O

ERIC

Aruitoxt provided by Eic:

DOCUMENT RESUME

ED 482 076 IR 058 762
AUTHOR Falquet, Gilles; Guyot, Jacques; Nerima, Luka; Park, Seongbin
TITLE Design and Analysis of Virtual Museums.

PUB DATE 2001-00~00

NOTE 18p.; In: Museums and the Web 2001: Selected Papers from an

International Conference (5th, Seattle, Washington, March 15-17,
2001); see IR 058 756.

AVAILABLE FROM Archives & Museum Informatics, 2008 Murray Ave., Suite D,
Pittsburgh, PA 15217; e-mail: info@archimuse.com; Web site:
http://www.archimuse.com/. For full text: http://www.archimuse.com/

mw2001/.

PUB TYPE Reports - Research (143) -- Speeches/Meeting Papers (150)

EDRS PRICE EDRS Price MF01/PCOl Plus Postage.

DESCRIPTORS Authoring Aids (Programming); Data Analysis; *Database Design;
*Design Preferences; Designers; Hypermedia; *Museums; User Needs
(Information)

IDENTIFIERS *Design Methodology; *Virtual Museums

ABSTRACT

Using the same data, which could come from local databases or external
sources, such as the Web, virtual museum designers can build different hyperspaces. It
is possible that visitors would find some of them more useful than others. Virtual
museums designers should be equipped with a tool by which various hyperspaces for
virtual museums can be easily designed and examined. This paper views a virtual museum
as a hypertext that consists of nodes and links and shows that a database publishing
tool called Lazy, which generates a hypertext view (derived hypertext) of a given
database, can be used for designing virtual museums. The Lazy system consists of a
declarative hypertext view specification language, a node schema compiler, and a node
server that processes node requests. Since the language is purely declarative, it is
fairly easy to construct and revise hyperspaces for a virtual museum. With this tool
it becomes possible to adopt an iterative design methodology. Given a database for a
virtual museum, first constructed is a hypertext using the procedure (Falquet & al.,
1999) called an initial structure. The initial structure is then analyzed and possible
refinement operations that can enhance the usability of the created hypertext are
examined. For that purpose, a simple graph-based analysis is used, and kinds of
analysis that can be done using the graph-based approach are shown. Once the structure
is refined using the refinement operations, grammar-based formalism (Park, 1998) is
applied to the refined structure to see whether a simpler grammar can be obtained, one
that can generate the same hyperspace. The goal is to explore various analysis
techniques on the hypertext and give insights into designing a good hyperspace using
the analysis results. Includes six figures. (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

ED 482 ¢7¢

IR058762

||!'|"l'l|l
.‘||;..‘|;..

Register
Workshops
Sessions
Speakers
lnteractions
Demonstrations
Exhibits

Events

Best of the Web
Kay Dates
Seattle
Sponsors

A&MI

Archives & Museum Informatics
2008 Murray Ave.

Suite D

Pittsburgh, PA

15217 USA
info@archimuse.com
www.archimuse.com

Search
A&MI

Join our Mailing_List.
Privacy.

Updated: 02/27/2001 11:23:56

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY

___D. Bearman

PAPERS R
Museums and the Web 2001

Design And Analysis Of Virtual Museums

Gilles Falquet, Jacques Guyot, Luka Nerima,
University of Geneva, Switzerland and Seongbin
Park, Information Sciences Institute, USA

Abstract

Using the same data, which could come from local databases or O“l)_sb(DEPARTM'ENT oF_EB"DUCAT'ON .
ice N

external sources such as the Web, virtual museum designers can o GATIONAL RESOURCES INFORMATION
build different hyperspaces. !t is possible that visitors would find CENTER (ERIC)

i has been reproduced as
some of them more useful than others. Therefore, virtual

i cument ed @
v] Iehé:iegd from the person of organization

museums designers should be equipped with a tool by which originating it e
. . i i O Minor changes have been m
various hyperspaces for virtual museums can be easily designed Mo e Al

and examined.

® Points of view or opinions §|tat&% :2 stg:‘st
| . | t do not necessan'y
In this paper, we view a virtual museum as a hypertext that ga‘i:é;g?e(;‘ER?position sy

consists of nodes and links and show that a database publishing
tool called Lazy, which generates a hypertext view (i.e., derived
hypertext) of a given database, can be used for designing virtual
museums. The Lazy system consists of a declarative hypertext
view specification language, a node schema compiler, and a
node server that processes node requests. Since the language is
purely declarative, it is fairly easy to construct and revise
hyperspaces for a virtual museum. With this tool it becomes
possible to adopt an iterative design methodology.

Given a database for a virtual museum, we first construct a
hypertext using the procedure (Falquet & al., 1999) called an
initial structure. We then proceed to analyze the initial structure
and examine possible refinement operations that can enhance
the usability of the created hypertext. For that purpose, we use a
simple graph-based analysis and we show kinds of analysis that
can be done using the graph-based approach. Once the structure
is refined using the refinement operations, we apply grammar-
based formalism (Park, 1998) to the refined structure to see
whether we can obtain a simpler grammar that can generate the
same hyperspace. Our goal is to explore various analysis
techniques on the hypertext and give insights into designing a
good hyperspace using the analysis results.

Introduction

In this paper, we consider the issues that arise in the design and
implementation of virtual museums. A virtual museum is defined as "a
logically related collection of elements composed in a variety of media,
and, because of its capacity to provide connectedness and the various
points of access available, [it] lends itself to transcending traditional
methods of communicating with the user; it has no real place or space,
and dissemination of its contents are theoretically

unbounded" (Andrews, 1996). According to this definition, it is
reasonable to view the structure of a virtual museum as a hypertext
since each element in a hypertext can be connected to others. However,

9

ERIC 2 BEST COPY AVAILABLE

file://E:\MW2001\papers\park\park.html 5/19/2003

it is well know that large hypertexts, in particular large Web sites, are
very difficult to manage. Thus it has become common practice to store
data in a database and to use some mechanism to automatically
produce the hypertext.

In this paper, we will study the construction of virtual museums on top of
databases. The content of a database can represent either real-world
entities (e.g. existing works of art, or existing museums) or virtual
entities (e.g. virtual exhibitions that exist only on the Web). When
constructing a virtual museum, it is important to provide visitors to the
virtual museum with a well-designed hyperspace so that they do not get
lost while navigating inside the space. Although "lost in hyperspace” is a
well-known symptom (Conklin, 1987}, in our case, we have an
underlying database that is structured by a database schema and we
can avoid the symptom to some extent.

Given database contents, different hypertext structures can be created
for the virtual museum, and visitors will find some structures more
accessible than others. Therefore, the structure should be carefully
designed, and it is important for virtual museum designers to easily
define nodes and links that form hyperspaces and see what the results
look like (examine different hyperspaces freely). In order to help
designers who build virtual museums, we present a database publishing
tool called Lazy (Falquet & al., 1998), by which different hyperspaces
can be easily constructed. Using the Lazy system, designers can
construct the web site for a virtual museum, and once the web site is
created, they can analyze the structure of the virtual museum.

Some of the related works are as follows: a visual grammar-based
formalism was introduced in order to analyze hypertext structures in
(Costagliola & al., 2000), and an implementation in Prolog for analyzing
hypertext that contains conditional linkage was sketched in [HT99
paper}. Recently, database publishing has attracted interest and some of
the techniques are described in (Entin & al., 1998; Toyama & al., 1998).
There are several approaches to create hypertexts from databases. In
the procedural approach, the hyperspace designer must write programs
(CGI programs in C or Perl, Java servlets, PHP scripts, etc.). These
programs are generally large since the code must contain both tags and
programming constructs. They are therefore difficult to read, and the
hyperspace structure is hidden by the programming constructs. For
these reasons, such a code is tough to maintain and update. The
dynamic document approach consists in extending some document
mark-up language (such as HTML) with specific tags for database
querying, result processing and formatting, etc. See, for instance, Cold
Fusion (www.allaire.com). These tags introduce procedural parts into
the document description. The declarative approach (Fernandez & al.,
1998), (Atzeni & al., 1998), (Falquet & al., 1998) consists in specifying a
hypertext structure and specifying how to build the hypertext elements
from the database content. It is conceptually simple and tends to be
closer to the information designer's conceptual level. Our work is also
related to hypertext design methodologies such as RMM (Isakowitz,
1995) and HDM (Garzotto, 1993). It also takes into account adaptive
features such as content adaptation, a well-known adaptation technique
in the field of adaptive hypermedia (De Bra, 1998).

The paper is organized as follows: in the next section, we will introduce
the concept of hypertext view with examples constructed with Lazy.
Then, we propose a design process for hypertext views and show its
application in the design of a virtual museum. We proceed to explain

" file://E:\MW2001\papers\park\park.html 5/19/2003

possible analysis on the hypertext. Finally, we conclude the paper with
discussions about our approach for the design and analysis of a virtual
museum.

Constructing Hypertext Views with Lazy

This section presents the Lazy hypertext view specification language.
The presentation is rather informal and based on examples from the
sphere of virtual museums.

A hypertext view is a set of nodes and links that represent (a part of) the
contents of a database. In the declarative approach, the hypertext
components (nodes and links) are derived from the database content
(relation tuples) according to a hypertext view specification, as shown in

Figure 1.
Hypertext vi =
r view
ggeration “ﬁ
Database Hyrertext view
(relations) (nodes + links)

Hypertext view
specification

Fig.1: Generating hypertext views from a database and a hypertext
view specification.

A hypertext view specification consists of a set of node schemas that
specify the collection from which the node's content is to be drawn; the
selection and ordering criteria; the elements that form the node content;
and links to other nodes. A node definition takes the following form:

node <node-name> [<parameters>]
pre <element-list>

items <element-list>

post <element-list>

from <collection>, ...

selected by <expression>

ordered by <expression>

An element of an element-list is an expression of the form, '<' type >' ('
<element-list> ')’ or a <simple-expression> . In the items part, a simple
expression may involve literal constants (string, integer, etc.), attribute
names, parameter names, operators and functions. An atomic element,
specified by a simple expression, represents basic document data
(CDATA in XML terms). In the pre and post part, attribute name may

"~ file://E:\MW?2001\papers\park\park.htm] 4 5/19/2003

only appear within aggregate functions like min(), max(), sum(), etc.

Although the node specification language is generic enough to support
relational as well as object-oriented databases, in this paper we will only
consider the relational case since most existing databases are relational.
In this case, the <collection> of a node is a relation (or the cartesian
product of several relations) and each node item will represent a
selected tuple of that relation.

Example:

Throughout this paper we will use the same database schema, shown in
Figure 2, that represents a part of a virtual museum database. Note that
this structure is close to a (simplified) real museum database schema. In
fact, some of the relations (e.g. works) could be existing relations of a
museum information systems, while others (e.g. exhibitions) could
represent real as well as virtual objects.

exhibition

@xno, e, desc, isvirual, organizeD

excontent "

@om. exhibition, mmment)

museum
(mno name, location, URL)

wark L
(wno, author, tte, c_date, height, widh, picre)

ownership
work, owner, acquisition)

art_cnty
(m name, birhdate, deathdate)“@ﬁst cunty acﬁvitD

arfist

Fig. 2: Museum database schema

Consider the following node definition

node Artists_after[date]

items

<p>(name, "(born ", birthdate, ") ",

href Works_by[ano] ("works")

)

from artists

selected by birthdate >= date

S

" file://E:\MW2001\papers\park\park.html 5/19/2003

order by name

This is intended to present lists of artists born after a given date. The
content of an instance Artist_after/d] of this node is computed as follows:

« all the tuples t of table artist that satisfy t.birthdate >=d are
selected

o anitem is generated for each selected tuple, it contains an
element of type <p> that is made of the artist's name, the text
"(born ", the artist's birthdate, and the text ")".

This element also contains a reference link (works) to a node works_by
[ano] which is intended to display the list of works of this artist. This
node is defined as follows

node Works_by][artist]

items

<p>(()),
<p>((title), " ", c_date,
(),
support,” ", height,” x ",width

)

from work

selected by author = artist

Each selected work will be displayed as two paragrahs (<p>), the first
one showing an image of the work and the second one giving textual
information (title, creation date, etc.). Figure 3 shows the content of an
instance Artist_after[1900] and an instance Works_by]...] that can be
reached by following an href link.

* file://E:\MW2001\papers\park\park.html 5/19/2003

Netscape: Node:mw_Artist_aft...

Y
Charles Sheeler {(born 1883) [works],

Kasimir Malevich {born 1878) [works]

Kurt Schwitters (born 1887) [works]

Pablo Picasso (born 1881) [works] /

Pierre Bonnard {(born 1867) [works]

The Mreabtosl teams 1530-Y)
IR o8 Tsd ita i ¥ 34 208

Piet Mondrian (born 1872) [works] e a

Robert Delaunay (born 1885) [works]

node mw_Artist_atter(186G] -- Lazy node
server v2.5b6

i bt [ALzl A
Fig. 3: Two node instance generated with the Lazy system.

The node definition language supports three kinds of links, which are
"reference”, "expand in place”, and "include". A reference link creates an
active element whose action (when activated by a mouse click) consists
in jumping to (opening) the referred link. A link specification refers to a
node through its identity (schema name together with parameter values).
An inclusion link creates a compound-component relationship between
two nodes. The content of the included node is a part of the content of
the parent node. With inclusion links one can construct arbitrarily
complex nodes, for instance to represent complex structured
documents. Figure 4 shows an instance of the following node schema
that includes three other node instances (Countries, Work_list, and
Contemporary (defined in section 3.2)):

node Artist_ext[id]

items

<h2>(name, " (", birthdate, "-", deathdate, ") "),

include Countries[id],

<h4>("Some works"),

<blockquote>(include Work_list[id]),

<h4>("Contemporary with: "),

<blockquote>(include Contemporary[birthdate, deathdate])
from artist

selected by ano=id

BEST COPY AVAILABLE

" file://E:\MW2001\papers\park\park.html 5/19/2003

v

Location: & [nttp :/ fosiris.unige.ch :8080/servlet /ns 2a=mw_artist_ext&u=2

Vincent van Gogh (1853-1890)

lived in Netherlands

moved to France

Some works
The Starry Night 1889 [description]
The Siesta Dec 1889-Jan 1890 [description],
The Iris May, 1889 [description].

Road with Cypress and Star 12-15 May, 1890 [description],

Contemporary with:

Pierre Bonnard Yincent van Gogh Georges~Pierre Seurat Claude Monet

Fig. 4: An node instance which includes other node instances .

Finally, an expand-in-place link is an inclusion link that defers the
inclusion until the user activates the link. The content of a node with
expand-in-place links will thus depend on user actions taken so far.

The hypertext view generation system is composed of

« anode compiler that checks the syntax of node definitions and
stores the node definitions (in a coded form) in the data dictionary

« a node server (a Java servlet) that receives node requests from
clients' (browsers); loads the appropriate node definitions;
executes database queries to build the node contents; and sends
the resulting Web pages to the clients.

The Web site development cycle consists in writing or editing source
files that contain node schemas; compiling the definitions; and viewing
(testing) the newly defined nodes in a Web browser. Since the systemis
dynamic, once a node definition has been modified and recompiled, the
new version is immediately available to the clients (there is no site
generation phase).

Every page that is viewed by a client is an instance of a node schema;
thus any design problem can be readily located (as opposed to
procedural approaches in which the same procedure may be used to
manage several different Web pages).

Design

In this section, we explain how one can construct an initial hypertext
structure that reflects the structure of a given database and how that
initial structure can be modified through refinement operations. We also
present techniques that hypertext designers can use in order to

* file://EAMW2001\papers\park\park.html 5/19/2003

implement an adaptive feature with the Lazy system.

Designing efficient and effective hyperspaces is a difficult task, probably
because there are an extremely large number of paths that user can
follow. It is thus difficult to ensure that the users will be able to reach any
information node, that they will not get lost or disoriented in the
hyperspace, that any information can be reached within a reasonable
amount of time/number of clicks, etc. Since we are starting from an
existing database, we already have a conceptual schema, declared by
the relation schemes and the integrity constraints such as foreign key
constraints. This schema shows the type of entities that are being
considered and some semantic relationships (materialized by foreign
key constraints) between these entities. However, a database schema is
not sufficient to create good hyperspaces. Database design and
hypertext design do not have the same objectives. If we rely on the
database schema at the semantic level, it will be possible to create a
hypertext structure that is efficient for reading and navigating. Our
design method for hypertext views proceeds in two phases: 1) define a
first hypertext structure based on the database schema; 2) refine this
structure by applying various operations to the specifications of nodes
and links.

Initial structure

For the construction of an initial structure, we assume that the database
schema is given and fixed. One obtains the initial structure by defining a
node schema for each relation of the data base. An instance of such a
schema is intended to represent a single tuple of the relation. The node
schema has a single parameter that represents an object of the class (in
the relational case it is a set of parameters that forms a key value). The
contents of the node items are formed of all the collection's attributes.

Links are formed by attributes or groups of attributes that refer to other
relations (foreign keys). For instance, the initial node schema
corresponding to the relation

relation work(wno, title, date, author, ...)

node Work[w]

items a wno, title, date, author, ...,
href Artist[author]

from work selected by wno = w

This structure accurately represents the contents of the database, i.e.
the graph of all node instances and possible links is isomorphic to the
graph of the database objects connected through the reference
attributes. However, this structure is not completely navigable, i.e., due
to the unidirectionality of links, it is not always possible to reach any
node from any other node. Thus reverse links must be added.

For example, if a node N has a reference (href M[r]) to a node M, we

"~ file://E:\MW?2001\papers\park\park.html 5/19/2003

add a link from M to N which corresponds to the traversal in the opposite
direction. To carry out this operation, an intermediate node schema is
defined, and this intermediate node plays the same role as selection
menus in systems that support links with multiple ends.

Note that the initial structure together with reverse links yields a fully
navigable view of the database. This means that if two objects o1 and
02 are connected (directly or indirectly) in the database, there exists
some path in the hypertext to go from the representation of 01 to the
representation of 02 (and vice versa).

Refinement operations

Refinement operations are intended to improve the navigability (or the
legibility) of a given hypertext view. We list below some of these
operations.

Link composition (short cuts)

One way to reduce the number of navigation steps in the hypertext view
is to create "shortcut” links. This consists in combining two (or more)
links into a new one. This is particularly useful to increase the
navigability of the initial structure that typically contains nodes of the
form:

node A [..]]

... href B[key_attribute]

fromT ...

node B [k]

... href C[x]

from T selected by key_attribute = k

where key_attribute is a key of T, In this case, any element of B (e.g. the
link to C) can be incorporated into A to suppress a navigation step
through B.

Inclusions

This operation consists in changing a reference link into an inclusion
link. It allows us, for example, to represent complex entities in the form
of only one node (including sub-nodes). This operation is particularly
interesting when the link has semantics of the type "part-of "or
“compound-of”. It is also a way of reducing the number of reference links
in the hypertext and thus shortening navigation paths.

Summarization

When a node represents a large object having many attributes, it may
be desirable to derive a "summarized" node by removing certain
attributes of the initial definition. This summarized node will have a link

10

— file://E:\MW2001\papers\park\park.html 5/19/2003

to the complete node. It also should be decided for each link that leads
to the initial node if it is necessary to "redirect"” it towards the
summarized node.

Adding computed links

The database schema usually represents relationships between entities
through foreign key constraints (or referential constraints). However,
some interesting relationships are not represented directly in the
database schema. For instance, the relation "contemporary” between
artists is not represented, but it can be computed since we know the
birth and death dates of the artists. Links corresponding to such derived
relationships can be created in the hypertext schema using diverse
schemes. For instance, a relationship "contemporary” between artists
can be implemented by creating a node

node Contemporary[abirth, adeath]
item name, href Artist[ano]
from artist !

selectedy by deathdate > abirth+15 or bdeath >
birthdate+15

and adding a new link in Artist
node Artist[id]
items ...

href Contemporary|[birthdate, deathdate] ("contemporary
artists")

Widening

The widening of a node consists of weakening its selection condition. As
a consequence, other objects will be shown in the node. This is a way to
contextualize information by presenting it together with related
information. For example, a painting could be presented together with
other paintings of the same period or of the same region.

Previewing

Previewing makes it possible to see part of the contents of a referred
node without having to traverse the link. The objective is to avoid
navigation to a node whose contents do not correspond to the
information we are seeking. This operation consists of creating a
summarized node (in general with only a few attributes), as in the
derivation operation, and adding to the initial reference link by including
the summarized node.

Building indices and entry points

11

"~ file://E:\MW2001\papers\park\park.html 5/19/2003

An index structure is a set of nodes that allows us, by successive
selections starting from a root node, to reach a particular node. A
simple, concrete, case is the creation of an index on an attribute A. This
requires the creation of a two node schemas: 1) a root node presenting
all the possible values of A; 2) a node presenting a list of all the objects
having the same value for attribute A. One can generalize this structure
to create indices on several levels where each level corresponds to a
different attribute. The traversal from the root downwards amounts to
fixing an attribute value at each stage.

Creation of linear paths

This operation creates links that make it possible to traverse all the node
instances of a schema in a prescribed order (guided tour).

Exhibition_index

exno, title
Extibition ¥
content” [exno]titie, desc, organizer]
Cortert_of _exh . “orgarfizer”
[exhibition], work, comment “extibitionp”
' Mus eum

Works_in_museum mno,name, location, URL |
[owner] work
Work Owned
[work] ovner
[wno], author, title, ..., , picture, [
“otherworks bythis artist”
\ Works_by_adtist
| wno,[author], title I

ano,name, birthdate, deathdate G Cowmnlries

Tl [artist], country, type
‘tontemporarp\atists” [] P
Corternpaorary

[birthdate, deathdate], name

referencelinks inclusion links

Fig. 5. A hypertext view structure after several refinement steps.

Designing Adaptive Nodes and Links

Adapativeness in hypermedia systems consists mainly in taking into
account the user's profile when deciding on what information to display,
how to display it, and how to react to user actions. In the context of
hypertext views, this means that the content of a node, and its links,
should be generated according to a user profile. It can be implemented

in a straightforward way, provided
3EST COPY AVAILABLE
12

"~ file://E:\MW2001\papers\park\park.html 5/19/2003

» some "profile" relation contains suitable information about the
user profiles,

» a global variable USER exists that stores the user name (in the
current implementation it is represented by a supplementary
parameter in each node schema).

For instance, the following node schema displays information about a
particular work of art. It includes a Details node that will present more
detailed information, but only if the user profile has detail_level > 2.

node Work[n]

items title, c_date, include Details[n], ...

from work selected by wno = n

node Details[n]

items width, height, acquired, ...

from work, profile

selected by wno = n and

profile.user = USER and profile.detail_level > 2

If the user has detail_level < 2 the selection condition will be false for
every tuple and thus the node will remain empty. With the inclusion
mechanism, it is thus possible to create contents and links that depend
on user profiles or on other contextual information such as time, date,
etc. (for instance, forthcoming exhibits could be announced in some
nodes during the weeks before their opening).

Path-awareness is another form of adaptiveness, and consists of having
node contents that depend on the user navigation path. Current Web
browsers offer a limited path awareness feature that consists of
displaying anchors of previously visited nodes in a particular color.
Although very simple, this mechanism proves efficient when exploring a
new site. In fact, we can think of many situations in which we would like
to have the content of nodes depend on previously visited nodes. For
instance, we could have an anchor "latest news" in the heading of every
node, as long as the "News" node has not been visited. Once is has, this
anchor should disappear from all the nodes.

In order to implement this type of behaviour, we need some way to refer
to the navigation history. The navigation history can be stored in a
HISTORY parameter added to every node definition. Each node can
then add its own identity to HISTORY and pass it forward to the nodes it
refers to. The general schema is thus

node N[...parameters..., HISTORY]

href AnotherNode] ... parameters ..., HISTORY + "(N)"]

13

— file://E:\MW2001\papers\park\park.htm] 5/19/2003

selected by ... conditions on attributes ...

AND condition on HISTORY
Analysis

Graph-based Approach

To analyze hypertext structures and see the effect of refinement
operations, it is convenient to have a compact graphical representation.
Our analysis is done on the node schema instead of node instances,
and graphical representation is smaller than the generated hypertext
(i.e., the set of node instances and links among them). Based on the
analysis of the initial structure for the virtual museum, we can apply
appropriate refinement operations.

Once we have a graphical representation of the node schemas, these
are possible analyses that we can do on the initial structure.

(1) Identify links that do not exist in the initial structure, but might be
helpful if we created them. Notice that those links that exist in the initial
structure are directly come from the associations of data in the database
(e.g., foreign key). After such links are identified, we can apply
appropriate refinement operations to the initial structure.

(2) Check the number of navigation steps between the nodes and
determine the semantic proximity (or semantic distance). If they are
semantically close, the number of navigation steps should be reasonably
small.

(3) Explore different types of links between the nodes and select a better
type than others; for example, it might be necessary to change "jump” to
"include" or "expand in place”.

(4) Check whether a node is reachable from a given node (i.e.,
accessibility analysis). Notice that the schema connectivity does not
ensure that the hypertext itself (the node and link instances) is fully
navigable. This depends on how objects are interrelated in the
database. However, knowing properties of the links (like cardinalities), it
is possible to prove the full connectivity of the hypertext view.

(5) Compute the maximum number of steps that a user can follow from
one node to another. Since the user does not see the entire hypertext, it
is not obvious to the user whether a path is the shortest distance from
one node to another. Information about the longest path that one can
take to reach a destination node can inform us about how a user might
get lost in the hyperspace.

Grammar-based Approach

After we determine the refined structure for a virtual museum, we can
proceed to represent the node schemas in terms of grammar rules for a
further analysis. We use grammars in two ways - one for the inner
structure (i.e., the structure of a node) and the other for the outer
structure (i.e., the structure of a set of nodes and links). Once node
schemas are represented by a grammar, the following analyses can be

14

" file://E:MW2001\papers\park\park.html 5/19/2003

done:

(1) Find a different grammar that is simpler than the original grammar,
but generates the same hyperspace. The set of all virtual documents
can be found first, and we can find another grammar that generates the
same set.

(2) Investigate a property of the grammar, such as "inherently
ambiguous”, and determine the connection between that property and
the navigational structure of the hypertext

a) Inner structure

The purpose of representing node contents with grammar rule is to
obtain a compact representation of the node contents in terms of
document structure and semantic content. For a node,

node N[p]
items item1, ..., itemk

the corresponding grammar rule (in BNF)is N ::= {5, ... s, }, where s; is
(1) empty if item, is a constant (2) the attribute list a,, ..., a, ifitem, is an

expression involving these attributes (3) the non terminal symbol M is
item, is an inclusion of the form include M[...].

If we can prove that a node instance will always contain at most one
item (this depends on the selection predicate), then the iteration
indicators { } can be removed from the grammar rule. For example, the
grammar rule corresponding to the node schema

node Artists_after[date]

items

<p>(name, "(born ", birthdate, "} ",
expand href Works_by[ano] ("works"),
include Biography[ano]

href ...

)

from artists

selected by birthdate >= date

ordered by ...

is Artists_after ::= { name birthdate [Works_by] Biography }.

15

* file://E:MW2001\papers\park\park.html 5/19/2003

The grammar of a node is the set of rules corresponding to this node
and all the included and expanded nodes. For the above node this could
yield (if nodes Works_by and Biography were so defined)

Artists_after ::= { name birthdate [Works_by] Biography }
Works_by ::= { title date support }
Biography ::= { country date activity }

Since no rule in this grammar is recursive, this can be rewritten as a
single rule:

Artists_after ::= { name birthdate [{ title date support }] { country
date activity } }

In fact, this grammar shows the structure and semantics of a node. Itis
similar to a basic document type definition (DTD) for this node.

2) Outer structure

We explain the construction of grammar productions that describe the
outer structure of a given hypertext using a simple example.

Artist
ano,name, bithdate, deathdate =y

P~ [artist], country, type
Tortermnpaoraty with”
Contemporary exp

[titthdate, deathdate] name J

Couwntries

Example: figure 6

In this figure, we see that there is one href link, one inclusion link and
one expand-in-place link. In order to describe the outer structure of this
hypertext, we find possible paths from each node to others. We see that
the Artist node has two different types of links, one for inclusion (to
Countries) and the other for href (to Contemporary). From
Contemporary, there is one expand-in-place link to Artist. The node
Countries does not have any link to other nodes.

Let the node Artist be described as two characters, a1d1, the node
Contemporary as a2d2, and the node Countries as a2d3. (Each ai and
di can be considered as "brackets" for each node.) If we attach prime
symbols to each of those, that represents a node instance of the node
schema. For example, a1'd1' is a node instance for the node a1d1.
Then, each of the following products represents each link in the
hypertext.

ald1 -> al1'd1'| a2d2 | a1a3d3d1

a2d2 -> a2'd2' | a2a1d1d2

16

~ file://E:\MW2001\papers\park\park.html 5/19/2003

a3d3 -> a3'd3d'

If we change a1d1, a2d2, and a3d3 as x, y, and z, respectively, and
introduce a starting symbol S, we get the following products:

S->x|y|z
x->x"|y|alz'd1
y ->y'| a2xd2
alz'd1 -> x
a2x'd2 ->y
Notice that x', y', and z' is a1'd1’, a2'd2’, and a3'd3, respectively.

Once this first grammar is found, we can analyze the structure by
examining the property of the grammar. We can also find a simpler
grammar that represents the same hyperspace. One usage of this
grammar formalism would be that one can use it as a site map for a
given wWeb site so that users can get an idea of how the hyperspace is
structured.

Conclusions and Future Directions

In this paper we presented a language to specify virtual museums in the
form of hypertext views of databases. Since the language is non-
procedural and explicitly shows the structure of the generated
hyperspace, it is well suited for an iterative design process. The
existence of a hypertext schema makes it possible to check properties of
the hypertext, such as path lengths or accessibility, without accessing
the hypertext nodes themselves. The development process we propose
consists in starting from an initial design and then entering an analysis-
refinement cycle. The structural analysis of the hyperspace uses graph
and grammar formalisms while the refinement is based on several basic
operations.

This development process is supported by software tools to compile the
specifications and to dynamically generate Web pages (node instances)
according to the specifications.

In the near future we plan to increase the adaptiveness capabilities of
the generated hyperspaces, in particular the path-awareness. We are
also starting experiments with a new version of the Lazy system to make
the hypertext views active. This means that users will not only navigate
in a virtual museum but will also act on this museum by updating the
information nodes they see. For instance, users could create their own
virtual exhibitions within the virtual museum, add annotations to objects,
etc.

Acknowledgement

The authors would like to thank their colleagues Jean-Pierre Hurni and
Claire-Lise Mottaz for their precious collaboration.

17

" file://EAMW2001\papers\park\park.html 5/19/2003

References

ACM (1995) Special section on hypermedia design. Communications of
the ACM Vol. 38, No. 8.

Andrews, J. and Schweibenz, W. (1996). The Kress Study Collection
Virtual Museum Project: A New Medium for Old Masters. Version 03-
Dec-1996. http://www.arlisna.org/werner.html

Atzeni, P., Mecca, G., & Merialdo P. (1998). Design and Maintenance of
Data-Intensive Web Sites. In Proceedings of the EDBT'98 Conference,
Valencia (pp. 436-450).

Conklin, J. (1987). Hypertext: An Introduction and Survey. IEEE
Computer, Vol. 20, No.9, 17-42.

Costagliola, G., Dattolo, A., & Francese, R. (2000). A Visual Grammar-
based Approach for the Analysis and Modeling of Hypermedia
Structures. In Proc. Multimedia Computing on the World Wide Web,
2000 .

Dar, S., Entin, G., Geva, S., & Palmon E. (1998), DTL'’s DataSpot:
Database Exploration as Easy as Browsing the Web, In ACM SIGMOD
98 Proceedings. ACM.

De Bra, P., Adaptive Hypermedia on the Web: Methods, techniques and
applications, In Proceedings of the AACE WebNet'98 Conference, pp.
220-225, Orlando, Fl., 1998.

Falquet, G., Guyot, J., & Nerima L. (1998). Language and tools to
specify hypertext views on databases. In A. Mendelzon & P. Atzeni
(Eds) The Web and Databases, Selected papers from WebDB ‘98 (pp
136-151). Berlin, Springer Verlag (LNCS 1590).

Falquet, G., Guyot, J., & Nerima L., Vanoirbeek C., Rekik, Y. (1999).
Des documents virtuels pour lire les bases de données. In M. Crampes
& S. Ranwez (Eds) Documents virtuels personnalisés, atelier de1a
conférence francophone Interaction Homme-Machine. Montpellier.

Fernandez, M., Florescu, D., Kang, J., Levy A., Suciu, D. Catching the
boat with Strudel: experience with a web-site management system, In
Proceedings of SIGMOD Conference 1998.

Garzotto, F., Paolini P., & Schwabe, D. (1993). HDM--a model-based
approach to hypertext application design. ACM Trans on Information
Systems, Vol. 11, 1 26.

Isakowitz, T., Stohr, A., & Balasubramanian, P. (1995). RMM: a
methodology for structured hypermedia design. Communications of the
ACM 38, 9}, 34 -- 44.

Park, S. (1998). Structural properties of Hypertext. In K. Granbaek, E.
Mylonas, F. Shipman (Eds) Hypertext'98. Pittsburgh: ACM.

Toyama, M. (1998). SuperSQL: An Extended SQL for Database
Publishing and Presentation, ACM SIGMOD 98.

18

© file://E:\MW2001\papers\park\park.html 5/19/2003

U.S. Department of Education
Office of Educational Research and Improvement (OERI)
National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

X This document is covered by a signed "Reproduction Release (Blanket)"

form (on file within the ERIC system), encompassing all or classes of
documents from its source organization and, therefore, does not require a
"Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

FRIC EBFF-089 (1/2003)

