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Executive Summary

It is well established that the efficiency of testing can be considerably increased if test takers are
administered items that match their ability or proficiency levels. In this adaptive testing scheme, items are
administered to test takers sequentially, one at a time or in sets. The item or set of items administered is
usually chosen in such a way that it provides maximum information at the proficiency level of the test taker.
The feasibility and advisability of computerized adaptive testing is currently being studied by the Law
School Admission Council (LSAC).

For adaptive testing to be successful, it is important that a large pool of items be available with items
whose item characteristics are known. The recent experiences of testing programs have clearly demonstrated
that, without a large item pool, test security can be seriously compromised. One way to maintain a large
pool of items is to replenish the pool by administering pretest items to a group of test takers taking an
existing test and calculating the statistics for the items. However, administering new items to a large group
of test takers increases the exposure rate of these items, compromising test security. One obvious solution is
to administer a set of pretest items to a randomly selected small group of test takers. Unfortunately, this
solutic;(n raises a serious problem: estimating the necessary item-level statistics using small samples of
test takers.

Typically in computerized adaptive testing, a mathematical model called item response theory (IRT) is
used to describe the characteristics of the test items and the ability level of the test takers. The item-level
statistics of this model are commonly referred to as item parameters. In general, large samples are needed to
estimate parameters. An issue that needs to be addressed is that of estimating these item parameters using a
small sample of test takers. Several research studies have shown that, by incorporating prior information
about item parameters, not only can item parameters be estimated more accurately, but estimation can be
carried out with smaller sample sizes. The purposes of the current investigation are (i) to examine how prior
information about item characteristics can be specified, and (ii) to investigate the relationship between
sample size and the specification of prior information on the accuracy with which item parameters
are estimated.

The best a priori source for information regarding the difficulty of items in a test is content specialists
and test developers. A judgmental procedure for eliciting this information was developed for this study.
Once this prior information was obtained, it was combined with data obtained from test takers and the item
parameters were estimated.

Since the primary objective of this study was to investigate how incorporating prior information
improves estimation of item parameters in small samples, the factors that were investigated were sample
size and type of prior information. These two factors were examined with respect to the accuracy with which
item parameters were estimated. In order to investigate the accuracy with which item parameters in the Law
School Admission Test (LSAT) are estimated, the item parameter estimates were compared with the known
item parameter values. By randomly drawing small samples of varying sizes from the population of test
takers, the relationship between sample size and the accuracy with which item parameters are estimated was
studied. Data from the Reading Comprehension section of the LSAT was utilized.

The results indicate that the incorporation of ratings of item difficulty provided by subject matter
specialists/test developers produced estimates of item difficulty statistics that were more accurate than that
obtained without using such information. The improvement was observed for all item response models, the
evaluated, including the model that is currently used for the LSAT.

This study has demonstrated that using judgmental information about the difficulty of test items can
produce dramatic improvements in the estimation of item parameters. This improvement may be sufficient
to warrant the routine use of judgmental information in item parameter estimation. However, obtaining
judgmental information is time-consuming and costly. The question that arises naturally is whether using
some other form of prior information can result in savings and lead to estimates equally as accurate as those
obtained by using judgmental information. Several other forms of prior information were used in this study
to examine this issue. While using judgmental information produced the most accurate estimates, differences
between those estimates obtained using judgmental information and other forms of prior information were
not substantial. In order to determine if differences that result from using different forms of prior
information are substantial, the effects of using various forms of prior information for item calibration on the
routing procedure in an adaptive testing scheme and the estimation of test taker ability need to be
investigated. Only through such a study can the improvements offered by incorporating judgmental data as
demonstrated in this study and other forms of prior information be fully understood.
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Introduction

Item response theory (IRT) provides the accepted framework for addressing the fundamental problems
in testing: determining the proficiency level of test takers for certification and other reasons, assembly of test
items, equating of tests, and examining the potential bias test items may exhibit toward minority or focal
groups. In order to fully realize the advantages that item response theory offers, the parameters of item
response models must be accurately estimated. These parameters are the ability or proficiency level
parameter of a test taker, and the parameters that characterize the item. While estimation of the test taker
ability parameter is the ultimate goal of testing, this goal cannot be achieved without determining the
parameters that characterize the items. Once the item parameters are determined, items can be “banked,”
and from this bank, items can be drawn and administered to test takers,

It is well established that the efficiency of testing can be considerably increased if test takers are
administered items that match their ability or proficiency levels (Hambleton, Swaminathan, & Rogers, 1991;
Lord, 1980). In this adaptive testing scheme, items are administered to test takers sequentially, one at a time,
or in sets. The item or set of items administered is usually chosen in such a way that it provides maximum
information at the ability level of the test taker.

For adaptive testing to be successful, it is important that a large pool of items be available with items
whose item parameters are known; that is estimated or calibrated using a sample of test takers. The recent
experiences of testing programs have clearly demonstrated that without a large item pool, test security can
be seriously compromised. One way to maintain a large pool of items is to replenish the pool by
administering experimental items to a group of test takers taking an existing test and calibrating the items.
However, administering new or experimental items to a large group of test takers increases the exposure rate
of these items, compromising test security. One obvious solution is to administer a set of experimental items
to a randomly selected small group of test takers. Unfortunately, this solution raises another serious
problem: that of estimating item parameters using small samples.

The issue of sample size and its effect on item parameter estimation has been well studied (e.g.,
Swaminathan & Gifford, 1983). In general, large sample sizes are needed to estimate parameters, particularly
in the two- and three-parameter item response models. The issue that needs to be addressed is that of
estimating or calibrating items using a small sample of test takers. Swaminathan and Gifford (1982, 1985,
1986) and Mislevy (1986) have shown that, by incorporating prior information about item parameters, not
only can item parameters be estimated more accurately, but the estimation can be carried out with smaller
sample sizes. The purposes of the current investigation are (i) to examine how prior information can be
specified, and (ii) to investigate the relationship between sample size and the specification of prior
information on the accuracy with which item parameters are estimated.

This report consists of a brief review of item response models and the issues that surround the
estimation of item parameters. The procedure for incorporating prior information is described. The design of
the study for investigating the relationship between sample size and prior information is described. The
results of the study are presented and the implications for estimating parameters are discussed.

Item Response Models

Dichotomous item response models are classified as one-, two-, or three-parameter models. For all these
models, the probability of response u, (1 =1 for a correct response and 0 otherwise) to an item, given the
jtem parameters and the ability level of the test taker, is specified by a cumulative probability function, F(.).
The common forms of F are the normal and the logistic cumulative probability functions.

In the one-parameter model, the parameter that characterizes the item is called the item difficulty
parameter, b. For a test taker with ability 6, the probability of a correct response is 0.5 at 6 = b;. The
one-parameter model was developed by Rasch (1960), and hence is commonly referred to as the Rasch
model. The probability of a correct response to item i in the Rasch item response model is

exp(0-b,
P(u, = 1/b,.0) = T:x_(p(gT)‘) M
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The probability of a correct response for the two-parameter logistic model is conventionally written in
the form

expa, (6-b,)

P(u;=1|a;,b,,0) = ’
( 1+6) 1+expa,(0-b,) @)

where 4;, the discrimination parameter, is the slope of the item response curve at the point of inflection.
Whereas in the Rasch model, the log-odds ratios of Rasch item response curves define parallel lines, in the
two-parameter logistic models, the lines defined by the log-odds ratios are parallel only when the
discrimination parameters are equal.

Motivated by the work of Finney (1952), Birnbaum (1968) introduced the three-parameter logistic item
response model given by the item response function

expa; (6-b,)
1+expa,.(0——b,)' 3)

P(ui = llci/ai/bi/o) =C; +(1_Ci)

Here the lower asymptote 0<c, <1 reflects the probability with which test takers with very low ability or
6 values respond correctly to the item i. The parameter ¢; is known as the pseudo chance-level parameter, or
simply as the guessing parameter. Empirical studies have shown that with multiple choice items, the
three-parameter model fits the item response data better than the Rasch or two-parameter model.

The item response models described above assume that a single dimension § underlies the test takers’
responses to a set of items. The assumption of unidimensionality is an issue of some concern in the
measurement literature. While multidimensional item response models have been formulated, the
estimation problems associated with multidimensional models are far from being solved. Hence, only the
estimation issues concerning unidimensional item response models are discussed in this study.

Estimation of Parameters

Estimation of Ability Parameters

The parameter of ultimate importance in educational testing is the test taker’s ability or proficiency level
6. If the item parameters are known a priori, the estimation of @ is straightforward. Let U = [u;, 4y, ... 4,] denote
the (n x 1) vector of responses of a test taker to 7 items. In order to express the joint distribution of U in a
tractable form, the assumption of conditional independence, or local independence, has to be made. Assuming
that the complete latent space is specified, that is, the number of dimensions that underlie the responses of the
population of test takers to a set of items is correctly specified, it can be shown (Anderson, 1959; Lord &
Novick, 1968) that the responses of a test taker to 7 items, conditional on ability, are independent, that is,

P(ulluZI“'lun Iolg) = IZIIP(ul Ielg)/ (4)

where 8 is the (r x 1) vector of abilities, and E is the vector of item parameters. When it is assumed thatr =1,
equation 4 holds for unidimensional item response models. Thus, the likelihood function of the observed
item responses for a test taker given the item parameters, and, consequently, the maximum of the likelihood
function are immediately obtained. The maximum likelihood (ML) estimator of § can be shown to possess
the usual properties of ML estimators with increasing test length (Birnbaum, 1968).

Within a Bayesian framework, if the prior density of 8 is g(6] ) where ris the vector of known
parameters, then the posterior marginal density of 8, P(6 | U, 7), contains all the information about the
parameter 8. The posterior mode or the mean may be taken as a point estimate of 6. When 7 is not known,
the hierarchical procedure suggested by Lindley and Smith (1972) may be applied. Swaminathan and
Gifford (1982, 1985, 1986) applied a two-stage procedure to obtain the joint posterior density of the abilities
of N test takers. They assumed that in the first stage

8, ~N(u,9) ()
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In the second stage, they assumed that 4 was uniform and ¢ had the inverse chi-square density with
parameters v and 4. The parameters 4, and ¢ were integrated out of the joint posterior density. The joint
modes of the joint posterior density were taken as point estimates of the abilities of the test takers. The joint
posterior modes, being weighted estimates of the individual’s estimate and the mean of the group, provide
more stable estimates of the ability parameters than the mode or the mean of the one-stage Bayes procedure.
Because of the complex form of the joint density, Swaminathan and Gifford did not obtain the marginal
density or the joint means of the joint posterior density. However, in theory, it is possible to obtain the
moments of the posterior density using the approximations suggested by Tierney and Kadane (1986).

An alternative procedure was provided by Bock and Mislevy (1982), who used the mean of the posterior
distribution of 8 rather than the mode. This expected a posteriori (EAP) was obtained using a single stage
procedure, assuming a priori that 6 had the standard normal distribution; that is, with mean zero and unit
standard deviation.

Estimation of Item Parameters

While the estimation of ability parameters with known item parameters is relatively straightforward, the
item parameters must be known or estimated from a calibration sample. If the ability parameters are known,
then the item response model becomes a special case of quantal response models, and the estimation of item
parameters is again straightforward. However, in general, neither the item parameters nor the ability
parameters are known beforehand.

Joint Maximum Likelihood Estimation

The joint estimation of item and ability parameters was proposed by Lord (1953) and Bimbaum (1968).
The joint likelihood function of the item and ability parameters, when responses of N test takers on n items
are observed, is given by the expression

L(U, Uy U Uy |8,E) = 1”11 Hp(u, 16,8) o

where U; = [, Ujps s u;,] is the vector of responses of test taker j on n items. It is assumed that the
complete latent space is unidimensional, that is, local independence holds.

'An examination of the item response models given in Equations 1-3 reveals that the parameters a (a
parameter), B (b parameter), and 6 are not identified. Linear transformations leave the item response
functions invariant, and hence the metric of 8 (or §) must be fixed. For convenience, the mean and standard
deviation of 8 (or ) are usually set at 0 and 1, respectively. In the Rasch model, only the mean of 6 (or f)
needs to be fixed. Once the metric of 8 is fixed, starting with provisional values of 6, the item parameters are
estimated by the conventional probit or logit analysis. The item parameters are held fixed at these values,
and the values of 8 re-estimated. This process is repeated until convergence.

The joint maximum likelihood estimation of item and ability parameters suffers from a major drawback.
The ability parameters are incidental parameters while the item parameters are structural parameters.
Neyman and Scott (1948) have shown that the ML estimates of the structural parameters are not consistent in
the presence of incidental parameters. While consistent ML estimators of item parameters are not available
in the presence of unknown ability parameters for a finite number of items, Haberman (1977) showed that
consistent estimates of the Rasch item parameters are obtained as the number of items and the number of test
takers increase without limit. Similar results are not available for the two- and three-parameter logistic models.
Nevertheless, Swaminathan and Gifford (1983) demonstrated empirically through a series of simulation
studies that the estimates of item parameters in the three-parameter model are consistent when the number of
items and the number of test takers increase without bound. This empirical finding, although not totally
satisfactory, provides some justification for using joint ML estimation with large numbers of items.

Neyman and Scott (1948) also showed that if a minimal sufficient statistic is available for the incidental
parameters, conditional maximum likelihood estimators can be devised for the structural parameters. These
conditional maximum likelihood estimators enjoy the usual properties of maximum likelihood estimators. A
minimal sufficient statistic for the ability parameter is available only for the Rasch model. The total score, 7,
obtained by summing the item scores, is a minimal sufficient statistic for the ability parameter in the Rasch
model. By conditioning on 7, Andersen (1970) obtained conditional maximum likelihood estimates of the
item parameters. This procedure requires the computation of certain symmetric functions and becomes
computationally tedious when the number of items is large.

Q
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Marginal Maximum Likelihood Estimation

Since a minimal sufficient statistic for the ability parameter is not available for the two- and
three-parameter logistic item response models, the conditional maximum likelihood procedure is not
applicable for these models. Bock and Lieberman (1970) proposed the marginal maximum likelihood
procedure to overcome the difficulties inherent in the joint maximum likelihood procedure. Whereas the
joint ML procedure corresponds to the fixed-effects case, the marginal ML procedure corresponds to a mixed
model in that the test takers are assumed to be a sample from a known population. The marginal likelihood
function is

LQU, Uy U U 1€) = [ TT TTP(w116.8) 5(61 )40,

i=1 f=1 (7)

where g(f |7) is the density function of 6. Bock and Lieberman (1970) took the standard normal density
function for g(0 | 7) and employed Gaussian quadrature to approximate the integral in Equation 7. They
solved the resulting likelihood equations using Fisher’s method of scoring. In Bock and Lieberman'’s
procedure, the evaluation of the information matrix requires summing over 2" response patterns and not just
the patterns realized in the sample. This made the procedure unwieldy and applicable only to a small
number of items. Bock and Aitkin (1981) realized that by fixing certain terms which are functions of item
parameters in the likelihood equations at the current values of the parameter estimates, the procedure could
be simplified considerably and computational efficiency increased. They pointed out that the fixing of these
terms at current values of item parameter estimates could be justified in terms of the EM algorithm of
Dempster, Laird, and Rubin (1977). Bock and Aitkin (1981), however, noted that their algorithm is not strictly
the same as the general EM algorithm. For random variables in the models not belonging to the exponential
family, Dempster, Laird, and Rubin (1977) take the expected value of the logarithm of the likelihood function
while Bock and Aitkin take the expected value of the likelihood function. It should be pointed out that the
Bock and Aitkin application of the EM algorithm was not the first application of this algorithm to item
response models. Sanathanan and Blumenthal (1978) applied the EM algorithm to the Rasch model to
estimate the parameters 7 of g(8 | 7). Their procedure, however, is restricted to the Rasch model and does not
generalize to other item response models.

Rigdon and Tsutakawa (1983) and Tsutakawa (1984) applied an extended form of the EM algorithm
appropriate when the random variables in the models do not belong to the exponential family. They applied
the procedure developed by Dempster, Rubin, and Tsutakawa (1981) for estimating linear effects in mixed
models to obtain marginal maximum likelihood estimates of item parameters in the one- and two-parameter
item response models. They also provided simplified computational procedures for estimating the item
parameters, the ability parameters, and the variance of the ability distribution.

Bayesian procedures. While the marginal maximum likelihood procedures have theoretical advantages
over the joint maximum likelihood procedures, the estimates of the discrimination parameter a and the
chance-level parameter y pose considerable problems in that these parameters are often poorly estimated
and the estimates frequently drift off into inadmissible regions. Bayesian procedures show considerable
promise in terms of their ability to successfully address these issues.

Bayesian procedures for estimating item parameters were proposed by Swaminathan and Gifford, who,
in a series of papers (Swaminathan & Gifford, 1982, 1985, 1986), provided a hierarchical procedure for the
one-, two-, and three- parameter models based on the Lindley-Smith approach (Lindley & Smith, 1972). They
assumed that the item difficulty parameters and the ability parameters are exchangeable and obtained the
joint density of the item and ability parameters, marginalized with respect to the parameters of the ability
and item difficulty distributions, that is,

p(£,61U,8,8) = L(U18.8) | | p(8l7)p(Eln)p(niE) p(x|d)drdn, ®)

where U contains the responses of N test takers on n items. In particular, Swaminathan and Gifford assumed
that the parameters f; were independently and identically normally distributed with mean x and variance ¢;
the parameter ; had a chi-density with parameters v and ; and the parameter y had a beta density with
parameters p and 4. They also provided procedures for specifying the parameters of the prior distributions.
Swaminathan and Gifford obtained joint modal estimates of the posterior distribution using the Newton-Raphson
procedure to solve the modal equations. Their results were promising in that the drift of the parameter

estimates was arrested and the parameters were estimated more accurately than the joint ML procedure.
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A problem with the Bayesian approach of Swaminathan and Gifford was that it was not free from the
criticisms that faced joint estimation of the parameters. Another problem was that different forms of prior
distributions had to be specified for the various item parameters given the varying nature of the item
parameters. One solution to this problem is to specify a multi-parameter density for the priors such as a
multi-parameter beta distribution for the item parameters.

Mislevy (1986), Tsutakawa (1992), and Tsutakawa and Lin (1986) have provided a marginalized Bayes
modal estimation procedure by integrating out the ability parameters and using the EM algorithm to
estimate the parameters. Mislevy (1986) has suggested transforming the discrimination and chance-level
parameters, so that a multivariate normal prior for the item parameters can be specified. The specification of
multivariate normal priors for the item parameters removes the problem inherent in the separate prior
specifications proposed by Swaminathan and Gifford. However, Bayes modal estimates are not invariant
with respect to transformations and hence the Bayes modal estimates of the transformed parameters cannot
be transformed back to the original metric of the parameters. Nevertheless, the marginalized Bayes
procedure of Mislevy is an improvement over the joint procedure of Swaminathan and Gifford. The
marginalized Bayes procedure is currently implemented in the BILOG program (Mislevy & Bock, 1990) for
estimating item parameters in the dichotomous case, albeit with separate forms for the priors—a normal
prior for B, a log-normal prior for ¢, and a beta prior for y. The procedure suggested by Tsutakawa (1992)
and Tsutakawa and Lin (1986) for specifying priors is basically different from that suggested by
Swaminathan and Gifford and Mislevy. Tsutakawa and Lin (1986) suggested an ordered bivariate beta
distribution for the item response function at two ability levels, while Tsutakawa (1992) suggested the
ordered Dirichlet prior on the entire item response function. These approaches are promising, but no
extensive research has been done to date comparing this approach with other Bayesian approaches.

Design of the Study

The primary objective of this study was to investigate estimation of item parameters in small samples
and to determine the specification of prior information that will result in accurate estimation in small
samples. Given this, the factors that were investigated were sample size and type of prior information. These
two factors were examined with respect to the accuracy with which item parameters were estimated in the
one-, two-, and three-parameter item response models.

In order to investigate the accuracy with which item parameters are estimated, it is necessary to
compare the item parameter estimates with the “true” item parameter values. Typically, such an
investigation is carried out using simulated data since true values of item and ability parameters cannot be
known a priori. With simulated data, general conditions can be simulated. One drawback, however, is that
the item parameter values selected for the study may not conform to real testing situations. More importantly,
the distributions of ability and item parameters may conform too closely to the prior distributions when
Bayesian procedures are investigated, possibly limiting the generalizability of the results to real data.

Fortunately, the estimation procedures can be investigated with real data—in this study, Law School
Admission Test (LSAT) data from the Law School Admission Council (LSAC). Since the test was
administered to a large group of test takers, calibrating the items with the entire population of test takers
will yield true item parameters. With small samples randomly drawn from the population of test takers,
varying the sample size and estimating the item parameters will yield the relationship between sample size
and the accuracy with which item parameters are estimated. Moreover, the Bayesian procedures will yield
untainted information regarding the effects of prior specifications on the accuracy of estimation.

Parameter estimation in the three-item response models were investigated in this study. In order to
obtain true parameter values for the parameters in the one-, two-, and three-parameter models, each model
was fitted to the data for the LSAT Reading Comprehension section. Only the 21 items for which judges
provided ratings of difficulty were used. The estimates corresponding to the relevant parameters in each
model were taken as the true values.

Sample Size

One of the primary concerns in calibration is the minimal sample size that is needed to provide reasonably
accurate estimates of item parameters. Hence, one of the factors that was examined in the study was sample
size. Sample size was varied from a relatively small sample (n = 100) to a modest sample size (n = 500). Six
levels of sample size were used in this study: 100, 150, 200, 300, 400, and 500. These sample sizes were
chosen so that the effect of prior information could be studied carefully in a narrow range of sample
size values.

Q
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Prior Information

As has been demonstrated by several researchers, accurate estimation of item parameters in small
samples, particularly in the two- and three-parameter models, can only be accomplished through a Bayesian
approach. In order to implement a Bayesian procedure, prior information must be specified on item
parameters. Prior information can be specified in a variety of forms.

Previous research on Bayesian estimation employed priors that were, in some sense, arbitrary with
simulated data. While this approach provided information regarding the effects of priors that reflected the
distribution of true item parameters as well as priors that deviated from the true distribution of the item
parameters (Swaminathan & Gifford, 1982, 1985, 1986), they did not, and could not, reflect the information
practitioners had regarding the items. In order to study the effect of prior information on the accuracy of
estimation, which is based on the knowledge that test developers have regarding the items, a new procedure
was developed. This procedure involved extracting information from test developers in an objective manner
and transforming this information into a prior distribution which could then be interfaced with a Bayesian
procedure (see Hambleton, Sireci, Swaminathan, Xing, & Rizavi, 1999).

Prior information on item difficulty—ijudgmental information. The procedure for obtaining judgmental
information regarding item parameters from a panel of subject matter specialists and test developers
involved (i) training subject matter specialists and test developers as to the nature of item parameters; (if)
eliciting information, independently, from them regarding the difficulty levels of items; and (iii) using a
consensus building approach, allowing them, if they chose, to revise their initial estimates of difficulty level
of the items. The item difficulty information provided by the subject matter specialists and test developers
was in the form of the proportion of test takers who, according to the raters’ belief, would respond correctly
to the item. This information had to be translated to correspond to the Item Response Theory (IRT)
item-difficulty parameter, and a prior distribution specified to enable the information to be interfaced with
the Bayesian procedure.

Prior distribution for item difficulty parameter. The judgmental rating obtained regarding the difficulty level
of an item is the proportion of the test takers who respond correctly. The proportion is on the interval [0,1]
and must be mapped onto to the scale of IRT item difficulty parameter, that is, mapped onto the real line.

Let p denote the proportion of test takers who, according to a rater, respond correctly to an item. A
convenient transformation that carries the proportion-correct score onto the scale of the IRT item difficulty
parameter is

by = -0~ (p),

where @ is the normal ogive function, that is, p is the area under the normal curve to the left of the normal
deviate by. The negative sign is to ensure that an item with a high p-value (an easy item) will have a negative
value for the IRT item difficulty parameter.

In determining the normal deviate, the following approximation, attributed to L. Tucker (Bock & Jones,
1968), was used to facilitate computing:

_U(a,—azll’+a3u‘)
°" (l—a4U2+a5U") ’

b

where
U=p-Y%,a,=25101,a,=12.2043,a,= 11.2502, a, = 5.8742, and, a, = 7.9587.

The prior distribution for the item difficulty parameter was taken as the normal density function with
mean equal to the average of the raters’ transformed p-values, Three values were used as the standard
deviation (SD) of the distribution.

(1) A standard deviation of one, reflecting a "tight” prior.
(2) A standard deviation of two, reflecting a diffuse prior.

(3) The standard deviation corresponding to the standard deviation of the judges’ transformed
ratings.
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It should be pointed out that the standard deviation of the judges’ transformed ratings may not reflect
the standard deviation of the prior distribution. This is because the judges provided only what they thought
was the “difficulty” level of the item; they did not indicate how “confident” they were with the rating they
provided. For example, all the judges may provide the same value for p. This will result in a standard
deviation of zero for the prior distribution. This, however, does not reflect the confidence the raters had
about their ratings. Despite this, the standard deviation of the transformed p-values was taken as one of the
measures of standard deviation for the purpose of investigation.

In addition to the three prior distributions based on judgmental data described above, six other prior
distributions were considered. These are

1. normal prior with mean equal to the transformed true p-value and standard deviation, one;

2. normal prior with mean equal to the transformed true p-value and standard deviation, two;

3.  normal prior with mean equal to the transformed sample p-value and standard deviation, one;
4.  normal prior with mean zero and standard deviation, one; and

5.  normal prior with mean zero and standard deviation, two;

In addition, a condition using no prior information was included.

The prior specifications described under (1) and (2) are critical in that they establish the veracity of the
premise underlying the study. The premise underlying the study is that if subject matter specialists can
provide information regarding the difficulty level of the item, this information can be used as the prior
information for the difficulty parameters,. If the premise is true, then, clearly, the true p-value provides the
most accurate prior information for the difficulty parameters, and, hence, using this value as the mean of the
prior distribution should result in the most accurate estimation of the difficulty parameters. If the estimation
using the true p-value to set the prior produces poor results, then it can be argued that asking subject matter
specialists to provide information regarding the difficulty level of the item will not be useful.

It can be argued along the same lines that if information regarding item difficulty is useful, a less costly
method of obtaining this information is by computing the sample p-value rather than by assembling a panel
of experts. Hence, the accuracy of estimation obtained by using the sample p-value needs to be investigated.

One disadvantage of using the sample p-value is that in small samples, the p-value is relatively unstable.
An alternate approach is to ignore the information available in the sample and specify a prior that is sample
independent. Normal priors with mean zero (standard deviations of one and two) were used to compare the
estimation accuracies obtained with sample-based and sample-free priors.

The accuracy of estimation that may result from using a Bayesian approach must be compared with the
classical statistical approach where no priors are used. Hence, in the last condition, no priors were specified.

The subject matter specialists were not asked to provide information regarding either the discrimination
or the lower asymptote parameters. This was because no intuitive approach by which the experts could be
asked to provide information regarding these parameters was available. Hence, sample-free priors were
used for the discrimination and lower asymptote parameters.

The prior distribution for the discrimination parameter 4 in the two- and the three-parameter models
was taken as the log-normal distribution, that is, it was assumed that the natural logarithm of 2 was
distributed normally with mean zero and standard deviation one (Mislevy, 1986). The prior distribution for
the lower asymptote parameter, ¢, in the three-parameter model was taken as a beta distribution
(Swaminathan & Gifford, 1986) with a mean of 0.2 (corresponding to a test taker choosing one of the five
options in a multiple choice item randomly), and a standard deviation of .0095 (corresponding to weight of
20 observations attached to the mean).

The item parameters were estimated using the program BILOG ( Mislevy & Bock, 1990) Version 7.1.

Evaluation of the Accuracy of Estimation
In order to evaluate the accuracy with which the item parameters were estimated, the estimates were
compared to the true values based on a sample of 5,000 test takers. Since the evaluation of the accuracy

of estimation cannot be assessed without carrying out replications, 100 replications were carried out for
each condition.
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The accuracy with which item parameters are estimated can be ascertained by computing the
discrepancy between the estimate and the true value. Let 7, be the true value of an item parameter (a, b, orc)
for item i, and t,, its estimate in the kth replication. The Mean Square Error (MSE)), for item i for an item
parameter (4, b, or ¢) is defined as

2
i(tu -7:)

MSE, =2
R
Gifford and Swaminathan (1990) have shown that when replications are carried out, the Mean Square
Error defined above can be decomposed into Squared Bias and Variance, defined as

Squared Bias; = (f,. —1)2
and

. k
Variance;, = ———— .

£y
k

Thus, MSE = Squared Bias + Variance. This decomposition provides an explanation of the value
obtained for the MSE. A large MSE could result from either bias in the estimation or a large sampling
fluctuation. For example, Bayesian procedures generally result in estimates which have a larger bias and
smaller sampling variance than maximum likelihood estimates. These quantities can be averaged over items
to provide summary indices. For descriptive purposes, the square roots of these quantities averaged over
items are reported: root mean square error, ( RMSE), Bias, and standard error (SE).

Since there were six sample sizes, ten priors (including no prior), and three item response models, there
were 180 conditions to be replicated. In all, 18,000 computer runs were executed. In order to extract the
information from the BILOG output and to provide summary information such as RMSE, Bias, and SE, a
computer program was written to interface with BILOG.

Results

The results of the study are presented for the parameters of the one-, two-, and the three-parameter
models. Graphical displays are also provided for RMSE and Bias for the estimation of parameters in
these models.

Results for the One-parameter Model

Table 1 contains the average root mean square values for the difficulty parameter for the ten prior
specifications and the six sample sizes. For all sample sizes, the Bayesian procedure resulted in improved
estimation when compared to the “no prior” or marginal maximum likelihood (MML) procedure. The only
exception to this trend resulted with the prior based on the judges’ ratings, which used the standard
deviation of the transformed ratings. This is not a surprising result, given the reasons provided earlier. As
expected, the prior based on the true p-value yielded the most accurate estimates. The priors based on
judges’ ratings with sample independent standard deviations for the priors yielded results identical to the

priors based on the true p-values.
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TABLE 1

Average root mean square error of item difficulty parameter estimates for the one-parameter model under various prior
distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 03932 03222 02800 02354 01995  0.1793
Normal priors:
Mean SD
Transformed “true” p-value 2 0.3900 03204 02788 02347 01990  0.1790
Transformed “true” p-value 1 0.3807 03151 02753 02327 01977  0.1781
Mean transformed judges’ ratings 2 03911 03211 02793 02323 01992  0.1792
Mean transformed judges’ ratings 1 03860 03185 02776 02337 01986  0.1788
SD of
transformed
Mean transformed judges’ ratings ratings 04930 04225 03762 02311 02656 02425
Transformed sample p-value 2 03928 03220 02799 02353 01994  0.1793
Transformed sample p-value 1 03918  0.3214 02795  0.2351 01992  0.1792
0 2 03928 03220 02799 02353 01994  0.1793
0 1 03919 03150 02795 02351 01993 01792

In order of accuracy of estimation, the procedures are prior based on true value with SD 1.0, prior based
on judges transformed p-values with SD 1.0, prior based on true value with SD 2.0, prior based on judges
transformed p-values with SD 2.0, prior based on sample p-values with SD 1.0 and prior based on the
normal distribution with mean zero and SD 1, prior based on sample p-values with SD 2.0 and prior based
on the normal distribution with mean zero and SD 2, no prior, and finally, prior based on judges’
transformed p-values with the standard deviation based on the observed standard deviation. This trend was
evident at all sample sizes. However, all the procedures, with the exception of the procedure based on the
observed judges’ standard deviation, produced indistinguishable results when the sample sizes were 400
and 500. These results are displayed graphically in Figure 1.
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FIGURE 1. Effect of prior on difficulty on estimation of difficulty under the
one-parameter model as a function of sample size.

The results corresponding to bias in estimation are provided in Table 2. Surprisingly, most of the
Bayesian procedures showed less bias than the estimates based on no prior on difficulty. The exceptions to
this were those judges’ ratings with a tight prior, that is, SD of 1.0. The prior based on the SD of the judges’
ratings showed the most bias. Given that this procedure produces unacceptable results in all situations, this
procedure will be henceforth omitted from the discussions of results. As sample sizes increase, the
differences among the procedures diminish. A graphic display of the bias results for the one-parameter
model is provided in Figure 1.
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TABLE 2

Average bias of item difficulty parameter estimates for the one-parameter model under various prior distributions
on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 0.0882  0.0643  0.0459 0.0356 00286  0.0254
Normal priors:
Mean SD
Transformed “true” p-value 2 0.0869 00636  0.0456  0.0355 0.0285  0.0253
Transformed “true” p-value 1 0.0832 00617 00448  0.0351 0.0283 0.0251
Mean transformed judges’ ratings 2 0.0875 0.0643 0.0462 0.0352 0.0287 0.0256
Mean transformed judges’ ratings 1 0.0895 00668  0.0488 00353 00297  0.0269
SD of
transformed
Mean transformed judges’ ratings ratings 0.4068 03413 02983  0.2350 0.1961 0.1793
Transformed sample p-value 2 0.0880 0.0639 0.0459 0.0357 0.0285 0.0254
Transformed sample p-value 1 0.0876 00641  0.0460 00360 00283  0.0255
0 2 00880 0.0642  0.0459 00356 00287  0.0254
0 1 00878 00640 00460 00356 00287  0.0254

In general, the incorporation of priors resulted in very modest improvements in the estimation of the
difficulty parameter in the one-parameter model. Ignoring the prior based on true p-values, the judges’ ratings
yielded the most accurate estimates. Since the trend lines across samples do not cross, the improvement in
estimation obtained using prior information cannot be converted to savings in terms of sample size.

Results for the Two-parameter Model

The results pertaining to the accuracy of estimation for the difficulty parameter in the two-parameter
model are given in Table 3. The results follow the pattern that was exhibited for the one-parameter model.
The procedures, in order of their accuracy, from most accurate to least accurate, as determined by RMSE, are
prior based on true p-value with SD 1.0, prior based on judges’ transformed p-values with SD 1.0, prior
based on true p-value with SD 2.0, prior based on judges’ transformed p-values with SD 2.0, prior based on
sample p-value with SD 1.0 and prior based on the normal distribution with mean zero and SD 1, prior
based on sample p-value with SD 2.0 and prior based on the normal distribution with mean zero and SD 2,
no prior, and finally, prior based on judges’ transformed p-values with the observed standard deviation. This
trend persisted across all sample sizes, with the differences in the RMSE across procedures diminishing with
increasing sample size. It is clear that the difficulty parameter is less well estimated in the two-parameter
model than in the one-parameter model. This is to be expected as the introduction of more parameters in the
model decreases the accuracy with which the parameters are estimated in small samples. Figure 2 provides a
visual display of these results. (Note: The procedure with the observed standard deviation for the judges’
ratings is omitted since inclusion of this distorts the scale.)
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TABLE 3
Average root mean square error of item difficulty parameter estimates for the two-parameter model under various prior
distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
- No prior 04119 03445 03072 02565 02249  0.1998

Normal priors:
Mean sD
Transformed “true” p-value 2 04093 03426 03058 02557 02243  0.1993
Transformed “true” p-value 1 04020 03374 03017 02535 02226  0.1978
Mean transformed judges’ ratings 2 04101 03431 03061 02558 02244  0.1994
Mean transformed judges’ ratings 1 04051 03395 03031 02539 02229  0.1983

SD of
transformed

Mean transformed judges’ ratings ratings 04172 03551 03194 02691 02352 02156
Transformed sample p-value 2 04111 03437 03065 02561 02246  0.1995
Transformed sample p-value 1 04091 03416 03046 02552 02237  0.1987
0 2 04110 03436 03064 02561 02246  0.1995
0 1 04089 03413 03042 02549 02236  0.1986
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FIGURE 2. Effect of prior on difficulty on estimation of difficulty under the
two-parameter model as a function of sample size.
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Table 4 contains the results pertaining to bias in the estimation of the difficulty parameter. Comparison
of priors with standard deviation of one and two reveal the predictable result: tighter priors result in more
bias than diffuse priors; the only exception being the procedure that was based on true p-value. In this case, a
tighter prior yielded less biased estimates compared with the corresponding diffuse prior. Surprisingly, the
procedure with no prior on the difficulty parameter did not yield the least bias. Although bias is present, the
differences among the procedures are negligible, a positive result where bias is concerned. Figure 2 provides
a visual display of these findings. (Note: The procedure with the observed standard deviation for the judges’
ratings is omitted.)

TABLE 4
Average bias of item difficulty parameter estimates for the two-parameter model under various prior distributions
on difﬁ'cultu
Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 01041 00783 00650 00563  0.0430  0.0314
Normal priors:
Mean sD
Transformed “true” p-value 2 0.1037  0.0782  0.0651 0.0565  0.0432 00317
Transformed “true” p-value 1 01026 00783 00656 00572  0.0441  0.0323
Mean transformed judges’ ratings 2 01037 00785 00652 00562  0.0430  0.0316
Mean transformed judges’ ratings 1 01039 00797 00663  0.0561  0.0435  0.0324
SD of
transformed
Mean transformed judges’ ratings ratings 02699 02257 02002 01604 01342  0.1258
Transformed sample p-value 2 0.1041 00785 00650  0.0566 00432  0.0317
Transformed sample p-value 1 0.1044 00791 00659 00573  0.0441  0.0324
0 2 0.1046 00788  0.0654  0.0567  0.0434  0.0318
0 1 01062 0.0806  0.0668  0.0579  0.0449  0.0330

Table 5 contains the RMSE values for the estimation of the discrimination parameter. It should be noted
that different priors were placed only on the difficulty parameter. The same prior distribution was imposed
on the discrimination parameter in all the procedures. Given this, a comparison of the no prior condition
with the prior conditions reveals that placing a prior on the difficulty had a positive effect on the estimation
of the discrimination parameter. Tighter priors on the difficulty parameter, as determined by the standard
deviation of the prior distribution, yielded more accurate estimation. The only exceptional result that sets the
estimation of the difficulty parameter apart from the estimation of the discrimination parameter is the prior
distribution with the observed standard deviation of the judges’ ratings. This prior distribution resulted in
the most accurate estimation of the discrimination parameter. Apart from this, the smallest RMSE was
observed for the standard normal prior, followed by the prior based on judges’ ratings with a standard
deviation of one.

TABLE 5
Average root mean square error of item discrimination parameter estimates for the two-parameter model under various
prior distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 0.1135 0.0918 0.0791 0.0685 0.0587 0.0554
Normal priors:
Mean SD
Transformed “true” p-value 2 0.1117 0.0906 0.0783 0.0680 0.0583 0.0551
Transformed “true” p-value 1 0.1067 0.0873 0.0762 0.0665 0.0572 0.0542
Mean transformed judges’ ratings 2 0.1114 0.0903 0.0781 0.0678 0.0582 0.0550
Mean transformed judges’ ratings 1 0.1055 0.0863 0.0757 0.0661 0.0569 0.0539
SD of
transformed
Mean transformed judges’ ratings ~ ratings 0.0969 0.0865 0.0825 0.0720 0.0638 0.0598
Transformed sample p-value 2 0.1119 0.0907 0.0784 0.0680 0.0583 0.0551
Transformed sample p-value 1 0.1078 0.0877 0.0765 0.0667 0.0572 0.0542
0 2 0.1103 0.0897 0.0778 0.0676 0.0580 0.0549
0 1 0.1021 0.0843 0.0745 0.0654 0.0563 0.0535
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These results with respect to RMSE are graphically displayed in Figure 3. An examination of the figure
. reveals that (using linear interpolation), without prior information, a sample size of 125 is needed to achieve
the same degree of accuracy as that obtained with a prior based on judges’ ratings with a standard deviation
of one. This translates into a saving of 25% in terms of sample size, at a sample size value of 150. It should be
noted that the savings, in terms of sample size for the difficulty parameter, is considerably less.
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FIGURE 3. Effect of prior on difficulty on estimation of discrimination under
the two-parameter model as a function of sample size.

An examination of Table 6 reveals that the prior based on judges’ ratings with a standard deviation of
one produced the least biased estimates. The normal priors with mean zero and standard deviations of one
and two and sample p-value based priors resulted in the most biased estimates. The results in Table 6 and
Figure 2 show that as sample size increases, the bias decreases rapidly. The prior based on the judges’
observed standard deviation produced estimates with the largest bias while the standard normal prior
resulted in the smallest bias.
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TABLE 6
Average bias of item discrimination parameter estimates for the two-parameter model under various prior
distributions on difficulty

Sample Size

Prior Distribution 100 150 200 300 400 500
No prior 00564 0.0424 00321 00256 00194 00177
Normal priors:
Mean sD
Transformed “true” p-value 2 0.0542 00408 00310 00248 00187 0.0171
Transformed “true” p-value 1 0.0482 00364 00282 00228 00166  0.0154
Mean transformed judges’ ratings 2 00536 00403 00307 00246 0.0185  0.0169
Mean transformed judges’ ratings 1 00460 00347 0.0273 0.0221 00159  0.0149
SD of
transformed
Mean transformed judges’ ratings ratings 00634 0.0604 00598 00502 00437  0.03%
Transformed sample p-value 2 00978 00409 00311 00249 00187  0.0171
Transformed sample p-value 1 0.0959 00368 00284 00229 00166 0.0155
0 2 0.0971 0.0395 00302 00243 00181  0.0167
0 1 00930 00321 00260 00211 00147 0.0140

Results for the Three-Parameter Model

The entries in Table 7 refer to the accuracy of estimation of the difficulty parameter in the
three-parameter model. The RMSE values are larger than in the one- and the two-parameter models
indicating that the difficulty parameter is less well estimated in the three-parameter model than in the other
two models when the sample size is small (500 or less). A comparison of the procedures reveals that the prior
based on the judges’ ratings with a standard deviation of one produced the most accurate estimates across
all sample sizes. The prior based on the true p-value produced the second most accurate estimates. In general, a
tighter prior produced more accurate estimates than the corresponding diffuse prior. This trend was evident
across all sample sizes, with the RMSE decreasing steadily as the sample size increases. A graphical display
of the accuracy of estimation is provided in Figure 4. A comparison of the RMSE with the prior based on
judges’ ratings with the estimates obtained with no prior reveals that a sample size of 150 with no prior
yields the same level of accuracy as that obtained with a sample size of 100 when using a prior based on the
judges’ ratings a saving of 50% in terms of sample size. This saving decreases as the sample increases.

TABLE 7
Average root mean square error of item difficulty parameter estimates for the three-parameter model under various
prior distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 05182 0.4745 0.4309 03771 03455 03399
Normal priors
Mean SD
Transformed “true” p-value 2 04985 0.4609 0.4188 03724 03422 03357
Transformed “true” p-value 1 04775 04421 04037 03652 03363 03278
Mean transformed judges’ ratings 2 04962 04583 04166 03702 03404 03335
Mean transformed judges’ ratings 1 04735 04371 03985 03595 03315 03219
SD of
transformed
Mean transformed judges’ ratings ratings 05329 05051 04859 04645 04502 04398
Transformed sample p-value 2 05018 0.4632 04207 03737 03431 03363
Transformed sample p-value 1 04894 04507 0.4104 03698 03397 03302
0 2 05023 04632 04218 03744 03437 03372
0 1 04920 04526 04122 03713 03410 03323
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FIGURE 4. Effect of prior on difficulty on estimation of difficulty under the
three-parameter model as a function of sample size.

The bias in the estimation of the difficulty parameter is presented in Table 8. The prior based on judges’
ratings yielded the least biased estimates. Tighter prior yielded less biased estimates than the corresponding
diffuse prior in all cases. Surprisingly, estimates with no prior specification were more biased than their
counterparts based on prior information. The bias in the estimates, however, does not seem to decrease as
rapidly as with the one- and the two-parameter models as sample size increases.
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TABLE 8

Average bias of item difficulty parameter estimates for the three-parameter model under various prior distributions
on difficulty

Sample Size

Prior Distribution 100 150 200 300 400 500
No prior 0.2705 0.2677 0.2399 0.2254 0.2061 0.2074
Normal priors
Mean SD
Transformed “true” p-value 2 0.2670 0.2702 0.2437 0.2292 0.2095 0.2094
Transformed “true” p-value 1 0.2734 0.2767 0.2566 0.2421 0.2214 0.2191
Mean transformed judges’ ratings 2 0.2633 0.2668 0.2407 0.2260 0.2068 0.2063
Mean transformed judges’ ratings 1 0.2620 0.2671 0.2481 0.2333 0.2145 0.2109
SD of
transformed
Mean transformed judges’ ratings ratings 0.4589 0.4448 0.4336 0.4234 0.4129 0.4056
Transformed sample p-value 2 0.2671 0.2706 0.2440 0.2294 0.2097 0.2095
Transformed sample p-value 1 0.2735 0.2776 0.2573 0.2428 0.2218 0.2192
0 2 0.2671 0.2701 0.2436 0.2289 0.2090 0.2087
0 1 0.2741 0.2773 0.2560 0.2404 0.2192 0.2161

With respect to the estimation of the discrimination parameter, Table 9 reveals that for a sample size of
100, the standard normal prior produced the most accurate estimates; the prior based on judges’ ratings with
a standard deviation of one produced a similar RMSE. With a sample size of 150 and larger, the prior based
on judges’ ratings with a standard deviation of one produced more accurate estimates. As with the difficulty
parameter, a tighter prior produced the most accurate estimates than the corresponding diffuse prior. A
closer examination of Table 9 reveals that using a prior based on judges’ ratings with a standard deviation of
one results in more than 100% savings in terms of sample size when no prior is used; that is, a sample size of
100 with prior yields the same degree of accuracy as that obtained with a sample size of 200 when no prior is
used. Figure 5 provides a graphical display of the results described above.

TABLE 9

Average root mean square error of item discrimination parameter estimates for the three-parameter model under various
prior distributions on difficulty

Sample Size

Prior Distribution 100 150 200 300 400 500
No prior 0.2275 0.1979 0.1724 0.1580 0.1472 0.1337
Normal priors
Mean sD
Transformed “true” p-value 2 0.1958 0.1778 0.1568 0.1477 0.1385 0.1273
Transformed “true” p-value 1 0.1726 0.1577 0.1451 0.1360 0.1283 0.1202
Mean transformed judges’ ratings 2 0.1921 0.1743 0.1543 0.1455 0.1373 0.1260
Mean transformed judges’ ratings 1 0.1700 0.1552 0.1437 0.1339 0.1271 0.1198
SD of
transformed
Mean transformed judges’ ratings ~ ratings 0.2132 0.2101 0.2113 0.2093 0.2081 0.2101
Transformed sample p-value 2 0.1968 0.1785 0.1572 0.1480 0.1387 0.1274
Transformed sample p-value 1 0.1748 0.1591 0.1461 0.1368 0.1297 0.1207
0 2 0.1906 0.1735 0.1549 0.1453 0.1367 0.1258
0 1 0.1691 0.1567 0.1461 0.1366 0.1300 0.1222
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FIGURE 5. Effect of prior on difficulty on estimation of discrimination under
the three-parameter model as a function of sample size.

Using a prior based on judges’ ratings with a standard deviation of one yielded the least biased
estimates of the discrimination parameter (Table 10). For a sample size of 100, the estimation procedure that
was not based on prior information resulted in estimates that were 50% more biased than those based on
priors obtained using judges’ ratings. At larger sample values, the procedures did not differ from each other
with respect to bias.
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TABLE 10

Average bias of item discrimination parameter estimates for the three-parameter model under various prior
distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 0.1510  0.1256  0.1026  0.0915  0.0801  0.0666
Normal priors
Mean sD
Transformed “true” p-value 2 01239 01074 00898 00829 00722  0.0610
Transformed “true” p-value 1 0.1060 0.0972 0.0878 0.0811 0.0718 0.0636
Mean transformed judges’ ratings 2 01200 01042 00876 00809 00701  0.0595
Mean transformed judges’ ratings 1 0.1055 00981  0.0900 00828 00736  0.0662
SD of
transformed
Mean transformed judges’ ratings ratings 01917 01937 0.1958  0.1986 0.1983  0.2018
Transformed sample p-value 2 0.1246 0.1079 0.0901 0.0832 0.0723 0.0612
Transformed sample p-value 1 01068 00978 00883 00816 00718  0.0642
0 2 01189 01037 0.0874 00809 00704  0.0598
0 1 01097 01035 00961 00880 00794  0.0727

The most dramatic improvements in estimation were observed with the estimation of the ¢c-parameter
(Table 11). The prior based on judges’ ratings with a standard deviation of one produced the most accurate
estimates. The estimates in order from most accurate to least accurate are prior based on judges transformed
p-values with SD 1.0, prior based on sample p-value with SD 1.0, prior based on true p-value with SD 1.0,
prior based on the normal distribution with mean zero and SD 1, the priors based on true p-value with SD
2.0, on judges’ transformed p-values with SD 2.0, on sample p-values with SD 2.0, and on the normal
distribution with mean zero and SD 2 (all producing equally accurate estimates). The estimate based on no
prior resulted in the least accurate estimates (with the exception of the estimate based on judges’ ratings
with the observed standard deviation).

TABLE 11

Average root mean square error of item lower asymptote parameter estimates for the three-parameter model under
various prior distributions on difficulty

Sample Size
Prior Distribution 100 150 200 300 400 500
No prior 00707 00697 0.0678 00664  0.0645  0.0637
Normal priors
Mean sD
Transformed “true” p-value 2 00673 00670 00651 00643 00625  0.0619
Transformed “true” p-value 1 00644 00637 00622 00615 0.0597  0.0590
Mean transformed judges’ ratings 2 00664 00660 00642 00635 00618  0.0612
Mean transformed judges’ ratings 1 00625 00618 00603 00597 00582  0.0574
SD of
transformed
Mean transformed judges’ ratings ratings 00746 00754 00771 00813 00839 00854
Transformed sample p-value 2 00672 0.0670 00651 00643 00625  0.0619
Transformed sample p-value 1 00641 00635 00620 0.0614 00597  0.0589
0 2 00672 00669 00653 00645 00626  0.0621
0 1 00651 00646 0.0633 00625 00607  0.0604

The accuracy results for the c-parameter are graphically displayed in Figure 6. The figure demonstrates
that the procedure based on judges’ ratings with a standard deviation of one as prior yielded more accurate
estimates of the c-parameter with a sample of 100 than the estimate based on a sample of 500 without prior
information specified, a 500% savings in terms of sample size!
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FIGURE 6. Effect of prior on difficulty on estimation of lower asymptote
under the three-parameter model as a function of sample size.

With respect to bias (Table 12), the procedures which incorporated prior information yielded less
biased estimates than the procedure that did not use prior information on the difficulty parameter. The size
of the bias compared to the RMSE values indicates that the inaccuracy in estimation is primarily due to bias
in estimation.
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TABLE 12

Average bias of item lower asymptote parameter estimates for the three-parameter model under various prior
distributions on difficulty

Sample Size

Prior Distribution 100 150 200 300 400 500
Normal priors
Transformed “true” p-value 2 00605 00591 00560 00538  0.0510  0.0494
Transformed “true” p-value 1 00594 00578 00554 00531 00502  0.0485
Mean transformed judges’ ratings 2 00597 00583 00552 00530  0.0503  0.0487
Mean transformed judges’ ratings 1 00577 00560 00537 00515 00488  0.0469
SD of
transformed
Mean transformed judges’ ratings ratings 00682 00697 00722 00773 00801  0.0821
Transformed sample p-value 2 00605 00591 00560 00538 00510  0.0495
Transformed sample p-value 1 00594 00578 00554 00532 00503  0.0485
0 2 0.0604 00591 0.0561 0.0538 00510  0.0496
0 1 00602 00587 00565 00542 00512  0.0498

Conclusions

The purpose of this study was to investigate if estimation of item parameters in item response models
can be improved by incorporating prior information, especially in the form of judgements regarding the
difficulty level of the items provided by content specialists and test developers. It was anticipated that
incorporation of such information will improve estimation in small samples.

The results provided above indicate that the incorporation of ratings provided by subject matter
specialists/test developers regarding item difficulty in the form of a prior distribution produced estimates
that were more accurate than that obtained without using such information. The improvement was observed
for all item response models. The improvement observed for the estimation of the item difficulty parameter
in the one-parameter model was modest; that is, although improvements were observed, the gains may not
warrant the cost incurred in obtaining judgmental information.

The improvement observed in the estimation of item difficulty and discrimination parameters in the
two-parameter model through incorporating judgmental information was somewhat greater than that
observed in the one-parameter model. While there was only a modest improvement in the estimation of the
difficulty parameter in the two-parameter model, the improvement in the estimation of the discrimination
parameter was more substantial. Using prior information in the form of judges’ ratings, the estimates
obtained with a sample size of 100 yielded the same level of accuracy as that obtained with a sample size of
150 when no prior information was used. This translates into a 50% improvement in the estimation of the
discrimination parameter in the two-parameter model.

The improvements obtained with the three-parameter model were clearly substantial. In the estimation
of the difficulty parameter, using prior information in the form of judgmental ratings yielded an
improvement of 50% over not using prior information when a sample size of 100 was used. In the estimation
of the discrimination parameter, an improvement of 100% was observed using judgmental ratings for a
sample size of 100; that is, the accuracy obtained with the use of judgmental ratings for a sample size of 100
was comparable to the accuracy level obtained with a sample size of 200 when no prior information was
used. The result was most dramatic with the estimation of the c-parameter. The accuracy obtained with a
sample size of 100 with judgmental ratings was superior to that obtained with a sample size of 500 when no
prior information was used. This corresponds to a 500% cost savings in terms of sample size.

The procedure used in this study used judgmental information about item difficulty only. If procedures
can be developed for obtaining judgmental information about the discrimination and lower asymptote
parameters, considerable improvement in the estimation of item parameters may result. A judgmental
procedure for eliciting such information from subject matter specialists and test developers is currently being
investigated (see Hambleton, et al., 1999).

This study has demonstrated that in the three-parameter model, using judgmental information about the
difficulty parameter produces dramatic improvements in the estimation of the discrimination and lower
asymptote parameters. This improvement may be sufficient to warrant the use of judgmental information in
item calibration. However, obtaining judgmental information is time-consuming and costly. The question
that arises naturally is whether using some other form of prior information can result in savings and lead to
estimates equally accurate as those obtained by using judgmental information. Several other forms of prior
information were used in this study to examine this issue. While using judgmental information produced the
most accurate estimates, difference between those estimates obtained using judgmental information and

@ er forms of prior information, although not substantial, nevertheless exist. In order to determine if
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differences that result from using different forms of prior information are substantial, the effects of using
various forms of prior information for item calibration on the routing procedure in an adaptive testing
scheme and the estimation of proficiency need to be investigated. Only through such a study can the
improvements offered by incorporating judgmental data as demonstrated in this study and other forms of
prior information be fully understood.

References

Anderson, T. W. (1959). Some scaling models and estimation procedures in the latent class model. In O.
Grenander (Ed.), Probability and statistics, The Harold Cramfer Volume. New York: Wiley.

Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the
Royal Statistical Society, Series B, 32, 283-301.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord
and M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 397-472). Reading, MA:
Addison-Wesley.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application
of an EM algorithm. Psychometrika, 46, 443-459.

Bock, R. D., & Jones, L. V. (1968). The measurement and prediction of judgment and choice. San Francisco:
Holden-Day.

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items.
Psychometrika, 35, 179-197.

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment.
Applied Psychological Measurement, 6(4), 431-444.

Dempster, A. P, Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.

Dempster, A. P, Rubin, D. B,, & Tsutakawa, R. K. (1981). Estimation in covariance components models.
Journal of the American Statistical Association, 76, 341-353.

Finney, D. J. (1952). Probit analysis: A statistical treatment of the sigmoid response curve. Cambridge, England:
Cambridge University Press.

Gifford, J. A., & Swaminathan, H. (1990). Accuracy, bias, and effect of priors on the Bayesian estimators of
parameters in item response models. Applied Psychological Measurement, 14(1), 33-43.

Haberman, S. J. (1977). Maximum likelihood estimates in exponential response models. The Annals of
Statistics, 5, 815-841.

Hambleton, R. K., Sireci, S. G., Swaminathan, H., Xing, D., & Rizavi, S. (1999). Anchor-based methods for
judgmentally estimating item difficulty parameters (Laboratory of Psychometric and Evaluative Research
Report No. 310). Amherst, MA: University of Massachusetts, School of Education.

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston, MA:
Kluwer-Nijhoff.

Hambleton, R. K., Swaminathan, H., & Rogers, J. H. (1991). Fundamentals of item response theory. Newbury
Park, CA: Sage Publications.

Lindley, D. V., & Smith, A.F. M. (1972). Bayes estimates for the linear model (with discussion). Journal of the
Royal Statistical Society, Series B, 34, 1-41.

Lord, F. M. (1953). An application of confidence intervals and of maximum likelihood to the estimation of an
examinee’s ability. Psychometrika, 18, 57-75.

R'7



24

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177-195.

Mislevy, R. J., & Bock, R. D. (1990). BILOG 3: Item analysis and test scoring with binary logistic models [computer
program]. Mooresville, IN: Scientific Software.

Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations.
Econometrika, 16, 1-32.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for
Educational Research.

Rigdon, S.E., & Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48,
567-574.

Sanathanan, L., & Blumenthal, S. (1978). The logistic model and estimation of latent structure. Journal of the
American Statistical Association, 73, 794-799,

Swaminathan, H., & Gifford, J. A. (1982). Bayesian estimation in the Rasch model. Journal of Educational
Statistics, 7, 175-191.

Swaminathan, H., & Gifford, J. A. (1983). Estimation of parameters in the three-parameter latent trait model. In D.
Weiss (Ed.), New horizons in testing (pp- 13-30). New York: Academic Press.

Swaminathan, H., & Gifford, J. A. (1985). Bayesian estimation in the two-parameter logistic model.
Psychometrika, 50, 175-191.

Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model.
Psychometrika, 51, 581-601.

Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81, 82-86.

Tsutakawa, R. K. (1984). Estimation of two-parameter logistic item response curves. Journal of Educational
Statistics, 9, 263-276.

Tsutakawa, R. K. (1992). Prior distributions for item response curves. British Journal of Mathematical and
Statistical Psychology, 45, 51-74.

Tsutakawa, R. K., & Lin, H. Y. (1986). Bayesian estimation of item response curves. Psychometrika, 51,
251-267.

o
o




U.S. Department of Education ' E ) IC
Office of Educational Research and Improvement (OERI) ,
National Library of Education (NLE) oo ekt
Educational Resources Information Center (ERIC)

NOTICE

| Reproduct'io'n Basis

. x ThlS document is covered by a 51gned "Reproductlon Release (Blanket)"

form (on file within the ERIC system), encompassing all or classes of
‘documents from its source organization and, therefore -does not require a
"Spec1ﬁc Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

"FF 089 (1/2003)




