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Introduction 
Recent instructional theories tend to focus on authentic learning tasks that are based on real-life tasks 

as the driving force for complex learning (Merrill, 2002; van Merriënboer & Kirschner, 2001). The general 
assumption is that such tasks help learners to integrate the knowledge, skills and attitudes necessary for 
effective task performance; give them the opportunity to learn to coordinate constituent skills that make up this 
performance, and eventually enable them to transfer what is learned to their daily life or work settings. This 
focus on authentic, whole tasks can be found in several educational approaches, such as the case method, 
project-based education, problem-based learning, and competency-based education. Van Merriënboer’s four-
component instructional design model (4C/ID-model, 1997; van Merriënboer, Clark, & de Croock, 2002) 
describes how learning tasks fulfill the role of a backbone for an integrated curriculum (Figure 1: the “circles” 
represent learning tasks). Two requirements for this backbone are: (a) learning tasks are organized in easy-to-
difficult task classes (the dotted boxes around sets of learning tasks), and (2) learners receive guidance for the 
first learning task in a task class after which support slowly disappears in this task class. 
 
 
 
Figure 1. A sequence of learning tasks, organized in easy-to-difficult task classes and with fading support in each task class 
 
 
 

 
It is clearly impossible to use very difficult learning tasks right from the start of a curriculum or 

educational program because this would yield excessive cognitive load for the learners, with negative effects on 
learning, performance, and motivation (Sweller, van Merriënboer, & Paas, 1998; van Merriënboer, Kirschner, & 
Kester, 2003). The common solution is to let learners start their work on relatively easy learning tasks and 
progress towards more difficult tasks. In a whole-task approach, the coordination and integration of constituent 
skills is yet stressed from the very beginning, so that learners quickly develop a holistic vision of the whole task 
that is gradually embellished during the training. This is akin to the “global before local skills” principle in 
cognitive apprenticeship (Collins, Brown, & Newman, 1989, p. 485) or the “zoom lens metaphor” of 
Reigeluth's elaboration theory (1999). There are categories of learning tasks or task classes, each representing a 
version of the task with a particular difficulty (the dotted boxes in Figure 1). Learning tasks within a particular 
task class are equivalent in the sense that the tasks can be performed on the basis of the same body of 
generalized knowledge. A more difficult task class requires more knowledge or more embellished knowledge 
for effective performance than the preceding, easier task classes. In other words, each new task class contains 
learning tasks that are in the zone of proximal development of the learners (Vygotsky, 1934/1987). It is 
essential that the equivalent learning tasks within the same task class show a high variability, that is, differ from 
each other in terms of the saliency of defining characteristics, the context in which the task has to be performed, 
the familiarity of the task, or any other task dimensions that also vary in the real world (Paas & van 



 

 641 

Merriënboer, 1994). Variability is a key factor for reaching the necessary level of generality and facilitating 
transfer of learning to daily life or future work settings.  

Furthermore, when learners start to work on a new, more difficult task class, it is essential to give them 
guidance and support. This support diminishes in a process of “scaffolding” as learners acquire more expertise 
(see the filling of the circles in Figure 1). One powerful approach to scaffolding is known as the “completion 
strategy”. In this strategy, learners start to work on fully worked-out examples that confront them not only with 
a given problem state and a desired goal state, but also with an example solution. Questions and evaluation 
assignments stimulate the learners to reflect on the strong and weak points of the given solution. Studying 
worked-out examples focuses the learners’ attention on problem states and associated solution steps and so 
enables them to induce generalized solutions or schemata. Then, learners may proceed to work on completion 
tasks that present a given state, a goal state, and a partial solution that must be completed. There is still a 
sizeable support, because the given part of the solution provides direction to the problem solving process. 
Finally, learners receive conventional tasks without support – only then, they have to construct complete 
solutions. Several studies showed positive effects on learning for the completion strategy (Renkl & Atkinson, 
2003; van Merriënboer & de Croock, 1992).  

In a flexible curriculum, it should be possible to take differences between students into account. Some 
students are better able to acquire new complex skills or competencies and need therefore less practice and 
support than other students. In addition, elsewhere-acquired skills of new students should be taken into account. 
And complex skills or competencies are not coupled to separate courses or modules but developed throughout 
the curriculum or educational program,  which makes it even more important to be able to select suitable 
learning tasks for students. In the 4C/ID-framework sketched above, this means that for each individual student, 
it should be possible to select the best task class to work on, and to select within this task class a learning task 
with the optimal level of support, at any given point in time. Electronic learning environments allow for such 
dynamic selection of learning tasks.  
 

Dynamic Task Selection on the Basis of Mental Efficiency 
Models for dynamic task selection typically take learner’s performance as their input, defined in terms 

of the number of correctly answered test items, the number of errors, or the time on task. However, the 4C/ID-
model stresses that other dimensions are at least equally important for the assessment of expertise. They include 
mental load, which originates from the interaction between task characteristics (e.g., task format, multimedia, 
task difficulty) and learner characteristics (e.g., age, prior knowledge, spatial ability) and so yields an a-priori 
estimate of cognitive load, and mental effort, which refers to the cognitive capacity that is actually allocated to 
accommodate the demands imposed by the task (Paas & van Merriënboer, 1993, 1994b). Especially mental 
effort may yield important information that is not necessarily reflected in mental load and performance 
measures. For instance, it is quite feasible for two persons to attain the same performance levels with one person 
needing to work laboriously through a very effortful process to arrive at the correct answers, whereas the other 
person reaches the same answers with a minimum of effort. While both people demonstrate identical 
performance, ‘expertise’ may be argued to be higher for the person who performs the task with minimum effort 
than for the person who exerts substantial effort. 

An appropriate assessment of expertise should thus at least include measures of mental effort and 
performance. Paas, Tuovinen, Tabbers and van Gerven (2003) discuss different measurement techniques for 
mental effort, including rating scales, secondary task methods, and psychophysiological measures. On the basis 
of a comprehensive review of about 30 studies, they conclude that “...the use of rating scales to measure mental 
effort remains popular, because they are easy to use; do not interfere with primary task performance; are 
inexpensive; can detect small variations in workload (i.e., sensitivity); are reliable, and provide decent 
convergent, construct, and discriminate validity” (p. 68). For the measurement of complex performance, several 
methods that assess and weigh different aspects of performance have been developed (see Hambleton, Jaeger, 
Plake, & Mills, 2000).  However, most methods are very time-consuming. To make the assessment of complex 
performance more time -effective, Kalyuga and Sweller (in press) proposed a “rapid assessment test”, which 
asked students to indicate their first step toward solution of a complex task. High correlations (up to .92) were 
found between performance on “rapid assessment tests” and traditional performance tests that required 
complete solutions of corresponding tasks.  

A final step in the assessment of expertise is the difficult task of combining a student’s mental effort 
and performance measures, because a meaningful interpretation of a certain level of invested effort can only be 
given in the context of its associated performance and vice versa. Paas and van Merriënboer (1993; see also 
Paas et al., 2003) developed a computational approach to combine measures of mental effort with measures of 
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associated performance to compare the mental efficiency associated with instructional conditions – under the 
assumption that learners’ behavior in a particular condition is more efficient if their performance is higher than 
might be expected on the basis of their invested mental effort or, equivalently, if their invested mental effort is 
lower than might be expected on the basis of their performance. Using this approach, high task performance 
associated with low effort is called high mental efficiency, whereas low task performance with high effort is 
called low mental efficiency. Unfortunately, this approach can only be used after all data of a group of students, 
working in different instructional conditions, have been gathered. Alternative methods are needed for the 
continuous assessment of expertise of individual learners. Such alternatives are currently under development in 
the context of adaptive eLearning. 
 

Adaptive E-Learning 
Salden, Paas and van Merriënboer (in press) discuss the value of the 4C/ID-model for adaptive 

eLearning, with a focus on the dynamic selection of learning tasks. They describe adaptive eLearning as a 
straightforward two-step cycle: (1) assessment of a learner’s expertise, and (2) task selection. With regard to the 
ongoing assessment of expertise, they differentiated between a learner who needs to work laboriously to attain a 
certain performance level (low mental efficiency) and a learner who attains the same performance level with 
little mental effort (high mental efficiency). Only the second learner who solved the problem efficiently should 
be presented with a more difficult and/or less-supported learning task. With regard to task selection, given the 
learner’s mental efficiency one might select tasks (1) that provide less, equal, or more support to learners than 
the previous task(s); (2) that are less, equally, or more difficult than the previous task(s), and (3) that vary with 
regard to both support and difficulty.  
 

Selecting Learning Tasks with Different Levels of Support 
In a study reported by van Merriënboer, Schuurman, de Croock, and Paas (2002), participants received 

a 3-hour introductory computer-programming course in the computer-based learning environment CASCO 
(Completion ASsignment COnstructor; van Merriënboer & Luursema, 1996). Participants received no support 
(i.e., conventional programming tasks; n = 8), support (i.e., completion tasks; n = 10), or adaptive support (n = 
8). In the no-support and support conditions, each new learning task was selected from a database of tasks in 
such a way that the selected task offered the best opportunity to practice those programming concepts that were 
not yet mastered by the student. In the adaptive support condition, students selected completion tasks based on a 
subjective estimate of their mental efficiency: The tasks could range from fully worked-out examples to 
conventional tasks, that is, in their level of build -in support. All tasks that could be presented to the learners 
were of roughly the same difficulty level, and thus only differed with regard to the programming concepts that 
had to be practiced and, for the adaptive condition, the amount of given support. Learning tasks consisted of a 
problem statement and (1) explanations, concerning new programming concepts that were necessary for writing 
the program, (2) specific subtasks  that could help to write the program, and (3) questions that were relevant for 
the task at hand. For completion tasks, a partial, to-be-completed program was presented in a full-fledged editor 
window; for conventional tasks, this editor window was empty.  The CASCO interface is presented in Figure 2. 
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Figure 2. The CASCO Interface. 
 

Practice data show that learners in the support group finished the highest number of learning tasks in 
the three-hour practice phase (M = 28.1), compared to the no-support group (M = 8.3) and the adaptive support 
group (M = 21.3; F(2, 26) = 13.7, MSE = 66.4, p < .001). In post-hoc tests, using Tukey’s HSD, it was found 
that both the no-support and the support group (p < .001) and the no-support and the adaptive support group (p 
< .01) differed significantly. For a transfer test that was performed after the training, the proportion of correctly 
used programming concepts  was .33 for the no-support group, .39 for the support group, and .55 for the 
adaptive support group. ANOVA indicated a significant difference between conditions, F(2 ,26) = 3.6, MSE = 
.03, p < .05. As predicted, the adaptive support group outperformed the support and no-support groups. 
Concluding, adapting the level of support to the learners had beneficial effects on learning and transfer test 
performance.  
 

Selecting Learning Tasks with Different Levels of  Difficulty 
In the domain of Air Traffic Control (ATC), Camp, Paas, Rikers and van Merriënboer (2001) and 

Salden, Paas, Broers and van Merriënboer (2004) compared the effectiveness of a fixed easy-to-difficult 
sequence of learning tasks with dynamic task selection based on mental efficiency. In the mental efficiency 
condition, learners received ATC tasks at possible 10 levels of difficulty, starting at the lowest level. Depending 
on the assessment results, the next task was selected. For instance, a student who attains a performance score of 
4 while his or her mental effort is 3 will be presented with a learning task that is one difficulty level higher than 
the previous task; another student who attains a performance score of 4 while his or her mental effort is only 1 
will be presented with a learning task that is two difficulty levels higher than the previous task. In both studies, 
dynamic task selection yielded more efficient transfer test performance than the use of a fixed sequence of 
tasks. The mental efficiency condition was also more effective during training than the fixed condition: 
Participants needed fewer learning tasks to reach the highest difficulty level, reached a higher difficulty level, 
and made larger jumps to higher difficulty levels than students in the fixed condition. 

In a just completed study, participants learned to use a Flight Management System (FMS) according to 
either (a) a fixed easy-to-difficult sequence of 16 learning tasks (n = 10), (b) a system-controlled mental 
efficiency condition (n = 11), and (c) a learner-controlled mental efficiency condition (n = 10). Prior to training, 
the thirty-two learning tasks were categorized into eight difficulty levels (four tasks per level; note that only two 
of those four tasks were used in the fixed condition). In the system-controlled mental efficiency condition, 
performance and mental  effort were measured and used to determine the difficulty of the next learning task 
according to a table that specified the increase/decrease in difficulty for each combination of mental effort and 
performance. For instance, if a participant had a mental effort score of 2 and a performance score of 5 (both 
measured on a 5-point scale), task difficulty was increased with three levels (+3); if a participant had a mental 
effort score of 5 and a performance score of 3, task difficulty was decreased with two levels (-2), and so forth. 
In the learner-controlled mental efficiency condition, participants were free to select the next task based on a 
subjective estimate of their mental efficiency. The tasks were performed  in a realistic computer simulation of a 
Boeing 747 FMS developed by the National Aerospace Laboratory NLR (see Figure 3). Each task presented 
flight information of a certain route from airport A to airport B that learners had to program into the FMS 
simulation. A simulated flight had to be executed after entering all information. At certain points during the 
task, changes in the flight route were required and made it necessary for the trainees to adjust the original flight 
route.  
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Figure 3. The simulation of a Flight Management System (FMS). 
 

Practice data show that learners in the mental efficiency conditions needed substantially less than the 
16 learning tasks in the fixed condition to complete the training: M = 7.27, SD = 1.19 for the system-controlled 
condition (t(20) = -4.6, p < .001) and M = 6.50, SD = 1.35 for the learner-controlled condition (t(19) = -4.3, p < 
.001). In line with this finding, the mental efficiency conditions also needed less training time to reach the 
highest difficulty level than the fixed condition (F(2, 28) = 28.37, MSE = 444.40, p < .001, ?² = .67. M = 
149.60, SD = 22.77 for the fixed condition, M = 117.35, SD = 25.61 for the system-controlled mental efficiency 
condition, and M = 78.69, SD = 11.64 for the learner-controlled condition). For a test with five transfer tasks 
after the training, an ANCOVA with number of learning tasks and time-on-task as covariates indicates that 
participants scored 2.89 (SD = .38) in the fixed condition; 3.21 (SD = .20) in the system-controlled mental 
efficiency condition, and 3.16 (SD = .22) in the learner-controlled mental efficiency condition (Ms are 
estimated marginal means). Whereas visual inspection indicates higher scores for the mental efficiency 
conditions, this difference does not reach statistical significance. However, the data clearly indicate that the 
mental efficiency conditions yield at least the same test performance with less practice tasks and in less time 
than a traditional fixed condition. 
 

Selecting Learning Tasks with Different Levels of Support and Difficulty 
Kalyuga and Sweller (in press) conducted a study in which both the difficulty and the given support of 

the next task were adapted to the mental efficiency of the learner. They took a somewhat different approach to 
combining performance and mental effort measures than the previous studies. In the domain of algebra, a ‘rapid 
assessment test’ was used to measure performance and a 9-point rating scale was used to measure mental effort. 
Cognitive efficiency (E) was defined as a combined measure for monitoring learners’ progress during 
instruction and real-time adaptation of instructional formats to changing levels of expertise. Cognitive 
efficiency is simply defined as E = P/R, where R is the mental effort rating and P is the performance measure on 
the same task. This indicator has similar general features as efficiency defined by Paas and van Merriënboer 
(1993), in that it is higher if similar levels of performance are reached with less effort or, alternatively, higher 
levels of performance are reached with the same mental effort. Students were presented tasks at different levels 
of difficulty, and for each level a critical level of cognitive efficiency (Ecr) was arbitrarily defined as the 
maximum performance score (which was different per task level) divided by the maximum mental effort score 
(which was always 9). It should be noted that this technique makes it unnecessary to use a baseline group 
(previous studies used the “fixed” group to set this baseline). Cognitive efficiency is positive if E > Ecr and 
negative if E < Ecr. The rationale for this definition is that if someone invests maximum mental effort in a task 
but does not display the maximum level of performance, his or her expertise should be regarded as suboptimal. 
On the other hand, if someone performs at the maximum level with less than a maximum mental effort, his or 
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her expertise should be regarded as optimal. 
 

 
Figure 4. Selection algorithm governing the selection of learning tasks with different levels of difficulty (stages 1-4) and 
support (worked-out examples, completion tasks, and conventional tasks/problem solving exercises). Adapted from Kalyuga 
and Sweller (in press) 
 

In the adaptive group, learners were presented algebra tasks at three different difficulty levels. If their 
cognitive efficiency was negative for tasks at the lowest level, they continued with the study of worked 
examples; if their cognitive efficiency was positive for tasks at the lowest level but negative for tasks at the 
second level, they continued with simple completion tasks; if their cognitive efficiency was positive for tasks at 
the lowest and second level but negative for tasks at the third level, they continued with difficult completion 
tasks, and, finally, if their cognitive efficiency was positive for tasks at all three levels, they continued with 
conventional problems. Similar adaptive methods were applied when students were working on the worked 
examples, completion tasks, or conventional problems (see Figure 4). Each student in the adaptive condition 
was paired to a student in the control condition, who served as a yoked control. Kalyuga and Sweller (in press) 
report higher gains in algebraic skills from pretest to posttest and higher gains in cognitive efficiency for the 
adaptive eLearning group than for the control group. Thus, in agreement with the other reported studies, 
adaptive eLearning was found to be superior to non-adaptive learning. 
 

Discussion and Conclusion 
Modern instructional models stress the use of whole, meaningful learning tasks as the driving force for 

complex learning. However, learners are easily overwhelmed by the complexity of such tasks. It is thus critical 
to select each new learning task in such a way that it is best adapted to the individual needs of the learner. 
According to the 4C/ID model, adaptation mainly refers to (a) the—build-in—support that is provided to 
learners while they perform the task, and (b) the difficulty of the task (i.e., the task class it belongs to). As an 
additional constraint, the whole set of tasks that is provided to the learner must display a high level of 
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variability. In order to determine the optimal level of support and difficulty of a next learning task, an indication 
of the learner’s performance is insufficient. After all, if two learners reach the same performance but one needs 
to put in a lot of effort (low mental efficiency) and the other does it almost effortlessly (high mental efficiency), 
the selected new task should be easier and/or contain more support for the first learner than for the second 
learner. 

We discussed several empirical studies, which indicate that adapting the level of support, the difficulty 
of the learning task, or support as well as difficulty has beneficial effects on learning and transfer test 
performance. Thus, adaptive instruction is more effective than non-adaptive instruction. Three conclusions can 
be drawn from the presented studies. First, both the level of available support and the difficulty of the learning 
task are important dimensions to take into account for dynamic task selection. Second, performance alone is 
often an insufficient basis for task selection and should be complemented with, for instance, invested mental 
effort so that mental efficiency drives the task selection. Third, the 4C/ID-model proved to be not only useful to 
develop fixed training programs but also to develop adaptive forms of instruction.  

While the presented results are promising, they also yield important questions for future research. A 
first question pertains to the complex relationship between difficulty and support. If a learner’s mental 
efficiency is suboptimal, should we present a next task that is equally difficult as the previous one but with more 
support; should we present a next task that is less difficult than the previous one but with the same level of 
support; or should we vary both the available level of support and its difficulty? The 4C/ID-model suggests to 
vary only the support until the learner can perform the task without any support, according to relevant standards 
and criteria, and not until then to continue with more difficult learning tasks (i.e., progress to a next task class). 
However, strong empirical support for this claim is yet missing. Second, it is important to replicate our findings 
on dynamic task selection with lengthier tasks in real-life environments. Especially the measures of mental 
effort may be much more difficult to realize for such tasks and settings. Finally, an important issue for future 
research pertains to the level of control that learners should be given over task selection. The development of 
metacognitive skills and higher order skills is increasingly seen as an important goal of education, and this 
includes the ability to select yourself learning tasks that best help to reach educational and personal goals. The 
question is not if new learning tasks should be selected by the teacher (or another intelligent agent) or by the 
student, but how teachers can select learning tasks for students who are not yet able to do this, how they can 
help students to take more and more responsibility for selecting their own learning tasks, and how they can help 
students with this by giving advice and providing guidance. We will only be able to answer those questions if 
we understand the mechanisms of good learning task selection. 
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