criterion (0.00001) for the EM cycles and allowed up to 
1,000 cycles to ensure convergence.  This should provide parameter estimates very 
similar to those that would have been obtained with the addition of Newton cycles 
but less well estimated standard errors (R. Mislevy, personal communication, July 
2004).  The prior distribution for all difficulty parameters (b) was set as a normal 
distribution with mean zero and variance 2.  The priors on the slopes were set as log 
normal with mean 0 and variance .5.  These are both the BILOG-MG defaults.  The 
prior for the asymptote is a beta distribution with parameters alpha=(50p + 1) and 
beta=[50(1-p) + 1], where p is equal to the reciprocal of the number of response 
levels.4  All estimates use the sample design weights created by NAEP.  However, 
we conducted analyses for two states (Indiana and Texas) with and without the 
weights and found that weighting had a minimal impact on the final results.  This is 
                                                 
3M52801, which was not administered in 1990, was dropped in all other years because of convergence 
problems.  Two items that were administered only in 1992, were dropped: M032101P, which caused 
convergence problems in all of our states, and M055301N, which caused convergence problems in 
Nebraska and Indiana. M018901D, which was administered in all years, was dropped because it 
created convergence problems in the District of Columbia in 1992. 
4For the constructed response items the zero asymptote was enforced by setting the prior for the 
asymptote to a point mass at a numerical zero. 

 20



  
 

the result one would expect if the IRT model fits reasonably well.  That is, if the 
unidimensional model fits well and there is no sizable DIF affecting the groups used 
to define the design weights, the design weights should not substantially affect the 
results of the calibration. 

We fitted an IRT-D2 model for each state and year that allowed the reference 
state and the focal group (all other states pooled) to have separate means and 
standard deviations for the theta distributions.  The model constrained the slope and 
asymptote parameter estimates to be the same for the reference and focal groups.  
The difficulty parameters were free to vary between the groups.  The difficulty 
estimates for the focal group were then recentered around the mean difficulty in the 
focal group.  The outcome variable of interest, the DIF measure, is the difference 
between the item difficulty in the focal group and reference group, after the mean 
item difficulty in the focal group is set to equal that in the reference group.  

By construction, the mean of this DIF statistic must equal zero in every 
calibration, regardless of the initial amount of baseline DIF, changes in DIF from 
score inflation, or changes non-reactive DIF over time.  Thus, as discussed above, 
evidence of score inflation or changes in non-reactive DIF must come from aspects of 
the DIF distribution other than location, e.g., the variance in the DIF estimates across 
items or the shape of the distribution of DIF estimates. 

Findings 

Baseline, Non-reactive DIF 

DIF in the baseline year of 1990 varied markedly across our 10 sample states.  
The standard deviation of the DIF statistic (SDDIF) varied from a low of 0.11 in 
Indiana to a high of 0.26 in the District of Columbia (Figure 1).  Because NAEP had 
not been administered to state-representative samples before 1990, we assume that 
this is non-reactive DIF.  As noted above, non-reactive DIF could stem from a variety 
of factors.  However, it seems likely that a primary cause is variations across states 
in the alignment between curricula and the content of the assessment.   
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Figure 1.  Baseline non-reactive SDDIF by state, 1990 (+ indicates  
a high-gain state and o indicates a low-gain state). 

This non-reactive DIF is not the main effect of curricular match, which would 
appear in the overall level of scores: States with poor curricular match would on 
average score more poorly than they would have if their match had been stronger.  
Rather, this pattern represents between-state differences in the consistency of 
curricular match across the NAEP items.  The alignment of performance with the 
dimensional mix of NAEP is more consistent across items, although not necessarily 
better, in states with small SDDIF, such as Indiana and Ohio, than in states with large 
SDDIF, such as the District of Columbia and North Dakota.  In practical terms, the 
larger the SDDIF, the more sensitive state results would be to deliberate or 
unintentional changes in the weighting of performance elements in NAEP. 

Changes in the Standard Deviation of DIF (SDDIF) 

Although reactive DIF could in theory have a variety of effects on SDDIF, we 
hypothesized that in this situation, the most likely effect would be to increase SDDIF. 

An unanticipated finding was that SDDIF increased in almost all of our sample 
states, both high- and low-gain (Tables 1 and 2).  That is, state-by-item interactions 
increased.  This change could have a number of different explanations.  Changes in 
the dimensional mix of the NAEP assessment could contribute to this pattern.  For 
example, as noted earlier, this might happen if NAEP added new material that was 
already taught in some states but not in others.  Reactive DIF could contribute to the 
increase in SDDIF, even in low-gain states, as could divergent changes in curricula 
that were not made in response to the assessment. 

 

 

 

 
 

 22



  
 

Table 1 
Changes in SDDIF in High-Gain States,  
1990 to 2000 (in order of size of change 
on theta scale) 

States 
Change 
in theta 

Percent 
change 

TX 0.130 71 
IN 0.128 116a 
NC 0.091 56 
OH 0.072 56 
WV 0.010 5 

Mean 0.086 61 

a This large percent change results 
from two items with very large DIF 
statistics in 2000, -1.6 and -1.2.  With 
those two outliers omitted, the 
percent change drops to 43%, and the 
mean percent change for the column 
drops to 46. 

Table 2  

Changes in SDDIF in Low-Gain States,  
1990 to 2000 (in order of size of change  
on theta scale) 

Low-gain 
states 

Change 
 in theta 

Percent 
change 

NM 0.158 88 
DC 0.054 21 
NE 0.046 29 
WY 0.036 24 
ND 0.027 12 

Mean 0.064 35 

 

On average, SDDIF did increase somewhat more in our five high-gain states than 
in the five low-gain states.  However, there were two clear exceptions: one high-gain 
state (West Virginia) showed essentially no change in SDDIF, and one low-gain state 
(New Mexico) showed a large increase. 

Over the entire decade, the increase in the standard deviation of the DIF 
statistic, SDDIF, in high-gain states ranged from essentially zero in West Virginia to 
0.13 in Texas (Table 1).  While these increases were modest in terms of the theta 
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scale, most were quite large relative to the baseline distributions of non-reactive DIF, 
as shown by the percent changes in Table 1.  Texas, North Carolina, and Ohio all 
showed increases in SDDIF of more than 50% relative to their baseline distributions of 
non-reactive DIF.  Indiana’s SDDIF more than doubled, but this was the result of two 
outlier items; with those deleted, the increase in SDDIF was 46 percent.  The exception 
was West Virginia, which showed essentially no change in SDDIF.  The change in the 
distribution of the DIF statistic in Texas, a high-gain state with a substantial increase 
in SDDIF, is shown in Figure 2. 

 

-1.0 -0.5 0.0 0.5 1.0
DIF

0

10

20

30

40

50

C
ou

nt

-1.0 -0.5 0.0 0.5 1.0
DIF

0

10

20

30

40

50

C
ou

nt

 
Figure 2.  Distributions of DIF in Texas, 1990 (solid 
line) and 2000 (dashed line), on theta scale (kernel 
smooth of histograms; 2 positive outliers in 2000 
omitted). 

The change in SDDIF was typically smaller in low-gain states (Table 2).  Again, 
there was one clear exception: New Mexico, which showed an increase in SDDIF 
larger than that of all but one of the high-gain states.  However, the increase was 
only roughly 25 percent in the District of Columbia, Nebraska, and Wyoming and 
smaller yet in North Dakota.  Despite the smaller changes, in SDDIF, there were 
noticeable changes in the shape of the distribution of DIF in some cases, as in 
Wyoming (Figure 3). 
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Figure 3.  Distributions of DIF in Wyoming, 1990 
(solid line) and 2000 (dashed line), on theta scale 
(kernel smooth of histograms). 

Skewness of DIF (SKEWDIF) 

We noted earlier that local gains in performance could produce changes in the 
skew of the distribution of the DIF statistic.  These might appear as changes in either 
the signed or absolute value of skewness of the DIF statistic (SKEWDIF).  Particularly 
interesting would a decrease in the signed value of SKEWDIF arising from large 
localized gains on a relatively small number of items. 

In practice, we found changes in SKEWDIF difficult to evaluate because skew 
was often influenced by a small number of outlier items.  This was particularly true 
of Indiana, which showed a very large increase in the absolute value of SKEWDIF that 
stemmed in part from a three outliers in the year 2000 (Figure 4).  Outliers had less 
extreme but appreciable effects in some other states as well.  Nonetheless, given the 
exploratory purposes of this effort, it is worthwhile to explore the patterns show in 
our sample states. 
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Figure 4.  Distributions of DIF in Indiana, 1990 and 
2000 on theta scale. 

No consistent change in the absolute magnitude of SKEWDIF was apparent in 
either group of states.  Some states showed increases in the absolute amount of 
skew, while other showed decreases (Tables 3 and 4), and with the exception of 
Indiana, these changes were mostly modest. 

Table 3   

Changes in Absolute Magnitude of 
SKEWDIF  in High-Gain States (in 
order of size of change) 

WV -0.98 
OH -0.54 
NC 0.51 
TX -0.01 
IN 2.84 

Mean 0.36 
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Table 4   

Changes in Absolute Magnitude of 
SKEWDIF  in Low-Gain States (in 
order of size of change) 

WY -0.568 
NE -0.393 
DC -0.264 
ND 0.061 
NM 1.229 

Mean 0.01 

 

Changes in signed SKEWDIF were different in high- and low-gain states, 
although again with exceptions.  SKEWDIF became more negative in four of the five 
high-gain states, suggesting localized gains (Table 5).  This is shown for North 
Carolina in Figure 5.  There was no clear pattern in the low-gain states (Table 6), and 
only one of them, Wyoming, showed a decrease in signed SKEWDIF roughly 
comparable in size to that show in the high-gain states.  Note that the absolute value 
of the signed changes in SKEWDIF was much larger in the high-gain states. 

Table 5   

Changes in Signed SKEWDIF in High-
Gain States (in order of size of change) 

IN -3.38 
NC -1.65 
OH -1.59 
WV -1.29 
TX 1.97 

Mean -1.19 
Mean absolute change  
   in signed SKEWDIF 1.98 
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Figure 5.  Distributions of DIF in North Carolina, 
1990 (solid line) and 2000 (dashed line), on theta 
scale (kernel smooths of histogram). 

Table 6   

Changes in Signed SKEWDIF in Low-
Gain States (in order of size of change) 

WY -1.23 
NE -0.39 
DC +0.59 
ND +1.09 
NM +1.51 
Mean +0.31 
Mean absolute change
   in signed SKEWDIF 0.96 

 

Old and New Items 

As noted earlier, test preparation focused on old test items could result in a 
difference in the DIF distributions of reused and new items.  In a score-anchored 
method that constrains the overall mean DIF to be zero, this effect would appear in 
the locations of both DIF distributions: Old items would become relatively easier, 
and new items would be relatively harder.  It will be attenuated to the extent that 
this preparation generalizes to similar new items, and it may be either attenuated or 
exacerbated by non-reactive changes in instruction. 

 28



  
 

To explore this, we used the results from our score-anchored DIF analysis, 
examining the distribution of the DIF statistic separately for new and reused items.  
For each focal state, the DIF distributions in the final year (2000) were examined for 
four groups of items: those used in all four assessments, those used in the three most 
recent, those used in the two most recent, and those used only in 2000.  In addition, 
the DIF distributions in the 1992 and 1996 assessments were examined for items that 
were newly introduced in those years. 

Despite the large number of comparisons (60 DIF distributions across the 10 
states), very few of these distributions were centered at substantially non-zero 
values.  Most of the means and medians were less than .05 in absolute value on the 
theta scale.  There was some evidence of DIF affecting 1996 DIF distributions for 
items newly introduced in that year, but this DIF was apparently non-reactive, 
because it went in both directions and appeared in both low-and high-gain states. 

The sole instance of DIF that conforms to the pattern one might find as a result 
of reactive DIF appeared in North Carolina (the state with the largest gains) in the 
2000 assessment.  It was the largest effect (that is, this DIF distribution was centered 
farther form zero than any other), but given that it appeared only in a single 
assessment in a single state, it would be risky to interpret it as evidence of reactive 
DIF.  In 2000, the DIF distribution was shifted to the right (that is, new items were 
relatively harder) compared to all three sets of reused items.  The distributions of 
2000 DIF for the oldest items (used in all four assessments) and the items introduced 
in 2000 is shown in Figure 6.  Note that the difference between the distributions 
stems from the smaller percentage of relatively easy items in the distribution of DIF 
in the newly introduced items. 

Discussion 

This study was exploratory in purpose, intended to develop an extension of 
DIF for analysis of cohort-to-cohort change and to probe the possible utility of this 
approach to the investigation of score inflation.  Although the NAEP data used here 
were in some respects less than ideal for this purpose, the study does offer some 
suggestive results relevant to applications to data from higher-stakes state 
assessments. 

 

 29



  
 

 

                

-0.6 -0.3 0.0 0.3 0.6
DIF in 2000

0

4

8
C

ou
nt

-0.6 -0.3 0.0 0.3 0.6
DIF in 2000

0

4

8
C

ou
nt

 

C
ou

nt
 

Figure 6.  Distributions of in DIF in North Carolina, 2000, 
items used since 1990 (solid line) and items new in 2000 
(dashed line), on theta scale (kernel smooths of 
histogram). 

The findings suggest that variations in non-reactive DIF can be large.  In this 
study, baseline SDDIF ranged from a low of .11 on the theta scale in Indiana to a high 
of .26 in the District of Columbia.  Analyses of possible score inflation are likely to 
focus on differences among schools or districts within states rather than between 
states, and it is possible that between-group variations in curricular match may be 
smaller within states than between.  Nonetheless, this finding suggests that it is 
important to examine baseline distributions of DIF empirically before estimating 
possibly reactive changes in DIF over time.  Most extant evaluations of high-stakes 
testing have reconstructed data retrospectively (see, e.g., Klein et al., 2000; Koretz & 
Barron, 1998; Koretz et al., 1991), and the item-level data required for DIF analysis 
may be difficult to obtain years after administration. 

The findings of this effort do not clearly indicate how fruitful comparisons of 
the DIF distributions of new and reused items will prove.  The highest gain state, 
North Carolina, did yield one clear contrast between new and reused items, but 
neither other comparisons in North Carolina nor comparisons in other states showed 
sizable differences between the two.  The dearth of substantial differences could 
reflect either of two factors.  It may represent a lack of substantial test preparation 
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targeted specifically at previously used items in NAEP, or it may stem from 
generalization of the effects of such preparation to new but similar items.  It would 
be valuable to test this approach next in the context of high-stakes testing programs 
in which preparation aimed at previously used items is widespread. 

Two of the findings of this study suggest substantial obstacles to the 
application of these methods.  The first is the finding of items that are outliers in the 
distribution of DIF.  As a general rule, excluding outliers from analysis would seem 
to be the wrong response.  First, the large DIF shown by these items may reflect 
precisely the types of preparation that are at issue.  Second, the generally modest 
number of items in state testing programs would make the deletion of outliers 
analytically very costly.  Addressing this problem will require qualitative analysis of 
the particular items involved. 

The second discouraging result is the unanticipated finding that SDDIF increased 
appreciably in most of our 10 sampled states, including most of those that showed 
small gains in scores.  In the case of NAEP, one can assume that low-gain states did 
not experience appreciable pressure to prepare students specifically for the NAEP, 
and thus low-gain states provide an indication of changes in non-reactive DIF.  
Therefore, this finding suggests that the assumption of reasonably stable non-
reactive DIF is unwarranted.  In the context of high-stakes testing programs, it is 
often the case that all or nearly all districts and schools face incentives to prepare 
specifically for the test, albeit to varying degrees, so no schools can provide a clear 
indication of non-reactive changes in DIF.  Nonetheless, the contrast between high- 
and low-gain schools may be useful in this respect.  One might assume that teachers 
in low-gain schools either responded less to the incentive to prepare specifically for 
the test or prepared less effectively, and therefore changes in DIF in low-gain schools 
may reflect less reactive DIF than changes in high-gain schools.  For an example of 
comparisons of high- and low-gain schools without a formal DIF analysis, see 
Koretz and Barron (1998). 

As a next step, these methods should be extended and further evaluated in the 
context of higher stakes testing programs.  A logical next step would be to couple 
these methods with qualitative analysis of test items.  This may help explain outlier 
items and distinguish between reactive and non-reactive DIF.  For example, it would 
be informative to see whether items that show large negative DIF in settings with 
unusually high gains—that is, items that are relatively easy in those contexts—show 
recurrent patterns of content, presentation, or task demands.  For examples of early 
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attempts to do this, see Koretz and Barron (1998), pp. 101-109.  One could also 
classify items a priori in terms of characteristics relevant to potential inflation, such 
as similarity to previously used items, and separately examine the DIF distributions 
of those items.  It would also be informative to examine the degree to which the 
same items show DIF consistently across small groups, such as schools, although 
this would require some methodological changes because of small counts. 
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