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SAMPLING OF COMMON ITEMS: 

AN UNRECOGNIZED SOURCE OF ERROR IN TEST EQUATING1 

Michalis P. Michaelides 

The College Board 

Edward H. Haertel 

CRESST/Stanford University 

Abstract 

There is variability in the estimation of an equating transformation because common-
item parameters are obtained from responses of samples of examinees. The most 
commonly used standard error of equating quantifies this source of sampling error, 
which decreases as the sample size of examinees used to derive the transformation 
increases. In a similar way of reasoning, the common items that are embedded in test 
forms are also sampled from a larger pool of items that could potentially serve as 
common items. Thus, there is additional error variance due to the sampling of common 
items. Currently, common items are treated as fixed; the conventional standard error of 
equating captures only the variance due to the sampling of examinees. 

In this study, a formula for quantifying the standard error due to the sampling of 
the common items is derived using the delta method and assuming that equating is 
carried out with the mean/sigma method. The analytic formula relies on the 
assumption of bivariate normality of the IRT difficulty parameter estimates. The 
derived standard error and a bootstrap approximation for the same quantity are 
calculated for a statewide assessment under both three- and one-parameter logistic IRT 
models; for the polytomous items, a graded response model is fitted. For the one-
parameter logistic case, a small-sample bootstrap approximation to the standard error 
of equating due to the sampling of examinees is derived for comparison purposes.  

There was some discrepancy between the analytic and the bootstrap 
approximation of the error due to the sampling of common items. Examination of the 
assumption of bivariate normality of the difficulty parameter estimates showed that 
the assumption does not hold for the data set analyzed. For simulated data drawn from 
a population that was distributed as bivariate normal, the two methods for estimating 
the error gave nearly identical results, confirming the correctness of the analytic 
approximation. The comparison with the examinee-sampling standard error of 
equating revealed that the two sources of equating error were of about the same 
magnitude. In other words, the conventional standard error of the equating function 
reflects only about half the equating error variation. Numerical results demonstrate 
that for individual examinee scores the two equating errors comprised only a small 
proportion of the total error variance; measurement error was the largest component in 
individual score variability. For group-level scores though, the picture was different. 
Measurement error in score summaries shrinks as sample size increases. Examinee-
sampling equating error also decreases as samples become larger. Error due to 
common-item sampling does not depend on the size of the examinee sample—it is 

                                                 
1 We would like to thank Michael Nering and Kevin Sweeney of Measured Progress Inc. for 
providing the data analyzed in this study and David Rogosa and Robert Tibshirani for their 
insightful comments. 
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affected by the number of common items used—so it could constitute the dominant 
source of error for summary scores. The random selection of common items should be 
acknowledged in the analysis of a test and the arising error variance calculated for 
proper reporting of score accuracy. 

Introduction 

Tests are often administered over multiple occasions, at different times and 
places. Testing programs do not typically administer the same form of a test on all 
occasions. Repeated administration of the same items would result in overexposure 
of the test content and jeopardize the security of the test. Examinees taking the test 
later would be at an advantage over those who had taken it earlier. Moreover, the 
item pool needs to be refreshed because some items become obsolete over time, 
while others become more relevant (Goldstein, 1983), and because agencies are often 
required to disclose some or even all items from the test after they have been used. 
Even without administering the same test items, it is desirable to maintain 
comparable information longitudinally and be able to measure change across 
administrations. 

When examinees take alternate forms, it does not follow that the scores they 
earn are comparable. Even if those forms are carefully constructed to the same 
content and statistical specifications, they differ in statistical properties such as their 
degree of difficulty. Unless scores are adjusted to take account of these differences, 
comparisons are not fair to all examinees tested. “Only when tests are equated can it 
be fair to give them to different people and treat the scores as if based on the same 
test” (Holland & Rubin, 1982, p. 1). Equating is the statistical process that establishes 
comparability between alternate forms of tests built to the same content and 
statistical specifications by placing scores on a common scale, thus allowing 
interchangeable use of scores on these forms (American Educational Research 
Association, American Psychological Association, & National Council on 
Measurement in Education, 1999; Kolen & Brennan, 1995). After equating, it should 
be a matter of indifference to examinees which test form to take (Lord, 1980).  

There are various designs that can be used for test equating. Deciding on which 
one to implement involves issues of practicality and statistical adequacy. In the 
frequently used common-item nonequivalent groups design (Kolen & Brennan, 1995) a 
subset of the items, which are referred to as common, equating, linking, or anchor 
items, is embedded in both forms, thus creating an overlap in their content (Wainer, 
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1999). Those common items are used to generate the equating relationship between 
the two groups, without assuming group equivalence, by comparing their 
performance on the common items. Given that the statistical properties of the 
common items do not change across administrations, any systematic pattern in their 
difficulty indices may be attributed to differences in the average proficiencies of the 
two groups.  

The common-item nonequivalent groups design arises in many practical 
situations, such as the administration and equating of test forms over successive 
years. The design permits the linking of longitudinal information by establishing a 
common metric while at the same time avoiding the problem of test overexposure 
and allowing the renewal of the item pool by replacing old items with new ones. 

The Standard Error of Equating 

As with any statistical estimation procedure, the accuracy of estimated 
equating relationships is of interest. Test scores are often associated with high-stakes 
decisions. Therefore, one should always guard against possible sources of error, 
attempt to quantify the amount of inaccuracy, and report it with each estimate.  

The error could be systematic or random (cf. Kolen, 1988; Kolen & Brennan, 
1995). Systematic error is independent of sample size and arises in different 
situations that fail to adhere to guidelines of a proper application: when the method 
of estimating the equating function introduces bias, when the assumptions 
underlying the methods or the models used are violated, when the equating designs 
are incorrectly implemented, or when the groups taking alternate forms differ 
substantially (Kolen & Brennan).  

Random error arises because information is collected only for a sample of a 
population. When there is information for the whole population, the true equating 
function can be calculated. When only a random sample is available, the estimate of 
that function fails to capture the true state by some amount of error.  

Standard errors of equating quantify random error, the uncertainty arising due 
to the sampling of examinees. As sample sizes increase, examinee-sampling error 
decreases. Kolen and Brennan (1995) described in detail methods to estimate the 
standard error of equating, which “is conceived as the standard deviation of equated 
scores over hypothetical replications of an equating procedure in samples from a 
population or populations of examinees” (p. 211). For the common-item 
nonequivalent groups design in particular, random groups from each of the two 
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populations would be drawn, and the equating relationship calculated. The equating 
function applied on the score scale of the second group before equating would give 
the equivalent score scale. The standard deviation of equated scores from many 
resampled draws would provide an estimate of the standard error of equating. 

This standard error is different at each point on the score scale. It can be 
summarized to an aggregate value, the mean standard error of equating (Kolen & 
Brennan, 1995) by weighting the equating error variance at each point xi by its 
density f(xi) and then summing over all score points 

∑
i

iYi xeSExf )](ˆ[)( 2  

where )(ˆ iY xe  is the equivalent score of xi on a scale Y.  

It is useful to have closed analytic formulas or large sample approximations for 
standard errors. The delta method has been used to derive such expressions for 
various equating designs and methods, with the exception of item response theory 
(IRT) methods (cf. Kolen & Brennan, 1995, Table 7.2, for a list of references for 
specific designs and methods.) These formulas are often complicated. Resampling 
procedures, such as the bootstrap (Efron, 1982; Efron & Tibshirani, 1993), even 
though computationally more intensive, offer feasible alternative ways for 
estimating standard errors of equating. In practice, standard errors of equating are 
often not computed because simple analytical formulas do not exist, and bootstrap 
or jackknife computations are impractical to implement (Harris & Crouse, 1993).  

Until recently, there have not been any analytic procedures to estimate 
standard errors of equating for IRT equating methods. Lord (1982) derived a 
formula for the asymptotic standard error of a true score IRT equating with an 
external anchor test, noting however that his approach underestimated the error. In 
a series of recent articles, Ogasawara (2000, 2001a, 2001b, 2001c) provided analytic 
expressions for IRT equating methods. He derived asymptotic standard errors of 
equating coefficient estimates obtained by moments (e.g., for mean/sigma and 
mean/mean methods; Ogasawara, 2000), asymptotic standard errors of the 
estimates of equating coefficients using response functions (i.e., Haebara or Stocking 
and Lord characteristic curve methods; Ogasawara, 2001c) and asymptotic standard 
errors for IRT true score equatings (Ogasawara, 2001a). 
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With one exception, no implementations of computational procedures have 
appeared in the literature. Although Kolen and Brennan (1995) mention that 
bootstrap standard errors of equating can be used for IRT methods as with other 
methods, they note that such a task is difficult since in addition to drawing random 
samples, item parameters must be estimated many times. Item parameter estimation 
requires use of specialized software that often requires some manual intervention 
(e.g., dropping items or examinees; constraining particular parameters) in order to 
obtain a convergent solution, especially when a three-parameter IRT model is 
employed. For that reason, the task of estimating parameters for many resamplings 
of examinees becomes overwhelming. 

One recent study calculated bootstrap standard errors of IRT equating methods 
for the common-item nonequivalent groups design (Tsai, 1998; Tsai, Hanson, Kolen, 
& Forsyth, 2001). That study involved bootstrap sampling from two nonequivalent 
samples of examinees, and for each of 500 replications they calibrated their 
dichotomous data using BILOG 3 to obtain item parameters. In fact, the authors 
mentioned that in 99 of the 500 replications for one of the conditions they examined, 
at least one of the IRT b estimates diverged toward ∞± , and they had to replace 
those estimates with values from the original calibration. 

The Selection of Common Items as an Additional Source of Variability in 

Equating 

A test score is based on an examinee’s performance on a particular test form 
consisting of certain items. What is of interest most often is not how well the 
examinee did on those particular items at that particular occasion. Rather it is the 
inference drawn from that instance of performance to what the examinee could do 
across many other instances requiring the application of the same skills and 
knowledge. “The operational assessment is a sample of performance. Those who 
wish to apply a standard are concerned with the pupil’s level of proficiency across a 
domain of knowledge and skills, not with the sample as such” (Cronbach, Linn, 
Brennan, & Haertel, 1997, p. 376).  

Generalizing from a sample to a population is essentially an error-prone 
process. Much as in classical statistics where generalization from a sample to a 
population is a central concern, inference from a particular test to a universe of tests 
covering the same domain is another important issue for educational and 
psychological measurement (Brennan & Kolen, 1987).  
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In the common-item nonequivalent groups design for test equating, a source of 
error that has been ignored in the error calculation process is the selection of the set 
of items used as common. Current practice treats common items as fixed. Under IRT 
model assumptions, all of the relevant particularities of each item are accounted for 
by its item parameters. Thus, if IRT assumptions held and item parameters could be 
estimated with perfect accuracy, then the same equating function would be obtained 
regardless of which common items were used. Common items are, however, chosen 
from a hypothetically infinite pool of potential items that could appear in two or 
more forms and provide an anchor for equating test forms.2 Many other sets of items 
that adhere to the same specifications could function as common items. Had a 
different collection of common items been used to perform equating, the equating 
transformation would differ due to inevitable small departures from IRT model 
assumptions. IRT models do not hold perfectly, and as a result, item parameter 
estimates vary across administrations because of model misspecification, as well as 
(examinee) sampling variability. Hence, each set would result in a different equating 
transformation, even with infinitely large samples of examinees. The argument just 
described demonstrates why the sampling of common items constitutes a source of 
error in test equating that needs to be quantified and reported. This source of error 
could be thought of as random, because it arises due to the sampling of 
interchangeable common items from the hypothetical population of such items. 
However, under a perfect model fit, the sampling of common items would not add 
variance to the equating transformation because item-specific properties would be 
fully accounted for by the item’s IRT parameters; the variability arises due to model 
misspecification. 

Current equating practice does not take into account this uncertainty in the 
estimation of item parameters when deriving individual or group-level scores, 
acting as if the fitted IRT models held perfectly. Pellegrino, Jones, and Mitchell 
(1999) in their report on the National Assessment of Educational Progress (NAEP) 
noted that ignoring the uncertainty in (both common and non-common) item 
parameter estimates resulted in standard errors being underestimated. They cited a 
need for investigation of the accuracy of the standard errors.  
                                                 
2 An infinitely large pool of common items is a theoretical construct, rather than a plausible practice; 
items are not randomly sampled from this pool because the collection of common items should 
adhere to certain content and statistical specifications (Kolen & Brennan, 1995). Cohen, Johnson, and 
Angeles (2000) considered the generation of common items as a “replicable process, including the 
selection of item writers and editors, the subdomains covered, the item types developed, and other 
such variables” (p. 6). 
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Responding to the Pellegrino et al. (1999) report, Cohen, Johnson, and Angeles 
(2000) framed the issue as a problem of sampling in two dimensions: “The 
assessment instrument contains a sample of items that reflect the construct or 
constructs of interest, and the study draws a sample of examinees who respond to 
these items” (p. 1). Standard errors reported for large-scale assessment programs 
quantify the latter but not the former source of variance, making the additional 
assumption that “items are virtually exchangeable when estimating aggregate 
statistics” (p. 2). 

To our knowledge, the only study that addressed the issue of variability due to 
sampling of items was the unpublished study by Cohen et al. (2000). They applied a 
generalized version of the jackknife procedure (Quenouille, 1956) to evaluate the 
variance of estimates for the NAEP due to the two-dimensional sampling of 
examinees and items included in the assessment.3 Cohen et al. (2000) found evidence 
of substantial underestimates of traditional NAEP standard errors. The uncertainty 
in IRT parameter estimates results in 25% to 100% increase in standard errors. The 
contribution of the sampling of examinees to the uncertainty in IRT parameter 
estimates was modest, whereas that of the sampling of items was more profound. 
Their results imply that as larger samples of examinees take an assessment, the 
standard error of measurement (and the variability in IRT item parameter estimates 
due to the sampling of examinees) will decrease, thus giving the impression of 
accurate measurement. The variability due to the sampling of items is unaffected by 
examinee sample sizes, and it could become the dominant source of error in large 
samples. 

Error due to the selection of common items will affect both individual and 
aggregate scores, because equating functions rescale both onto a different scale. On 
an individual level, such error may not be as critical because there are large sources 
of uncertainty associated with individual scores. Aggregates, on the other hand, 
have much smaller standard errors, especially as samples of examinees become 
large. The standard error of equating that quantifies the uncertainty due to the 
sampling of examinees overestimates the accuracy of test scores by failing to 
consider the variability due to the sampling of common items. In this study, an 
analytical expression and a bootstrap approximation that quantify the latter source 

                                                 
3 It should be noted that Cohen et al. (2000) considered the uncertainty in the IRT parameters due to 
the sampling of examinees and items in the complex NAEP design.  NAEP’s matrix-sampling uses a 
balanced incomplete block design and each examinee is administered only a few of the items in the pool.   
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of error are derived. The standard error due to the sampling of common items is 
compared to a small-sample bootstrap approximation of the standard error of 
equating due to examinee sampling to illustrate the relative magnitude of this 
source of error for individual and group-level interpretations. 

Standard Error of Equating Due to the Selection of Common Items 

Suppose that two groups of examinees, Groups 1 and 2, respond to two 

alternate forms of the same test under the common-item nonequivalent groups 

design. The two forms have pj ,...,1=  items in common. Each group’s person-by-

item response matrix is calibrated separately under a 3-Parameter Logistic (3PL) IRT 

model (Birnbaum, 1968). 

 )(
1

1
),,,|1(

jij

j
jjjjiij bDa

e

c
ccbaxP

−−
+

−
+== θθ  

is the probability of examinee i  to answer item j  correctly, that is, to get a score of 

one, given his/her ability iθ  and the three item parameters aj, bj, and cj.  ijx  takes 

values of 0 and 1.  D is a scaling constant equal to 1.7. Similar formulations can be 

given for 1- and 2-Parameter Logistic models. 

The linear transformation used to place the score scale for Group 2 onto the 
scale of Group 1 is 

BA ii += 2
*
2 θθ  

i2θ  are ability estimates for the 2,...,1 Ni =  Group-2 examinees.  *
2iθ  are the 

transformed Group 2 scores, equated to the Group 1 score scale. 

Let 
A
a

a j
j

2*
2 =  and BAbb jj += 2

*
2  be the scaling transformations for the item 

parameters.  Then it follows that for Group 2 

),,,|1(),,,|1( ***
jjjiijjjjiij cbaxPcbaxP θθ ===   

which means that the linear transformation does not affect the probability of 
answering an item correctly or not.  If the equating is accurate, however, values of 
*
2iθ  will be directly comparable (on the same scale) as values of i1θ . 

The mean/sigma method (Marco, 1977) is an IRT equating method that 
estimates the transformation constants A and B from the moments of the sample IRT 
difficulty values of the p common items for the two Groups as follows: 
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Because of model misspecification, and sampling of common items, there is 
variability in the estimates of A and B, which results in a source of error in the 
equated scores *

2iθ  due to the selection of common items4:  
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Under the assumption of bivariate normality, which implies normality of the 
b’s for each group, the covariances of an average and a variance for sets of IRT b’s 
are zero and thus have been omitted from the above expression. To evaluate the 
variance of *

2iθ  two components are needed: the variances and covariances of 

)(),(,, 2
2

1
2

21 jjjj bsbsbb , and the derivatives of *
2iθ  with respect to each of 

)(),(,, 2
2

1
2

21 jjjj bsbsbb . 

Let 1s
r

 be a q x 1 vector of parameter means and 2s
r

 the q(q+1)/2 x 1 vector of 

parameter covariance elements.  In this case of two groups, 

                                                 
4 The use of estimates of item parameters rather than the (unavailable) true parameter values also 
contributes error, but that source of error is commonly accounted for in examining the standard error 
of equating.  The focus here is error due to sampling of common items. 
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N  is the sample size, S is the sample covariance matrix and K  is a constant matrix 

selecting elements.  The elements of 22W  can be obtained by 
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where 0=ijklk  under normality. 

 In this case, 
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Therefore, the formula to estimate the variance in the Group 2 equated scores is 
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The square root of the expression in (1) gives an estimate of the standard error 
of equating due to the sampling of common items under the mean/sigma method 
for deriving the equating transformation. 

Methodology 

Data Sources and Calibrations 

A mathematics assessment was administered to two statewide cohorts of 
Grade 8 students over two successive years: 2000-01 and 2001-02, referred to as Year-
1 and Year-2 assessments respectively. The sizes of the two cohort populations were 
7258 and 7128. There were a total of 139 and 137 items in the Year-1 and Year-2 
administrations respectively, arranged in 8 forms. Forty-four items were embedded 
in both assessments, distributed across the 8 forms; they can be used as common 
items to link the two score scales.  

Prior to equating Year-2 to Year-1, each assessment was calibrated separately 
with PARSCALE 3.0 (Muraki & Bock, 1997). The assessments came in multiple 
forms every year with certain items embedded in all those forms—in addition to the 
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common items embedded across years for equating cohort scores. Concurrent 
calibration of all forms for a given year automatically places them on a single scale.  

PARSCALE 3.0 allows calibration of tests that consist of both dichotomous and 
polytomous items and thus fitting of mixed models. First, a 3PL IRT model was 
fitted to the dichotomous data as in equation (2). 
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Pj(θi) is the probability that an examinee i with ability level θi responds to item j 
correctly. For each item j, the model provides estimates for the three parameters aj, bj, 
and cj; the discrimination, difficulty or location, and pseudoguessing or lower 
asymptote parameters respectively. It also provides an estimate of the examinee’s 
ability level θi. The dichotomous and the polytomous items were all scaled together. 
For the polytomous items, a graded response model (Samejima, 1969) was fitted. 
The graded response model applies to items that are scored in ordered categories 
with higher categories representing better performance than lower categories. The 
probability of an examinee scoring in a category k (k=0,…,m) is equal to the 
probability of obtaining a score of k or above, )(θ+

jkP , minus the probability of 

obtaining a score of k+1 or above, )(1, θ+
+kjP .  Its logistic form given by Muraki and 

Bock (1997) is 

 )(7.1
1

)(7.1

)(7.1
1

)(7.1
)()()(

1

1

1,
+

+
+
+

+

+−
+

+−
−+−

+
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=−=

kjj

kjj

kjj

kjj

kjjkjk dba
e

dba
e

dba
e

dba
ePPP θ

θ

θ

θ
θθθ   (3) 

where Pjk(θ) is the probability that an examinee with ability level θ obtains a score k 
on an item j with m+1 scoring categories; dk is the category parameter, with 

∑
=

=
m

k
kd

0
0 , and 01 ≥− +kk dd . The difference bj– dk is referred to as the category-threshold 

parameter, the location on the scale that separates two adjacent scores. The 
probability of responding in one of the two extreme categories or above is defined as 

1)(0 =+ θjP  and 0)(1, =+
+ θmjP . A polytomous item has m category-threshold parameters 

(separating the m+1 scoring categories), as opposed to a single location parameter 
for a dichotomous item. When a polytomous item appears in a common-item pool, it 
will contribute all its category-threshold parameters, and will thus have more 
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weight in the equating transformation than the dichotomous items. This is not 
undesirable, since a polytomous item carries more weight (i.e., can give more score 
points) in the estimation of an individual examinee’s score. 

A 1PL model was also fitted, 

 )(7.1
1

)(7.1
)(

ji

ji

ij b
e

b
eP

−

−

+
= θ

θ
θ  

by fixing the aj parameters at 1 and excluding the cj from the model. The graded 
response model (equation (3) with the aj parameters fixed at 1) was fitted to the 
polytomous data.   

Two estimates for the standard error of equating due to the selection of 
common items are presented under both a 3PL and a 1PL IRT model fit: (a) the 
analytical expression derived in the previous section, the square root of (1), and (b) a 
bootstrap approximation described in the following section. For the 1PL IRT case, 
this standard error is compared to the traditional standard error of equating due to 
imprecision in estimates of item parameters (i.e., due to examinee sampling), which 
is calculated using a small-sample bootstrap procedure.   

Bootstrap Approximation to the Standard Error Due to the Sampling of Items 

Data for the two annual administrations for the Mathematics 8 assessment 
were calibrated with both a 3PL and a 1PL IRT model, and item parameters were 
estimated from each model. The IRT b parameter estimates of the common items are 
relevant to the mean/sigma equating method. The slope A and the intercept B of the 
mean/sigma transformation are functions of the moments of the b estimates:  

)(
)(

Ij

Jj

b
b

A
σ
σ

= , and )()( IjJj bAbB µµ −=  for groups I and J and common items j. 

The particular assessment had a set of 44 common items: 37 dichotomous items 
and 7 polytomous items scored 0 to 4. In the original calibration, 65 estimates of item 
difficulty parameters entered the calculation of the mean/sigma transformation: 37 
for the dichotomous and 28 for the polytomous (4 category-threshold estimates for 
each polytomous item). 

The variability in the transformation was approximated with a bootstrap 
resampling technique (Efron, 1982; Efron & Tibshirani, 1993). The bootstrap 
procedure, which does not rest on any distributional assumptions, was applied as 
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follows: Two thousand bootstrap samples were generated, each sample consisting of 
44 common items drawn with replacement from the common-item pool. A 
mean/sigma equating transformation was estimated from each bootstrap sample 
using the Year-1 and Year-2 IRT difficulty values of the sampled common items; 
when a polytomous item was drawn, all four of its category-threshold estimates 
were used in the equating. The 2000 transformations resulted in 2000 corresponding 
scaled scores for each point θ of the theta scale. The standard deviation of 2000 
scaled scores that correspond to a single θ is an approximation to the standard error 
of equating due to the selection of common items for that θ.  

The magnitude of the standard error differs for each point on the scale.  In the 

error variance formula (1), the terms for the difference between a point on the θ scale 

i2θ  and the mean of the IRT b parameter estimates are squared. Thus, the error curve 

has a parabolic shape indicating more accuracy at the center and less accuracy at the 

extremes of the scale. The variability in the equating transformation can be 

compared to the variability in an ordinary least squares regression line. The farther a 

point lies from the mean of the observations, the more uncertainty there is in the 

prediction of the dependent variable; the relative standing of the point is multiplied 

by the variability in the slope estimate. The variability in the intercept estimate is 

constant across the scale. 

The analytic and the bootstrap methods estimate the same common-item 
sampling error.  The former was derived assuming a bivariate normal distribution. 
As can be seen in the results section, the sets of IRT difficulty values showed 
substantial departures from bivariate normality. To establish whether departures 
from bivariate normality accounted for any discrepancy between the two methods, a 
simulation study was carried out as follows. Assume that the parent population 
from which data are sampled follows a bivariate normal distribution. The means, 
standard deviations, and covariance of this bivariate population are chosen to match 
the corresponding statistics of the original Mathematics 8 sample of IRT b estimates 
for Year 1 and Year 2. Two populations are assumed to exist: one with the 
aforementioned statistics equal to the sample statistics obtained under a 3PL 
calibration of the dichotomous items, and the second with statistics matching those 
of the sample in the 1PL case. Polytomous items are calibrated accordingly. 
Applying a parametric bootstrap technique (Efron & Tibshirani, 1993), 2000 samples 
of 65 pairs of observations are sampled from the parent population, as explained in 
the following paragraph. For each sample the mean/sigma equating transformation 
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is calculated and each point on the θ scale is transformed to a different scale for 
equating purposes. The standard deviation of the 2000 equated scores for a theta is a 
bootstrap estimate of the common-item sampling error. The same procedure is 
repeated with the second parent population. These two parametric bootstrap 
estimates can be compared to the 3PL and 1PL analytic estimates, which are the 
same as in the original sample, since the same means, standard deviations, 
covariance and number-of-items terms are used in the variance formula (1), to assess 
whether they are more similar when the assumption of bivariate normality of the 
data holds. 

The FORTRAN code for the parametric bootstrap simulation is presented in 
Appendix A. Sampling from a bivariate normal distribution with given moments 
was simulated as follows: A sum of 12 uniform variates minus 6 results in an 
approximately unit normal deviate, since the mean and variance of a (0,1) uniform 

distribution are 
2
1

 and 
12
1

 respectively.  Sixty-five pairs ( )ii XX 21 ,  of independent 

normal deviates were generated. The transformations ii XY 11 =  and 

iii XrXrY 2
2

12 1−+=  produce ( )ii YY 21 ,  pairs that are correlated with a correlation 

coefficient r. After applying the linear transformations ii YsxY 111
*
1 +=  and 

ii YsxY 222
*
2 +=  the bivariate sample ( )*2*

1 , ii YY  can be considered to have been drawn 

from a population with predetermined means 1x  and 2x , standard deviations 1s  and 

2s , and correlation r. 

Bootstrap Standard Error of Equating Due to the Sampling of Examinees 

To compare the proposed standard error of equating with the standard error 
due to the sampling of examinees, another bootstrap approximation was employed.  
In the Year-1 data set for the Mathematics 8 assessment, there were 7258 examinee 
response strings.5  A bootstrap sample of 7258 response strings was drawn from the 
original data set with replacement. The sample was calibrated using a 1PL IRT 
model and item IRT b estimates were extracted for the common items.  The same 
procedure was followed for the Year-2 data set, which included 7128 response 
strings, with 7128 draws in this case. The two sets of common-item IRT b’s provided 
estimates for the slope A and intercept B of the mean/sigma transformation that 
rescaled the Year-2 scores to the Year-1 scale. 

                                                 
5 A response string is a series of scored item responses for an individual examinee. 
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The process was repeated 50 times. It was a “small-sample” bootstrap 
approximation.  Each sample involved a calibration through PARSCALE 3.0, a 
procedure that is time-consuming and occasionally presents convergence problems.  
However, 50 equatings based on 100 calibrations (50 for each year) are considered 
enough to provide a good approximation to the variability of the equating 
transformation. A 1PL IRT model was fitted to each bootstrap sample to minimize 
the number of calibrations that failed to converge. The 3PL IRT model does not 
converge as easily because it estimates more parameters than the 1PL. Even so, some 
bootstrap samples could not be calibrated.  In the Year-1 original sample, only one 
examinee had attained a score in one category of a polytomous common item.  
Whenever the response string of that examinee was not drawn in a bootstrap 
sample, the calibration could not proceed. In those cases, new bootstrap samples 
were drawn that could be calibrated. 

The 50 estimates for the slopes and intercepts, bootÂ  and bootB̂ , where the 

subscript boot=1,…, 50 stands for a replication of the parameter estimated from a 
bootstrap sample, can be found in Appendix B.  The variation in equated scores is 

)ˆ,ˆ(2)ˆ()ˆ()ˆˆ()( 2
2
22

*
2 bootbootbootbootbootboot BACovBVarAVarBAVarVar θθθθ ++=+=            (4) 

The standard error of equating due to the sampling of examinees at each point θ2 of 
the ability scale is the square root of equation (4). The variances and covariance of 
the slope and intercept estimates can be estimated by the 50 bootstrap replications of 
the equating. 

Results 

Figure 1(a) plots the standard error of equating that arises due to the selection 
of common items, when a 3PL IRT model was fitted to the dichotomous data. The 
standard error for each point on the theta scale on the horizontal axis is plotted in 
standard deviation units of the theta distribution. The distribution has a standard 
deviation of one. The two lines represent the analytic expression and the bootstrap 
approximation. The parabolic shape of the error graphs denotes that there is less 
uncertainty due to the selection of common items towards the middle of the ability 
scale than at the extremes. There is some discrepancy between the two methods, 
with the analytic approach showing less error at all points of the scale. The analytic 
approach rests on the assumption of bivariate normality of the IRT difficulty values, 
which is examined next. 
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Figure 1(a).  Standard error for common-item sampling for Mathematics 8 (3PL). 

Figure 1(b) presents a similar graph when a 1PL IRT model was fitted to the 
data. At the lower part of the scale the analytic expression indicates more error than 
the bootstrap approximation, and less at the center and upper part. 

0

0.02

0.04

0.06

0.08

0.1

-3 -2 -1 0 1 2 3

Theta

SE

SE(bootstrap)
SE(analytic)

 
Figure 1(b).  Standard error for common-item sampling for Mathematics 8 (1PL). 
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The variance formula (1) assumes a bivariate normal distribution of the sets of 
b parameter estimates used in the transformation. The bivariate plots of the IRT 
difficulty values appear in Figure 2. The difficulty values estimated with a 3PL 
calibration appear on the left panel and those from the 1PL calibration on the right 
panel. The Year-1 values are plotted on the horizontal axis and the Year-2 values on 
the vertical axis.  There are 65 points on each plot representing 65 pairs of difficulty 
values entering the mean/sigma equating transformation. There is a high correlation 
of 0.98 between the Year-1 and Year-2 values under both models. However there is a 
large concentration of points around zero, which makes the univariate distributions 
of the b values leptokurtic. The univariate distributions of the b’s have a long right 
tail. In the 3PL plot there are two outliers in the upper end of the difficulty scale; 
those unusually high difficulties are the upper category-threshold estimates between 
the first, second, and third highest categories of a difficult polytomous item. 

For a closer look at the normality assumption, Figure 3 presents the histograms 
for four sets of difficulty values: The Year-1 and Year-2 values obtained from a 3PL 
model appear on the left panel and those obtained from a 1PL model appear on the 
right panel. A normal curve is plotted in each case to enable comparisons. All four 
univariate histograms show departures from univariate normality. There are 
outlying values to the right tail of each distribution. Most of the difficulty values are 
concentrated at the middle of the distribution, resulting in a leptokurtic shape 
particularly for the 1PL case. 

-2
-1
0
1
2
3
4
5
6
7
8

-2 0 2 4 6

Year 1 IRT b values

Ye
ar

 2
 IR

T 
b 

va
lu

es

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3

Year 1 IRT b values

Ye
ar

 2
 IR

T 
b 

va
lu

es

Figure 2.  Bivariate plots of the common-item b values under a 3PL (left) and a 1PL (right) model. 
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Figure 3.  Histograms of IRT difficulty values by year and type of model fitted. 

 

The Q-Q plots in Figure 4 confirm that the univariate distributions of the IRT b 
values depart considerably from normality. The quantiles of each observed set of b 
values do not match the quantiles of a normal distribution with the same mean and 
standard deviation as the observed distribution. All four plots have a characteristic 
shape with a steep slope at the center which demonstrates the peakedness of the 
distributions; the points below the diagonal line at the upper right side of each plot 
denote a heavy right tail, and the points below the diagonal at the lower left side of 
each plot denote a light left tail. The shapes of the distributions have a positive skew 
and a high kurtosis. Since the univariate plots for each set of b values show 
important departures from univariate normality, the assumption of bivariate 
normality, which underlies the analytic formulation of the standard error of 
equating due to the selection of common items, is violated as well. 
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Figure 4.  Q-Q plots for the IRT difficulty values by year and type of model fitted. 

To determine whether the discrepancy in the estimation of the error between 
the two methods arises because of the departures from assumptions, the errors were 
computed for 65 pairs of observations that were drawn from a bivariate normal 
population. For this simulation, two parent populations, one for the 3PL case and 
one for the 1PL case, were assumed to have means, standard deviations and 
correlation equal to the corresponding values of the original data set. For the 3PL 
case the two sampled sets IRT b values had means 0.486811 and 0.697034, standard 
deviations 1.192396 and 1.409285, and a correlation coefficient of 0.975884. The 
corresponding values for the 1PL case were 0.335612, 0.311670, 0.847547, 0.840806, 
and 0.982069 respectively.  

The results of the simulation appear in Figures 5(a) and 5(b). When the data are 
drawn from a bivariate normal population, the two methods give nearly identical 
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Figure 5(a).  Simulated standard error for common-item sampling (3PL). 
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Figure 5(b).  Simulated standard error for common-item sampling (1PL). 

results. Departures from assumptions accounted for most of the discrepancy in the 
error graphs of the original data sets. 

Figure 6 plots the two sources of standard error assuming a 1PL model. The 
analytic and bootstrap formulations of the standard error due to the sampling of 
common items can be compared to the traditional standard error of equating due to 
examinee-sampling variability. The two error sources are of similar magnitude. The 
graph of the latter is much more symmetric around the center of the theta scale, with  
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Figure 6.  Comparison of error sources for the Mathematics 8 1PL calibration. 

higher precision at the center and much less at the extremes. Figure 6 also presents a 
bootstrap error due to common-item sampling when only half of the common items 
(22) are sampled. With fewer common items, the variability due to common-item 
sampling is larger. 

Discussion 

Two ways of quantifying the variability in the equating transformation when 
the selection of common items is treated as a random process were demonstrated in 
this study. All standard error of equating graphs presented in this study had a 
parabolic shape showing that there is more uncertainty at the extreme scores of the 
ability distribution due to the variability of the equating transformation than at the 
center. 

The closed formula derived for the variability due to common-item selection 
produced different results than the bootstrap approximation. Both methods gave 
standard errors that followed a similar pattern, but their magnitudes differed along 
the ability scale. Upon examination of univariate and bivariate normality of the item 
difficulty estimates it was found that there were violations to the assumption of 
bivariate normality, on which the analytic approach rests. In the simulation with 
data drawn from a bivariate normal population the two methods gave very similar 
estimates, implying that the analytic formula error estimates are distorted when the 
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bivariate normality assumption does not hold. The bootstrap estimates are more 
defensible in the case of this particular assessment. Close agreement of the analytic 
results to the bootstrap results would appear to justify use of the simpler analytic 
approximation even in the presence of departures from bivariate normality of b 
parameter estimates; further work with more data sets should be undertaken before 
the formula can be recommended for general use. 

The comparison of the proposed source of variance with the small-sample 
bootstrap approximation to the traditional source of equating error revealed that the 
two sources of error were of similar magnitude. This suggests that the currently 
ignored error variance could be important for the accuracy of equated scores 
reported. Its relative importance depends on the interpretation and use of scores 
(i.e., if they refer to individual examinee scores or group aggregates). Table 1 
provides numerical examples of the size of different error sources for various points 
of the theta scale when the scores are used for individuals or for group means.  

The three sources of error for individual scores are common-item sampling 
(under the bootstrap approximation), examinee sampling (which affects the 
equating transformation by way of its influence on item parameter estimates), and 
the standard deviation of the ability estimate θ̂ . The values for the first two 
standard errors were obtained as described in the methodology section and are 
shown in Figure 6. The standard error for θ̂  is the estimate given for an examinee 
with ability θ̂  by PARSCALE 3.0, which is the standard deviation of the posterior 
distribution. Because in most cases there was no examinee with an integer ability 
estimate, the square root of the average squared standard deviations of the 10 
neighboring θ̂  values serves as an approximate standard error of the reported θ̂ . 
The rightmost column of Table 1 gives the sum of the squares of the separate error 
sources. Percentages are calculated in the metric of variances (squared errors). With 
regard to individual scores, then, the standard error of θ̂  is the dominant error 
source; at all five points of the scale it accounts for more than 90% of the total 
variability. Equating error, whether arising from the sampling of common items or 
the sampling of examinees, accounts for the remaining variance. Uncertainty for an 
individual score due to equating is very small compared to the uncertainty due to 
measurement imprecision especially at the center of the distribution.  

Results are different when interpreting an aggregate score. The mean theta 
estimate for the Year-2 Mathematics 8 examinees was 0.014 with a 1PL calibration. 
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Table 1 

Relative Size of Errors for Individual and Group-Level Score Interpretations for 
the Mathematics 8 Assessment Under a 1PL IRT Calibration 

  Source of standard error 
(Percentage of the total variancea) 

 

 

θ̂  

 Common-
item 

sampling 

  
Examinee 
sampling 

  

SE(θ̂ ) 

 
Total 

variance 

For interpreting individual scores     

–2  0.05076 
(2.2%) 

 0.07470 
(4.9%) 

 0.32654 
(92.9%) 

  

–1  0.03264 
(3.2%) 

 0.03669 
(4.0%) 

 0.17620 
(92.8%) 

 0.03346 

0  0.02931 
(2.8%) 

 0.01093 
(0.4%) 

 0.17369 
(96.9%) 

 0.03115 

1  0.04424 
(3.4%) 

 0.04357 
(3.3%) 

 0.23265 
(93.3%) 

 0.05798 

2  0.06603 
(3.6%) 

 0.08176 
(5.5%) 

 0.33137 
(90.9%) 

 0.12085 

For interpreting mean scores      

  Common-
item 

sampling 

  
Examinee 
sampling 

 

NVar /)ˆ(θ  

 

0  0.02931 
(82.6%) 

 0.01093 
(11.5%) 

 0.00787 
(6.0%) 

 0.00104 

aPercentages may not add to 100% because of rounding. 

Table 1 tabulates the magnitude and relative size of different sources of error, for the 
case of a mean score of 0. The equating variability due to the sampling of common 
items and of examinees is the same as in the case of individual scores. The 
uncertainty in the accuracy of the mean due to sampling and measurement error—
the standard error of the mean—is the square root of variance of the scores divided 
by the number of examinees6; it is very small with large samples of examinees, and 
estimates of mean scores tend to have high precision with large samples. Hence, the 

                                                 
6 Although all students in the state in that particular grade took the test, there is still sampling error 
associated with the mean.  The tested cohort can be conceived as a sample from an infinite 
population.  For example, the population can be conceived as consisting of all the “potential past, 
current, and future examinees” (Kolen & Brennan, 1995, p. 213). Or that the outcome (e.g., annual 
mean gain) would appear with any examinee sample drawn from the same population, not just the 
particular sample (Cronbach et al., 1997). 
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equating errors, and in particular, the error due to common-item sampling, appear 
larger relative to the standard error of the mean. Common-item sampling error 
constitutes 82.6% of the total variance, a lot larger than the other sources of error, 
which are affected by the sample size. If a different point, away from the center of 
the distribution, were examined, the relative size of the two equating errors would 
shift. Error due to common-item sampling would be different for an estimate of the 
percent above a given cut score, for example. As shown in Figure 6, for the 
particular data set, at the extremes, the examinee sampling equating error would 
exceed the common-item sampling error. Since the assessment comes from a small 
state, for other, larger statewide testing programs the examinee sampling error 
could be even lower. This demonstration illustrates the magnitude of the additional 
variability introduced in aggregate scores in common-item sampling. 

The sample sizes analyzed in this study were large enough, but in the context 
of statewide assessments, the samples came from a small state. Other statewide or 
national assessments are administered to larger samples of examinees. The standard 
error due to the sampling of examinees is inversely related to sample size; it 
becomes smaller as more examinee responses are used in the estimation, giving the 
impression of more precise measurement. The proposed source of error does not 
depend on sample size, so it could be much larger in those cases. It depends on the 
number of common items used for equating. In the Mathematics Grade 8 assessment 
there were 65 difficulty values representing 44 common items that entered the 
calculation of the equating transformation. Even with that many items, the 
uncertainty due to the sampling of items was comparable to the uncertainty in 
equating due to the sampling of the examinees. 

This study employed the mean/sigma IRT equating method that uses item 
difficulty estimates. Variability in the equating transformations is pertinent to all 
methods under the common-item nonequivalent groups design, since the random 
versus fixed selection of common items is an issue for this particular equating 
design. Further research could be extended to develop ways to quantify the 
proposed standard error of equating when other equating methods are applied. 
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Appendix A 

FORTRAN Code for the Error Simulation  

Assuming a Bivariate Normal Parent Population 

 
PROGRAM ERROR_SIMULATION 
 
! THIS PROGRAM CALCULATES BOOTSTRAP AND ANALYTIC STANDARD ERRORS DUE TO  
! COMMON-ITEM SAMPLING ASSUMING THAT THE PAIRED OBSERVATIONS ARE DRAWN 
! FROM BIVARIATE NORMAL POPULATION. 
! CREATES A FILE WITH 3 COLUMNS: THETA POINT, BOOTSTRAP S.E., ANALYTIC S.E. 
 
IMPLICIT NONE 
 
REAL RHO,MEAN1,MEAN2,STDEV1,STDEV2,K,RAND,SET1(100),SET2(100), 
REAL SQUARES1(100),SQUARES2(100),AVERAGE1,AVERAGE2,SD1,SD2,SLOPE(2000) 
REAL INTERCEPT(2000),CONSTANT 
REAL THETAS(61),SE(61),TRANSFORM(2000),TRANSQ(2000),ANALYTIC_VAR(61) 
INTEGER N,TIMEARRAY(3),L,B 
 
OPEN (UNIT=1,FILE='C:\ERROR\SIMULATE_BIVAR\ERROR8M3PL.TXT',STATUS='UNKNOWN') 
 
! INITIALIZE VARIABLES TO ZERO 
SQUARES1=0.0;SQUARES2=0.0;AVERAGE1=0.0;AVERAGE2=0.0;SD1=0.0;SD2=0.0 
SLOPE(2000)=0.0;INTERCEPT(2000)=0.0 
THETAS=0.0;SE=0.0;TRANSFORM=0.0;TRANSQ=0.0;ANALYTIC_VAR=0.0;CONSTANT=0.0 
 
! ASSIGN VALUES FROM ORIGINAL DATA SETS TO VARIABLES 
N=65   !THE NUMBER OF NORMAL DEVIATE PAIRS 
! FOR THE 3PL CASE 
RHO=0.975884  !THE CORRELATION BETWEEN THE TWO SETS OF NORMAL DEVIATES 
MEAN1=0.486811 !MEAN OF SET 1 OF NORMAL DEVIATES 
MEAN2=0.697034 !MEAN OF SET 2 OF NORMAL DEVIATES 
STDEV1=1.192396 !STAND. DEVIATION OF SET 1 OF NORMAL DEVIATES 
STDEV2=1.409285 !STAND. DEVIATION OF SET 1 OF NORMAL DEVIATES 
 
! FOR THE 1PL CASE  
! RHO=0.982069 
! MEAN1=0.335612 
! MEAN2=0.31167     
! STDEV1=0.847547 
! STDEV2=0.840806 
 
! GET CURRENT TIME TO INITIALIZE THE RANDOM NUMBER SEED 
CALL ITIME(TIMEARRAY)      
K=RAND(TIMEARRAY(1)+TIMEARRAY(2)+TIMEARRAY(3)) 
 
! BOOTSTRAP SAMPLING FROM THE PARENT POPULATION 
DO B=1,2000 
   SET1=0.0;SET2=0.0 
   DO L=1,N   
 
! CREATE TWO SETS OF APPROXIMATELY NORMAL DEVIATES   
 SET1(L)=RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND
(0)+RAND(0)+RAND(0)+RAND(0)-6 
 SET2(L)=RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND(0)+RAND
(0)+RAND(0)+RAND(0)+RAND(0)-6 
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! TRANSFORM THE TWO SETS TO HAVE APPROPRIATE STATISTICS  
 SET2(L)=RHO*SET1(L)+SQRT(1-RHO**2)*SET2(L) 
 SET1(L)=MEAN1+STDEV1*SET1(L) 
 SET2(L)=MEAN2+STDEV2*SET2(L) 
   END DO 
 
! DERIVE MEAN/SIGMA SLOPE AND INTERCEPT FOR EACH BOOTSTRAP SAMPLE 
 SQUARES1 = SET1**2 
 SQUARES2 = SET2**2 
 AVERAGE1 = SUM(SET1)/N 
 AVERAGE2 = SUM(SET2)/N 
 SD1 = SQRT((SUM(SQUARES1)-SUM(SET1)**2/N)/(N-1)) 
 SD2 = SQRT((SUM(SQUARES2)-SUM(SET2)**2/N)/(N-1)) 
 SLOPE(B) = SD1/SD2 
 INTERCEPT(B) = AVERAGE1-AVERAGE2*SD1/SD2 
END DO 
 
! CREATE 60 POINTS ON THE THETA SCALE FROM –3 TO +3 
DO L=1,61 
  THETAS(L)=-3.1 + 0.1*L 
END DO 
 
! FOR EACH THETA POINT GET THE BOOTSTRAP STANDARD ERROR [ SE(L) ]  
! AND ANALYTIC STANDARD ERROR [ SQRT(ANALYTIC_VAR(L)) ] 
DO L=1,61 
  DO B=1,2000 
    TRANSFORM(B)=THETAS(L)*SLOPE(B)+INTERCEPT(B) 
  END DO 
  TRANSQ=TRANSFORM**2 
  SE(L)=SQRT((SUM(TRANSQ)-SUM(TRANSFORM)**2/2000)/(2000-1)) 
   
  CONSTANT=2*STDEV1**2/N-2*RHO*STDEV1**2/N 
  ANALYTIC_VAR(L)=CONSTANT + (THETAS(L)-MEAN2)**2*(STDEV1**2/((N-1)*STDEV2**2)-
(RHO*STDEV1*STDEV2)**2/((N-1)*STDEV2**4)) 
   
  WRITE (1,'(T1,F8.5,T12,F8.5,T23,F8.5)') THETAS(L),SE(L),SQRT(ANALYTIC_VAR(L)) 
END DO 
   
CLOSE(1) 
END 
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Appendix B 

Cycles to Convergence and  

Equating Constants for the Original and the Bootstrap Samples 
 

 
 

Sample 

Cycles to 
convergence in 

Year 1 data 

Cycles to 
convergence in 

Year 2 data 

 
Slope 

estimate 

 
Intercept 
estimate 

     
Original sample 8 23 1.0080 0.0214 

     
Bootstrap samples     

1 11 23 0.9924 0.0120 
2 8 26 1.0372 0.0374 
3 8 23 1.0425 0.0372 
4 8 23 0.9740 0.0115 
5 8 26 1.0372 0.0374 
6 8 23 0.9735 0.0232 
7 8 26 1.0523 0.0303 
8 8 23 1.0155 -0.0019 
9 8 23 1.0387 0.0390 

10 8 24 1.0445 0.0403 
11 11 23 1.0100 0.0263 
12 8 26 0.9966 0.0409 
13 11 23 1.0409 0.0217 
14 8 26 0.9841 0.0387 
15 11 26 1.0644 0.0232 
16 8 26 1.0372 0.0374 
17 8 26 0.9841 0.0387 
18 8 23 0.9834 0.0240 
19 11 23 1.0154 0.0128 
20 8 23 0.9830 0.0231 
21 8 23 1.0387 0.0390 
22 8 23 1.0194 0.0189 
23 8 23 0.9740 0.0115 
24 8 23 0.9463 0.0276 
25 10 26 0.9908 0.0338 
26 11 23 1.0456 0.0034 
27 8 26 1.0994 0.0331 
28 8 26 0.9961 0.0152 
29 8 23 0.9759 0.0157 
30 11 23 1.0348 0.0104 
31 14 23 1.0192 0.0243 
32 8 26 1.1036 0.0317 
33 8 23 0.9735 0.0232 
34 8 26 1.0352 0.0365 
35 14 23 1.0192 0.0243 



 

31 

 
 

 
 

Sample 

Cycles to 
convergence in 

Year 1 data 

Cycles to 
convergence in 

Year 2 data 

 
Slope 

estimate 

 
Intercept 
estimate 

     
36 8 26 1.0372 0.0374 
37 11 26 0.9876 0.0207 
38 11 24 1.0272 0.0220 
39 8 23 0.9740 0.0115 
40 11 23 0.9638 0.0165 
41 11 26 0.9311 0.0209 
42 8 23 1.0112 0.0211 
43 8 26 1.0523 0.0303 
44 11 23 1.0409 0.0217 
45 11 26 0.9552 0.0190 
46 11 26 1.0644 0.0232 
47 8 23 0.9740 0.0115 
48 8 26 1.0406 0.0452 
49 11 23 1.0223 0.0132 
50 11 26 0.9336 0.0200 

 

 


