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Executive Summary

It is well established that the efficiency of testing can be considerably increased if test takers are

administered items that match their ability or proficiency levels. In this adaptive testing scheme, items are

administered to test takers sequentially, one at a time or in sets. The item or set of items administered is

usually chosen in such a way that it provides maximum information at the proficiency level of the test taker.

The feasibility and advisability of computerized adaptive testing is currently being studied by the Law

School Admission Council (LSAC).
For adaptive testing to be successful, it is important that a large pool of items be available with items

whose item characteristics are known. The recent experiences of testing programs have clearly demonstrated

that, without a large item pool, test security can be seriously compromised. One way to maintain a large

pool of items is to replenish the pool by administering pretest items to a group of test takers taking an

existing test and calculating the statistics for the items. However, administering new items to a large group

of test takers increases the exposure rate of these items, compromising test security. One obvious solution is

to administer a set of pretest items to a randomly selected small group of test takers. Unfortunately, this

solution raises a serious problem: estimating the necessary item-level statistics using small samples of

test takers.
Typically in computerized adaptive testing, a mathematical model called item response theory (IRT) is

used to describe the characteristics of the test items and the ability level of the test takers. The item-level

statistics of this model are commonly referred to as item parameters. In general, large samples are needed to

estimate parameters. An issue that needs to be addressed is that of estimating these item parameters using a

small sample of test takers. Several research studies have shown that, by incorporating prior information

about item parameters, not only can item parameters be estimated more accurately, but estimation can be

carried out with smaller sample sizes. The purposes of the current investigation are (i) to examine how prior

information about item characteristics can be specified, and (ii) to investigate the relationship between

sample size and the specification of prior information on the accuracy with which item parameters

are estimated.
The best a priori source for information regarding the difficulty of items in a test is content specialists

and test developers. A judgmental procedure for eliciting this information was developed for this study.

Once this prior information was obtained, it was combined with data obtained from test takers and the item

parameters were estimated.
Since the primary objective of this study was to investigate how incorporating prior information

improves estimation of item parameters in small samples, the factors that were investigated were sample

size and type of prior information. These two factors were examined with respect to the accuracy with which

item parameters were estimated. In order to investigate the accuracy with which item parameters in the Law

School Admission Test (LSAT) are estimated, the item parameter estimates were compared with the known

item parameter values. By randomly drawing small samples of varying sizes from the population of test

takers, the relationship between sample size and the accuracy with which item parameters are estimated was

studied. Data from the Reading Comprehension section of the LSAT was utilized.

The results indicate that the incorporation of ratings of item difficulty provided by subject matter

specialists/test developers produced estimates of item difficulty statistics that were more accurate than that

obtained without using such information. The improvement was observed for all item response models, the

evaluated, including the model that is currently used for the LSAT.

This study has demonstrated that using judgmental information about the difficulty of test items can

produce dramatic improvements in the estimation of item parameters. This improvement may be sufficient

to warrant the routine use of judgmental information in item parameter estimation. However, obtaining

judgmental information is time-consuming and costly. The question that arises naturally is whether using

some other form of prior information can result in savings and lead to estimates equally as accurate as those

obtained by using judgmental information. Several other forms of prior information were used in this study

to examine this issue. While using judgmental information produced the most accurate estimates, differences

between those estimates obtained using judgmental information and other forms of prior information were

not substantial. In order to determine if differences that result from using different forms of prior

information are substantial, the effects of using various forms of prior information for item calibration on the

routing procedure in an adaptive testing scheme and the estimation of test taker ability need to be

investigated. Only through such a study can the improvements offered by incorporating judgmental data as

demonstrated in this study and other forms of prior information be fully understood.
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Introduction

Item response theory (IRT) provides the accepted framework for addressing the fundamental problems

in testing: determining the proficiency level of test takers for certification and other reasons, assembly of test

items, equating of tests, and examining the potential bias test items may exhibit towardminority or focal

groups. In order to fully realize the advantages that item response theory offers, the parameters of item

response models must be accurately estimated. These parameters are the ability or proficiency level

parameter of a test taker, and the parameters that characterize the item. While estimation of the test taker

ability parameter is the ultimate goal of testing, this goal cannot be achieved without determining the

parameters that characterize the items. Once the item parameters are determined, items can be "banked,"

and from this bank, items can be drawn and administered to test takers.
It is well established that the efficiency of testing can be considerably increased if test takers are

administered items that match their ability or proficiency levels (Hambleton, Swaminathan, & Rogers, 1991;

Lord, 1980). In this adaptive testing scheme, items are administered to test takers sequentially, one at a time,

or in sets. The item or set of items administered is usually chosen in such a way that it provides maximum
information at the ability level of the test taker.

For adaptive testing to be successful, it is important that a large pool of items be available with items

whose item parameters are known; that is estimated or calibrated using a sample of test takers. The recent

experiences of testing programs have clearly demonstrated that without a large item pool, test security can

be seriously compromised. One way to maintain a large pool of items is to replenish the pool by

administering experimental items to a group of test takers taking an existing test and calibrating the items.

However, administering new or experimental items to a large group of test takers increases the exposure rate

of these items, compromising test security. One obvious solution is to administer a setof experimental items

to a randomly selected small group of test takers. Unfortunately, this solution raises another serious

problem: that of estimating item parameters using small samples.
The issue of sample size and its effect on item parameter estimation has been well studied (e.g.,

Swaminathan & Gifford, 1983). In general, large sample sizes are needed to estimate parameters, particularly

in the two- and three-parameter item response models. The issue that needs to be addressed is that of

estimating or calibrating items using a small sample of test takers. Swaminathan and Gifford (1982, 1985,

1986) and Mislevy (1986) have shown that, by incorporating prior information about item parameters, not

only can item parameters be estimated more accurately, but the estimation can be carried out with smaller

sample sizes. The purposes of the current investigation are (i) to examine how prior information can be

specified, and (ii) to investigate the relationship between sample size and the specification of prior

information on the accuracy with which item parameters are estimated.
This report consists of a brief review of item response models and the issues that surround the

estimation of item parameters. The procedure for incorporating prior information is described. The design of

the study for investigating the relationship between sample size and prior information is described. The

results of the study are presented and the implications for estimating parameters are discussed.

Item Response Models

Dichotomous item response models are classified as one-, two-, or three-parameter models. For all these

models, the probability of response u, (u = 1 for a correct response and 0 otherwise) to an item, given the

item parameters and the ability level of the test taker, is specified by a cumulative probability function, F(.).

The common forms of F are the normal and the logistic cumulative probability functions.

In the one-parameter model, the parameter that characterizes the item is called the item difficulty

parameter, b. For a test taker with ability 0, the probability of a correct response is 0.5 at 0 = bi. The

one-parameter model was developed by Rasch (1960), and hence is commonly referred to as the Rasch

model. The probability of a correct response to item i in the Rasch item response model is

exp (O-1) I)Poi = lib, = b1)
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The probability of a correct response for the two-parameter logistic model is conventionally written in

the form

exp aj b I)
=11ai,b00)= 1+expa,(0bi)'

where ai , the discrimination parameter, is the slope of the item response curve at the point of inflection.

Whereas in the Rasch model, the log-odds ratios of Rasch item response curves define parallel lines, in the

two-parameter logistic models, the lines defined by the log-odds ratios are parallel only when the

discrimination parameters are equal.
Motivated by the work of Finney (1952), Birnbaum (1968) introduced the three-parameter logistic item

response model givenby the item response function

qui =1Ici,a1,b1,0) = ci +0-0
exp a; (9bi)

1+expa,(0 --bi)

(2)

(3)

Here the lower asymptote 0 1 <1 reflects the probability with which test takers with very low ability or

0 values respond correctly to the item i. The parameter ci is known as the pseudo chance-level parameter, or

simply as the guessing parameter. Empirical studies have shown that with multiple choice items, the

three-parameter model fits the item response data better than the Rasch or two-parameter model.

The item response models described above assume that a single dimension 0underlies the test takers'

responses to a set of items. The assumption of unidimensionality is an issue of some concern in the

measurement literature. While multidimensional item response models have been formulated, the

estimation problems associated with multidimensional models are far from being solved. Hence, only the

estimation issues concerning unidimensional item response models are discussed in this study.

Estimation of Parameters

Estimation of Ability Parameters

The parameter of ultimate importance in educational testing is the test taker's ability or proficiency level

0. If the item parameters are known a priori, the estimation of 0 is straightforward. Let U = Eul, u2, un] denote

the (n x 1) vector of responses of a test taker to n items. In order to express the joint distribution of U in a

tractable form, the assumption of conditional independence, or local independence, has to be made. Assuming

that the complete latent space is specified, that is, the number of dimensions that underlie the responses of the

population of test takers to a set of items is correctly specified, it can be shown (Anderson, 1959; Lord &

Novick, 1968) that the responses of a test taker to n items, conditional on ability, are independent, that is,

P(u1,u2,...,u160,0 = 11/3(u110,),
(4)

where 0 is the (r x 1) vector of abilities, and is the vector of item parameters. When it is assumed that r = 1,

equation 4 holds for unidimensional item response models. Thus, the likelihood function of the observed

item responses for a test taker given the item parameters, and, consequently, the maximum of the likelihood

function are immediately obtained. The maximum likelihood (ML) estimator of 6 can be shown to possess

the usual properties of ML estimators with increasing test length (Birnbaum, 1968).

Within a Bayesian framework, if the prior density of 0 is g(01r) where r is the vector of known

parameters, then the posterior marginal density of 0, P(0 I U, r ), contains all the information about the

parameter 0. The posterior mode or the mean may be taken as a point estimate of 0. When r is not known,

the hierarchical procedure suggested by Lindley and Smith (1972) may be applied. Swaminathan and

Gifford (1982, 1985, 1986) applied a two-stage procedure to obtain the joint posterior density of the abilities

of N test takers. They assumed that in the first stage

01 N Ot,O.
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In the second stage, they assumed that u was uniform and (1) had the inverse chi-square density with

parameters v and A. The parameters It, and (1) were integrated out of the joint posterior density. The joint

modes of the joint posterior density were taken as point estimates of the abilities of the test takers. The joint

posterior modes, being weighted estimates of the individual's estimate and the mean of the group, provide

more stable estimates of the ability parameters than the mode or the mean of the one-stage Bayes procedure.

Because of the complex form of the joint density, Swaminathan and Gifford did not obtain the marginal

density or the joint means of the joint posterior density. However, in theory, it is possible to obtain the

moments of the posterior density using the approximations suggested by Tierney and Kadane (1986).

An alternative procedure was provided by Bock and Mislevy (1982), who used the mean of the posterior

distribution of 0 rather than the mode. This expected a posteriori (EAP) was obtained using a single stage

procedure, assuming a priori that 0 had the standard normal distribution; that is, with mean zero and unit

standard deviation.

Estimation of Item Parameters

While the estimation of ability parameters with known item parameters is relatively straightforward, the

item parameters must be known or estimated from a calibration sample. If the ability parameters are known,

then the item response model becomes a special case of quantal response models, and the estimation of item

parameters is again straightforward. However, in general, neither the item parameters nor the ability

parameters are known beforehand.

Joint Maximum Likelihood Estimation

The joint estimation of item and ability parameters was proposed by Lord (1953) and Birnbaum (1968).

The joint likelihood function of the item and ability parameters, when responses of N test takers on n items

are observed, is given by the expression

=161 Talqui 10,0,
1=1 j=l (6)

where Llj = [up, up, ..., ujnj is the vector of responses of test taker j on n items. It is assumed that the

complete latent space is unidimensional, that is, local independence holds.
An examination of the item response models given in Equations 1-3 reveals that the parameters a (a

parameter), /3 (b parameter), and 0 are not identified. Linear transformations leave the item response
functions invariant, and hence the metric of 0 (or /3) must be fixed. For convenience, the mean and standard

deviation of 0 (or 13) are usually set at 0 and 1, respectively. In the Rasch model, only the mean of 0 (or fi)

needs to be fixed. Once the metric of 0 is fixed, starting with provisional values of 0, the item parameters are

estimated by the conventional probit or logit analysis. The item parameters are held fixed at these values,

and the values of 0 re-estimated. This process is repeated until convergence.
The joint maximum likelihood estimation of item and ability parameters suffers from a major drawback.

The ability parameters are incidental parameters while the item parameters are structural parameters.
Neyman and Scott (1948) have shown that the ML estimates of the structural parameters are not consistent in

the presence of incidental parameters. While consistent ML estimators of item parameters are not available

in the presence of unknown ability parameters for a finite number of items, Haberman (1977) showed that

consistent estimates of the Rasch item parameters are obtained as the number of items and the number of test

takers increase without limit. Similar results are not available for the two- and three-parameter logistic models.

Nevertheless, Swaminathan and Gifford (1983) demonstrated empirically through a series of simulation

studies that the estimates of item parameters in the three-parameter model are consistent when the number of

items and the number of test takers increase without bound. This empirical finding, although not totally

satisfactory, provides some justification for using joint ML estimation with large numbers of items.

Neyman and Scott (1948) also showed that if a minimal sufficient statistic is available for the incidental

parameters, conditional maximum likelihood estimators can be devised for the structural parameters. These

conditional maximum likelihood estimators enjoy the usual properties of maximum likelihood estimators. A

minimal sufficient statistic for the ability parameter is available only for the Rasch model. The total score, r,

obtained by summing the item scores, is a minimal sufficient statistic for the ability parameter in the Rasch

model. By conditioning on r, Andersen (1970) obtained conditional maximum likelihood estimates of the

item parameters. This procedure requires the computation of certain symmetric functions and becomes

computationally tedious when the number of items is large.
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Marginal Maximum Likelihood Estimation

Since a minimal sufficient statistic for the ability parameter is not available for the two- and

three-parameter logistic item response models, the conditional maximum likelihood procedure is not

applicable for these models. Bock and Lieberman (1970) proposed the marginal maximum likelihood

procedure to overcome the difficulties inherent in the joint maximum likelihood procedure. Whereas the

joint ML procedure corresponds to the fixed-effects case, the marginal ML procedure corresponds to a mixed

model in that the test takers are assumed to be a sample from a known population. The marginal likelihood

function is

L(1.1U2l...,U j,...,UNI) = f 1111P(u;10,)g(eir) do,
r.1 (7)

where g(0 1r) is the density function of 0. Bock and Lieberman (1970) took the standard normal density

function for g(0 I r) and employed Gaussian quadrature to approximate the integral in Equation 7. They

solved the resulting likelihood equations using Fisher's method of scoring. In Bock and Lieberman's

procedure, the evaluation of the information matrix requires summing over 2n response riatterns and not just

the patterns realized in the sample. This made the procedure unwieldy and applicable only to a small

number of items. Bock and Aitkin (1981) realized that by fixing certain terms which arefunctions of item

parameters in the likelihood equations at the current values of the parameterestimates, the procedure could

be simplified considerably and computational efficiency increased. They pointed out that the fixing of these

terms at current values of item parameter estimates could be justified in terms of the EM algorithm of

Dempster, Laird, and Rubin (1977). Bock and Aitkin (1981), however, noted that their algorithm is not strictly

the same as the general EM algorithm. For random variables in the models not belonging to the exponential

family, Dempster, Laird, and Rubin (1977) take the expected value of the logarithm of the likelihood function

while Bock and Aitkin take the expected value of the likelihood function. It should be pointed out that the

Bock and Aitkin application of the EM algorithm was not the first application of this algorithm to item

response models. Sanathanan and Blumenthal (1978) applied the EM algorithm to the Rasch model to

estimate the parameters r of g(0 r). Their procedure, however, is restricted to the Rasch model and does not

generalize to other item response models.
Rigdon and Tsutakawa (1983) and Tsutakawa (1984) applied an extended form of the EM algorithm

appropriate when the random variables in the models do not belong to the exponential family. They applied

the procedure developed by Dempster, Rubin, and Tsutakawa (1981) for estimating linear effects in mixed

models to obtain marginal maximum likelihood estimates of item parameters in the one- and two-parameter

item response models. They also provided simplified computational procedures for estimating the item

parameters, the ability parameters, and the variance of the ability distribution.
Bayesian procedures. While the marginal maximum likelihood procedures have theoretical advantages

over the joint maximum likelihood procedures, the estimates of the discrimination parameter a and the

chance-level parameter y pose considerable problems in that these parameters are often poorly estimated

and the estimates frequently drift off into inadmissible regions. Bayesian procedures show considerable

promise in terms of their ability to successfully address these issues.
Bayesian procedures for estimating item parameters were proposed by Swaminathan and Gifford, who,

in a series of papers (Swaminathan & Gifford, 1982, 1985, 1986), provided a hierarchical procedure for the

one-, two-, and three- parameter models based on the Lindley-Smith approach (Lindley & Smith, 1972). They

assumed that the item difficulty parameters and the ability parameters are exchangeable and obtained the

joint density of the item and ability parameters, marginalized with respect to the parameters of the ability

and item difficulty distributions, that is,

= 41.110,0f J p(01r)p()1)p(11)p(rIO)dr dq, (8)

where LI contains the responses of N test takers on n items. In particular, Swaminathan and Gifford assumed

that the parameters were independently and identically normally distributed with mean /.4 and variance 0;

the parameter ct1 had a chi-density with parameters v and co; and the parameter y had a beta density with

parameters p and q. They also provided procedures for specifying the parameters of the prior distributions.

Swaminathan and Gifford obtained jointmodal estimates of the posterior distribution using the Newton-Raphson

procedure to solve the modal equations. Their results were promising in that the drift of the parameter

estimates was arrested and the parameters were estimated more accurately than the joint ML procedure.
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A problem with the Bayesian approach of Swaminathan and Gifford was that it was not free from the

criticisms that faced joint estimation of the parameters. Another problem was that different forms of prior

distributions had to be specified for the various item parameters given the varying nature of the item

parameters. One solution to this problem is to specify a multi-parameter density for the priors such as a

multi-parameter beta distribution for the item parameters.
Mislevy (1986), Tsutakawa (1992), and Tsutakawa and Lin (1986) have provided a marginalized Bayes

modal estimation procedure by integrating out the ability parameters and using the EM algorithm to

estimate the parameters. Mislevy (1986) has suggested transforming the discrimination and chance-level

parameters, so that a multivariate normal prior for the item parameters can be specified. The specification of

multivariate normal priors for the item parameters removes the problem inherent in the separate prior

specifications proposed by Swaminathan and Gifford. However, Bayes modal estimates are not invariant

with respect to transformations and hence the Bayes modal estimates of the transformed parameters cannot

be transformed back to the original metric of the parameters. Nevertheless, the marginalized Bayes

procedure of Mislevy is an improvement over the joint procedure of Swaminathan and Gifford. The

marginalized Bayes procedure is currently implemented in the BILOG program (Mislevy & Bock, 1990) for

estimating item parameters in the dichotomous case, albeit with separate forms for the priorsa normal

prior for fl, a log-normal prior for a, and a beta prior for y. The procedure suggested by Tsutakawa (1992)

and Tsutakawa and Lin (1986) for specifying priors is basically different from that suggested by

Swaminathan and Gifford and Mislevy. Tsutakawa and Lin (1986) suggested an ordered bivariate beta

distribution for the item response function at two ability levels, while Tsutakawa (1992) suggested the

ordered Dirichlet prior on the entire item response function. These approaches are promising, but no

extensive research has been done to date comparing this approach with otherBayesian approaches.

Design of the Study

The primary objective of this study was to investigate estimation of item parameters in small samples

and to determine the specification ofprior information that will result in accurate estimation in small

samples. Given this, the factors that were investigated were sample size and type of prior information. These

two factors were examined with respect to the accuracy with which item parameters were estimated in the

one-, two-, and three-parameter item response models.
In order to investigate the accuracy with which item parameters are estimated, it is necessary to

compare the item parameter estimates with the "true" item parameter values. Typically, such an

investigation is carried out using simulated data since true values of item and abilityparameters cannot be

known a priori. With simulated data, general conditions can be simulated. One drawback, however, is that

the item parameter values selected for the study may not conform to real testing situations. More importantly,

the distributions of ability and item parameters may conform too closely to the prior distributions when

Bayesian procedures are investigated, possibly limiting the generalizability of the results to real data.

Fortunately, the estimation procedures can be investigated with real datain this study, Law School

Admission Test (LSAT) data from the Law School Admission Council (LSAC). Since the test was

administered to a large group of test takers, calibrating the items with the entire population of test takers

will yield true item parameters. With small samples randomly drawn from the population of test takers,

varying the sample size and estimating the item parameters will yield the relationship between sample size

and the accuracy with which item parameters are estimated. Moreover, the Bayesian procedures will yield

untainted information regarding the effects of prior specifications on the accuracy of estimation.

Parameter estimation in the three-item response models were investigated in this study. In order to

obtain true parameter values for the parameters in the one-, two-, and three-parameter models, each model

was fitted to the data for the LSAT Reading Comprehension section. Only the 21 items for which judges

provided ratings of difficulty were used. The estimates corresponding to the relevant parameters in each

model were taken as the true values.

Sample Size

One of the primary concerns in calibration is the minimal sample size that is needed to provide reasonably

accurate estimates of item parameters. Hence, one of the factors that was examined in the study was sample

size. Sample size was varied from a relatively small sample (n = 100) to a modest sample size (n = 500). Six

levels of sample size were used in this study: 100, 150, 200, 300, 400, and 500. These sample sizes were

chosen so that the effect of prior information could be studied carefully in a narrow range of sample

size values.
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Prior Information

As has been demonstrated by several researchers, accurate estimation of item parameters in small

samples, particularly in the two- and three-parameter models, can only be accomplished through a Bayesian

approach. In order to implement a Bayesian procedure, prior information must be specified on item

parameters. Prior information can be specified in a variety of forms.
Previous research on Bayesian estimation employed priors that were, in some sense, arbitrary with

simulated data. While this approach provided information regarding the effects of priors that reflected the

distribution of true item parameters as well as priors that deviated from the true distribution of the item

parameters (Swaminathan & Gifford, 1982, 1985, 1986), they did not, and could not, reflect the information

practitioners had regarding the items. In order to study the effect of prior information on the accuracy of

estimation, which is based on the knowledge that test developers have regarding the items, a new procedure

was developed. This procedure involved extracting information from test developers in an objective manner

and transforming this information into a prior distribution which could then be interfaced with a Bayesian

procedure (see Hambleton, Sireci, Swaminathan, Xing, & Rizavi, 1999).
Prior information on item dcultyjudgmental information. The procedure for obtaining judgmental

information regarding item parameters from a panel of subject matter specialists and test developers

involved (i) training subject matterspecialists and test developers as to the nature of item parameters; (ii)

eliciting information, independently, from them regarding the difficulty levels of items; and (iii) using a

consensus building approach, allowing them, if they chose, to revise their initial estimates of difficulty level

of the items. The item difficulty information provided by the subject matter specialists and test developers

was in the form of the proportion of test takers who, according to the raters' belief, would respond correctly

to the item. This information had to be translated to correspond to the Item Response Theory (IRT)

item-difficulty parameter, and a prior distribution specified to enable the information to be interfaced with

the Bayesian procedure.
Prior distribution for item difficulty parameter. The judgmental rating obtained regarding the difficulty level

of an item is the proportion of the test takers who respond correctly. The proportion is on the interval 10,11

and must be mapped onto to the scale of IRT item difficulty parameter, that is, mapped onto the real line.

Let p denote the proportion of test takers who, according to a rater, respondcorrectly to an item. A

convenient transformation that carries the proportion-correct score onto the scale of the IRT item difficulty

parameter is

1)0 = -(1)-1(p),

where0 is the normal ogive function, that is, p is the area under the normal curve to the left of the normal

deviate 1)0. The negative sign is to ensure that an item with a high p-value (an easy item) will have a negative

value for the IRT item difficulty parameter.
In determining the normal deviate, the following approximation, attributed to L. Tucker (Bock & Jones,

1968), was used to facilitate computing:

where

bo =
(1-a4U2 +ao1.19

U(111-a21.12 +a3U4)

p - Y2, a, = 2.5101, a2 = 12.2043, a, = 11.2502, a, = 5.8742, and, a, = 7.9587.

The prior distribution for the item difficulty parameter was taken as the normal density function with

mean equal to the average of the raters' transformed p-values. Three values were used as the standard

deviation (SD) of the distribution.

(1) A standard deviation of one, reflecting a "tight" prior.

(2) A standard deviation of two, reflecting a diffuse prior.

(3) The standard deviation corresponding to the standard deviation of the judges' transformed

ratings.
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It should be pointed out that the standard deviation of the judges' transformed ratings may not reflect

the standard deviation of the prior distribution. This is because the judges provided only what they thought

was the "difficulty" level of the item; they did not indicate how "confident" they were with the rating they

provided. For example, all the judges may provide the same value for p. This will result in a standard

deviation of zero for the prior distribution. This, however, does not reflect the confidence the raters had

about their ratings. Despite this, the standard deviation of the transformed p-values was taken as one of the

measures of standard deviation for the purpose of investigation.
In addition to the three prior distributions based on judgmental data described above, six other prior

distributions were considered. These are

1. normal prior with mean equal to the transformed true p-value and standard deviation, one;

2. normal prior with mean equal to the transformed true p-value and standard deviation, two;

3. normal prior with mean equal to the transformed sample p-value and standard deviation, one;

4. normal prior with mean zero and standard deviation, one; and

5. normal prior with mean zero and standard deviation, two;

In addition, a condition using no prior information was included.

The prior specifications described under (1) and (2) are critical in that they establish the veracity of the

premise underlying the study. The premise underlying the study is that if subject matter specialists can

provide information regarding the difficulty level of the item, this information can be used as the prior

information for the difficulty parameters. If the premise is true, then, clearly, the true p-value provides the

most accurate prior information for the difficulty parameters, and, hence, using this value as the mean of the

prior distribution should result in the most accurate estimation of the difficulty parameters. If the estimation

using the true p-value to set the prior produces poor results, then it can be argued that asking subject matter

specialists to provide information regarding the difficulty level of the item will not be useful.

It can be argued along the same lines that if information regarding item difficulty is useful, a less costly

method of obtaining this information is by computing the sample p-value rather than by assembling a panel

of experts. Hence, the accuracy of estimation obtained by using the sample p-value needs to be investigated.

One disadvantage of using the sample p-value is that in small samples, the p-value is relatively unstable.

An alternate approach is to ignore the information available in the sample and specify a prior that is sample

independent. Normal priors with mean zero (standard deviations of one and two) were used to compare the

estimation accuracies obtained with sample-based and sample-free priors.
The accuracy of estimation that may result from using a Bayesian approach must be compared with the

classical statistical approach where no priors are used. Hence, in the last condition, no priors were specified.

The subject matter specialists were not asked to provide information regarding either the discrimination

or the lower asymptote parameters. This was because no intuitive approach by which the experts could be

asked to provide information regarding these parameters was available. Hence, sample-free priors were

used for the discrimination and lower asymptote parameters.
The prior distribution for the discrimination parameter a in the two- and the three-parameter models

was taken as the log-normal distribution, that is, it was assumed that the natural logarithm of a was

distributed normally with mean zero and standard deviation one (Mislevy, 1986). The prior distribution for

the lower asymptote parameter, c, in the three-parameter model was taken as a beta distribution
(Swaminathan SE Gifford, 1986) with a mean of 0.2 (corresponding to a test taker choosing one of the five

options in a multiple choice item randomly), and a standard deviation of .0095 (corresponding to weight of

20 observations attached to the mean).
The item parameters were estimated using the program BILOG ( Mislevy iSt Bock, 1990) Version 7.1.

Evaluation of the Accuracy of Estimation

In order to evaluate the accuracy with which the item parameters were estimated, the estimates were

compared to the true values based on a sample of 5,000 test takers. Since the evaluation of the accuracy

of estimation cannot be assessed without carrying out replications, 100 replications were carried out for

each condition.

BEST COPYAVAILAP"-



9

The accuracy with which item parameters are estimated can be ascertained by computing the

discrepancy between the estimate and the true value. Let ri be the true value of an item parameter (a, b, or c)

for item i, and tk; its estimate in the kth replication. The Mean Square Error (MSE,), for item i for an item

parameter (a, b, or c) is defined as

i(tki
MSE,

k-1

Gifford and Swaminathan (1990) have shown that when replications are carried out, theMean Square

Error defined above can be decomposed into Squared Bias and Variance, defined as

Squared Bias; = g; 02

and

i(tik
Variance;

k=1

Thus, MSE = Squared Bias + Variance. This decomposition provides an explanation of the value

obtained for the MSE. A large MSE could result from either bias in the estimation or a large sampling

fluctuation. For example, Bayesian procedures generally result in estimates which have a larger bias and

smaller sampling variance than maximum likelihood estimates. These quantities can be averaged over items

to provide summary indices. For descriptive purposes, the square roots of these quantities averaged over

items are reported: root mean square error, (RMSE), Bias, and standard error (SE).
Since there were six sample sizes, ten priors (including no prior), and three item response models, there

were 180 conditions to be replicated. In all, 18,000 computer runs were executed. In order to extract the

information from the BILOG output and to provide summary information such as RMSE, Bias, and SE, a

computer program was written to interface with BILOG.

Results

The results of the study are presented for the parameters of the one-, two-, and the three-parameter

models. Graphical displays are also provided for RMSE and Bias for the estimation of parameters in

these models.

Results for the One-parameter Model

Table 1 contains the average root mean square values for the difficulty parameter for the ten prior

specifications and the six sample sizes. For all sample sizes, the Bayesian procedure resulted in improved

estimation when compared to the "no prior" or marginal maximum likelihood (MML) procedure. The only

exception to this trend resulted with the prior based on the judges' ratings, which used the standard

deviation of the transformed ratings. This is not a surprising result, given the reasons provided earlier. As

expected, the prior based on the truep-value yielded the most accurate estimates. The priors based on

judges' ratings with sample independent standard deviations for the priors yielded results identical to the

priors based on the true p-values.
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TABLE 1
Average root mean square error of item difficulty parameter estimates for the one-parameter model under various prior

distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.3932 0.3222 0.2800 0.2354 0.1995 0.1793

Normal priors:
Mean SD

Transformed "true" p-value 2 0.3900 0.3204 0.2788 0.2347 0.1990 0.1790

Transformed "true" p-value 1 0.3807 0.3151 0.2753 0.2327 0.1977 0.1781

Mean transformed judges' ratings 2 0.3911 0.3211 0.2793 0.2323 0.1992 0.1792

Mean transformed judges' ratings 1 0.3860 0.3185 0.2776 0.2337 0.1986 0.1788

SD of
transformed

Mean transformed judges' ratings ratings 0.4930 0.4225 0.3762 0.2311 0.2656 0.2425

Transformed sample p-value 2 0.3928 0.3220 0.2799 0.2353 0.1994 0.1793

Transformed sample p-value 1 0.3918 0.3214 0.2795 0.2351 0.1992 0.1792

0 2 0.3928 0.3220 0.2799 0.2353 0.1994 0.1793

0 1 0.3919 0.3150 0.2795 0.2351 0.1993 0.1792

In order of accuracy of estimation, the procedures areprior based on true value with SD 1.0, prior based
on judges transformed p-values with SD 1.0, prior based on true value with SD 2.0, prior based on judges
transformed p-values with SD 2.0, prior based on sample p-values with SD 1.0 and prior based on the
normal distribution with mean zero and SD 1, prior based on sample p-values with SD 2.0 and prior based
on the normal distribution with mean zero and SD 2, no prior, and finally, prior based on judges'
transformed p-values with the standard deviation based on the observed standard deviation. This trend was
evident at all sample sizes. However, all the procedures, with the exception of the procedure based on the
observed judges' standard deviation, produced indistinguishable results when the sample sizes were 400
and 500. These results are displayed graphically in Figure 1.
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FIGURE 1. Effect of prior on difficulty on estimation of difficulty under the
one-parameter model as a function of sample size.

The results corresponding to bias in estimation are provided in Table 2. Surprisingly, most of the

Bayesian procedures showed less bias than the estimates based on no prior on difficulty. The exceptions to

this were those judges' ratings with a tight prior, that is, SD of 1.0. The prior based on the SD of the judges'

ratings showed the most bias. Given that this procedure produces unacceptable results in all situations, this

procedure will be henceforth omitted from the discussions of results. As sample sizes increase, the

differences among the procedures diminish. A graphic display of the bias results for the one-parameter

model is provided in Figure 1.
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TABLE 2
Average bias of item difficulty parameter estimates for the one-parameter model under various prior distributions

on difficulty

Prior Distribution

Sample Size
100 150 200 300 400 500

No prior 0.0882 0.0643 0.0459 0.0356 0.0286 0.0254

Normal priors:
Mean SD

Transformed "true" p-value 2 0.0869 0.0636 0.0456 0.0355 0.0285 0.0253

Transformed "true" p-value 1 0.0832 0.0617 0.0448 0.0351 0.0283 0.0251

Mean transformed judges' ratings 2 0.0875 0.0643 0.0462 0.0352 0.0287 0.0256

Mean transformed judges' ratings 1 0.0895 0.0668 0.0488 0.0353 0.0297 0.0269

SD of
transformed

Mean transformed judges' ratings ratings 0.4068 0.3413 0.2983 0.2350 0.1961 0.1793

Transformed sample p-value 2 0.0880 0.0639 0.0459 0.0357 0.0285 0.0254

Transformed sample p-value 1 0.0876 0.0641 0.0460 0.0360 0.0283 0.0255

0 2 0.0880 0.0642 0.0459 0.0356 0.0287 0.0254

0 1 0.0878 0.0640 0.0460 0.0356 0.0287 0.0254

In general, the incorporation of priors resulted in very modest improvements in the estimation of the
difficulty parameter in the one-parameter model. Ignoring the prior based on true p-values, the judges' ratings
yielded the most accurate estimates. Since the trend lines across samples do not cross, the improvement in
estimation obtained using prior information cannot be converted to savings in terms of sample size.

Results for the Two-parameter Model

The results pertaining to the accuracy of estimation for the difficulty parameter in the two-parameter
model are given in Table 3. The results follow the pattern that was exhibited for the one-parameter model.
The procedures, in order of their accuracy, from most accurate to least accurate, as determined by RMSE, are
prior based on true p-value with SD 1.0, prior based on judges' transformed p-values with SD 1.0, prior
based on true p-value with SD 2.0, prior based on judges' transformed p-values with SD 2.0, prior based on
sample p-value with SD 1.0 and prior based on the normal distribution with mean zero and SD 1, prior
based on sample p-value with SD 2.0 and prior based on the normal distribution with mean zero and SD 2,
no prior, and finally, prior based on judges' transformed p-values with the observed standard deviation. This

trend persisted across all sample sizes, with the differences in the RMSE across procedures diminishing with
increasing sample size. It is clear that the difficulty parameter is less well estimated in the two-parameter
model than in the one-parameter model. This is to be expected as the introduction of more parameters in the
model decreases the accuracy with which the parameters are estimated in small samples. Figure 2 provides a
visual display of these results. (Note: The procedure with the observed standard deviation for the judges'
ratings is omitted since inclusion of this distorts the scale.)
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TABLE 3
Average root mean square error of item difficulty parameter estimates for the two-parameter model under various prior

distributions on difficulty Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.4119 0.3445 0.3072 0.2565 0.2249 0.1998

Normal priors:
Mean SD

Transformed "true" p-value 2 0.4093 0.3426 0.3058 0.2557 0.2243 0.1993

Transformed "true" p-value 1 0.4020 0.3374 0.3017 0.2535 0.2226 0.1978

Mean transformed judges' ratings 2 0.4101 0.3431 0.3061 0.2558 0.2244 0.1994

Mean transformed judges' ratings 1 0.4051 0.3395 0.3031 0.2539 0.2229 0.1983

SD of
transformed

Mean transformed judges' ratings ratings 0.4172 0.3551 0.3194 0.2691 0.2352 0.2156

Transformed sample p-value 2 0.4111 0.3437 0.3065 0.2561 0.2246 0.1995

Transformed sample p-value 1 0.4091 0.3416 0.3046 0.2552 0.2237 0.1987

0 2 0.4110 0.3436 0.3064 0.2561 0.2246 0.1995

0 1 0.4089 0.3413 0.3042 0.2549 0.2236 0.1986
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FIGURE 2. Effect of prior on difficulty on estimation of difficulty under the
two-parameter model as a function of sample size.
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Table 4 contains the results pertaining to bias in the estimation of the difficulty parameter. Comparison
of priors with standard deviation of one and two reveal the predictable result: tighter priors result in more
bias than diffuse priors; the only exception being the procedure that was based on true p-value. In this case, a

tighter prior yielded less biased estimates compared with the corresponding diffuse prior. Surprisingly, the

procedure with no prior on the difficulty parameter did not yield the least bias. Although bias is present, the

differences among the procedures are negligible, a positive result where bias is concerned. Figure 2 provides

a visual display of these findings. (Note: The procedure with the observed standard deviation for the judges'

ratings is omitted.)

TABLE 4
Average bias of item difficulty parameter estimates for the two-parameter model under various priordistributions

on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.1041 0.0783 0.0650 0.0563 0.0430 0.0314

Normal priors:
Mean SD

Transformed "true" p-value 2 0.1037 0.0782 0.0651 0.0565 0.0432 0.0317

Transformed "true" p-value 1 0.1026 0.0783 0.0656 0.0572 0.0441 0.0323

Mean transformed judges' ratings 2 0.1037 0.0785 0.0652 0.0562 0.0430 0.0316

Mean transformed judges' ratings 1 0.1039 0.0797 0.0663 0.0561 0.0435 0.0324

SD of
transformed

Mean transformed judges' ratings ratings 0.2699 0.2257 0.2002 0.1604 0.1342 0.1258

Transformed sample p-value 2 0.1041 0.0785 0.0650 0.0566 0.0432 0.0317

Transformed sample p-value 1 0.1044 0.0791 0.0659 0.0573 0.0441 0.0324

0 2 0.1046 0.0788 0.0654 0.0567 0.0434 0.0318

0 1 0.1062 0.0806 0.0668 0.0579 0.0449 0.0330

Table 5 contains the RMSE values for the estimation of the discrimination parameter. It should be noted

that different priors were placed only on the difficulty parameter. The same prior distribution was imposed

on the discrimination parameter in all the procedures. Given this, a comparison of the no prior condition
with the prior conditions reveals that placing a prior on the difficulty had a positive effect on the estimation

of the discrimination parameter. Tighter priors on the difficulty parameter, as determined by the standard

deviation of the prior distribution, yielded more accurate estimation. The only exceptional result that sets the

estimation of the difficulty parameter apart from the estimation of the discrimination parameter is the prior

distribution with the observed standard deviation of the judges' ratings. This prior distribution resulted in

the most accurate estimation of the discrimination parameter. Apart from this, the smallest RMSE was

observed for the standard normal prior, followed by the prior based on judges' ratings with a standard

deviation of one.

TABLE 5
Average root mean square error of item discrimination parameter estimates for the two-parameter model under various

prior distributions on difficulty

Prior Distribution

Sample Size
100 150 200 300 400 500

No prior 0.1135 0.0918 0.0791 0.0685 0.0587 0.0554

Normal priors:
Mean SD

Transformed "true" p-value 2 0.1117 0.0906 0.0783 0.0680 0.0583 0.0551

Transformed "true" p-value 1 0.1067 0.0873 0.0762 0.0665 0.0572 0.0542

Mean transformed judges' ratings 2 0.1114 0.0903 0.0781 0.0678 0.0582 0.0550

Mean transformed judges' ratings 1 0.1055 0.0863 0.0757 0.0661 0.0569 0.0539

SD of
transformed

Mean transformed judges' ratings ratings 0.0969 0.0865 0.0825 0.0720 0.0638 0.0598

Transformed sample p-value 2 0.1119 0.0907 0.0784 0.0680 0.0583 0.0551

Transformed sample p-value 1 0.1078 0.0877 0.0765 0.0667 0.0572 0.0542

0 2 0.1103 0.0897 0.0778 0.0676 0.0580 0.0549

0 1 0.1021 0.0843 0.0745 0.0654 0.0563 0.0535



15

These results with respect to RMSE are graphically displayed in Figure 3. An examination of the figure
reveals that (using linear interpolation), without prior information, a sample size of 125 is needed to achieve

the same degree of accuracy as that obtained with a prior based on judges' ratings with a standard deviation
of one. This translates into a saving of 25% in terms of sample size, at a sample size value of 150. It should be

noted that the savings, in terms of sample size for the difficulty parameter, is considerably less.
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FIGURE 3. Effect of prior on difficulty on estimation of discrimination under
the two-parameter model as a function ofsample size.

An examination of Table 6 reveals that the prior based on judges' ratings with a standard deviation of

one produced the least biased estimates. The normal priors with mean zero and standard deviations of one

and two and sample p-value based priors resulted in the most biased estimates. The results in Table 6 and

Figure 2 show that as sample size increases, the bias decreases rapidly. The prior based on the judges'

observed standard deviation produced estimates with the largest bias while the standard normal prior

resulted in the smallest bias.
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TABLE 6
Average bias of item discrimination parameter estimates for the two-parameter model under various prior

distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.0564 0.0424 0.0321 0.0256 0.0194 0.0177

Normal priors:
Mean SD

Transformed "true" p-value 2 0.0542 0.0408 0.0310 0.0248 0.0187 0.0171

Transformed "true" p-value 1 0.0482 0.0364 0.0282 0.0228 0.0166 0.0154

Mean transformed judges' ratings 2 0.0536 0.0403 0.0307 0.0246 0.0185 0.0169

Mean transformed judges' ratings 1 0.0460 0.0347 0.0273 0.0221 0.0159 0.0149

SD of
transformed

Mean transformed judges' ratings ratings 0.0634 0.0604 0.0598 0.0502 0.0437 0.0394

Transformed sample p-value 2 0.0978 0.0409 0.0311 0.0249 0.0187 0.0171

Transformed sample p-value 1 0.0959 0.0368 0.0284 0.0229 0.0166 0.0155

0 2 0.0971 0.0395 0.0302 0.0243 0.0181 0.0167

0 1 0.0930 0.0321 0.0260 0.0211 0.0147 0.0140

Results for the Three-Parameter Model

The entries in Table 7 refer to the accuracy of estimation of the difficulty parameter in the
three-parameter model. The RMSE values are larger than in the one- and the two-parameter models
indicating that the difficulty parameter is less well estimated in the three-parameter model than in the other
two models when the sample size is small (500 or less). A comparison of the procedures reveals that the prior

based on the judges' ratings with a standard deviation of one produced the most accurate estimates across
all sample sizes. The prior based on the true p-value produced the second most accurate estimates. In general, a

tighter prior produced more accurate estimates than the corresponding diffuse prior. This trend was evident

across all sample sizes, with the RMSE decreasing steadily as the sample size increases. A graphical display

of the accuracy of estimation is provided in Figure 4. A comparison of the RMSE with the priorbased on

judges' ratings with the estimates obtained with no prior reveals that a sample size of 150 with no prior
yields the same level of accuracy as that obtained with a sample size of 100 when using a prior based on the

judges' ratings a saving of 50% in terms of sample size. This saving decreases as the sample increases.

TABLE 7
Average root mean square error of item difficulty parameter estimates for the three-parameter model under various

prior distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.5182 0.4745 0.4309 0.3771 0.3455 0.3399

Normal priors
Mean SD

Transformed "true" p-value 2 0.4985 0.4609 0.4188 0.3724 0.3422 0.3357

Transformed "true" p-value 1 0.4775 0.4421 0.4037 0.3652 0.3363 0.3278

Mean transformed judges' ratings 2 0.4962 0.4583 0.4166 0.3702 0.3404 0.3335

Mean transformed judges' ratings 1 0.4735 0.4371 0.3985 0.3595 0.3315 0.3219

SD of
transformed

Mean transformed judges' ratings ratings 0.5329 0.5051 0.4859 0.4645 0.4502 0.4398

Transformed sample p-value 2 0.5018 0.4632 0.4207 0.3737 0.3431 0.3363

Transformed sample p-value 1 0.4894 0.4507 0.4104 0.3698 0.3397 0.3302

0 2 0.5023 0.4632 0.4218 0.3744 0.3437 0.3372

0 1 0.4920 0.4526 0.4122 0.3713 0.3410 0.3323
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FIGURE 4. Effect of prior on difficulty on estimation of difficulty under the
three-parameter model as a function of sample size.

The bias in the estimation of the difficulty parameter is presented in Table 8. The prior based on judges'

ratings yielded the least biased estimates. Tighter prior yielded less biased estimates than the corresponding

diffuse prior in all cases. Surprisingly, estimates with no prior specification were more biased than their

counterparts based on prior information. The bias in the estimates, however, does not seem to decrease as

rapidly as with the one- and the two-parameter models as sample size increases.
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TABLE 8
Average bias of item difficulty parameter estimates for the three-parameter model under various prior distributions

on difficulty

Prior Distribution

Sample Size
100 150 200 300 400 500

No prior 0.2705 0.2677 0.2399 0.2254 0.2061 0.2074

Normal priors
Mean SD

Transformed "true" p-value 2 0.2670 0.2702 0.2437 0.2292 0.2095 0.2094

Transformed "true" p-value 1 0.2734 0.2767 0.2566 0.2421 0.2214 0.2191

Mean transformed judges' ratings 2 0.2633 0.2668 0.2407 0.2260 0.2068 0.2063

Mean transformed judges' ratings 1 0.2620 0.2671 0.2481 0.2333 0.2145 0.2109

SD of
transformed

Mean transformed judges' ratings ratings 0.4589 0.4448 0.4336 0.4234 0.4129 0.4056

Transformed sample p-value 2 0.2671 0.2706 0.2440 0.2294 0.2097 0.2095

Transformed sample p-value 1 0.2735 0.2776 0.2573 0.2428 0.2218 0.2192

0 2 0.2671 0.2701 0.2436 0.2289 0.2090 0.2087

0 1 0.2741 0.2773 0.2560 0.2404 0.2192 0.2161

With respect to the estimation of the discrimination parameter, Table 9 reveals that for a sample size of
100, the standard normal prior produced the most accurate estimates; the prior based on judges' ratings with
a standard deviation of one produced a similar RMSE. With a sample size of 150 and larger, the prior based
on judges' ratings with a standard deviation of one produced more accurate estimates. As with the difficulty

parameter, a tighter prior produced the most accurate estimates than the corresponding diffuse prior. A
closer examination of Table 9 reveals that using a prior based on judges' ratings with a standard deviation of
one results in more than 100% savings in terms of sample size when no prior is used; that is, a sample size of

100 with prior yields the same degree of accuracy as that obtained with a sample size of 200 when no prior is
used. Figure 5 provides a graphical display of the results described above.

TABLE 9
Average root mean square error of item discrimination parameter estimates for the three-parameter model under various

prior distributions on difficulty

Prior Distribution

Sample Size
100 150 200 300 400 500

No prior 0.2275 0.1979 0.1724 0.1580 0.1472 0.1337

Normal priors
Mean SD

Transformed "true" p-value 2 0.1958 0.1778 0.1568 0.1477 0.1385 0.1273

Transformed "true" p-value 1 0.1726 0.1577 0.1451 0.1360 0.1283 0.1202

Mean transformed judges' ratings 2 0.1921 0.1743 0.1543 0.1455 0.1373 0.1260

Mean transformed judges' ratings 1 0.1700 0.1552 0.1437 0.1339 0.1271 0.1198

SD of
transformed

Mean transformed judges' ratings ratings 0.2132 0.2101 0.2113 0.2093 0.2081 0.2101

Transformed sample p-value 2 0.1968 0.1785 0.1572 0.1480 0.1387 0.1274

Transformed sample p-value 1 0.1748 0.1591 0.1461 0.1368 0.1297 0.1207

0 2 0.1906 0.1735 0.1549 0.1453 0.1367 0.1258

0 1 0.1691 0.1567 0.1461 0.1366 0.1300 0.1222
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FIGURE 5. Effect of prior on difficulty on estimation of discrimination under
the three-parameter model as a function ofsample size.

Using a prior based on judges' ratings with a standard deviation of one yielded the least biased

estimates of the discrimination parameter (Table 10). For a sample size of 100, the estimation procedure that

was not based on prior information resulted in estimates that were 50% more biased than those based on

priors obtained using judges' ratings. At larger sample values, the procedures did not differ from each other

with respect to bias.
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TABLE 10
Average bias of item discrimination parameter estimatesfor the three-parameter model under various prior

distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.1510 0.1256 0.1026 0.0915 0.0801 0.0666

Normal priors
Mean SD

Transformed "true" p-value 2 0.1239 0.1074 0.0898 0.0829 0.0722 0.0610

Transformed "true" p-value 1 0.1060 0.0972 0.0878 0.0811 0.0718 0.0636

Mean transformed judges' ratings 2 0.1200 0.1042 0.0876 0.0809 0.0701 0.0595

Mean transformed judges' ratings 1 0.1055 0.0981 0.0900 0.0828 0.0736 0.0662

SD of
transformed

Mean transformed judges' ratings ratings 0.1917 0.1937 0.1958 0.1986 0.1983 0.2018

Transformed sample p-value 2 0.1246 0.1079 0.0901 0.0832 0.0723 0.0612

Transformed sample p-value 1 0.1068 0.0978 0.0883 0.0816 0.0718 0.0642

0 2 0.1189 0.1037 0.0874 0.0809 0.0704 0.0598

0 1 0.1097 0.1035 0.0961 0.0880 0.0794 0.0727

The most dramatic improvements in estimation were observed with the estimation of the c-parameter
(Table 11). The prior based on judges' ratings with a standard deviation of one produced the most accurate

estimates. The estimates in order from most accurate to least accurate are prior based on judges transformed

p-values with SD 1.0, prior based on sample p-value with SD 1.0, prior based on true p-value with SD 1.0,

prior based on the normal distribution with mean zero and SD 1, the priors based on true p-value with SD

2.0, on judges' transformed p-values with SD 2.0, on sample p-values with SD 2.0, and on the normal

distribution with mean zero and SD 2 (all producing equally accurate estimates). The estimate based on no

prior resulted in the least accurate estimates (with the exception of the estimate based on judges' ratings

with the observed standard deviation).

TABLE 11
Average root mean square error of item lower asymptote parameter estimates for the three-parameter model under

various prior distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

No prior 0.0707 0.0697 0.0678 0.0664 0.0645 0.0637

Normal priors
Mean SD

Transformed "true" p-value 2 0.0673 0.0670 0.0651 0.0643 0.0625 0.0619

Transformed "true" p-value 1 0.0644 0.0637 0.0622 0.0615 0.0597 0.0590

Mean transformed judges' ratings 2 0.0664 0.0660 0.0642 0.0635 0.0618 0.0612

Mean transformed judges' ratings 1 0.0625 0.0618 0.0603 0.0597 0.0582 0.0574

SD of
transformed

Mean transformed judges' ratings ratings 0.0746 0.0754 0.0771 0.0813 0.0839 0.0854

Transformed sample p-value 2 0.0672 0.0670 0.0651 0.0643 0.0625 0.0619

Transformed sample p-value 1 0.0641 0.0635 0.0620 0.0614 0.0597 0.0589

0 2 0.0672 0.0669 0.0653 0.0645 0.0626 0.0621

0 1 0.0651 0.0646 0.0633 0.0625 0.0607 0.0604

The accuracy results for the c-parameter are graphically displayed in Figure 6. The figure demonstrates

that the procedure based on judges' ratings with a standard deviation of one as prior yielded more accurate

estimates of the c-parameter with a sample of 100 than the estimate based on a sample of 500 without prior

information specified, a 500% savings in terms of sample size!
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FIGURE 6. Effect of prior on difficulty on estimation of lower asymptote
under the three-parameter model as a function of sample size.

With respect to bias (Table 12), the procedures which incorporated prior information yielded less

biased estimates than the procedure that did not use prior information on the difficulty parameter. The size

of the bias compared to the RMSE values indicates that the inaccuracy in estimation is primarily due to bias

in estimation.
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TABLE 12
Average bias of item lower asymptote parameter estimates for the three-parameter model under various prior

distributions on difficulty
Sample Size

Prior Distribution 100 150 200 300 400 500

Normal priors
Transformed "true" p-value 2 0.0605 0.0591 0,0560 0.0538 0.0510 0.0494

Transformed "true" p-value 1 0.0594 0.0578 0.0554 0.0531 0.0502 0.0485

Mean transformed judges' ratings 2 0.0597 0.0583 0.0552 0.0530 0.0503 0.0487

Mean transformed judges' ratings 1 0.0577 0.0560 0.0537 0.0515 0.0488 0.0469

SD of
transformed

Mean transformed judges' ratings ratings 0.0682 0.0697 0.0722 0.0773 0.0801 0.0821

Transformed sample p-value 2 0.0605 0.0591 0.0560 0.0538 0.0510 0.0495

Transformed sample p-value 1 0.0594 0.0578 0.0554 0.0532 0.0503 0.0485

0 2 0.0604 0.0591 0.0561 0.0538 0.0510 0.0496

0 1 0.0602 0.0587 0.0565 0.0542 0.0512 0.0498

Conclusions

The purpose of this study was to investigate if estimation of item parameters in item response models

can be improved by incorporating prior information, especially in the form of judgements regarding the

difficulty level of the items provided by content specialists and test developers. It was anticipated that

incorporation of such information will improve estimation in small samples.
The results provided above indicate that the incorporation of ratings provided by subject matter

specialists/test developers regarding item difficulty in the form of a prior distribution produced estimates

that were more accurate than that obtained without using such information. The improvement was observed

for all item response models. The improvement observed for the estimation of the item difficulty parameter

in the one-parameter model was modest; that is, although improvements were observed, the gains may not

warrant the cost incurred in obtaining judgmental information.
The improvement observed in the estimation of item difficulty and discrimination parameters in the

two-parameter model through incorporating judgmental information was somewhat greater than that

observed in the one-parameter model. While there was only a modest improvement in the estimation of the

difficulty parameter in the two-parameter model, the improvement in the estimation of the discrimination

parameter was more substantial. Using prior information in the form of judges' ratings, the estimates

obtained with a sample size of 100 yielded the same level of accuracy as that obtained with a sample size of

150 when no prior information was used. This translates into a 50% improvement in the estimation of the

discrimination parameter in the two-parameter model.
The improvements obtained with the three-parameter model were clearly substantial. In the estimation

of the difficulty parameter, using prior information in the form of judgmental ratings yielded an

improvement of 50% over not using prior information when a sample size of 100 was used. In the estimation

of the discrimination parameter, an improvement of 100% was observed using judgmental ratings for a

sample size of 100; that is, the accuracy obtained with the use of judgmental ratings for a sample size of 100

was comparable to the accuracy level obtained with a sample size of 200 when no prior information was

used. The result was most dramatic with the estimation of the c-parameter. The accuracy obtained with a

sample size of 100 with judgmental ratings was superior to that obtained with a sample size of 500 when no

prior information was used. This corresponds to a 500% cost savings in terms of sample size.

The procedure used in this study used judgmental information about item difficulty only. If procedures

can be developed for obtaining judgmental information about the discrimination and lower asymptote

parameters, considerable improvement in the estimation of item parameters mayresult. A judgmental

procedure for eliciting such information from subject matter specialists and test developers is currently being

investigated (see Hambleton, et al., 1999).
This study has demonstrated that in the three-parameter model, using judgmental information about the

difficulty parameter produces dramatic improvements in the estimation of the discrimination and lower

asymptote parameters. This improvement may be sufficient to warrant the use of judgmental information in

item calibration. However, obtaining judgmental information is time-consuming and costly. The question

that arises naturally is whether using some other form of prior information can result in savings and lead to

estimates equally accurate as those obtained by using judgmental information. Several other forms of prior

information were used in this study to examine this issue. While using judgmental information produced the

most accurate estimates, difference between those estimates obtained using judgmental information and

other forms of prior information, although not substantial, nevertheless exist. In order to determine if
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differences that result from using different forms of prior information are substantial, the effects of using

various forms of prior information for item calibration on the routing procedure in an adaptive testing

scheme and the estimation of proficiency need to be investigated. Only through such a study can the

improvements offered by incorporating judgmental data as demonstrated in this study and other forms of

prior information be fully understood.
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