DOCUMENT RESUME

ED 480 388	CE 085 380
AUTHOR	Kershaw, Isaac; Mazak, Sara A.; Spence, Janet G.
TITLE	Environmental/Natural Resources Technologies. State Competency Profile.
INSTITUTION	Ohio State Univ., Columbus. Tech Prep Curriculum Services.
SPONS AGENCY	Ohio Board of Regents, Columbus.; Ohio State Dept. of Education, Columbus.
PUB DATE	2000-00-00
NOTE	407p.
AVAILABLE FROM	For full text: http://www.ohtpcs.org/cp/environmental.asp.
PUB TYPE	Guides - Non-Classroom (055)
EDRS PRICE	EDRS Price MF01/PC17 Plus Postage.
DESCRIPTORS	Academic Standards; Administration; Basic Skills; College
	School Cooperation; *Competency Based Education; Data
	Processing; Education Work Relationship; *Employment
	Qualifications; *Environmental Education; Job Skills;
	*Natural Resources; Outcome Based Education; Pollution;
	Postsecondary Education; Secondary Education; State
	Standards; Statistical Analysis; *Tech Prep; *Technical Occupations; Wastes
IDENTIFIERS	Geographic Information Systems; *Ohio

ABSTRACT

This document, which lists the environmental and natural resources technology competencies identified by representatives from businesses and industries as well as secondary and postsecondary educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through postsecondary associate degree programs for employment in these eight occupational clusters: pollution prevention and control, environmental sampling and analysis, health and safety, environmental compliance assurance, hazardous materials handling, water environment management, fishery and wildlife habitat management, and geographic information management systems. The competencies, which are separated into essential competencies needed to ensure a minimal level of employability and recommended competencies, are organized by instructional units and include suggestions as to when students should be introduced to, reinforced, and proficient at them. The Tech Prep Competency Profile(TCP) matrix includes a list of 39 technical competencies that are essential or recommended for employment in the occupational clusters listed above. Some of the common competencies are as follows: technical documentation; statistical analysis; management and supervision; environmental science; environmental assessment; soil science; hydrology; chemical technology; equipment operation and maintenance; surveying and mapping; waste management; hazardous materials management; database administration; and communication. The document includes a profile review of panel participants and occupational area definitions. (MO)

Environmental/Natural Resources Technologies

State Competency Profile

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

BEST COPY AVAILABLE

1

6085350

Tech Prep Curriculum Services In conjunction with The Ohio Department of Education And The Ohio Board of Regents U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

CENIEN (ENIC) This document has been reproduced as received from the person or organization originating it.

Minor changes have been made to improve reproduction quality.

 Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

INTRODUCTION

The Ohio Environmental/Natural Resources Technology Competency Profile was developed under the auspices of the Joint Council of the Ohio Board of Regents and the State Board of Education. It provides the framework for a broad-based educational response to Ohio's need for a skilled Environmental/Natural Resources workforce.

The profile includes a comprehensive set of Environmental/Natural Resources competencies that are grounded in core academic subject areas and built around eight occupational clusters: Pollution Prevention and Control, Environmental Sampling and Analysis, Health and Safety, Environmental Compliance Assurance, Hazardous Materials Handling, Water Environment Management, Fishery and Wildlife Habitat Management, and Geographic Information Management Systems. Generated using the Ohio Tech Prep model of curriculum development, the profile reflects the job opportunities and skills required for Ohio's Environmental/Natural Resources technology workers.

Ohio business/industry representatives and educators worked together to create the Environmental/ Natural Resources Technology Competency Profile. Representatives from a broad cross-section of Ohio businesses and industries played a critical role in this effort. Business/industry representatives defined the vision and scope of Environmental/Natural Resources technology. They also identified the essential and recommended skills for current and future Environmental/Natural Resources technology professionals. Secondary and post-secondary educators representing schools and colleges throughout Ohio identified when in the educational process and to what depth those skills identified by business should be addressed.

The Ohio Environmental/Natural Resources Technology Profile will be used as the basis for the development of an integrated delivery system that provides opportunities for new and challenging Environmental/Natural Resources technology programs and courses in Ohio's secondary schools, colleges, and universities. Career-Technical Education, Tech Prep, and adult education will be enhanced and expanded through the use of the Environmental/Natural Resources Profile.

This profile is available on the Internet at: www.ohtpcs.org. At this location, users can download copies of the entire profile or conduct searches on a number of key variables. Additional information on academic connections and certification crosswalks is available at this site.

For additional information contact:

Tech Prep Curriculum Services The Ohio State University 1900 Kenny Road Columbus, Ohio 43210 (614) 247-7426 spence.16@osu.edu

ACKNOWLEDGEMENTS

The Ohio Environmental/Natural Resources Technology Competency Profile is a project of the Joint Council of the Ohio Board of Regents and the State Board of Education. In addition to the business/ industry representatives and educators listed on the following pages, a number of individuals contributed their time and expertise to this initiative. Special thanks is due to Jonathan L. Tafel, Associate Vice-Chancellor, Ohio Board of Regents; Joanna Kister, Director, Career-Technical and Adult Education, Ohio Department of Education; Julie Novel, Supervisor, Tech Prep, Career-Technical and Adult Education, Ohio Department of Education; and Richard Arndt, Director, K-16 Initiatives, Ohio Board of Regents. Their vision, support, and encouragement made this project possible.

Thanks are also due to the following:

Project Managers:	 Isaac Kershaw, Assistant Director, Career-Technical and Adult Education, Environmental and Agricultural Education, Ohio Department of Education Sara A. Mazak, Senior Program Associate, Tech Prep Curriculum Services, The Ohio State University Janet G. Spence, Senior Program Associate, Tech Prep Curriculum Services, The Ohio State University
Draft Document Development and Panel Facilitation:	Linda Fauber, Consultant, Tech Prep Curriculum Services
Panel Facilitation:	 Beverly Smith, Tech Prep Coordinator, Edison State Community College John Miley, Supervisor, Career-Technical and Adult Education, Environmental and Agricultural Education, Ohio Department of Education William Waidelich, Vocational Education Consultant, The Ohio State University
Research and Editorial Assistance:	Steven D. Chambers, Librarian, Tech Prep Curriculum Services, The Ohio State University
Information Services:	Christopher Dickman, Systems Specialist, Tech Prep Curriculum Services, The Ohio State University Gregory D. Lyle, Systems Specialist, Tech Prep Curriculum Services, The Ohio State University
Administrative Support:	Janet I. Ray, Administrative Assistant, Tech Prep Curriculum Services, The Ohio State University

TABLE OF CONTENTS

Profile Review Panel Participants	iii
Occupational Area Definitions	xiii
Key to Profile Codes	xvii
Ohio Environmental/Natural Resources Technology Competency Profile Matrix	xix
Environmental/Natural Resources Technology Competency Profile Units, Competencies, and Competency Builders	1-408

ENVIRONMENTAL/NATURAL RESOURCES TECHNOLOGY CURRICULUM DEVELOPMENT PROFILE REVIEW PANELS

FUTURING PANEL March 3, 2000	
Purpose:	To define the vision and scope of Environmental/Natural Resources and identify critical occupational areas
Participants:	Laurie Chase, I/I Program Manager (Engineer) City of Columbus
	D. Gary Cox , Assistant Attorney General Environmental Enforcement Section
	Mark Glasgow, Assistant Attorney General Environmental Enforcement Section
	John Hollback, Environmental Affairs Manager American Electric Power
	Tom Jenkins, Senior Hydrogeologist Burgess and Niple, Ltd.
	Lewis Jones, Dairy Division Chief Ohio Department of Agriculture
	Ron Kolbash , Deputy Director, Resource Conservation Ohio Department of Natural Resources
	David Landis , Research/Director of Educational Programming, Division of Recycling Ohio Department of Natural Resources
	Joseph F Lorenz, CEO Pro-Terra Environmental Contracting Company
	John Marks, Professor, Environmental Resource Management, Parks Recreation and Wildlife Muskingum Area Technical College
	Timothy J Murphy , Manager, Training Services Environmental Resource Training Center, The University of Findlay
	Mike Parkes , Communication and Employee Relations Manager Von Roll WTI

John Sadzewicz, Manager, Division for the Water/Waste Water R. D. Zande and Associates, Inc.

Lee Schoen, Vice President Floyd Browne Associates

Mark Shanahan, Executive Director Air Quality Development Authority

Jeff Steers, Assistant Chief of Northwest District Office Ohio Environmental Protection Agency

Larry Vance, Chief of Division of Soil and Water Conservation Ohio Department of Natural Resources

Jerry Wager, Administrator of Pollution Abatement and Land Treatment Section Ohio Department of Natural Resources

Tony Wisbith, Principle Research Scientist Battelle Memorial Institute

Barb Wooldridge, Environmental Specialist Ohio Environmental Protection Agency

Steve Wordelman, Partner Jones and Henry Engineering

BUSINESS AND INDU March 30, 2000	USTRY REVIEW PANEL
Purpose:	To identify essential and recommended skills for Environmental/ Natural Resources professionals
Participants:	Daniel Adams , Senior Geologist/Vice President Foppy Technical Group
	Mohammad I. Alam, Director Cincinnati Health Department
	John Bates, Wastewater Superintendent Village of Caldwell
	Joe Carvitti, Manager, Ohio Operations TRC Environmental Corporation

Chris Clark, Utilities Director City of Sidney

Duane R. Day, Environmental Manager Bayer Corporation

Jeannette T. Durkalski, Chemist, Natural Resources OARDC/Ohio State University

Ed Folk, Woodberry Wildlife Management Retired

Tami Galliher, Research Assistant OARDC/Ohio State University

Melissa Griffith, Stillwater Forester Ohio Department of Natural Resources, Division of Forestry/MWCD

Bryon L. Holbrook, HES Technician Marathon Ashland Petroleum LLC

Charles Kane, Supervisor, Treatment Metropolitan Sewer District of Greater Cincinnati, Hamilton County

John Kirwin, Air Pollution Control, Central District Ohio Environmental Protection Agency

Fred Klingelhaver, Unit Supervisor, Air Pollution Control Ohio Environmental Protection Agency, Southeast District Office

Ronald Kolbash, Deputy Director, Resource Conservation Ohio Department of Natural Resources

Kent E. Kroonemeyer, Supervisor, Ecological Services U.S. Fish & Wildlife Service

David Landis, Researcher Ohio Department of Natural Resources

Lola Lewis, Regional Urban Forester Ohio Department of Natural Resources, Division of Forestry

Paul Logsdon, Environmental Health & Safety Manager Clark Lima Refinery

Kenneth Maly, Crime Analyst, GIS Technician Akron Police Department

v

Noah McManus, Health & Safety Coordinator/Project Coordinator Rader Environmental Services, Inc.

Walter Olszewski, Environment Manager, Foil Division Gould Electronics

Aaron Otto, Law Enforcement Planner Akron Police Department

Cathy Pickrel, Toxicologist Ashland, Inc.

John Rauch, Technical Assistance Provider Great Lakes RCAP

Gordon Rudloff, Agriculture Inspection Manager Ohio Department of Agriculture

John Sadzewicz, Division Manager, Water/Waste Water R. D. Zande and Associates, Inc.

Nicholas A. Scambilis, Chair Environmental Engineering Technology Sinclair Community College

Lee Schoon, Vice President Floyd Browne Associates, Inc.

Jeff Steers, Assistant District Chief Ohio Environmental Protection Agency, Northwest District Office

Robert A. Stonerock, Investigator Ohio Department of Natural Resources, Division of Oil & Gas

Andy Tippel, Naturalist Blue Rock-Muskingum River State Parks

Leslie M Van Kuren, Environmental Chemist Quanterra, Inc.

Jeffery J. Wander, Environmental Specialist III, Site Investigation Field Unit Ohio Environmental Protection Agency

Carolyn Watkins, Chief, Office of Environmental Education Ohio Environmental Protection Agency

Purpose:	To identify when and to what depth essential and recommended skills should be addressed in the educational process
Participants:	David Apsley, Forestry Hocking College
	Richard Bennett , Assistant Professor The University of Akron
	Gary Bergstrand, College Instructor Hocking College
	Joe Beringer, Environmental Tech Instructors Miamisburg High School
	Greg Bush, Environmental Tech Instructors Miamisburg High School
	Joe R. Cahill, Instructor Hocking College
	William S. Carter, Associate Professor of Environmental Management
	University of Findlay
	Jeff Cramer, Dept Head/Assoc Prof, Science Stark State College of Technology
	Bob Daniels , Agricultural Education Teacher West Muskingum High School
	Diane D. DeYonker , Natural Resource Teacher Natural Science Technology Center
	Diane Dudzinski , Professor of Biology Washington State Community College
	Daniel Durfee , Professor Muskingum Area Technical College
	Michael D. Erbaugh, Environmental Management Instructor Greene County Career Center

Robert Erwin, Environmental Management Instructor Centerville City Schools

Susan Everett, Associate Professor, Agribusiness/Horticulture Clark State Community College

David Gardner, Chairman Owens Community College

William Garnett, Professor of Biology Raymond Walters College

Louise M. Gerl, Science Teacher Western Hills High School

David Landis, Researcher Ohio Department of Natural Resources

Daniel Leininger, Instructor Hocking College

Jim Lorz, Instructor Laurel Oaks Career Development Campus

John R. Marks, Professor, Environmental Resource Management/ Parks Recreation & Wildlife Muskingum Area Technical College

Julie Maurer, Administrator Columbus State Community College

David Miller, Instructor Clark State Community College

John Oliver, Natural Resources Teacher Marlington High School

William Peneston, Wildlife Biologist/Professor Hocking College

Robert Scott Placier, Instructor Hocking College

Susan Roseum, Tech Prep Science Instructor Auburn Career Center

David A. Sagan, Instructor Hocking College

Nick Scambilis, Chair, Environmental Engineering Technology Department Sinclair Community College

Tom Steckel, Professor of Chemistry Washington State Community College

Dana R. White, Ag Science/Natural Resources Teacher Miller High School

Ruth Willey, Dept Head/Teacher Fremont Ross High School

Rebecca J. Wood, Instructor Hocking Technical College

Tom L. Zimmerman, Associate Professor The Ohio State University ATI

Jennifer Zylko, Instructor, Environmental Technology Stark State College of Technology

STAKEHOLDER REVIEW November 15, 2000	v Panel
Purpose:	To refine the Ohio Environmental/Natural Resources State Compe- tency Profile through dialogue among all key stakeholders
Business & Industry Participants:	Mohammad I Alam, Environmental Director Cincinnati Health Department
	John Bates, Wastewater Superintendent Village of Caldwell
	Jeannette T Durkalski, Chemist, Natural Resources OARDC/Ohio State University
	Bryon L Holbrook, HES Technician Marathon Ashland Petroleum LLC
	Charles Kane , Treatment Supervisor Metropolitan Sewer District of Greater Cincinnati, Hamilton County

	Fred Klingelhaver, Unit Supervisor, Air Pollution Control Ohio Environmental Protection Agency, Southeast District Office
	Walter Olszewski, Environment Manager, Foil Division Gould Electronics
	Cathy Pickrel, Project Manager, Toxicologist Ashland, Inc.
	John Rauch, Southern District Manager Great Lakes Rural Community Assistance Programs (RCAP)
	John Sadzewicz, Division Manager, Water/Waste Water R. D. Zande and Associates, Inc.
	Lee Schoon, Vice President Floyd Browne Associates, Inc.
	Jeff Steers, Assistant District Chief Ohio Environmental Protection Agency, Northwest District Office
	Robert A Stonerock , Investigator Ohio Department of Natural Resources, Division of Mineral Resource Management
	Carolyn Watkins , Chief, Office of Environmental Education Ohio Environmental Protection Agency
Educator Participants:	Richard Bennett , Assistant Professor The University of Akron
	Joe Beringer, Environmental Technology Instructors Miamisburg High School
	William S Carter, Associate Professor, Environmental Management University of Findlay
	Robert Daniels , Agricultural Education Instructor West Muskingum High School
	Karen Dearbaugh, Director, Support Services Eastland Career Center
	Diane D DeYonker, Natural Resource Teacher Natural Science Technology Center

Diane Dudzinski, Professor of Biology Washington State Community College

Daniel Durfee, Professor Muskingum Area Technical College

David Gardner, Chairman, Industrial Operations Owens Community College

William Garnett, Professor of Biology Raymond Walters College, University of Cincinnati

Louise M Gerl, Science Teacher Western Hills High School

John R Marks, Professor, Environmental Resource Management/ Parks, Recreation, & Wildlife Muskingum Area Technical College

Julie Maurer, Administrator Columbus State Community College

David W Miller, Assistant Professor Clark State Community College

Nick Scambilis, Chair, Environmental Engineering Technology Sinclair Community College

Bill Somerlot, Teacher Eastland/New Albany School

Tom Steckel, Chemistry Professor Washington State Community College

Dana R White, Ag Science/Natural Resources Teacher Miller High School

Tom L Zimmerman, Associate Professor The Ohio State University/ATI

ENVIRONMENTAL OCCUPATIONAL AREA DEFINITIONS

<u>Pollution Prevention and Control</u> - Individuals employed in pollution control ensure the prevention of pollution and safe and effective collection, treatment, disposal and documentation of agricultural and industrial by-products, air emissions, waste, hazardous waste, water treatment and waste water products in compliance with local, state and federal regulations. Skill areas should include, but are <u>not</u> limited to:

compliance with laws, regulations, policies and contracts safe working conditions data recording and analysis preparation of summaries and charts for review creative solutions for preventing pollution and reducing the use of toxic materials extent, sources, and clean-up of pollution certification for various positions quality control practices operation, calibration, and maintenance of equipment and pollution control devices data and sample collection operation and calibration of field and laboratory instruments watershed pollution prevention and control

<u>Environmental Sampling and Analysis</u> - Individuals employed in environmental instrumentation and monitoring determine presence, sources, intensity and constituents or components in air, water, soil and waste through field and laboratory techniques utilizing principles of agriculture, chemistry, meteorology, engineering and applied technologies in accordance with government regulations and methodologies. Skill areas should include, but are <u>not</u> limited to:

safe working conditions installation, operation and calibration of field and laboratory equipment and instruments data recording and analysis basic chemical, physical, and biological analyses hazards recognition flow monitoring bio-monitoring process monitoring sampling and tracking

xiii

<u>Health and Safety</u> - Individuals employed in health and safety evaluate and minimize the risk to human health in relationship to the industrial/commercial/municipal workplace, hazardous and infectious waste sites, air pollution, water supply, and sanitation processes. Skill areas should include, but are <u>not</u> limited to:

safety training programs job hazard analyses workplace hazards Materials Safety Data Sheets (MSDS) corrective action plans cost and cost benefit statements for specific corrective actions accident incidence statistics/accident investigation certification for various positions OSHA Workplace Standards 29CFR 1910.120

<u>Environmental Compliance Assurance</u> - Individuals employed in environmental compliance assurance ensure that environmental permits are complied with or assistance is provided to ensure compliance. They may also assist in developing standard operating procedures. Skill areas should include, but are <u>not</u> limited to:

safe working conditions complaint response stress response violations identification and reporting citations and warnings compliance inspections risk assessments application, modification, or termination of permits implications of the regulatory development process certification for various positions training program assistance

<u>Hazardous Materials Handling</u> - Individuals employed in hazardous materials handle, process, sample and store hazardous materials and respond to hazardous materials situations in accordance with regulatory requirements. Skill areas should include, but are <u>not</u> limited to (*Under Revision*):

collection, preparation, documentation, and shipping of samples for analysis sample data analysis equipment related to hazardous materials operations hazardous materials identification and labeling calibration, operation, and maintenance of required instrumentation documentation of hazardous materials management activities hazardous materials handling, transporting, and storing in accordance with regulations hazardous materials treatment and disposal systems toxic effects of hazardous materials on people certification for various positions (e.g., HAZWOPER) construction techniques and equipment mechanical skills

<u>Water Environment Management</u> - Individuals employed in water resource management help solve fresh water resource related problems via conservation agencies and environmental businesses and industries. Skill areas should include, but are <u>not</u> limited to:

water resource utilization water pollution control and design water conservation wetlands management watershed protection and planning data collection and analysis compliance with laws, regulations, policies and contracts extent, sources and clean-up of water pollution point and non-point source pollutants contamination pathways water ecology basic toxicology biological/chemical and ecological effects test result analysis drinking water treatment control and design drinking water treatment equipment wastewater treatment equipment basic economics and finance human health issues

<u>Fishery and Wildlife Habitat Management</u> - Individuals employed in fishery and wildlife habitat management maintain or manage natural resources, including soil, water, plants, animals and fish for recreational purposes and the best interests of the environment. Skill areas should include, but are <u>not</u> limited to:

hatchery fish propagation fish and wildlife disease control data compilation wildlife conservation wildlife habitats migratory and native species of birds, mammals, fish, endangered species, and other wildlife federal, state, and local regulations wetlands management animal damage control human-animal conflicts bio-monitoring stream, lake, and pond management

<u>Geographic Information Management Systems</u> - Individuals employed in cartography/Geographic Information Systems (GIS) compile, refine, and map data on selected environmental, economic, natural, infrastructure, and cultural resources for a variety of uses such as habitat rehabilitation, wildlife tracking, resource management, floodplain management, phase mapping, trending analysis, benchmarking, and water quality. Skill areas should include, but are <u>not</u> limited to:

computer skills digital maps data collection database management database and Geographic Information Systems integration GIS analysis including GPS/remote sensing concepts, map projections, scale, resolution, accuracy and precision statistical theory/analysis resource management principles surveying

Possible GIS Specialty Areas

Waste Management Fishery and Wildlife Management Watershed Management Soil Science Forest Science Environmental Recreational Planning City and Community Planning Ecosystem Management Marine/Oceanography Studies

xvi

KEY TO PROFILE CODES

GRADE LEVEL

12 = by the end of grade 12

AD = by the end of the Associate Degree

DEPTH

- I = Introduce (applies to 25% of the competency builders. In competencies with 3 or less builders, all builders should be introduced before this code can be used.)
- $\mathbf{R} = \mathbf{Reinforce}$ or add depth (after introducing or proficiency)
- **P** = **Proficient** (achievement of the competency without supervision)

OTHER (Determined by Business, Industry and Labor Panel)

- **Essential Competency:** Competency is needed to ensure **minimal** level of employability. Entry level employees should be able to perform this competency without supervision at the end of the associate degree. Competencies required for certification, licensure, and/or national skills standards should be tagged as essential.
- **Recommended Competency:** Competency should be included but is not essential for minimal level of employability.

Delete: Competency should not be included.

Example:

BIL:

Essential – PC, ECA, HS Recommended - FWM

EDU:	12	AD
PC	P	I
ESA		
HS		Р
ECA	Р	R
HM		
WEM		
FWM	I	P
GIS		

Competency 1.1: Analyze Competency Builders: Explain Identify . . .

BEST COPY AVAILABLE

ENVIRONMENTAL/NATURAL RESOURCES TECHNOLOGIES TECH PREP COMPETENCY PROFILE

Matrix

PC =	Pollutic	Pollution Prevention and Control								
ESA =	Enviror	Environmental Sampling and Analysis								
= SH	Health	Health and Safety								
ECA =	Enviror	Environmental Compliance Assurance								
HM =	Hazardo	Hazardous Materials Handling								
WEM =	Water F	Water Environment Management								
FWM =	Fishery	Fishery and Wildlife Habitat Management								
GIS =	Geogra	Geographic Information Management System								
Page #	Unit #	Unit	PC	ESA	HS	ECA	HM	WEM	FWM	GIS
1		Technical Documentation	E	Е	ы	щ	ш	ш	ш	ш
5	2	Statistical Analysis	Э	Е	Е	E	щ			ш
15	n	Management & Supervision	E	Е	E	ы	E	щ	ш	R
31	4	Psychology of Stress	R	R	Щ	R				
35	5	Emergency Response	R		ы	н	ш			
37	9	Environmental Safety	E	Э	щ	щ	ш	ш		
49	٢	Environmental Laws and Regulations	E	E	Е	E	Э	ы		
61	8	Environmental Science	Е	Е	Е	E	Е	E	ш	щ
<i>LL</i>	6	Energy Sources	R			R		R		
79	10	Environmental Assessment	E	Е	Е	R	Е	ш	R	ш
89	11	Plant Science		Е		R		ш	ш	ч
105	12	Soil Science	Е	Е		Е	Е	ш	ш	R
119	13	Hydrology	E	Е		R	Э	Е	R	ш
125	14	Pollution Control I	Е	Е	R	Е		R	R	
129	15	Pollution Control II	E	Е	Э	E	щ	щ		
139	16	Chemical Technology	E	E	ы	ш	ш	ш	R	
153	17	Environmental Instrumentation	E	Е	Е	щ	щ	ш		
173	18	Process Technology	E	R	R	ч		R		
181	19	Electrical Basics	Е	Е	R	R				
185	20	Equipment Operation & Maintenance	R	н	R	Э	Е	Е	Е	R

Environmental satipling and Atlatysis Hazardous Materials Handling Environmental Compliance Assurance Hazardous Materials Handling Water Environment Management Fishery and Wildlife Habitat Management Coographic Information Management System Directing & Naterials Management Cooprephic Information Management Cooprephic Information Management Parating Technology E S Variate Teratment Operations E E Z5 Waste Management Z6 Waste Management Z7 Wasterster Treatment Operations Z6 Wasterster Management Z7 Wasterster Management Z8 Hazardous Materials Management Z9 Wetlands Management Z1 Wasterster Management Z6 Wasterster Management Z9 Wasterster Management Z9 Wasterster Management Z9 Wasterster Management Z9	PC =	Pollutic	Pollution Prevention and Control								
= Health and Safety = Environmental Compliance Assurance = Hazardous Mater Environmental Sumagement = Ware Environment Management = Vinit # Unit = Fishery and Wildlife Habitat Management = Geographic Information Management System Unit # Unit 22 Surveying & Mapping 23 Drafting Technology 24 CADD Fundamentals 25 Waste Management 26 Drinking Water Treatment Operations 28 Hazardous Materials Management 27 Waste Management 28 Hazardous Materials Management 27 Waster Treatment Operations 28 Hazardous Materials Management 27 Waster Management 28 Hazardous Materials Management 29 Weithing Water Treatment Operations 31 Wildlife Kanagement 33 Fisheries Management 33 Fisheries Management 34 Programming Theory 35 Database Management 36 Database Management 37 Geographic Information	= V	Enviroi	Environmental Sampling and Analysis								
Environmental Compliance Assurance Hazardous Materials Handling Water Environmental Management Fishery and Wildlife Habitat Management Fishery and Wildlife Habitat Management Ergographic Information Management System Unit # Unit Unit # Unit 23 Drafting Kamapping 23 Drafting Valer Treatment Operations 24 Kape Regreatent 25 Waste Management 26 Drinking Water Treatment Operations 27 Wasterwater Treatment Operations 28 Hazardous Materials Management 29 Wetlands Management 23 Drinking Water Treatment Operations 24 Drinking Water Treatment Operations 25 Wastewater Treatment Operations 28 Hazardous Materials Management 29 Wetlands Management 31 Wildlife Ecology 33 Fisheries Management 34 Programming		Health	and Safety								
E Hazardous Materials Handling E Water Environment Management E Fishery and Wildlife Habitat Management E Geographic Information Management Init # Unit Unit # Nit 21 Hydraulics & Pneumatics 22 Surveying & Mapping E 23 Drafting Technology E R 24 CADD Fundamentals E E E 25 Waste Management E E E E 26 Drinking Water Treatment Operations E E E E E 23 Wastershed Management E E E E E E 25 Waster Management E E E E E E 26 Drinking Water Treatment Operations E E E E E E E 23 Watershed Management E E E E E E E E E E E E E E E		Enviro	nmental Compliance Assurance								
e Water Environment Management Fishery and Wildlife Habitat Management Fishery and Wildlife Habitat Management Geographic Information Management System Dinti # Unit Procession E B E Coorraphic Information Management System Dinti # Unit P E B F Coorraphic Encloopsy E Darting Kapping & Mapping E C Drating Technolosy B E CADD Fundamentals E C Drating Water Treatment Operations E E Z Wastewater Treatment Operations	= MI	Hazard	ous Materials Handling								
E Fishery and Wildlife Habitat ManagementE Geographic Information Management SystemUnit #Unit21Hydraulics & Pneumatics21Hydraulics & Pneumatics22Surveying & Mapping23Surveying & Mapping24CDD Fundamentals25Surveying & Mapping26Drinking Water Treatment Operations27Wastewater Treatment Operations28Hazardous Management29Wetlands Management29Wetlands Management29Wetlands Management29Watershed Management29Widtific Ecology31Wildlife Ecology32Fisheries Management33Fisheries Management33Fisheries Management33Fisheries Management34Programming Theory35Bisheries Management36Database Management37Geographic Information System Sitems (GIS)38Communication39Basic Microbiology39Basic Microbiology39Basic Microbiology31Wildlife Ecology32Fisheries Management33Fisheries Management34Programming Theory35Fisheries Management36Database Management37Geographic Information Systems (GIS)38Communication39Basic Microbiology39Basic Microbiology34Fist Microbiology <trt< td=""><td>EM =</td><td>Water I</td><td>Environment Management</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trt<>	EM =	Water I	Environment Management								
aGeographic Information Management System $Unit \#$ UnitUnit ECA HMWEM21Hydraulics & PneumaticsREEER21Surveying & MappingEERRER22Surveying & MappingEERRR23Drafting TechnologyEERRR24CADD FundamentalsEERRR25Waste ManagementEEEER26Drinking Water Treatment OperationsEEERE27Wastewater Treatment OperationsEERRE28Hazardous Materials ManagementEERRER29Wetenshed ManagementEERRREE31Widtlife EcologyEERRREE33Fisheries ManagementEERRREE33Programming TheoryRRRRREE33Prisheries ManagementSERRREER33Prisheries ManagementEERRRREE33Prisheries ManagementEERRRFE34Programming TheoryRRRRR <td></td> <td>Fishery</td> <td>and Wildlife Habitat Management</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Fishery	and Wildlife Habitat Management								
Unit #Unit #Umit	= SIE	Geogra	phic Information Management System								
21Hydraulics & PneumaticsRREREE 22 Surveying & MappingEERERF 23 Drafting TechnologyEERRR 24 CADD FundamentalsEERRR 25 Waste ManagementEERRR 26 Drinking Water Treatment OperationsEEERE 26 Drinking Water Treatment OperationsEERRE 27 Wastewater Treatment OperationsEERRE 27 Wastewater Treatment OperationsEERRE 27 Wastewater Treatment OperationsEERRE 28 Hazardous Materials ManagementEERRRE 29 Wetlands ManagementEERRREE 30 Watershed ManagementEERRREE 31 Wildlife EcologyTEERRREE 33 Fisheries ManagementEERRRREE 33 Fisheries ManagementEERRREEE 33 Fisheries ManagementEERRREEE 33 Fisheries ManagementEE <t< td=""><td>ge #</td><td>Unit #</td><td>Unit</td><td>PC</td><td>ESA</td><td>HS</td><td>ECA</td><td>HM</td><td>WEM</td><td>FWM</td><td>GIS</td></t<>	ge #	Unit #	Unit	PC	ESA	HS	ECA	HM	WEM	FWM	GIS
22Surveying & MappingEEEEFR23Drafting TechnologyEFRRRR24CADD FundamentalsEFRRRR25Waste ManagementEEERRFF26Drinking Water Treatment OperationsEEEREF27Wastewater Treatment OperationsEERREF29Wetlands ManagementEERREF30Watershed ManagementEERREF31Wildlife EcologyEERRFE33Fisheries ManagementEERRFF33Fisheries ManagementEERRRF33Fisheries ManagementEERRFF33Fisheries ManagementEERRFF34Programming TheoryRRRRRFF35Database ManagementSRRRRRFF36Database ManagementFEEEFRFF37Geographic Information Systems (GIS)EEERRFFF38CommunicationEEEE <td< td=""><td>91</td><td>21</td><td>Hydraulics & Pneumatics</td><td>R</td><td></td><td>R</td><td>щ</td><td></td><td>Щ</td><td>R</td><td></td></td<>	91	21	Hydraulics & Pneumatics	R		R	щ		Щ	R	
23Drafting TechnologyERRRR24CADD FundamentalsEERRRR25Waste ManagementEEERRF26Drinking Water Treatment OperationsEEEREF27Wastewater Treatment OperationsEEEREF28Hazardous Materials ManagementEEEREE29Wetlands ManagementEEERRE30Watershed ManagementEEEREE31Wildlife EcologyEEERRE33Fisheries ManagementEERREE33Fisheries ManagementEERRRE33Fisheries ManagementEERREE33Fisheries ManagementEERREE34Programming TheoryRRRRREE35Database AdministrationRRRRREE36Database AdministrationEEEEEEE37Geographic Information Systems (GIS)EEEEEEE39Basic MicrobiologyRREEEEE <td>:01</td> <td>22</td> <td>Surveying & Mapping</td> <td>E</td> <td>Э</td> <td></td> <td>E</td> <td>Э</td> <td>R</td> <td>щ</td> <td>щ</td>	:01	22	Surveying & Mapping	E	Э		E	Э	R	щ	щ
24CADD FundamentalsEERRFF 25 Waste ManagementEEERRFF 26 Drinking Water Treatment OperationsEEEERE 27 Wastewater Treatment OperationsEEEREE 27 Wastewater Treatment OperationsEERERE 27 Wastewater Treatment OperationsEERRER 29 Wetlands ManagementEERRRER 30 Watershed ManagementEERRRER 31 Wildlife EcologyEERRRREE 33 Fisheries ManagementEERRRREE 33 Fisheries ManagementEERRRRRE 33 Fisheries ManagementEERRRRRE 33 Fisheries ManagementEERRRRREE 33 Fisheries ManagementEERRRRRRE 33 Fisheries ManagementEERRRRRRE 34 Programming TheoryIEIRRRIII </td <td>11</td> <td>23</td> <td>Drafting Technology</td> <td>Э</td> <td></td> <td>R</td> <td>R</td> <td></td> <td>R</td> <td>R</td> <td>щ</td>	11	23	Drafting Technology	Э		R	R		R	R	щ
25Waste Management E E E E E R E R R E R 26 Drinking Water Treatment Operations E </td <td>17</td> <td>24</td> <td>CADD Fundamentals</td> <td>E</td> <td></td> <td></td> <td>R</td> <td></td> <td></td> <td>R</td> <td>щ</td>	17	24	CADD Fundamentals	E			R			R	щ
26Drinking Water Treatment Operations E 27 Wastewater Treatment Operations E E E E E E E E 28 Hazardous Materials Management E E E E E E E E 29 Wetlands Management E E E E E E E E E 30 Watershed Management E 31 Wildlife Ecology E 32 Wildlife Management E <td>25</td> <td>25</td> <td>Waste Management</td> <td>E</td> <td>Е</td> <td>R</td> <td>R</td> <td>н</td> <td>R</td> <td></td> <td></td>	25	25	Waste Management	E	Е	R	R	н	R		
27Wastewater Treatment OperationsEEERERE 28 Hazardous Materials ManagementEEEERER 29 Wetlands ManagementEREERRER 30 Watershed ManagementEEERRER 31 Wildlife EcologyEEERREE 32 Wildlife EcologyEEERREE 33 Fisheries ManagementEERRREE 33 Fisheries ManagementEERRREE 33 Programming TheoryRRRRREE 34 Programming TheoryRRRRRRE 35 Database Management System BasicsRRRRRRE 36 Database AdministrationRRRRRREE 37 Geographic Information Systems (GIS)EEEEEEEEE 38 CommunicationEEEEEEEEEE 39 Basic MicrobiologyREEEEEEEEE 310 SSSSSSS <td< td=""><td>45</td><td>26</td><td>Drinking Water Treatment Operations</td><td>Е</td><td>Е</td><td>Е</td><td>Е</td><td></td><td>ப</td><td></td><td></td></td<>	45	26	Drinking Water Treatment Operations	Е	Е	Е	Е		ப		
28Hazardous Materials ManagementEEEEERR29Wetlands ManagementRRERRER310Watershed ManagementEEERREE311Wildlife EcologyEEERREE32Wildlife EcologyFFFRREF33Fisheries ManagementFFFRRFF33Programming TheoryRFFRRRFF33Database ManagementNFFFRRFFF33Database ManagementRRRRRRFFF34Programming TheoryRFFRRRFFF35Database Management System BasicsRRRRRRFF36Database AdministrationRRRRRRFFF37Geographic Information Systems (GIS)EEEERRFFFF37Geographic InformationEEEEEEFFFFFF38CommunicationEEEEEEFFFFFF <td>65</td> <td>27</td> <td></td> <td>E</td> <td>Е</td> <td>R</td> <td>Е</td> <td>R</td> <td>Е</td> <td></td> <td></td>	65	27		E	Е	R	Е	R	Е		
29Wetlands ManagementRERRRE30Watershed ManagementEEERRE31Wildlife EcologyEEEREE32Wildlife EcologyEFRRFE33Fisheries ManagementNERRFF33Programming TheoryNERRRE34Programming TheoryNRRRRF35Database Management System BasicsRRRRRR36Database AdministrationRRRRRRF37Geographic Information Systems (GIS)EEEEEEE38CommunicationSBasic MicrobiologyRRRFFF	83	28	Hazardous Materials Management	Е	Е	E	Е	Е	R		
30Watershed ManagementEEEREE31Wildlife EcologyEFFRFF32Wildlife ManagementEFFRFF33Fisheries ManagementFFFRFF34Programming TheoryFRRRFF35Database Management System BasicsRFRRFF36Database AdministrationRRRRRFF37Geographic Information Systems (GIS)EEEEEEE38CommunicationSSSSFFFFFF39Basic MicrobiologyRRRFFFFFFF	60	29	Wetlands Management	R	E	R	R		E	E	R
31Wildlife EcologyEERNN32Wildlife Management1Fisheries ManagementRRNN33Fisheries Management1ERRREE33Database Management1RRRREERR34Programming Theory1RRRRREERR35Database Management System BasicsRRRRRRRRR36Database AdministrationRRRRRRRRR37Geographic Information Systems (GIS)EEEEEEEE38CommunicationSSSSSSSSSS39Basic MicrobiologyRRRRRRFFFF39Basic MicrobiologyRRRRRFFFFFF	19	30	Watershed Management	Е	Е	E	R		E	Щ	R
32Wildlife Management </td <td>25</td> <td>31</td> <td>Wildlife Ecology</td> <td></td> <td>E</td> <td></td> <td>R</td> <td></td> <td></td> <td>Э</td> <td></td>	25	31	Wildlife Ecology		E		R			Э	
33Fisheries ManagementEEREE34Programming Theory34Programming TheoryFRRFF35Database Management System BasicsREERRFF36Database AdministrationRRRRRRFFF37Geographic Information Systems (GIS)EEEEEEFF38CommunicationRREEEEEEE39Basic MicrobiologyRRRRRFFE	29	32	Wildlife Management				R			ы	
34Programming TheoryRRRRR35Database Management System BasicsREERR36Database AdministrationRRRRRR37Geographic Information Systems (GIS)EEEEEE38CommunicationEEEEEEE39Basic MicrobiologyRRRFEE	47	33	Fisheries Management		E		R		E	Э	
35Database Management System BasicsRERRN36Database AdministrationRRRRRRR37Geographic Information Systems (GIS)EEEEEE38CommunicationEEEEEEE39Basic MicrobiologyRRRFEEE	55	34	Programming Theory		Я		R				R
36Database AdministrationRRRRR37Geographic Information Systems (GIS)EEEEEE38CommunicationEEEEEEE39Basic MicrobiologyRREEEEE	59	35		R	E		щ	R			ш
37Geographic Information Systems (GIS)EERRE38Communication39Basic MicrobiologyRRBasic Microbiology	65	36	Database Administration	R	R	R	R	R		R	R
38CommunicationEEEEE39Basic MicrobiologyREEEE	75	37	Geographic Information Systems (GIS)	E	Е		R	R	Е	Е	Э
39 Basic Microbiology R E E R E	93	38	Communication	Е	Е	Е	Ē	Е	E	Е	Е
	99	39	Basic Microbiology	R	E	E	R		щ	щ	

ERIC EST COPY AVAILABLE

Unit 1: Technical Documentation

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	Р
ECA	Р	R
HM	P	R
WEM	Ι	Р
FWM	Ι	Р
GIS	I	P
WEM FWM	I	P P

Competency 1.1: Record technical information

Competency Builders:

Describe various documentation procedures Read documentation procedures Follow documentation procedures Observe process Ask open-ended questions Record process (e.g., flowchart, step-by-step) Compile relevant data Identify parameters Recognize patterns in data Record accurate, truthful data Compile cumulative reference notebook/record Maintain logs, notes, and records Measure appropriate parameters Document violation and enforcement notices Document test results

EDU:	12	AD
PC	Р	R
ESA	Ι	Р
HS	Р	R
ECA	Р	R
HM	Ι	P
WEM	Ι	Р
FWM	Ι	P
GIS	Ι	P

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

Competency 1.2: Compose technical reports

Competency Builders:

Compose technical memoranda Complete forms and checklists Identify format or report form Generate charts and graphs Generate maps Analyze data Draw conclusions Explain analytical methods used Outline reports and procedures Write executive summaries Present reports and procedures

EDU:	12	AD
PC	Ι	P
ESA	Ι	Р
HS	Ι	P
ECA	Ι	Р
HM	Ι	P
WEM	Ι	P
FWM	Ι	P
GIS	Ι	Р

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

Competency 1.3: Communicate documentation to others

Competency Builders:

Describe operation(s) to others Participate in meetings Interact with customers Consult with colleagues Resolve complaints Refer questions and issues to appropriate authority [E-BIL] Interact with public on safety environmental, and health issues Interact with personnel on safety, environmental, and health issues Compose clear instructions Interpret prints, diagrams, specifications, and drawings Interpret charts and graphs Interpret maps Draft preventive maintenance and calibration procedures Identify strategies for communicating with mass media Describe strategies for communicating with mass media

Unit 2: Statistical Analysis

BIL: Essential – PC, ESA, HS, ECA, HM, GIS

12	AD
Ι	Р
Р	R
Ι	P
Ι	P
Ι	Р
P	R
	I P I I I

Competency 2.1:	Apply basic statistics concepts	[E-GIS]
-----------------	---------------------------------	---------

Competency Builders:

Describe data collection methods Collect data Organize data by flow chart Interpret data by cause and effect diagrams Explain nominal, ordinal, interval, and ratio data Explain mean, median, and mode Explain significance of standard deviation and correlation coefficient Explain normal distribution Differentiate between prevention and detection Explain statistical score (e.g., t. z)

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	I	P
ECA	Ι	Р
HM	Р	R
WEM		
FWM		
GIS	I	P

BIL: Essential – PC, ESA, HS, ECA, HM, GIS

Competency 2.2: Interpret scattergrams

Competency Builders:

Develop scatter grams

Interpret for positive, negative, or no correlation between X and Y variables Test for significance

Explain regression analysis

BIL: Essential - PC, ESA, HS, HM, GIS Recommended – ECA

EDU:	12	AD
PC	Ι	P
ESA	Ι	Р
HS	Ι	Р
ECA	Ι	P
HM	Ι	P
WEM		
FWM		
GIS	Ι	P

Competency 2.3: Analyze probability theories

Competency Builders: Explain classical probability Explain empirical probability Calculate probability for outcomes

BIL:	Essential – PC, ESA, HS
	Recommended – ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA		P
HS	I	Р
ECA	Ι	R
HM		I
WEM		
FWM		
GIS		

Competency 2.4: Determine control limits

Competency Builders: Explain uses of precontrol Calculate precontrol limits Explain significance of the limits Plot values on a precontrol chart Explain "out-of-control" situation

Make decisions on green (good control range), yellow (reaching control limits) and red conditions (out of control)

BIL: Essential - PC Recommended – ESA, HS, ECA, HM, GIS

EDU:	12	AD
PC	Ι	Р
ESA		Ι
HS	Ι	R
ECA	Ι	R
HM		Ι
WEM		
FWM		
GIS		Ι

Competency 2.5: Determine process capability

Competency Builders:

Measure X, R, USL, and LSL (upper and lower specification limits) Calculate estimated process standard deviation Plot right hand and left hand tail of process variation Compute Z value for percent of probable defect for process Calculate C_{PK} values that describe process capability Describe skewed distributions List probable causes of skewed distribution

BIL: Essential - PC Recommended – ESA, HS, ECA, HM, GIS

EDU:	12	AD
PC	Ι	Р
ESA		Ι
HS	Ι	R
ECA	Ι	R
HM		I
WEM		
FWM		
GIS		I

Competency 2.6: Prepare control charts

Competency Builders:

Identify types of control charts Interpret attribute data Interpret histogram Interpret scatter grams Interpret NP chart Interpret P chart Interpret flowchart Interpret cause-and-effect diagram Construct P (percentage defective) chart for attributes Plot control limits of P chart and data points Check chart for out-of-control conditions Construct an NP (number defective) chart with control limits and data Construct C (count of defects) and U (number of defects per unit) charts Check data on C and U charts Construct flowchart Construct cause-and-effect chart

BIL: Essential - ECA Recommended – PC, HS, HM

EDU:	12	AD
PC	I	R
ESA		
HS	I	R
ECA	I	Р
HM		I
WEM		
FWM		
GIS		

Competency 2.7: Construct X and R charts

Competency Builders:

Arrange data into statistical sub-groups Explain importance of random sampling Compute X (i.e., average of values) and R (i.e., range of values in subgroup) within sample Plot in X and R on chart

Construct control chart with X (grand average) and R (average range) calculated Calculate upper and lower control limits for X-chart

Calculate upper and lower control limits for R-chart

11 -

BIL: Essential – PC, ECA Recommended – HS, HM

EDU:	12	AD
PC	Ι	Р
ESA		
HS	Ι	R
ECA	Ι	Р
HM		Ι
WEM		
FWM		
GIS		

Competency 2.8: Evaluate X and R charts

Competency Builders:

Plot percentages for normal distribution Test distribution for normality Explain difference between common cause and special cause Explain "in-control" process Explain significance of an out-of-control point on X or R chart Identify patterns and trends on control chart Identify run up and run down Test for middle third on control chart Explain significance of middle third on control chart Explain significance of middle third on control chart Explain Rule of Sevens

BIL: Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC		Ι
ESA		
HS		Ι
ECA		I
HM		
WEM		
FWM		
GIS		

Competency 2.9: Conduct process improvement studies

Competency Builders:

Analyze production methods and processes applying statistical process improvement techniques (e.g., SPC, C_{PK})

Identify appropriate statistical techniques for study (e.g., T-tests, F-test, capability, DOEX)

Identify major steps in conducting a study

Integrate results into the total system

Unit 3: Management & Supervision

BIL: Recommended – PC, ESA, HS, ECS, HM, WEM, FWM, GIS

EDU:	12	AD
PC	I	R
ESA		Ι
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM	Ι	R
GIS		Ι

Competency 3.1: Assess progress in assigned areas of responsibility/accountability

Competency Builders:

Set short- and long-term goals for assigned areas of responsibility/accountability Demonstrate commitment to established goals and vision Obtain support for goals Provide support for goals Monitor goal achievement Adjust goals Communicate goal achievement Recognize goal achievement

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA		
HM		
WEM		Ι
FWM		Ι
GIS		Ι

BIL: Recommended – PC, ESA, HS, WEM, FWM, GIS

Competency 3.2: Hire staff

Competency Builders:

Develop plans and procedures for identifying staffing needs

Identify staffing needs in accordance with plans

Develop job descriptions

Develop hiring and promotion policies and procedures in compliance with state and federal employment laws

Establish guidelines for selecting the most qualified person for a specific position

Identify state and federal employment laws and company hiring policies and procedures

Identify resources for locating candidates

Recruit candidates

Identify most appropriate candidates for position in accordance with established guidelines

Interview candidates for position

Follow up on information provided on job applications

Recommend or select applicants for employment

Orient new employees

Maintain personnel records

Explain unconventional work schedules (e.g., flextime, shared positions)

Identify additional or alternative employee benefits that the company might

consider furnishing to employees

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA	Ι	R
HM		Ι
WEM		I
FWM		Ι
GIS		Ι

Competency 3.3: Supervise employee performance

Competency Builders:

Apply management/leadership style appropriate for situation Clarify roles and relationships using organizational charts Communicate performance expectations Clarify company policies and procedures Create and maintain an environment supportive of productivity Establish office procedures Maintain office procedure manual(s) Monitor employee performance Maintain performance records Document personnel issues Evaluate employee performance Provide employees with constructive criticism and feedback Explain union role and responsibility Counsel employees Discipline employees Make recommendations based on employee performance (e.g., transfer, promotion, or dismissal) Manage the change process (e.g., for right-sizing, technological updating, globalization, retraining) Identify company policies and federal laws governing discrimination and harassment Demonstrate sensitivity to diversity, including differences in gender, culture, race, language, physical and mental challenges, and family structures Explain motivational theory in selecting management techniques

EDU:	12	AD
PC		I
ESA		Ι
HS		Ι
ECA		
HM		
WEM		
FWM		
GIS		

BIL: Recommended – PC, ESA, HS

Competency 3.4: Design employee development activities

Competency Builders:

Analyze employee development needs (e.g., retraining, updating, stress management)

Select development strategies designed to meet individual and group needs Identify the benefits of employee development activities offered outside the

organization

Secure personnel resources, materials, and equipment needed for employee development activities

Monitor employee development activities

Keep employees informed about development opportunities

Encourage employee participation in development activities

Evaluate employee progress

Provide feedback to employees concerning their progress

Provide formal and informal recognition for employee development

BIL: Recommended – PC, ESA, HS, WEM, GIS

EDU:	12	AD
PC	Ι	R
ESA	Ι	R
HS		Ι
ECA		
HM		
WEM		Ι
FWM		
GIS	Ι	R

Competency 3.5: Manage work flow and operations

Competency Builders:

Plan physical layout and work flow Develop business or job procedures/operations flowcharts Prioritize work Establish and maintain operating policies and procedures Establish and maintain production standards Establish and maintain linkages with other departments Systematize work Delegate work Communicate operating policies and procedures, priorities, linkages, and standards to others Assign work Monitor progress

Solve work flow/operations problems

Prepare productivity reports

Communicate contents of productivity reports to others

EDU:	12	AD
PC		Ι
ESA	Ι	R
HS		I
ECA	Ι	P
HM	Ι	R
WEM	P	R
FWM	Р	R
GIS	Ι	R

BIL: Essential – ECA, WEM, FWM Recommended – PC, ESA, HS, HM, GIS

Competency 3.6: Plan meetings

Competency Builders:

Set agenda Schedule meeting Reserve meeting room Invite appropriate personnel Identify need for outside speakers Assign someone to take minutes

BIL: Essential - ECA Recommended – PC, ESA, HS, HM, WEM, FWM, GIS

EDU:	12	AD
PC		Ι
ESA	Ι	R
HS		Ι
ECA	Ι	Р
HM	Ι	R
WEM	Ι	R
FWM	Ι	R
GIS	Ι	R

Competency 3.7: Conduct meetings

Competency Builders:

Make introductions

Invite questions, comments, and group participation

Record appropriate action, time frame, and person accountable for identified tasks Monitor time

Publish minutes in timely manner

BIL: Essential – FWM Recommended – PC, ESA, HS, ECA, WEM, GIS

EDU:	12	AD
PC		Ι
ESA	Ι	R
HS		Ι
ECA	Ι	R
HM		
WEM	Ι	R
FWM	Ι	Р
GIS	I	R

Competency 3.8: Conduct public relations activities

Competency Builders:

Plan facility tours for the public Answer press and public inquiries Reassure the public if a potential emergency situation arises Identify target audiences Assess information needs Coordinate multimedia promotional programs Prepare articles for publication Respond to interview requests Coordinate public displays Deliver public presentations (e.g., radio and T.V.) Prepare media releases Coordinate events Prepare environmental status reports Organize open houses and tours Coordinate information sessions Develop public awareness campaigns/programs

Explain the concept of adult education

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, GIS

EDU:	12	AD
PC		Ι
ESA		Ι
HS		I
ECA	Ι	R
HM	Ι	R
WEM		I
FWM		
GIS		Ι

Competency 3.9: Manage budgets

Competency Builders:

Identify the costs of operation Perform cost surveys Develop a plan for efficient operations Explain system-efficiency balance Identify budget activities and categories of expense accounts Identify techniques of budget control Identify statements about budget related activities Identify factors that are needed to maintain adequate control over supplies on hand and on order Develop productivity goals Implement productivity goals Develop attainable tasks/time estimates

42

EDU:	12	AD
PC	I	R
ESA		I
HS	I	P
ECA	I	R
HM	I	R
WEM		I
FWM	*	
GIS		I

BIL: Essential - HS Recommended – PC, ESA, ECA, HM, WEM, GIS

Competency 3.10: Develop standard operating procedures (SOPS)

Competency Builders:

Plan and implement an in-house training program that includes safety measures and hazardous or toxic materials in the work place (e.g., HAZ, Com, CHP)
Plan and implement a cross-training program in facility operations
Plan and implement a SOP for a job-related task

BIL: Recommended – PC, ESA, HS, WEM, GIS

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA		
HM		
WEM		Ι
FWM		
GIS		Ι

Competency 3.11: Develop facility process optimization and management plans

Competency Builders:

Develop a plan for inventory control

Develop a plan for an analysis of operation and maintenance logs and for the optimum operation of equipment

Develop a plan for facility automation

Develop a plan to achieve efficient, energy-saving, cost-effective operations Develop a plan for testing and analyzing treatment operations

Develop a plan for the systematic troubleshooting of operations problems

Develop a plan for documenting operations that anticipates and avoids potential problems

Identify facility equipment

Develop a facility staffing plan

Develop a procedure for quality assurance/quality control in a facility

Develop a procedure for obtaining certification for a facility

Develop a sampling/analysis schedule based on sampling requirements

25

EDU:	12	AD
PC		
ESA	I	P
HS		
ECA		Ι
HM		I
WEM	I	R
FWM	I	Р
GIS		

BIL: Essential – ESA, FWM Recommended – ECA, HM, WEM

Competency 3.12: Explain federal, state, and local rules

Competency Builders:

Explain operational rules Apply facility management rules Apply samples and analyses rules

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC		Ι
ESA		I
HS		I
ECA		Ι
HM		I
WEM		I
FWM		Ι
GIS		Ι

Competency 3.13: Correct facility operational problems

Competency Builders:

Troubleshoot operational problems Check the accuracy of observed operational problems Identify appropriate corrective actions for operational problems Monitor results of corrective actions taken Identify actions that should be taken to prevent recurrence of identified operational problems

BIL: Essential – PC Recommended – ESA, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		
ECA		Ι
HM		Ι
WEM		Ι
FWM		Ι
GIS	I	R

Competency 3.14: Manage environmental operations

Competency Builders:

Balance environmental costs and benefits Explain scope of environmental projects Investigate complaint Implement corrective action Resolve issue with concerned party Document investigation and rules

BIL: Essential – PC, HS Recommended – ESA, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	Р
ECA	Ι	R
HM	Ι	R
WEM		Ι
FWM		Ι
GIS	Ι	Р

Competency 3.15: Develop contingency plans

Competency Builders:

Analyze potential emergency situations that can occur in a facility Develop a plan for handling problems caused by emergency situations, including

what equipment would be used and what sampling would be needed Develop a procedure to ensure employee safety

Develop procedures to ensure continuous operations (e.g., preventive maintenance)

Practice deployment plan

Unit 4: **Psychology of Stress**

BIL: Recommended - PC, ESA, HS, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA	I	R
HS	Ι	R
ECA	Ι	R
HM		
WEM		I
FWM		
GIS		

Competency 4.1: Analyze factors that influence response to stress

Competency Builders:

Describe stress

Differentiate between stress and stressors

Analyze how an individual's perception of stress influences response to stressors Analyze how internal and external mitigating factors influence one's response to stress

Analyze coping mechanisms used to decrease stress

BIL: Essential - HS Recommended – PC, ESA, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	R
HS	Ι	Р
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 4.2: Analyze physiological response to stress

Competency Builders:

Describe the stress response on the body systems (e.g., autonomic, nervous, endocrine)

Analyze how mitigating factors relate to the physiological stress response Differentiate between immune system response to stressors in children and adults Describe how stress relates to activation of the disease process Identify biological adaptive responses to stress

EDU:	12	AD
PC	Ι	R
ESA	I	R
HS	I	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

BIL: Recommended – PC, ESA, HS, ECA, WEM

Competency 4.3: Analyze psychological response to stress

Competency Builders:

Identify psychological stressors

Identify causes and characteristics of post catastrophic stress

Analyze the relationship between personality types and the stress response Analyze types of coping strategies

Identify selected defense mechanisms

Analyze ineffective coping behaviors

Explain the psychobiologic response of anxiety as it relates to stress

Describe the disequilibrium associated with response to stressors

Describe stress as it relates to teams organizations and groups

Analyze how individual perception of stress influences relationships

Unit 5: Emergency Response

BIL: Essential – HS, ECA, HM Recommended - PC

EDU:	12	AD
PC	Ι	R
ESA		
HS	Ι	Р
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 5.1: Identify various emergency response plan requirements for a facility

Competency Builders:

Evaluate hazards

Evaluate and implement evolving contingency plans such as SPCC

Develop site command/operating procedures

Identify mitigation techniques

Participate in field exercises (e.g., drum handling, instrumentation surveying, decontamination procedures, personal protective equipment, medical evaluations)

Identify training needs for emergency responders

Document training

Comply with federal, state, and local regulations

BIL: Essential – HS Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA		
HS	Ι	P
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 5.2:	Develop an emergency response plan for natural
	disasters

Competency Builders:

•

Assess seriousness of incident Identify information to be released to public and media Coordinate efforts with other response agencies Demonstrate clean-up activities Identify mitigation techniques Provide first response training Document training

Unit 6: **Environmental Safety**

Essential – PC, ESA, HS, ECA, HM, WEM **BIL:**

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	Р
ECA	P	R
HM	Р	R
WEM	Ι	P
FWM		
GIS		

Competency 6.1: Identify general workplace safety hazards [E-HS]

Competency Builders:

Identify types and potential level of workplace hazards (e.g., physical hazards, fire, chemicals, noise, ionizing radiation, ultraviolet, temperature extremes, ergonomics, biological hazards, non-ionizing radiation, lasers, microwaves, electro magnetic fields)

Identify safety materials/equipment and transportation (e.g., absorbent socks, oil dry)

Explain purpose(s) of OSHA, NIOSH, NFPA and DOT

Identify purpose of emergency evacuation routes, master switch, lockout locations, and safety color coding systems

Identify methods of site protection

Describe methods of evaluating potential hazards (e.g., visual analysis)

Describe methods of correcting potential hazards

Describe corrective procedures for unsafe conditions

Explain precautions required when using toxic or flammable materials

Describe various types of toxicity (e.g., chronic, immediate)

Explain confined space and related requirements

37

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Р	R
ECA	Р	R
HM	Р	R
WEM	Ι	Р
FWM		
GIS		

Competency 6.2: Apply general workplace safety precautions/procedures [E-HS]

Competency Builders:

Identify local, state, and federal rules and regulations Identify roles of industrial hygienists, safety professionals, occupational physicians, and occupational nurses Identify personal protective wear and equipment Identify level of personal protective wear required Identify visual controls (e.g., monitors, read outs) Identify auditory controls Interpret hazardous materials notices on containers Wear personal protective clothing and equipment Apply workplace safety rules and procedures Apply personal safety rules and procedures Apply workplace organization (e.g., housekeeping) Apply applicable electrical, mechanical, steam, hydraulic and pneumatic safety rules and procedures Apply fire safety rules and procedures Interpret material safety data sheets (MSDS) Perform lockout and tagout Complete preventive maintenance checklists Complete confined space entry check sheets

Obtain training for confined space entry

Explain OSHA 1910 requirements

BIL: Essential – ECA, HM, WEM Recommended – PC, ESA, HS

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	I	R
ECA	Р	R
HM	Р	R
WEM	Ι	Р
FWM		
GIS		

Competency 6.3: Acquire and maintain first aid certification

Competency Builders:

Assist patient with wounds or fractures Administer first aid to control bleeding Administer first aid for shock Administer first aid for burn patient Assist with first aid for poisoned patient Assist choking patient Assist patient having a seizure Assist patient having a diabetic reaction Assist syncopal patient Identify protection from blood-born pathogens

BIL: Essential – ECA, HM, WEM Recommended – PC, ESA, HS

EDU:	12	AD
PC	Ι	R
ESA		Р
HS	Ι	R
ECA	Р	R
HM	Р	R
WEM	Ι	Р
FWM		
GIS		

Competency 6.4: Acquire and maintain cardiopulmonary resuscitation (CPR) certification

Competency Builders:

Administer CPR to adults Administer care for obstructed airways for adults

BIL: Essential - ESA, GIS Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS	Ι	R
ECA		
HM		
WEM		
FWM		
GIS	Ι	P

Competency 6.5: Respond to medical emergencies

Competency Builders:

Perform head to toe assessment Describe signs and symptoms of emergency situations Identify basic emergency procedures and equipment Contact local emergency assistance Demonstrate first responder procedures Identify evacuation techniques

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	Ι	R
ECA	Ι	Р
HM	Ι	Р
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended – HS

Competency 6.6: Explain purpose of pollution control systems

Competency Builders:

Describe types of air, water, solid waste, and noise pollution Explain purpose of air pollution control systems Explain purpose of water pollution control systems Explain purpose of solid waste pollution control systems Explain purpose of noise pollution control systems Explain basic philosophy of "Right to Know" legislation Explain purpose(s) of regulatory agencies (e.g., EPA, ODH, ODNR, Army Corp.) Identify "costs" of industrial pollution control (i.e., dollars vs. impact to environment)

Describe ethics of environmental issues

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended - HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	Ι	Р
HM	I	R
WEM	Ι	Р
FWM		
GIS		

Competency 6.7: Describe procedures to comply with environmental regulations

Competency Builders:

List characteristics of an effective monitoring program

Differentiate among environmental laws (i.e., CAA, CWA, RCRA, CERCLA, SARA, PPA, TSCA)

Describe procedures for search warrants, administrative warrants, and criminal search warrants

Prepare for environmental audit, including multimedia

Identify process used to develop laws and regulations

Identify process used to develop policies and procedures

Document procedures

Describe procedure for monitoring systems

Complete compliance reports

List permit requirements as related to leacheate production and control

List permit requirements as related to vector control, landfill gas and settlement

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	P
ECA	Ι	Р
HM	Ι	P
WEM	Ι	R
FWM		
GIS		

BIL: Essential – PC, ESA, HS, ECA, HM Recommended - WEM

Competency 6.8:

ency 6.8: Maintain environmental health and safety facilities [E-HS]

Competency Builders:

Perform safety inspections Participate in safety audits

Participate in safety, health, radioactive and environmental training

Participate in safety demonstrations, drills, and meetings

Identify safety monitoring equipment

Describe unsafe or potentially unsafe conditions, and acts

Respond to emergencies, alarms, and any abnormal situations

Describe potential health or industrial hygiene problem reporting procedures

Implement federal, state, and local legislation pertaining to environmental, health, and safety regulations

Identify evacuation procedures, emergency numbers, rules, and practices

Identify procedural problems in the workplace

Describe the purpose of various safety related permits

Identify correct material handling procedures

BIL: Essential – PC, ESA, HS, ECA, HM Recommended - WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	Р
ECA	Ι	Р
HM	Ι	P
WEM	Ι	R
FWM		
GIS		

Competency 6.9: Handle chemicals and safety equipment appropriately

Competency Builders:

List proper safety equipment (e.g., proper hoods, shields)

Identify appropriate protective equipment (e.g., eye wear, special clothing)

Identify specific categories of hazardous chemicals

Identify hazards associated with collecting samples

Refer to chemical reference handbooks

Label all chemicals, materials, tools, and equipment with appropriate safety, health, and environmental details

Explain importance of appropriate display of warning labels

Demonstrate safe handling of materials under pressure

Explain the hazard symbols and toxicology sections of MSDS

Demonstrate safe handling procedures (e.g., handling cylinders, moving heavy items)

Classify chemicals according to reactivity

Identify incompatible combinations of chemicals that could result in potentially dangerous situations

Organize and store chemicals and equipment properly

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM

EDU:	12	AD
PC	Ι	R
ESA		I
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM		
GIS		

Competency 6.10: Explain ergonomic procedures [R-HS]

Competency Builders:

Explain risk factor

Explain maximum permissible limit (MPL) and action limit (AL) for lifting (i.e., NIOSH Guide for Lifting)

Identify cumulative trauma disorder (CTD)

Identify susceptibility factors for CTD

Identify ways to minimize extreme joint movement

Identify ways to minimize use of excessive muscle force

Identify ways to minimize repetitive tasks

Comply with repetitive strain standard (OSHA)

- Identify ways to minimize mechanical stresses (e.g., sharp edges, heat, cold, hard surfaces, weights, vibration)
- Identify ways to minimize awkward body positions

Explain importance of rest pauses

Explain importance of mats and footrest for standing jobs

Explain importance of appropriate working heights of chairs, stools, workbenches, equipment

Explain importance of adequate lighting

Explain importance of anthropocentric design principles (i.e., centering one's view of everything around man)

BIL: Essential – ESA, HS, ECA Recommended – PC, HM, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	Ι	Р
ECA	Ι	P
HM	Ι	R
WEM	Ι	R
FWM		
GIS		

Competency 6.11: Assess workplace safety

Competency Builders:

Describe a work place inspection applying Occupational Safety and Health Administration (OSHA) standards

Cite specific regulations and standards for items not in compliance Develop a written plan of alternative solutions or corrective actions Prepare cost and cost benefit statements for specific corrective actions Analyze accident incidence statistics

Explain the purpose and function of a safety committee

Explain how unions and employee organizations impact on safety procedures Develop a site safety plan

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS	Ι	P
ECA	Ι	P
HM	Ι	R
WEM	Ι	R
FWM		
GIS		

BIL: Essential – ESA, HS, ECA Recommended – PC, HM, WEM

Competency 6.12: Assess a safety-training plan

Competency Builders:

Identify job skills or tasks required of different occupations or positions in a work place

Identify OSHA Regulations requiring safety training programs

Develop an outline to train workers to work safely and efficiently

Develop training activities for identified skills that will reduce or eliminate injuries

Develop a job related pre-test and post-test to document competency Explain the purpose of a job safety analysis (JSA)

Construct a JSA of the activities of a specific worker in a specific industry Complete an incident report

Develop an incentive program

Unit 7: Environmental Laws and Regulations

BIL: Essential – PC, ESA, ECA, HM Recommended – HS, WEM

EDU:	12	AD
PC	Ι	P
ESA	I	P
HS		Ι
ECA	I	R
HM	Ι	Р
WEM	Ι	R
FWM		
GIS		

Competency 7.1: Identify key components of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

Competency Builders:

List sections of CERCLA

List key parts of CERCLA site evaluation and remedy selection

List the scores involved with the hazard ranking system and their characteristics Explain national priority site identification (NPL)

List key elements of toxic substance control act (TSCA) relative to CERCLA

BIL: Essential – PC, ESA, ECA, HM Recommended – HS, WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		Ι
ECA	Ι	P
HM	Ι	Р
WEM		Ι
FWM		
GIS		

Competency 7.2:	Identify requirements of Superfund Amendment
	Reauthorization Act (SARA)

Competency Builders:

List sections of SARA List key parts of SARA Explain Toxic Release Inventory (TRI)

BIL: Essential – PC, ESA, HS, ECA, HM, WEM

EDU:	12	AD
PC	P	R
ESA	P	R
HS	Р	R
ECA	Ι	R
HM	Ι	Р
WEM	Ι	Р
FWM		
GIS		

Competency 7.3: Identify roles and functions of government

Competency Builders:

Identify the roles and responsibilities of federal, state, and local government Identify the difference between enabling legislation and implementing regulations Explain the role of public involvement and participation (public notice, public

hearing, public comment)

BIL:	Essential – P	PC, ESA,	HS,	ECA,	HM
-------------	---------------	----------	-----	------	----

EDU:	12	AD
PC	I	Р
ESA	Ι	P
HS	Ι	Р
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 7.4: Identify requirements of waste and material transportation

Competency Builders:

Identify generator requirements to transfer hazardous materials and waste to treatment, storage, and disposal facilities

List key elements of C.F.R. 49

BIL: Essential – PC, ESA, HS, ECA, HM Recommended - WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	I	Р
ECA	I	Р
HM	Ι	P
WEM		Ι
FWM		
GIS		

Competency 7.5: Describe job-related activities subject to the Occupational Safety and Health Administration (OSHA)

Competency Builders:

Describe OSHA rules and regulations

Describe commercial diving operations involving the environmental field (IAW OSHA 29 CFR 1910.424)

Describe OSHA 29 CFR 1910.1000 Z Tables

Describe OSHA requirements applicable to blood borne pathogens (IAW OSHA 29 CFR 1910.1250)

Describe requirements set forth under Hazard Communication Laws and Regulations (IAW OSHA 29 CFR 1910.1200)

Describe noise exposure limits (IAW OSHA 29 CFR 1910.95)

Describe use and function of portable fire extinguisher (IAW ÓSHA 29 CFR 1910.157)

BIL:	Essential – PC, ESA, ECA, HM
	Recommended – HS, WEM

EDU:	12	AD
PC	Ι	P
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM	Ι	Р
WEM		Ι
FWM		
GIS		

Competency 7.6: Describe requirements of Resource Conservation and Recovery Act (RCRA)

Competency Builders: List sections of RCRA

List sections of RCRA List key components of RCRA Identify categories of hazardous waste Describe "cradle to grave" concept Identify secondary containment requirements for above and below ground storage

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended - HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	I.	Р
HM	Ι	Р
WEM	Ι	Р
FWM		
GIS		

Competency 7.7: Explain requirements of Clean Water Act

Competency Builders:

List sections of Clean Water Act List key components of CWA Identify key components of National Pollutant Discharge Elimination System Identify key components of 503 Sludge Regulations Explain pre treatment program Describe the Great Lakes Initiative (GLI)

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM	Ι	Р
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended - HS

Competency 7.8: Explain requirements of Safe Drinking Water Act (SDWA)

Competency Builders:

List sections of SDWA List key components of SDWA Explain purpose of Wellhead Protection Program Describe Sole Source Aquifer Designation

BIL: Essential – PC, ESA, ECA, HM Recommended - HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM	I	Р
WEM		
FWM		
GIS		

Competency 7.9: Explain requirements of Clean Air Act

Competency Builders:

List sections of CAA List key components of CAA, Chrome Reporting, and MACT's Explain Title V Air Emissions Inventory and Permitting Explain hazardous air pollutants (HAPs)

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA		Ι
HM	Ι	R
WEM		
FWM		
GIS		

BIL: Recommended – PC, ESA, HS, ECA, HM

Competency 7.10: Identify requirements of the Nuclear Waste Policy Act

Competency Builders:

List key provisions of Nuclear Waste Policy Act

List key agencies involved in high-level radioactive waste management program

List defining characteristics of four categories of nuclear waste

List method of disposal for each category of nuclear waste

Identify locations of storage for each type of nuclear waste

Essential – PC **BIL:** Recommended – HS, ECA, HM

EDU:	12	AD
PC	Ι	P
ESA		
HS		Ι
ECA		I
HM		Ι
WEM		
FWM		
GIS		

Competency 7.11: Identify key components of ISO 14000

Competency Builders: List standards of ISO 14000 Explain purpose of ISO 14000 Explain impact of ISO 14000

Unit 8: Environmental Science

BIL: Essential – PC, ESA, HM, WEM, FWM Recommended – HS, ECA, GIS

EDU:	12	AD
PC	Ι	Р
ESA	IR	Р
HS	Ι	R
ECA	Р	R
HM	Р	R
WEM	P	R
FWM	Р	R
GIS	IR	R

Competency 8.1: Identify the components of the earth's atmosphere

Competency Builders:

Describe the composition of the atmosphere

List the most abundant gases by percent volume which make up the composition of clean, dry air

Explain how water vapor varies within the atmosphere

List the major cycles of atmospheric gases

Explain the relationships that exist within the cycles of atmospheric gases

Describe the dependence of organisms on the atmosphere

Explain the importance and impact of water vapor in air

EDU:	12	AD
PC	Ι	P
ESA	Р	R
HS		
ECA	P	R
HM	Р	R
WEM	Ι	R
FWM	Ι	R
GIS	Р	R

BIL: Essential – PC, ESA, HM, GIS Recommended – ECA, WEM, FWM

Competency 8.2: Explain meteorology

Competency Builders:

Explain how the atmosphere is composed of layers of air of varying temperatures Differentiate among conduction, convection, and radiation

Differentiate between convection movement and general air circulation

List reasons for unequal heating of the earth's surface (land and water)

Explain how latitude affects the amount of energy received from the sun

Differentiate between weather and climate

Explain how mountain ranges affect climate

Differentiate between continental and marine climates

Identify the processes in the water cycle

Explain how humidity relates to the amount of water vapor in the air

Describe how air masses form

Explain the relationship of fronts to air masses

Differentiate fronts, temperature, and pressure on a weather map legend

Identify weather instruments (e.g., barometer, thermometer, anemometer) and atmospheric conditions that they measure

Identify the major kinds of clouds (e.g., cirrus, cumulus, stratus, and nimbus) Identify causes of hurricanes, tornadoes, and thunderstorms

Describe the characteristics of hurricanes, tornadoes, and thunderstorms

Describe the function of the ozone layer

Describe the impact of technology on the ozone

Interpret a weather map

Record measurements of local rainfall, temperature, air pressure, relative humidity, cloud cover and type, and wind speed

Explain the Greenhouse Effect

BIL: Essential – PC, ESA, HM, WEM, FWM Recommended – HS, ECA, GIS

	10	
EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	Р
HM	Ι	P
WEM	I	P ·
FWM	Ι	P
GIS	Ι	R

Competency 8.3: Determine the quality and quantity of water resources

Competency Builders:

Identify present and potential sources of water pollution (e.g., point and non-point sources)

Identify present and potential sources of water pollution in local area Evaluate quality of given sample of water

Calculate the volume and surface area of ponds, lakes, and streams

Plan improvements of waterways, ponds, stream banks, and shorelines Determine stream flow

Collect water samples from a representative test site

Label water samples from a representative test site

Store water samples from a representative test site

Determine the quality of water samples by measuring for pH, turbidity, dissolved solids and dissolved oxygen, visual observation

Investigate watershed boundaries and drainage patterns

Monitor water levels of rivers, streams, ponds and lakes

Monitor water levels of rivers, streams, ponds and lakes

Monitor erosion hazards and environmental quality

Determine quality of water samples by examination of particles

EDU:	12	AD
PC	Р	R
ESA	Р	R
HS	Ι	R
ECA	Ι	R
HM	Р	R
WEM	Р	R
FWM	Р	R
GIS	Р	R

BIL: Essential – PC, ESA, HM, WEM, FWM, GIS Recommended – HS, ECA

Competency 8.4: Outline the movement and distribution of water in the environment

Competency Builders:

List the areas of distribution of the earth's water

List the properties of water

Differentiate between suspensions and solutions

Illustrate the polar covalent bond between the hydrogen and oxygen atoms in a water molecule

Describe the three physical states of water

Explain evaporation, humidity, and condensation

Illustrate the hydrological cycle and its processes

Identify the functions and uses of water in the environment

EDU:	12	AD
PC	I	R
ESA	Р	R
HS	Ι	R
ECA	Р	R
HM	Р	R
WEM	P	R
FWM	Р	R
GIS	Р	R

BIL: Essential – ESA, HM, WEM, FWM, GIS Recommended – PC, HS, ECA

Competency 8.5: Analyze the relationships between plants and animals within ecosystems

Competency Builders:

Illustrate the major categories of organisms

Differentiate among biomes

Differentiate among types of ecosystems

Explain the dynamic nature of ecosystems

Identify the functions of producers and consumers

Explain how biotic and abiotic factors affect producers and consumers

Compare the growth and development of various types of plant forms

Categorize the various forms of animal life

Describe the interactions between producers, consumers, decomposers, and antagonists

Illustrate a food chain and food web

EDU:	12	AD
PC	Р	R
ESA	Р	
HS	Ι	R
ECA	Ι	R
HM		
WEM	Р	R
FWM	Р	R
GIS	P	R

BIL: Essential – PC, ESA, WEM, FWM, GIS Recommended – HS, ECA

Competency 8.6: Analyze the character and value of natural resources

Competency Builders:

Describe the value of natural resources

Describe the major categories of natural resources

Describe the types and distributions of natural resources

Contrast the origins of natural resources

Differentiate between renewable and non-renewable natural resources

EDU:	12	AD
PC	I	R
ESA	Р	
HS	Ι	R
ECA	I	R
HM	Ι	Р
WEM	Р	R
FWM	Р	R
GIS	P	

BIL: Essential – ESA, WEM, FWM, GIS Recommended – PC, HS, ECA, HM

Competency 8.7: Distinguish between renewable and non-renewable natural resources

Competency Builders:

Explain renewable natural resources

Explain the major categories of renewable natural resources

Identify the origins of renewable natural resources

Describe the value of renewable natural resources

Explain non-renewable natural resources

Explain the major categories of non-renewable natural resources

Identify the origins of categories of non-renewable natural resources

Describe the value of non-renewable natural resources

EDU:	12	AD
PC	Ι	R
ESA	Р	R
HS	Ι	R
ECA	Ι	R
HM	Р	R
WEM	Р	R
FWM	Р	R
GIS	Р	R

BIL: Essential – ESA, WEM, FWM, GIS Recommended – PC, HS, ECA, HM

Competency 8.8: Evaluate the exploitation of natural resources

Competency Builders:

Evaluate natural events that alter the environment

Evaluate various methods used to obtain natural resources

Evaluate the effects of obtaining natural resources on the environment

Identify the primary factor for the exploitation of natural resources

Identify the technological advances contributing to the exploitation of natural resources by industry

- Identify the technological advances contributing to the exploitation of natural resources by agriculture
- Identify the transportation advances contributing to the exploitation of natural resources

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS	Ι	R
ECA	Ι	R
HM	P	R
WEM	Ι	R
FWM		
GIS	Ι	R

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, GIS

Competency 8.9: Describe how alternative energy sources can reduce fossil fuel consumption

Competency Builders:

Describe the operation of a solar water distiller

Describe the operation of a solar oven

Describe the operation of a wind generated water pump

Describe the operation of a sundial

Describe the mechanical operation of a solar hot water heater

Describe advanced solar technology

Describe alternative energy sources and technology

EDU:	12	AD
PC	Р	R
ESA	P	R
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM	Ι	R
GIS	Р	R

BIL: Essential – PC, ESA, GIS Recommended – HS, ECA, HM, WEM, FWM

Competency 8.10: Evaluate the impact of an increasing human population on the environment and humans

Competency Builders:

Explain how the history and growth of the human population during the past four thousand years has affected the environment

Explain doubling time, natural increase, natural decrease, rate of population change, and zero population growth

Interpret a population profile

Compare the population profile of a developing country to one of a developed country

Analyze the relationship between a country's economic status and its population Identify the results of increases in the population on the environment

BIL: Essential – PC, ESA, HS, ECA, WEM, FWM, GIS Recommended – HM

EDU:	12	AD
PC	Ι	Р
ESA	Р	R
HS	I	P
ECA	Ι	R
HM	Ι	R
WEM	Р	R
FWM	I	R
GIS	Р	R

Competency 8.11: Evaluate the consequences of resource use and abuse on the environment

Competency Builders:

Identify the results of overuse that occurred from exploitation

- Trace the effects of pollution through a food chain
- Differentiate between biodegradable and non-biodegradable products
- Differentiate between organic farming and farming practices that incorporate the use of biocides and inorganic fertilizers and their comparative effects on the environment
- Describe solid waste disposal methods and groundwater contamination
- Explain how fossil fuels contribute to acid rain and petrochemical pollution

Evaluate pro and con attributes of nuclear energy

Describe impact of resource use and abuse on air quality

Describe impact of resource use and abuse on water quality

Describe impact of resource use and abuse on soil productivity

Identify several causes for the reduction of habitat

Differentiate among the various types of habitat

Analyze why preservation of habitat is essential

- List examples of threatened, endangered, introduced, extinct and extirpated plant and animal species
- Evaluate causes for the decrease of both plant and animal species
- Explain factors contributing to accidental resource abuse
- Explain factors contributing to incidental resource abuse

Explain factors contributing to deliberate resource abuse

EDU:	12	AD
PC	Ι	Р
ESA		
HS	Ι	R
ECA	Ι	Р
HM	I	R
WEM	Ι	R
FWM	Ι	R
GIS	IR	Р

BIL: Essential – PC, ECA Recommended – HS, HM, WEM, FWM, GIS

Competency 8.12: Identify the impact of individuals/organizations on the development of environmental policies and issues

Competency Builders:

List prominent individuals/organizations involved with environmental issues Explain current trends in property rights and compensation Identify the major issues addressed by environmental organizations Identify major incidents that have resulted in legislation Evaluate results of environmental restoration and conservation efforts Identify pros and cons of environmental organizations

BIL: Essential – PC Recommended – ESA, HS, ECA, WEM, GIS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	I	R
HM		
WEM		Ι
FWM		
GIS	Ι	R

Competency 8.13: Evaluate the effects of research and education on environmental issues

Competency Builders:

Identify the methods of research used by both public and private agencies in restoration and conservation efforts

Identify the process used in restoration and conservation research

Explain the interrelationship between research and education

Evaluate the outcome of environmental research projects

BIL: Essential – PC Recommended – ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	P
ESA	Ι	R
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM	I	R
GIS	I	R

Competency 8.14: Evaluate government's role in environmental restoration and conservation

Competency Builders:

Evaluate the effects legislation has had on the environment Identify federal and state agencies and their roles in restoration and conservation

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM	I	R
GIS	Ι	R

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

Competency 8.15: Evaluate the impact and implications of environmental restoration, preservation and resource conservation

Competency Builders:

Evaluate the importance of environmental restoration, preservation and conservation

Cite examples of various levels of environmental restoration, preservation and conservation

Evaluate the results of environmental restoration, preservation and conservation

Identify economic issues of environmental restoration, preservation and conservation projects

Identify non-economic benefits of environmental restoration, preservation and conservation activities

EDU:	12	AD
PC	Ι	Р
ESA	Р	R
HS	Ι	P
ECA	Ι	P
HM	Ι	R
WEM	Р	R
FWM	Р	R
GIS	Р	R

BIL: Essential – PC, ESA, HS, ECA, GIS Recommended – HM, WEM, FWM

Competency 8.16: Evaluate the role of responsible stewardship in maintaining a healthy environment

Competency Builders:

Describe responsible stewardship

Evaluate the need for responsible stewardship and environmental accountability Identify types of environmental accountability and cite examples of each Cite results stemming from responsible stewardship

Unit 9: Energy Sources

BIL: Recommended – PC, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA		
HS		
ECA	Ι	R
HM		
WEM	Ι	R
FWM		
GIS		

Competency 9.1: Identify conventional energy sources and their environmental impact

Competency Builders:

Identify natural gas resources and their environmental impact Identify coal resources and their environmental impact Identify petroleum resources and their environmental impact Identify nuclear resources and their environmental impact Identify hydroelectric resources and their environmental impact

BIL: Recommended - PC, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA		
HS		
ECA	I	R
HM		
WEM	Ι	R
FWM		
GIS		

Competency 9.2: Identify alternate energy sources and their environmental impact

Competency Builders:

Identify geothermal resources and their environmental impact Identify wind resources and their environmental impact Identify solar energy resources and their environmental impact

Unit 10: Environmental Assessment

BIL:	Essential - ESA
	Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 10.1: Gather data for assessment (Phase I)

Competency Builders:

Identify key elements in Phase I, II, and III assessments Describe the importance of a title search Gather drainage area data Complete field data sheet Record physical and topographical data Interpret basic soil differences Measure ground water level Identify flood plain areas Measure stream flow Complete a title search Calculate water run off

BIL:	Recommended – PC, ESA, ECA, HM
------	--------------------------------

EDU:	12	AD
PC	Ι	R
ESA		Ι
HS		
ECA		Ι
HM	Ι	R
WEM		
FWM		
GIS		

Competency 10.2: Identify past practices (Phase I)

Competency Builders:

Locate regulatory reference materials Collect background information Verify accuracy of information Investigate background of complaint Interact with various regulatory agencies Refer to regulatory reference materials

BIL: Essential – PC, ESA, HS, HM, WEM, GIS Recommended – ECA, FWM

EDU:	12	AD
PC	Ι	Р
ESA	I	P
HS	I	P
ECA	Ι	R
HM	Ι	Р
WEM	I	Р
FWM		Ι
GIS	I	Р

Competency 10.3: Collect physical data: composite; grab; continuous; remote sensing; grid; background; core; auto; biological; air and opacity (Phase II)

Competency Builders:

Monitor protocol and procedures Select appropriate equipment Identify safety hazards of materials Demonstrate procedures for safe sampling collection and handling Develop "Chain of Custody" procedures Develop a sampling plan Describe federal and state sampling regulations Follow appropriate preparation procedures Follow appropriate marking procedures

BIL:	Essential – ESA, WEM
	Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS		
ECA	Ι	
HM	Ι	R
WEM	I	P
FWM		
GIS		

Competency 10.4: Conduct lab/field analysis: biochemical oxygen demand (BOD); chemical oxygen demand (COD); pH; specific conductivity; dissolved oxygen; suspended solids; nitrates and nitrites; air particulate; percolation.

Competency Builders:

Measure water temperature Measure water hardness Measure water level and flow Measure turbidity Measure oxygen level (HS) Measure Lower Explosive Levels (LEL) [R-HS] Measure air flow rate and temperature [R-HS] Describe procedures for measuring toxic gasses, organic vapors, and radiation [R-HS] Measure toxic gases [R-HS] Measure organic vapors [R-HS] Measure basic field levels of contamination [R-HS] Measure radiation [R-HS] Sample for radon [R-HS] Measure flashpoint [R-HS] Measure free liquids Measure moisture content/dry content (DC) Measure density Sample for chlorinated compounds Identify background analytical data to establish norm for site

BIL: Essential – PC, ESA, HS, HM, WEM, GIS Recommended – ECA, FWM

EDU:	12	AD
PC	I	Р
ESA	I	Р
HS	I	P
ECA	I	R
HM	Ι	Р
WEM	Ι	P
FWM		Ι
GIS	I	P

Competency 10.5: Analyze data

Competency Builders:

Draw conclusions from data Write technical reports Explain appropriate QA/QC procedures Identify provisions of SW846

EDU:	12	AD
PC	I	P
ESA	I	P
HS	I	P
ECA	Ι	Р
HM	Ι	P
WEM	I	Р
FWM	I	Р
GIS	Ι	P

BIL: Essential – PC, ESA, HS, ECA, WEM, FWM, GIS Recommended – HM

Competency 10.6: Demonstrate the use of fundamental of statistics in sampling practices

Competency Builders:

Distinguish a population Demonstrate the steps of statistical analysis Identify a random sample from a population Explain the use a random numbers table

BIL: Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA		
HS	Ι	R
ECA		Ι
HM	Ι	R
WEM	I	Р
FWM		
GIS		

Competency 10.7: Identify procedures for site remediation

Competency Builders:

Interpret Data Identify options Resolve issue with concerned party(s) Assess options for corrective action Implement selected option for correction Document investigation with summary reports Identify health and safety activities

BIL: Recommended – PC, ESA, ECA, HM, WEM

EDU:	12	AD
PC		Ι
ESA		Ι
HS		
ECA	Ι	R
HM		Ι
WEM	I	R
FWM		
GIS		

Competency 10.8: Assess water systems

Competency Builders:

Complete a water quality assessment on a local surface water body Complete a ground water quality assessment within a well head protection area Develop a NPDES Plan for a construction site Complete a surface water assessment within a watershed Develop a primary and secondary containment system Evaluate the efficiency of a treatment facility Conduct a sediment study to determine best management practice

ERIC Full fixet Provided by ERIC

BIL: Essential – ESA Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC		I
ESA		Р
HS		I
ECA	I	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 10.9: Assess air systems

Competency Builders:

Conduct air emission inventory Monitor indoor air quality Assess pollution control system Monitor auto emissions Monitor volatile organic compounds (VOC)

BIL:	Recommended – PC, HS, ECA, HM
-------------	-------------------------------

EDU:	12	AD
PC		Ι
ESA		
HS		Ι
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 10.10: Manage solid waste systems

Competency Builders:

Select a municipal solid waste site (MSW) Audit a MSW Identify resources available through recycled solid waste Draft a proposal to improve the control of solid waste management Develop and maintain satellite accumulation area (SAA) Draft/revise a chemical hygiene plan (OSHA 29 CFR 1910.1450)

[R-HS]

Unit 11: Plant Science

BIL: Essential – ESA, WEM, FWM Recommended – ECA

EDU:	12	AD
PC		
ESA	Р	R
HS		
ECA	Р	R
HM		
WEM	Р	R
FWM	Р	R
GIS		

Competency 11.1: Explain plant structure and uses

Competency Builders:

- List the parts of the plant and their functions including: seed (embryo, cotyledon, groat), root (tuber, rhizome, stolon, corm, bulb), stem (xylem, phloem, pith), leaf (blade, lobe, cotyledon, auricle, ligule), meristem (apical, dominant, terminal, auxiliary bud), and flowers (anther, stamen, style, ovary)
- Contrast dicots and monocots based upon meristematic locations and reproductive structures
- Describe the uses of plants (e.g., food, feed, fiber, soil, wood, recreation, erosion control, nutrient recycling, medicinal, industrial-dyes, chemicals)
- Differentiate among perennials, biennials and annuals
- Differentiate between seed crops and vegetative crops
- Describe the life cycle of a crop plant (i.e., from seed to vegetative stage to reproductive stage to seed)
- Identify the characteristics used in plant identification (e.g., leaf type and arrangement, type of fruiting structures, type of root system, stem characteristics)

BIL: Essential – ESA, FWM Recommended – ECA, WEM

EDU:	12	AD
PC		
ESA	Р	
HS		
ECA	Ι	R
HM		
WEM	Ι	R
FWM	Ι	Р
GIS		

Competency 11.2: Describe the physiology of plants

Competency Builders:

Identify the parts of a plant cell and the function of each part

Describe the process of photosynthesis

Describe the function of the chlorophyll molecule

Describe the process of respiration

Write a simplified word and symbol formula of photosynthesis and respiration

List conditions that affect photosynthesis

Compare the processes of photosynthesis and respiration

Explain the process of osmosis

Describe the basic make-up and function of carbohydrates (sugars and starches), lipids (fats and oils) and proteins (structural and enzymatic)

BIL: Essential – FWM Recommended – ESA, WEM

EDU:	12	AD
PC		
ESA	Ι	R
HS		
ECA		
HM		
WEM	Ι	R
FWM	Ι	P
GIS		

Competency 11.3: Explain plant nutrition

Competency Builders:

Explain how available nutrients, leaching, element, organic fertilizer, and

inorganic fertilizer impact plant nutrition [R-WEM]

Identify the primary elements and their functions in plant growth Explain green manure crop

Explain the relationship of adequate fertilization to yields

Explain the relationship of tillering in grain crops

Explain the relationship of return on investment in crop production

Describe purpose of inoculation of legume seeds with nitrogen fixing organisms

Explain minimum, optimum, and luxury consumption of soil nutrients by the plant [R-WEM]

Compare nutrients in the soil versus what plants get from air and water

BIL: Recommended – ESA, FWM

EDU:	12	AD
PC		
ESA	I	R
HS		
ECA		
HM		
WEM		
FWM		I
GIS		

Competency 11.4: Evaluate plant fertilization techniques

Competency Builders:

Identify the micro-nutrients needed in plants and their chemical symbols Identify deficiencies caused by minor element deficiency Differentiate between organic and inorganic fertilizers Identify global uses of inorganic and organic fertilizers Describe the pollution hazards associated with over fertilization Evaluate the latest techniques used to dispense only required amounts of fertilizer for crops

BIL: Recommended – ESA, ECA, FWM

EDU:	12	AD
PC		
ESA	Ι	R
HS		
ECA	Ι	R
HM		
WEM		
FWM		Ι
GIS		

Competency 11.5: Identify environmental factors affecting plants

Competency Builders:

Identify external influences on plant growth

Explain photoperiodism and dormancy in plants

Evaluate the effects of plant hormones (e.g., auxins, gibberellins, and cytokinins) on plant growth

Evaluate the commercial uses of auxins

Describe the various tropic responses

Explain the cause of gnostic movement

List some warm and cool season crops

List optimum growth conditions for different types of plants

Explain how crops may be managed to maximize environmental resources (e.g.,

establishing crop canopies to intercept 100% of light energy prior to fruiting, planting at a date that ensures sufficient biomass to attain maximum yield)

Describe the influence of day length on plant growth

Explain how the cycle of the seasons influences plant growth

Identify how planting date, row spacing, and plant population affect crop yield and quality

BIL: Essential – WEM, FWM Recommended – ESA, GIS

EDU:	12	AD
PC		
ESA	Ι	R
HS		
ECA		
HM		
WEM		Р
FWM	Ι	Р
GIS		Ι

Competency 11.6: Conduct vegetation analysis

Competency Builders:

Demonstrate the proper use of field instruments

Conduct a quadrant analysis

Conduct a line transect analysis

Conduct a belt transect analysis

Conduct a random pairs analysis

Perform a comprehensive ecological study of a forest

BIL: Recommended – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		I
GIS		

Competency 11.7: Explain methods to improve plant seed quality

Competency Builders:

Explain how heredity, genetics, inbreeding, crossing, progeny, self-fertilization, cross-fertilization, mutation, hybrid, systemic pesticide, toxic, and vigor impact seed quality

Explain seed development, morphology and composition

List the characteristics of good seeds

Describe the factors that create poor seed quality

Describe the history of crop improvement

List major aims of plant breeders

Describe three methods of crop improvement

Identify state agency responsible for seed certification

Describe major points and economic aspects to consider when identifying varieties for planting

Explain the danger of monogenetic type crops (e.g., southern corn blight) Evaluate the possible impact of genetic engineering

Describe breeding for pest resistance (insects, nematodes, and diseases)

Describe the classes of seed (e.g., breeders, registered, certified)

Differentiate between hybrid seed and seed from open pollinated or self-fed plants Explain how a "hard seed coat" can be used to maintain high quality seed Explain why plant breeding takes several years

Explain why breeders have to constantly be developing improved varieties

BIL: Recommended – ESA, FWM

EDU:	12	AD
PC		
ESA	Ι	R
HS		
ECA		
HM		
WEM		
FWM	Ι	R
GIS		

Competency 11.8: Control weeds

Competency Builders:

List ways weeds spread

List reasons weeds are harmful

- Explain the following methods of controlling weeds (e.g., mechanical, biological, IPM)
- Explain mode of action of common herbicides

Explain weed resistance to herbicides

- Evaluate possible applications of genetic engineering and gene splicing to weed control
- Explain how a spray system works (pump, pressure regulator)

Explain how herbicides kill weeds

Explain why some herbicides are applied before or after a crop is planted

Explain why weed problems depend on when they occur during growing season of crop

Identify the major weed species and options available for controlling each Apply herbicide(s)

BIL: Essential – WEM Recommended – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		P
FWM		Ι
GIS		

Competency 11.9: Explain moisture control

Competency Builders:

Identify the impact of irrigation, mulch, organic matter, runoff, seepage, subsoiling, and tillage on moisture control List three methods of moisture control List the cultural practices used in moisture control (annually and at planting) Describe importance of internal and external drainage in soils for crop production Describe importance of irrigation to crops Describe the methods of irrigation (e.g., drip, furrow, sprinkler, flood) Explain the unique properties of water Describe the world's water supply by volume and percent usable Explain how irrigation causes salinity problems Describe several regions of the world where salinity has stopped entirely or decreased crop production Explain salt water intrusion in irrigation wells Describe desalination possibilities for irrigation water Explain subsidence caused by removal of irrigation water Describe methods used to reduce irrigation water loss Explain the use of tensiometers and moisture meters Describe the idea of permaculture Explain irrigation scheduling

BIL:	Essential – FWM
	Recommended – ESA, ECA, WEM

EDU:	12	AD
PC		
ESA	P	
HS		
ECA	Ι	
HM		
WEM	Ι	P
FWM	I	Р
GIS		

Competency 11.10: Classify plants

Competency Builders:

Describe the classifications system of living things according to the Kingdoms of Monera (Prokaryotic Cells), Protista (Eukaryotic Cells), Animalia, and Plantae

Describe the different levels of classification within the plant kingdom Explain the differences in the classes Gymnospermae and Angiospermae Explain Carolus Linnaeus' binomial system of classification for genus and species Explain the significance of species plant breeding

BIL: Recommended – ESA

EDU:	12	AD
PC		
ESA	Р	R
HS		
ECA		
HM		
WEM		
FWM		
GIS		

Competency 11.11: Evaluate the role of genetics in environmental systems

Competency Builders:

Describe the role played by chromosome, gene, DNA, RNA, genotypes, phenotypes, heterozygous, homozygous, alleles, hybrid, inbreeding, hybrid vigor, polyploidy, molecular biology, genetic engineering, genes, sexual crossing, genome, vectors, gene transfer, natural identification, artificial identification, heredity, chromosomes, gene-splicing, gene cloning, toxins,

pathogens, and biological control in genetics

Describe mitosis

Describe meiosis

Explain incomplete dominance

Explain the cause of mutation

Describe the occurrence of multiple alleles

Explain the importance of mass identification

Describe the contributions of scientists to applied genetics (e.g., Burbank, Mendel) Explain the "Green Revolution"

Evaluate the possible impact of genetic engineering to plant improvement

Evaluate possible applications of genetic engineering and gene splicing on pest control

99

...

BIL: Essential – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	P
GIS		

Competency 11.12: Propagate plants

Competency Builders:

Contrast sexual and asexual propagation

Identify factors that affect seed germination

Describe mass propagation through tissue culture

Identify some of the pitfalls to avoid in propagating plants

Describe the soil chemical and physical properties that influence seed germination and emergency

Evaluate anthroculture and gene splicing as methods for genetic improvement Explain biotechnology as it relates to plant improvement

Compare organic farming to standard production systems

Describe hydroponic crop production

BIL: Essential – FWM Recommended – ESA

EDU:	12	AD
PC		
ESA		Ι
HS		
ECA		
HM		
WEM		
FWM	Ι	Р
GIS		

Competency 11.13: Identify plant diseases

Competency Builders:

Identify major causes of plant diseases Identify the symptoms and effects of major diseases on plants Identify several methods by which diseases are transmitted in plants Identify environmental conditions that favor or hinder disease development

BIL: Recommended – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		Ι
GIS		

Competency 11.14: Control plant diseases and pests

Competency Builders:

Explain the "disease triangle"

Evaluate cultural practices that may be used to prevent plant diseases Evaluate the impact of genetic engineering on control of plant disease Explain how chemicals control diseases

Evaluate how genetic resistance reduces production costs and potential environmental impact from spraying

Evaluate the economic importance of controlling plant diseases

Employ safety precautions in handling pesticides

Control plant diseases through fumigant, fungicide, resistance, sprays, dust, volatile, crop rotation, and sanitation

Identify control methods of plant pests (e.g., insects, slugs, worms, nematodes)

Essential - ESA, WEM, FWM **BIL:**

EDU:	12	AD
PC		
ESA	I	Р
HS		
ECA		
HM		
WEM	I	Р
FWM	Ι	P
GIS		

Competency 11.15: Explain aquatic biology

Competency Builders:

Identify and classify aquatic plants, including algae, fungi and aquatic insects Explain eutrophication principles Describe stream pollution and species diversity

Describe effects of algae on water quality

Unit 12: Soil Science

BIL: Essential – ESA, ECA, HM, WEM, FWM Recommended – PC

EDU:	12	AD
PC	I	R
ESA	Р	R
HS		
ECA	Р	R
HM	P	R
WEM	Ι	P
FWM	I	Р
GIS		

Competency 12.1: Describe soil geology

Competency Builders:

Identify the four major layers of the earth Identify classes of rock (e.g., igneous, sedimentary, metamorphic) Match rock classes with their mode of origin Classify common rocks (e.g., sandstone, limestone, shale, slate, marble, quartzite, granite, obsidian) Identify particles of varying size and density Explain how materials deposited in the ocean form sedimentary rock Explain how rocks change from one form to another Explain the relationship of minerals to granite Describe soil formation Differentiate among the major types of parent material Identify the factors that exert the most influence on soil formation List the forms of plant life found in poor soil conditions Explain how different climatic conditions affect soil formation

Differentiate between surface soil and subsoil

Identify the soil horizons in a soil profile

EDU:	12	AD
PC	Ι	R
ESA	P	R
HS		
ECA	I	R
HM	I	R
WEM	Ι	R
FWM	Р	R
GIS		

BIL: Essential – ESA, FWM Recommended – PC, ECA, HM, WEM

Competency 12.2: Describe composition of soil

Competency Builders:

List the main components found in a normal soil

Explain the composition of the solid part of the soil

Describe the main sources of organic matter

List the approximate percentage in which each of the soil properties is found in a normal soil

Differentiate between soil low in organic matter and soil high in organic matter Explain the value of each soil component with regard to proper growth of plants

BIL:	Essential – ESA, FWM
	Recommended – PC, ECA, HM, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS		
ECA	Ι	R
HM	Ι	R
WEM	Ι	R
FWM	P	R
GIS		

Competency 12.3: Identify physical properties of soil

Competency Builders:

Interpret the organic matter content of the surface soil using soil color Interpret internal drainage of the subsoil by observing soil color Differentiate between "light" and "heavy" soils Determine the texture of a soil sample Classify soil samples using the textural triangle as a guide Explain the effects of soil structure on productivity Explain why dark color is not always due to organic matter content Explain the effects of organic matter on soil structure Describe the effects of soil structure on infiltration, percolation, and the potential for ground water contamination Explain how soil type affects crop identification Compare root restricting boundaries (plow pan, fragipan, etc.)

Describe factors that contribute to the information of tillage or traffic pans

Describe methods for alleviating traffic pans (e.g., subsoiling, reduced tillage, notill)

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS		
ECA	I	R
HM	I	R
WEM		Ι
FWM	Ι	P
GIS		

Competency 12.4: Describe the biological properties of soil

Competency Builders:

List the biological properties of soils

Explain how biological properties affect the nature and conditions of soil

Identify the microorganisms

List the soil microorganisms

List the soil microorganisms beneficial to farmers

Describe the role of higher forms of plant and animal life in soil

Explain the nitrogen cycle and phosphorus cycle

Explain where the energy comes from to carry out the nitrogen transformations Identify common bacteria in the nitrogen cycle

Explain the symbiotic relationship between bacteria and plants

Specify where bacteria are located in the root of the plants

Explain nitrogen fixation

Identify the roles of different types of bacteria in nitrogen fixation

Describe the concept of mineralization and immobilization of plant nutrients by soil microorganisms

Explain the biological effects on soils when amended with fertilizers, pesticides, and recyclable materials such as municipal wastes

Describe the effects of poor drainage or waterlogging on soil properties and plant growth

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA	Ι	R
HM	I	R
WEM		I
FWM	I	Р
GIS		

Competency 12.5: Describe the chemical properties of soil

Competency Builders:

List the chemical properties of soil

Explain how chemical properties affect the biological properties of soil and the nature and conditions of the soil

Explain the chemical effects on soils when amended with fertilizers, pesticides, and recyclable materials such as municipal wastes

Describe the effect of sand, silt, and clay content on water and nutrient holding ability of soils (CEC-cation exchange capacity)

Explain how charges on clay particles affect nutrient retention Compare different types of clay to soil nutrient availability

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS		
ECA	Ι	R
HM	Ι	R
WEM	Р	R
FWM	Р	R
GIS		

Competency 12.6: Describe soil acidity and alkalinity

Competency Builders:

Create a chart of the pH scale to show degrees of soil acidity and alkalinity Conduct laboratory tests for acidity of common products (e.g., fresh milk, sour

milk, orange juice, and lemon juice)

Explain how calcium affects soil acidity and the availability of other elements Explain how pH symbols are used in denoting the degree of acidity and alkalinity

in soils

Describe the conditions that lead to soil acidity or alkalinity

List the pH ranges of the major crops

Explain how soil acidity or basicity is corrected

Explain how soil pH affects the availability of nutrients

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA	Ι	R
HM	Ι	R
WEM	Ι	Р
FWM	P	R
GIS		

Competency 12.7: Test soil samples to determine characteristics

Competency Builders:

Collect soil samples from test area Complete soil data forms Determine soil pH Conduct soil mineral and elemental analysis Record texture, structure, temperature, and color of each soil layer Construct a soil micro monolith of a soil profile or soil pit Analyze soil data Write report

BIL:	Essential – ESA, FWM
	Recommended – PC, WEM

EDU:	12	AD
PC		Ι
ESA	Ι	P
HS		
ECA		
HM		
WEM	_	Ι
FWM	Ι	Р
GIS		

Competency 12.8: Explain liming to correct soil acidity

Competency Builders:

List the benefits obtained from liming a soil

List the steps involved in liming acid soils used for growing plants Explain how lime reduces soil acidity

Explain how to determine the lime requirement for a specific crop Identify different kinds of lime materials

Describe the appearance of plants growing in soils of different pH levels List some sources of commercial lime

Describe different methods of applying lime and the type of equipment used Formulate a liming schedule for various crops

Explain the effect of soil acidity on soil structure, water infiltration and soil aggregation

List some problems and effects associated with over-liming soil Explain how lime particle size affects its ability to reduce soil acidity List several materials that can be used to increase soil acidity or lower pH

BIL: Essential – ESA Recommended – PC, ECA, FWM

EDU:	12	AD
PC		Ι
ESA	Ι	Р
HS		
ECA	I	R
HM		
WEM		
FWM	Ι	R
GIS		

Competency 12.9: Identify nutrient requirements of plants

Competency Builders:

Identify groups into which nutrient requirements of plants are divided

Describe the interactions of nutrient availability levels on nutrient toxicity and deficiency

Identify toxicity symptoms caused by excessive manganese and aluminum Identify major sources of N, P, K, S, Ca, and Mg in soils

Identify factors that influence the availability of these nutrients in soils Explain how soil pH affects nutrient availability

Explain how different types of root systems affect plant nutrient uptake

BIL: Recommended – PC, ESA, FWM

EDU:	12	AD
PC		I
ESA	Ι	R
HS		
ECA		
HM		
WEM		
FWM	Ι	R
GIS		

Competency 12.10: Differentiate between organic and inorganic fertilizers

Competency Builders:

Identify sources of inorganic fertilizers

Identify sources of organic fertilizers

Identify the main plant nutrients supplied by inorganic and organic fertilizers Identify multinutrient fertilizers

Explain how plants obtain carbon, oxygen, hydrogen, nitrogen, phosphorus, and potassium

Differentiate between a fertilizer grade and a fertilizer analysis

Explain fertilizer ratio

Explain where most of the nitrogen in the soil is derived

Describe the advantages and disadvantages of dry versus liquid fertilizer Explain the advantages of foliar fertilization

Identify the factors that influence the efficiency of applied fertilizer such as leaching or fixation

BIL: Recommended – PC, ESA, FWM

EDU:	12	AD
PC		I
ESA	I	R
HS		
ECA		
HM		
WEM		
FWM	Ι	R
GIS		

Competency 12.11: Describe fertilizer application

Competency Builders:

Explain variable rate fertilization using GPS

Explain the economic factors to consider in buying fertilizers

Describe the methods of applying solid and liquid fertilizers

Explain the purpose of the different placements of fertilizer in the soil, and the

relation these placements have to the seed and the growing plant

List the ways fertilizer benefits crop production

Explain how fertilizer applications can decrease crop production

Identify possible losses of each major nutrient and their influences on quality of

water in lakes and streams, groundwater quality, and atmospheric quality

EDU:	12	AD
PC	I	R
ESA	I	Р
HS		
ECA	I	Р
HM		I
WEM	I	P
FWM	I	Р
GIS		

Competency 12.12: Explain classification of soil water

Competency Builders:

Compare gravitational, capillary, and hygroscopic water

Demonstrate the water-holding capacities of sandy and clayey soils

Determine soil water availability

List ways available water can be lost by soils

Identify factors in determining water movement in the soil

Explain the main purpose of water conservation

- Explain how production techniques influence the efficiency with which water is utilized by plants
- Explain water holding capacity and how to determine field soil moisture
- Explain the impact of texture and structure on field capacity

BIL: Essential – PC, ESA, WEM, FWM Recommended - GIS

EDU:	12	AD
PC	I	Р
ESA	I	P
HS		
ECA		
HM		
WEM	I	Р
FWM	I	Р
GIS	Ι	R

Competency 12.13: Explain the relationship between soil classifications and land use

Competency Builders:

List the physical features of land and soil necessary for classifying land Explain the characteristics of each of the land classes Explain how land capability classes are recorded for use Explain how topography results from rock type and the opposition of internal and external forces acting on the land surface Construct a simple topographic map from a three-dimensional model Demonstrate how chemical and physical weathering work together Explain how soil relates to the weathering process Differentiate among topsoil, subsoil, and parent (weathered) rock Explain permeability Differentiate between permeability and porosity Identify the equipment needed to classify soils Identify the management practices followed to obtain maximum yields and proper soil conservation Differentiate among different solid structures and textures Differentiate between erosion and weathering Describe the role of gravity as the force behind erosion Explain how vegetation and type of rock affect weathering rate Identify the agents of erosion, their relative effect, and action to gravity Explain why and how glaciers move List evidences of glaciation Explain why water is the principal agent of erosion Explain how slope and velocity increase the rate of erosion Identify landforms that will result from stream action, (e.g., deltas, meanders, flood plains, oxbow lake, cut bank, sand bars) Explain how forces within the earth cause uplift or mountain building Explain folding

ERIC

Differentiate among normal, reverse, and horizontal faults Explain plate tectonics (cause) and continental drift (effect) Explain convection currents Explain how the occurrence of faults relates to earthquakes Explain how seismographs record earthquakes Differentiate between the focus and the epicenter Explain tsunami Describe how use of land is affected by soil depth, texture, permeability, slope, surface drainage, and degree of erosion Differentiate among types of water erosion Explain why soil erosion is very important to land evaluation Describe the major types of erosion Identify the factors that influence erosion of soil

Evaluate the effectiveness of erosion prevention procedures

Evaluate land use for construction purposes

Unit 13: Hydrology

BIL: Essential – PC, ESA, HM, WEM, GIS Recommended – ECA, FWM

EDU:	12	AD
PC	I	Р
ESA	I	Р
HS		
ECA	P	R
HM	P ·	R
WEM	Ι	Р
FWM		Ι
GIS	Ι	Р

Competency 13.1: Explain hydrology

Competency Builders:

Describe the hydrologic cycle

Differentiate between the surface hydrologic system and the subsurface

hydrologic system

Explain the role of a hydrologist and a hydrogeologist

Identify terminology used in groundwater hydrology

Explain watersheds in relationship to groundwater table

Describe the basic concepts of flow of groundwater in various well models

Identify geologic conditions for determining the potential groundwater supply in various lithologic settings

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		
ECA	Ι	R
HM	Ι	Р
WEM	Ι	Р
FWM	Ι	R
GIS	I	R

BIL: Essential – PC, ESA, HM, WEM Recommended – ECA, FWM, GIS

Competency 13.2: Explain geologic and meteorologic principles affecting groundwater supply

Competency Builders:

Explain evaporation, transpiration, and evaportranspiration

- Describe the relationship between precipitation and aquifer recharge
- Determine basic rock type of drill cuttings and their relative importance to groundwater potential
- Determine the porosity of unconsolidated sediment in relation to grain size, grain distribution and composition
- Determine relative permeability of unconsolidated sediment
- Explain the relationship between specific retention and the specific yield of various rock types and characteristics
- Calculate the basic hydraulics involved with groundwater flow including velocity, hydraulic head, and potential flow
- Describe the basic concepts of flow of groundwater in various well models

Identify geologic conditions for determining the potential groundwater supply in various lithologic settings

EDU:	12	AD
PC		Ι
ESA	Ι	Р
HS		
ECA		Ι
HM	Ι	R
WEM	Ι	Р
FWM		I
GIS		Ι

Competency 13.3: Conduct channel flow analysis

Competency Builders:

Identify open channel flow equipment Measure open channel flow Characterize open channel flow Calculate open channel flow

BIL:	Essential - ESA
	Recommended – PC, ECA, HM, WEM, GIS

EDU:	12	AD
PC		Ι
ESA		Р
HS		
ECA	Ι	R
HM	Ι	R
WEM		Ι
FWM		
GIS		Ι

Competency 13.4: Identify basic criteria for water well design

Competency Builders:

Identify various forms of well records

Determine subsurface structure and flow patterns

Describe basic methods of drilling

Differentiate between production, injection, and monitoring wells

Describe a basic water well system for production, injection, and monitoring

Identify applicable regulations/permit procedures

Identify well development requirements

Identify problems that may develop over the lifetime of a well

Identify well performance characteristics (e.g., flow rate, draw down)

Identify aquifer characteristics that may affect performance

BIL: Essential – PC, ESA, WEM Recommended – ECA, GIS

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS		
ECA	Ι	R
HM		
WEM	Ι	Р
FWM		
GIS		I

Competency 13.5: Identify differences in groundwater potential

Competency Builders:

Identify various geologic regions in the state Describe the occurrences of groundwater in these geologic settings Identify important aquifers in these geologic settings Identify groundwater regions of the United States Identify important aquifers in the United States

EDU:	12	AD
PC	I	Р
ESA	I	Р
HS		
ECA	Ι	Р
HM	Ι	Р
WEM	I	P
FWM		Ι
GIS		I

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended – FWM, GIS

Competency 13.6: Identify environmental hazards associated with groundwater supplies

Competency Builders:

Describe standard water quality tests Identify various sources of contamination Identify methods of restoration of groundwater supplies Explain water law Explain the environmental policies regarding groundwater supplies Identify elements necessary for developing a study of potential groundwater contamination

Unit 14: Pollution Control I

BIL: Essential – PC, ESA, ECA Recommended – HS, WEM, FWM

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	Ι	R
ECA	Ι	Р
HM		
WEM		Ι
FWM		Ι
GIS		

Competency 14.1: Identify presence of pollution

Competency Builders:

Evaluate complaints Verify complaints Determine extent of hazard Prioritize complaints Determine jurisdictions Monitor instrumentation Photograph and/or video site Analyze data Interpret results Report violations

BIL: Essential – PC, ESA, ECA Recommended – HS, WEM

EDU:	12	AD
PC	Ι	Р
ESA	IR	Р
HS	I	E
ECA	Ι	Р
HM		
WEM		Ι
FWM		
GIS		

Competency 14.2: Perform environmental sampling

Competency Builders:

Make and record observations Conduct interviews Identify sampling instruments Identify appropriate sampling protocols Calibrate sampling instruments Take readings Determine sample types Identify sampling containers Take samples Preserve samples Analyze samples Complete chain of custody

BIL: Essential – PC, ESA Recommended – ECA, WEM

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS		
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 14.3: Describe environmental impact from industrial and nonindustrial processes

Competency Builders:

Compare input flow vs output and waste stream flows from industrial as well as non-industrial (agricultural) processes

Identify pollution prevention applications

Describe environmental economic impact statements for an industrial process

Unit 15: Pollution Control II

BIL: Essential – PC, ECA, HM Recommended – ESA, HS, WEM

EDU:	12	AD
PC	I	P
ESA		I
HS	I	R
ECA	I	Р
HM	I	Р
WEM		
FWM		Ι
GIS		

Competency 15.1: Manage pollution

Competency Builders:

Determine applicable regulations Control emissions and discharges from sources Install containment barriers Reroute source Implement corrective actions Implement contingency plan Monitor levels of pollution Develop episode control plan

BIL:	Essential – PC, ESA, ECA, HM
	Recommended – HS, WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	I ·	Р
HM	Ι	Р
WEM		Ι
FWM		
GIS		

Competency 15.2: Quantify extent of pollution

Competency Builders: Conduct field survey Determine sampling points Determine threat to public health and safety Sketch site Notify appropriate officials/agencies/personnel Initiate further studies Develop episode control plan

BIL: Essential – PC, ESA, ECA, HM Recommended – HS, WEM

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	I	R
ECA	Ι	P
HM	I	Р
WEM		Ι
FWM		
GIS		

Competency 15.3: Locate sources of pollution

Competency Builders:

Plan search activities Examine documentation history Conduct search activities Take measurements [R-HS] Sample for source of pollution Conduct mechanical tests Correct mechanical defects

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	Р
HM	Ι	P
WEM		I
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, HM Recommended – HS, WEM

Competency 15.4: Monitor remediation activities

Competency Builders:

Describe procedure for monitoring pollution abatement at the source Describe methods for monitoring magnitude of pollution [R-HS] Describe procedure for monitoring clean-up [R-HS] Assess impact of the event Monitor the pollution abatement

BIL: Essential – PC, ESA, ECA, HM Recommended – HS, WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	R
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM		Ι
FWM		
GIS		

Competency 15.5: Conduct Remediation Activities

Competency Builders:

Initiate pollution abatement at the source Investigate alternative technologies Recommend methods of cleanup Participate in the implementation of the remediation activity

BIL: Essential – PC, ECA, WEM Recommended – HM

EDU:	12	AD
PC	Ι	Р
ESA		
HS		
ECA	Ι	Р
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

Competency 15.6:	Establish pollution management and prevention	
	program	[E-PC]

Competency Builders:

Determine possible sources of pollution Assess liability of possible pollution sources Establish purchasing policies Assess material substitution Assess incoming materials Develop proper handling procedures Communicate importance of RRR (reduce, reuse, and recycle) Participate in pollution prevention pledge program Recommend/implement process modifications Eliminate cross media (pollution) transfer Assess research needs and pending legislation

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended – HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Р	R
HM	Р	R
WEM	Ι	Р
FWM		
GIS		

Competency 15.7: Monitor ground and surface water pollution

Competency Builders:

Describe aquatic biological systems Identify types and sources of water contamination Collect water samples for analysis Measure water samples for pH, chloride, turbidity, dissolved solids, biotoxicity, and dissolved oxygen Investigate watershed boundaries and drainage patterns Monitor water levels of rivers, streams, ponds and lakes Identify non-point source hazards Identify accepted water quality standards for effluent Demonstrate the technology applied to non-point source pollution control (e.g., stormwater and agriculture runoff) Monitor water quality (in/out) Monitor water use (in/out) Determine water conservation options Implement water conservation strategies Analyze water samples Assess treatment options Explain impact of exotic species and other growth organisms Monitor water temperature Monitor receiving water impacts Describe legal aspects and consequences of water pollution

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	P
HM	I '	Р
WEM		
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, HM Recommended – HS

Competency 15.8: Monitor air pollution

Competency Builders:

List the regulated parameters identified industrial source emissions Describe air pollution control devices used to control emissions of sulfur oxides,

nitrogen oxides, particulates and volatile organic contaminants

Measure the air pollutant of a specific source

Interpret laboratory analyses

Explain exhaust system maintenance

Operate IH monitoring equipment

Explain air make-up system maintenance

Maintain controls to minimize odor

Measure vibration levels

Measure source air emission quality

Calculate dispersion and emission rates

Control fugitive emissions

Assess pollution control system

Advise engineering design of air pollution systems

Identify off-property environmental impact

Interpret meteorological data

BIL: Essential – PC, HS, ECA Recommended – ESA

EDU:	12	AD
PC	Ι	Р
ESA	Ι	R
HS	Ι	Р
ECA	Ι	P
HM		
WEM		
FWM		
GIS		

Competency 15.9: Monitor noise pollution

Competency Builders:

Identify the physical properties of sound Describe the threshold of hearing, tolerance, and hearing loss Describe environmental noise Analyze legal aspects and consequences of noise pollution List sources of noise pollution List the control devices for different noise sources

Measure noise levels

BIL: Essential – HS, ECA, HM Recommended – PC, ESA

EDU:	12	AD
PC	Ι	R
ESA	Ι	R
HS	Ι	Р
ECA	Ι	Р
HM		Р
WEM		
FWM		
GIS		

Competency 15.10: Monitor radioactive contamination

Competency Builders:

Describe radiation and radioactive decay

Identify types and sources of radiation, including radon

Describe radiation exposure and dosimetry experiments

Describe immediate and long range effects of radiation on plants and animals

Explain nuclear power hazards and safety features

Describe legal aspects and consequences of radioactive pollution Measure radioactivity

Use radioactive measurement equipment

Identify certifications required for handling radioactive materials

Unit 16: Chemical Technology

BIL: Essential – PC, ESA, HS, ECA, HM, WEM Recommended - FWM

EDU:	12	AD
PC	Р	R
ESA	Р	R
HS	Р	R
ECA	Р	R
HM	P	R
WEM	Ι	P
FWM		I
GIS		

Competency 16.1: Explain basic chemistry principles

Competency Builders:

Explain and describe the properties of matter

- Explain chemical terms (e.g., elements, molecules, chemical reactions, bonding, compounds, mixtures)
- Describe the organization of the periodic table
- Diagram a model of an atom labeling the protons, neutrons, and electrons and their charges
- Explain how atoms combine to form molecules
- Differentiate among isotopes

Identify the properties of a mixture

Describe solutions and suspensions

Predict the number of different substances in a mixture

Differentiate among acids, bases, minerals, and salts

Differentiate organic and inorganic material

Identify chemical processes and procedures that are controlled or monitored

Describe chemical equations

- Explain basic material balancing including the effects of chemical concentrations and solutions
- Calculate the amounts of reactants and products in a process reaction (using stoichiometry)
- Explain how process variables and catalysts can affect reaction rates
- Explain how process variables affect equilibrium reactions

Differentiate between a physical change and a chemical change

EDU:	12	AD
PC	Ι	Р
ESA	P	R
HS	I	R
ECA	Р	R
HM	Р	R
WEM	Ι	P
FWM		Ι
GIS		

BIL: Essential – PC, ESA, ECA, HM, WEM Recommended – HS, FWM

Competency 16.2: Apply chemical laboratory skills

Competency Builders:

Identify chemical abbreviations (e.g., English and AIUPAC)

Interpret chemical equations and specifications

Analyze graphs and charts

Describe common chemical laboratory equipment

Identify safety supplies appropriate to task

Operate safety equipment

Handle hazardous reagents, hot materials, sharp objects, and contaminating materials

Wear appropriate safety clothing

Identify appropriate glassware for task

Weigh chemical reagents to prepare solutions or stains

Mix chemicals to prepare reagents, solutions or stains

Store prepared solutions and stains to maintain optimal condition

Measure pH electronically and manually

Employ extraction procedures on organic analytes

Filter substances to obtain residues

Describe typical laboratory procedures (e.g., heating, cooling, filtration, glassware

set-up, distillation, weighing, measuring, pipetting, volumetrics)

Calibrate containers, flasks, balances, safety testing equipment

Clean and decontaminate work areas

Respond to a laboratory spill

Practice safe and proper use of equipment

Identify storage containers that are compatible with the materials to be stored

Mix acids and bases with other materials

Clean with solvents, acids, and detergents

Demonstrate proper titration techniques

Care for desiccators and centrifuges

Describe the physical and chemical properties of common materials and implications for storage Prepare dilutions in (grams, milligrams, molarity, normality, and ratios) Set up vacuum and pressure transfer system Transfer liquids, solids, and gases Prepare solutions Obtain representative samples Maintain electrodes Change pressurized cylinders Demonstrate the proper use of pressurized cylinders

EDU:	12	AD
PC	Ι	Р
ESA	P	R
HS	I	P
ECA	Р	R
HM	Р	R
WEM	I	Р
FWM		
GIS		

BIL: Essential – PC, ESA, HS, ECA, HM, WEM

Competency 16.3: Calculate and measure in the laboratory

Competency Builders:

Calculate quantities needed to perform a test analysis Measure volume of a solution to perform a laboratory test Measure temperatures Calculate unit conversions Calculate concentrations Measure using MKS system Calculate linear regression curves Plot calibration curve

BIL:	Essential – PC, ESA, ECA, WEM
	Recommended – HS, HM

EDU:	12	AD
PC	Р	R
ESA	Ι	Р
HS	I	R
ECA	Р	R
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

Competency 16.4: Maintain laboratory equipment and supplies

Competency Builders:

Wash laboratory equipment

Sterilize equipment to decontaminate soiled materials

Inventory supplies and equipment

Prepare equipment for tests

Demonstrate procedures to ensure optimal working condition of equipment and devices

Demonstrate procedures to ensure optimal shelf life of chemicals

Demonstrate procedures to ensure safe storage of chemicals

BIL:	Essential -	PC, E	ESA,	WEM	
	Recommen	ded –	HS,	ECA,	HM

EDU:	12	AD
PC	I	Р
ESA		Р
HS	I	R
ECA	I	Р
HM	Ι	R
WEM		Р
FWM		
GIS		

Analyze air, water, and solids in the field **Competency 16.5:**

Competency Builders:

Monitor stack and fugitive emissions

Sample gases

Analyze gases Describe pollution control practices

Describe measurements of flow rates

Operate hand-held gas monitor Monitor and sample wastewater influent and effluent Analyze physical properties of solids and liquids

BIL: Essential – ESA Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 16.6: Design experiments

Competency Builders:

Conduct on-line literature search Identify resources (e.g., people, equipment, chemical, and methods) Gather chemicals and resources Create a statistical design for the experiment using a quality model Design control ranges Write procedures Design and run computer simulations

BIL:	Essential – ESA
	Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 16.7: Implement new experiment methods

Competency Builders:

Verify method's compliance with regulations Initialize automated experiments Monitor automated experiments Evaluate results Present results Assess and redesign experiments as necessary Implement results as appropriate Create and report conclusions or final results Document all phases of the work

BIL: Essential – PC, ESA, HS, ECA, HM, WEM

EDU:	12	AD
PC	Р	R
ESA	Ι	Р
HS	Р	R
ECA	Ι	P
HM	Ι	P
WEM	Ι	Р
FWM		
GIS		

Competency 16.8: Handle chemical materials in accordance with standard safety practices

Competency Builders:

Prepare materials for testing and analysis

Describe the characteristics of chemical materials that are applicable to storage and handling (e.g., toxicity, health effects, flammability, reactivity,

sensitivity, stability, and compatibility with other materials)

Classify organic and inorganic compounds

Write generalized formulas

Write the symbols for the elements

Describe the characteristics of the common groupings of elements

Describe the basic reactions that occur between commonly used chemical compounds

Complete the proper paperwork associated with receiving materials

Transfer materials to storage or processing units

Identify containers

Prepare and store samples and materials

EDU:	12	AD
PC	Ι	Р
ESA	IR	Р
HS	Ι	R
ECA	Р	R
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, WEM Recommended – HS, HM

Competency 16.9: Conduct physical tests: temperature, solids to moisture, paint filter, residual solids, layers, color, odor, vapor pressure, viscosity, slump, and flash/flammability tests

Competency Builders:

Obtain representative samples

Prepare samples for tests or analyses

Choose appropriate test equipment to make a required measurement

Check instruments for correct operation

Prepare or acquire calibration standards

Calibrate equipment

Test or analyze control "standard" samples

Calculate results and compare with control values

Analyze samples within statistical range,

Troubleshoot causes of error by repeating calibration and instrument check

Record and report data

Clean and maintain apparatus

- Characterize the physical properties of gases, liquids, and solids and describe their reactions to changes of temperature and pressure
- Identify appropriate equipment for measuring major physical properties based on specified accuracy and precision requirements
- Apply ASTM and/or other standard procedures for specific chemical and physical tests

Collect samples to represent bulk materials to be characterized by physical tests Develop control charts and determine upper and lower control limits for each

BIL: Essential – PC, ESA, WEM Recommended – HS, ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	I	R
ECA	I	R
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

Competency 16.10: Perform chemical analysis

Competency Builders:

Obtain representative samples

Record characteristics

Respond to problems by reading test documents or procedures and implementing appropriate information

Identify the appropriate equipment for the analysis to be conducted

Gather and clean the necessary glassware, reagents, and chemicals

Calibrate the electrodes and other equipment required to carry out the specified analysis

Prepare and standardize reagents

Analyze standards or control samples using specified techniques

Analyze sample

Calculate results to appropriate significant figures

Present results for single samples and to display trends

Evaluate analytical results and respond appropriately

Identify conditions that indicate need for an analysis to be repeated Report data

Modify or develop analytical methods to be appropriate to necessary test methods, required analyses, implementing personnel qualifications, and working environment where methods are to be used

Select the proper procedure to sample a bulk material

Prepare samples for analysis, including digesting, ashing, extracting, dissolving, grinding, and removing impurities as appropriate prior to analysis

Use standard separation techniques such as ion exchange and column chromatography

Describe the principles and applications of volumetric analysis

Balance chemical equations involving acid/base, redox, and other chemical reactions

Describe the use of pH in characterizing chemical systems

Measure pH using both wet and instrumental methods

Calculate normality, gram equivalents, molarity, and molality of solutions Describe the characteristics of acids and bases and the chemistry

- Describe the chemical, thermodynamic, and chemical kinetic characteristics of materials that can undergo oxidation/reduction reactions
- Standardize acid and base solutions of different concentrations (e.g., molarity, molality)
- Apply chemistry concepts to measurements
- Conduct analytical tests using acid/base titrations, filtrations, and oxidation/reduction titrations.
- Apply Beer's law for calculating results
- Describe techniques and instruments used for colorimetric analysis
- Identify the techniques and devices appropriate for specific samples and accuracy requirements
- Describe the principles of gravimetric analysis, and the tools used to conduct such analyses
- Describe the processes of filtration and the effect of the filtering medium on the results
- Describe the use of several electrochemical techniques

Apply specified information in standard procedural manuals and books, including those produced by ASTM, SM, SW846, NIOSH (McCaww EPA 600),

AOAC, 40 CFR Part 60 other groups that produce "standards", and

government agencies that issue and/or monitor regulations

Perform extraction techniques including TCLP

BIL: Essential – ESA Recommended – PC, ECA, HM

EDU:	12	AD
PC		I
ESA		Р
HS		
ECA	Ι	R
HM	I	R
WEM		
FWM		
GIS		

Competency 16.11: Discuss methods to analyze unknown materials

Competency Builders:

Identify interfering materials Modify analytical procedures Develop new procedures for chemical analysis

EDU:	12	AD
PC	 	R
ESA	I	Р
HS	Ι	R
ECA	Ι	Р
HM	I	P
WEM		Ι
FWM		
GIS		

BIL: Essential – ESA, ECA, HM Recommended – PC, HS, WEM

Competency 16.12: Explain basic organic and inorganic chemistry principles

Competency Builders:

Explain molecular structure in terms of chemical bonding Explain stoichiometric relations to chemical equations Write formulas of identified compounds from their names and vice versa Explain the principles of Charles', Boyle's, Graham's and Dalton's laws Classify compounds into appropriate groups based on their properties Explain quantitative relationships to express solution concentrations Identify organic compounds through the interpretation of IR, mass spectroscopy and gas chromatography

Unit 17: Environmental Instrumentation

BIL: Essential – PC, ESA, HS, ECA, HM, WEM

EDU:	12	AD
PC	Ι	P
ESA	Ι	<u>P</u>
HS	Ι	P
ECA	Ι	P
HM	Ι	Р
WEM	Ι	
FWM		
GIS		

Competency 17.1: Operate basic laboratory equipment and environment monitoring instruments (e.g., pH meter/ISE meter, compound microscope/dissecting microscope, sound level measuring devices, turbidimeter, conductivity meter, chlorine meter OVA, HNMU)

Competency Builders:

Prepare sample appropriately (e.g., use oil immersion lens, Bunsen/Fisher burner, balance, centrifuge, timing device autoclaves, hot air oven desiccators) Select appropriate calibration method Select appropriate calibration standards Zero the instrument Span the instrument Measure samples Record and store data

BIL:	Essential – ESA, WEM
	Recommended – PC, ECA

EDU:	12	AD
PC		Ι
ESA	Ι	P
HS		
ECA	Ι	R
HM _		
WEM		Р
FWM		
GIS		

Competency 17.2: Perform chemical laboratory sample preparation

Competency Builders: Perform chemical extractions Perform gravimetric analysis Perform wet chemical analysis including filtering, distilling, and titrating Record anomalies Calculate statistical uncertainties and deviations

BIL: Recommended – PC, ESA, ECA

EDU:	12	AD
PC		I
ESA		Ι
HS		
ECA		I
HM		
WEM		
FWM		
GIS		

Competency 17.3: Explain the use of chemical analytic instruments

Competency Builders:

Identify the analytical applications of mass spectrometers, chromatographs, spectrometers

Introduce prepared gas or liquid samples into chromatographs Obtain quantitative chemical results

BIL: Essential – ESA

EDU:	12	AD
PC		
ESA		Р
HS		
ECA		
HM		
WEM		
FWM		
GIS		

Competency 17.4: Perform analytical separation techniques

Competency Builders:

Describe the principles of gas chromatography and typical instrumentation Separate mixtures of different materials

Describe the principles of liquid chromatography and typical HPLC instrumentation

Calibrate, operate, troubleshoot, and maintain apparatus and instruments Describe principles of I.C.

BIL: Essential – ESA Recommended – PC, ECA, HM, WEM

EDU:	12	AD
PC		I
ESA	I	Р
HS		
ECA		I
HM		Ι
WEM		Ι
FWM		
GIS		

Competency 17.5: Perform spectroscopic analysis using instruments such as: spectrophotometer/auto spectrophometer, AA/graphite furnace, ICP, GC/MS, oxygen meter, IC, IR, FTIR X-ray diffraction nitrogen analyzer, mercury analyzer, FID/PID analyzer, and RAD meter

Competency Builders:

Describe the principles of spectroscopy (e.g., AA, IR, MS, UVIS) Describe the instrumentation for AA, IR, MS, UVIS Calibrate, operate, troubleshoot, and maintain spectroscopic instruments Describe similarities and differences among the various instruments

BIL:	Essential – ESA
	Recommended – PC, HS, ECA, HM

EDU:	12	AD
PC		Ι
ESA	Ι	Р
HS		Ι
ECA		Ι
HM		I
WEM		
FWM		
GIS		

Competency 17.6: Operate advanced laboratory and field equipment and instruments (e.g., HPLC, GC, bomb calorimeter, geiger mueller counter, explosimeters specific gas meters, carbon analyzer, microwave)

Competency Builders:

Prepare sample appropriately (e.g., use oil immersion lens, Bunsen/Fisher burner, balance, centrifuge, timing device autoclaves, hot air oven desiccators) Select appropriate calibration method and standards Zero and span the instrument Measure samples Record and store data Make back-up copies of data Demonstrate appropriate shut-down procedures

BIL: Essential – ESA Recommended – PC, ECA, WEM

EDU:	12	AD
PC		I
ESA	I	P
HS		
ECA		I
HM		
WEM		I
FWM		
GIS		

Competency 17.7: Use computers to interface with chemical analytical instruments

Competency Builders:

Explain how instrument output is collected and stored by the computer Collect and store data

Manipulate and recall stored data from analytical instrument operations

Create graphs and data tables using computer applications prepared for chemical analysis instruments

Operate chromatographs, mass spectrometers, and electron microscopes using a computer interface

Use computers to determine instrument status and to troubleshoot chemical analytical instruments

BIL:	Essential – ESA
	Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 17.8: Maintain instruments using gas systems

Competency Builders:

Change gas cylinder

Troubleshoot instruments

Start systems after unplanned and planned down time

Discuss use of diagrams to troubleshoot

Bring vacuum systems up and take vacuum systems down

Maintain maintenance and use logs

Maintain gas systems, including plumbing lines, reattaching regulators Identify regulators and pressures

BIL: Recommended – PC, ESA, ECA

EDU:	12	AD
PC		I
ESA		Ι
HS		
ECA		I
HM		
WEM		
FWM		
GIS		

Competency 17.9: Calibrate chemical analytical instruments

Competency Builders:

Adjust filament voltages to tune mass spectrometers

Introduce standard compounds into gas chromatographs and change columns as needed to calibrate chromatograph

Run computer checks, components checks, and system checks

Adjust apertures and beam widths

Identify various deuterated solvents, and their chemical shifts

Recognize "spinning side bands" and ferromagnetic impurities Run quality control samples

....

BIL:	Recommended – PC, ESA, ECA
-------------	----------------------------

EDU:	12	AD
PC		I
ESA		Ι
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 17.10: Operate mass spectrometers

Competency Builders:

Prepare samples for introduction into a mass spectrometer Introduce samples into a mass spectrometer

- Obtain mass spectra of specific compounds using a mass spectrometer as a single instrument or as part of a gas chromatograph, ion trap chromatograph, or inductively coupled argon plasma system
- Calibrate mass spectrometers using appropriate calibration standards and by adjusting filament voltage

Clean the ion source

Maintain a mass spectrometer

Troubleshoot a mass spectrometer as a single instrument or as part of a gas chromatograph, ion trap chromatograph, or inductively coupled argon plasma system

Describe the abilities and limitations of chromatographs

Describe the physics of mass spectrometry

Perform spectral interpretation

Describe the relationships between thin layer, column, paper, gas chromatograph, ion chromatograph, supercritical fluid chromatograph

176

BIL: Recommended – PC, ESA, ECA

EDU:	12	AD
PC		Ι
ESA		Ι
HS	_	
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 17.11: Operate chromatographs

Competency Builders:

Prepare samples for introduction into a chromatograph

Inject samples into a chromatograph

Calibrate a chromatograph using appropriate calibration standards and by cleaning or changing columns

Maintain a chromatograph, including changing cryogenic gas cylinders Troubleshoot a chromatograph

Describe the capabilities and limitations of chromatography

Describe the physics of chromatography

BIL:	Recommended – PC, ESA, ECA
-------------	----------------------------

EDU:	12	AD
PC		Ι
ESA		I
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 17.12: Operate electron microscopes

Competency Builders:

Prepare samples for introduction into an electron microscope Introduce samples into an electron microscope, including closing and opening the

- electron gun, emptying and restoring vacuum, and placing the sample Obtain magnified images of organic and inorganic samples
- Obtain elemental analysis of the surface of samples using an energy dispersive system coupled to an electron microscope
- Adjust aperture, beam width, voltage, and current to obtain optimum image resolution
- Calibrate an electron microscope and energy dispersive system
- Maintain an electron microscope and energy dispersive system, including gas fills Troubleshoot an electron microscope and energy dispersive system
- Describe the mechanics of the electrongun, the vacuum system, and the sample stage
- Describe the physics of electron microscopy for image magnification and energy dispersion for elemental analysis
- Describe the relationships between resolution and aperture, beam width, voltage, magnifications, and current

BIL: Essential – ESA Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA	Ι	R
HM		
WEM		
FWM		
GIS		

Competency 17.13: Interpret quantitative and graphic output from chemical analysis instruments

Competency Builders:

Identify elements and/or chemical compounds present in a sample from graphic output

Identify relative concentrations of chemical elements and/or compounds present in a sample from graphic output

Quantify results of chemical analyses using numerical output

Record deviations and anomalies (interferents)

Write reports

.

BIL:	Essential – ESA
	Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 17.14: Perform instrumental analysis

Competency Builders:

Obtain representative samples

Determine appropriate treatment of the sample prior to conducting an analysis Prepare a sample for analysis

- Identify the analytical instrument to be used as appropriate to the results needed and other constraints
- Start up instrument by checking all connections, gas cylinders, and implementing procedures to ensure reliable results
- Set all the instrumental parameters properly using manual and/or program microprocessor settings
- Calibrate and standardize equipment and materials

Develop necessary calibration charts

Analyze standards and control materials

Evaluate results of testing or analyzing standards and control materials

Readjust operating parameters as necessary

Conduct analyses

Review and interpret results

Record results

Report results as appropriate

Perform routine maintenance

Shut down instrument

Clean up work area

Maintain and/or order spare parts necessary to ensure consistent operation

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC		Ι
ESA		P
HS		Ι
ECA		Ι
HM		
WEM		Ι
FWM		
GIS		

Competency 17.15: Operate and maintain flow instrument systems

Competency Builders:

Identify flow measuring sensors Explain flow measuring principles Identify instrument calibration standard units Analyze systems using troubleshooting flow sheet Identify displacement measurement methods Identify the properties of fluid flow measurement Identify primary and secondary measuring devices for fluid flow Identify applications for variable area instruments Identify open channel flow devices Identify applications for positive displacement meters, turbine flow meters, magnetic flow meters, ultrasonic flow meters Identify solid particle flow metering methods Install flow instruments Identify control valves Identify control valves

BIL: Essential – ESA Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 17.16: Operate and maintain pressure test instruments (e.g., manometers, vaccum pumps, pressure and vacuum gages)

Competency Builders:

Identify pressure measuring sensors Explain pressure measuring principles Identify instrument calibration standard units Analyze systems using troubleshooting flow sheet Identify pressure principles Install, maintain, and service pressure instruments Identify force, stress, and strain measurement units Identify weight and mass measuring instruments Identify pneumatic and hydraulic actuators Identify applications of vacuum measuring methods

182

BIL: Recommended – PC, ESA, ECA

EDU:	12	AD
PC	I	R
ESA		Ι
HS		
ECA	Ī	R
HM		
WEM		
FWM		
GIS		

Competency 17.17: Service thermal measuring instruments

Competency Builders:

Identify temperature measuring sensors

Explain temperature measuring principles

Determine temperature measuring instrument and sensor failures

Troubleshoot temperature measuring instruments and sensors

Remove and replace temperature measuring instrument and sensor components Check and make adjustments to temperature measuring instruments and sensors Determine calorific value measuring instrument failures

Troubleshoot calorific value measuring instrument

Remove and replace calorific value measuring instrument components Check and make minor adjustments to calorific value measuring instruments Identify and explain bimetallic and fluid-filled temperature measuring instruments Identify instruments that use electrical methods of measuring temperature Identify pyrometers

Install temperature measuring instruments

BIL:	Recommended – PC, ESA, ECA
-------------	----------------------------

EDU:	12	AD
PC	Ι	R
ESA		Ι
HS		
ECA	Ι	R
HM		
WEM		
FWM		
GIS		

Competency 17.18: Service physical property (sample control) measuring instruments

Competency Builders:

Identify physical property measuring instruments Explain the principles of physical property measuring instruments Identify instrument calibration standard units Analyze systems using troubleshooting flow sheet Identify level measurement instruments Identify electrial methods for level measurement Maintain and service level measuring instruments Identify final control elements in process loops Identify on-site safety standards and maintenance practices Describe electrical and electronic servicing stations Describe troubleshooting requirements Troubleshoot and repair density and specific gravity measuring instruments Check operating systems Adjust density and specific gravity measuring instruments Troubleshoot and repair humidity measuring instruments Check humidity measuring instruments operating systems Adjust humidity measuring instruments Troubleshoot and repair moisture content measuring instruments Check systems moisture content measuring instruments Adjust systems moisture content measuring instruments Troubleshoot and repair viscosity measuring instruments Check viscosity measuring instruments Adjust viscosity measuring instruments

184

BIL: Recommended – PC, ESA, HS, ECA

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA	Ι	R
HM		
WEM		
FWM		
GIS		

Competency 17.19: Service chemical property measuring instruments (e.g., O2 meter, spectrophotometer, atomic absorption spectrophotometer inductively coupled plasma, ion chromatography, infrared)

Competency Builders:

Troubleshoot and maintain analytical measuring instruments Perform operating systems checks and make minor adjustments to analytical measuring instruments Troubleshoot and maintain pH measuring instruments Check and make minor adjustments to pH measuring instruments Troubleshoot and maintain liquid conductivity measuring instruments Check and make adjustments to liquid conductivity measuring instruments Troubleshoot and maintain chromatograph measuring instruments Check and make minor adjustments to chromatograph measuring instruments Troubleshoot and maintain mass spectrometer measuring instruments

Check and make adjustments to mass spectrometer measuring instruments

Troubleshoot and maintain gas analyzer measuring instruments

Unit 18: Process Technology

BIL: Essential – PC Recommended – ESA, HS, ECA, WEM

EDU:	12	AD
PC	I	P
ESA		I
HS	I	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 18.1: Operate and control continuous processes

Competency Builders:

Describe the characteristics of a continuous process

Describe the major industrial continuous processes, by (1) describing the characteristics of each, (2) the chemical/physical properties of materials important to the operation, (3) the environmental regulations and safety concerns that are related to each operation, and (4) how the operations usually are interrelated

Interpret process diagrams

Describe the various components and streams of a continuous process

Describe the types and operations of control loops and sample collection devices Identify typical valves, pumps, and other equipment

Draw a simplified process diagram

Check equipment to ensure safety for electrical loading, physical stressing, and temperature variation

Start up continuous process according to specified procedures

Review checklists associated with a continuous process

Complete required reports to describe process activities, discrepancies, and maintenance

Adjust control equipment as specified by procedures

Set operating parameters

Identify abnormal conditions that require reporting

Record operating parameter information from gauges, instruments, and meters

Adjust operating parameters to optimize conditions

Correct deviations

Respond to alarms

Collect appropriate samples

Conduct on-site inspections

Submit samples for analysis

Record data

Report data

Shut down continuous processes

Shut down continuous processes in emergency situations

Maintain piping networks

Write documentation for an operating procedure

Describe a troubleshooting strategy for a continuous process in upset conditions Describe the operation, characteristics, and limitations of process measurement

equipment (e.g., thermocouples)

Describe process flows (both gas and liquid streams)

Describe the concepts associated with process optimization

Describe when, where, and why samples are taken for analysis and how sampling techniques relate to quality products

BIL: Essential – PC Recommended – ESA, HS, ECA, WEM

EDU:	12	AD
PC	I	Р
ESA		Ι
HS	Ι	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 18.2: Operate and control batch processes

Competency Builders:

Describe the characteristics of a batch process Check equipment safety for electrical loading, physical stressing, and temperature variation Start up batch processes Review checklists associated with a batch process Complete required reports to describe process activities, discrepancies, and maintenance Adjust control equipment as specified by procedures Set operating parameters Identify abnormal conditions that require reporting Measure raw materials Explain disposition of "off-spec" batch Monitor operating parameters by recording information from gauges, instruments, and meters, Adjust pumps and valves Adjust operating parameters to optimize conditions Correct deviations Respond to alarms Collect appropriate samples Conduct on-site inspections Submit samples for analysis Record data Report data Shut down processes according to procedures Start up after an emergency shutdown Describe the major industrial batch processes including common chemical, refinery, water, and waste treatment processes by (1) describing the operation of each; (2) characterizing the chemical/physical properties of

materials that are important to the processes; (3) writing the molecular formulas and chemical structures for substances involved in the processes; (4) describing the chemical reactions involved in each process; (5) describing the chemical equilibrium, kinetics, and chemical reactivity relationships that characterize the processes or may impact safety; and

(6) identifying relevant environmental regulations and safety concerns Read process diagrams

Describe the various components and streams of a batch process

Describe the types and operations of control loops and sample collection devices Identify typical valves, pumps, and other equipment

Draw a simplified process diagram

- Write documentation for an operating procedure that meets regulatory requirements
- Describe a troubleshooting strategy for a batch process given a variety of upset conditions
- Describe the operation, characteristics, and limitations of process measurement equipment (e.g., thermocouples)
- Start up and shut down different kinds of electric motors

Describe the concepts associated with process optimization

Demonstrate ability to add solids, liquids, and gases

Describe the relationship of vacuum and pressure upon boiling point

Operate various types of heat exchangers

Perform filtrations, extractions, distillations, drying, blending, milling, and packaging

Retrieve data and information

Provide shift transfer notes

BIL: Essential – PC Recommended – ESA, HS, ECA, WEM

EDU:	12	AD
PC	Ι	Р
ESA		Ι
HS	Ι	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 18.3: Analyze materials

Competency Builders:

Collect appropriate samples for analysis from process streams or products (solids/liquids/gases) Inspect samples visually to ensure adequate representation of the sampled materials Determine response is required Label samples Deliver samples Prepare necessary reagents and standards required to conduct tests Identify quality control standards and appropriate precision levels Perform appropriate physical and chemical tests Calculate results Determine if resampling and reanalyzing are necessary Maintain analysis area to ensure correct results will be produced repeatedly Report results to appropriate personnel Adjust process parameters as necessary Enter data into appropriate logs Review trends of process variations and sample analyses Compare sample analyses with control values Submit samples to the laboratory Characterize gases, liquids, and solids Obtain representative samples of solids Describe sampling devices for use with gases under pressure Use typical sampling devices Sample a flowing liquid stream Identify proper containers for a variety of solids, liquids, and gases with a wide range of physical properties Identify common and standard chemical names Use standard labeling procedures

177 190

Calibrate and measure pH

Explain standard measurement and analytical procedures (e.g., ASTM, AOAC) Calculate normality, molality, and molarity

Prepare standard solutions

- Describe physical properties and measurement methods of materials (e.g., specific gravity, density, flash point, and viscosity
- Conduct chemical analyses using volumetric techniques (e.g., acid-base titrations, redox titrations)
- Explain the use of instrumental methods such as gas chromatography, infrared, basic spectophotometry, and colorimetry

Describe pressure and temperature relationships for all states of matter Balance simple chemical equations

BIL: Essential – PC Recommended – WEM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA		
HM		
WEM		Ι
FWM		
GIS		

Competency 18.4: Program programmable logic controllers (PLC's)

Competency Builders:

Interpret ladder logic Identify troubleshooting procedures Develop process program Evaluate data generated Identify trends

Unit 19: Electrical Basics

BIL: Essential – PC Recommended – ESA, HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	R
HS	I	R
ECA		
HM		
WEM		
FWM		
GIS		

Competency 19.1: Explain electrical concepts

Competency Builders:

Describe the relationship of basic atomic structure to electricity Describe the relationship between electrical and magnetic properties Describe the electrical and magnetic properties of a magnet Describe the photoelectric effect Describe the thermocouple effect Describe the electrical effect of friction Identify sources of electricity Explain Ohm's Law Explain Kirchoff's Laws Identify power formulas Describe effects varying degrees of electricity have on the human body

BIL: Essential – PC, ESA Recommended - HS, ECA

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS	Ι	R
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 19.2: Maintain basic electrical systems

Competency Builders:

Replace electrical cords Replace batteries Replace fuse(s) Replace switches and other sensors Replace plugs Maintain lockout/tagout

194

BIL: Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 19.3: Explain DC circuit principles

Competency Builders:

Identify characteristics common to most conductors

Identify materials that can be used as insulators

Identify conductors of electricity

Explain the purpose of insulating material around electrical wiring

Identify different situations where insulation can be employed other than around electrical wiring

Measure resistance and current of conductors and insulators

Measure properties of a circuit using volt-ohm meter (VOM) and digital volt-ohm meter (DVM) meters

Build series, parallel, and combination circuits

Measure current, voltage, and resistance in DC circuits

Explain DC generator action

Explain DC motor action

Identify classes, voltage ratings and/or polarity of electronic components

Identify use of circuit protective devices (e.g., fuses, breakers)

Apply Ohm's Law

Solve problems in electrical units utilizing metric units

Describe the principles and operation of electrochemical supplies Apply Kirchoff's law

Measure properties of a circuit using analog and digital meters

183

BIL: Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA		I
HM		
WEM		
FWM		
GIS		

Competency 19.4: Explain AC circuit principles

Competency Builders:

Analyze properties of an AC signal

Describe principles and operation of characteristics of sinusoidal and nonsinusoidal wave forms

Identify AC sources

Describe principles and operation of characteristics of capacitive circuits Demonstrate the operation of capacitive circuits

Operate capacitive circuits

Describe principles and operation of characteristics of inductive circuits Demonstrate the operation of inductive circuits

Operate inductive circuits

Describe principles and operation of the principles of transformers

Analyze power in AC circuits

Measure power in AC circuits

Identify use of circuit protective devices (e.g., fuses, breakers)

Describe basic motor theory and operation

Describe basic generator theory and operation

Measure current, voltage, and resistance in AC circuits

Calculate power factor in AC circuits

Unit 20: Equipment Operation & Maintenance

BIL: Essential – WEM, FWM Recommended – ESA,HS, GIS

EDU:	12	AD
PC		
ESA		I
HS		Ι
ECA		
HM		
WEM	I	P
FWM	I	Р
GIS		Ι

Competency 20.1: Operate vehicles (pickup trucks, four-wheel-drive vehicles, tractors, vehicles with attachments, rig-up trucks, graders, backhoe tractors, front-end loaders, excavators, scrappers, cranes, and watercraft)

Competency Builders:

Explain the safety features of the vehicle

Perform a safety inspection on the vehicle

Drive vehicle

Demonstrate defensive vehicle operation

Back vehicle with attachments into confined space

Control vehicle equipment

Explain procedures for transporting hazardous materials in appropriate vehicles Interpret operator's and manufacturer's manuals

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA, HM, FWM

EDU:	12	AD
PC		Ι
_ESA _	I	P
HS		Ι
ECA		I
HM		I
WEM	Ι	P
FWM		I
GIS		

Competency 20.2: Operate applicable pumps (diesel and gas engines, centrifugal pumps, positive displacement pumps, air and gas compressors)

Competency Builders:

Follow appropriate safety precautions Prime pump when appropriate Start the pump Adjust the flow rate Shut pump down

BIL: Recommended – PC, HS, HM, WEM, FWM

EDU:	12	AD
PC		Ι
ESA		
HS		Ι
ECA		
HM		I
WEM		Ι
FWM		Ι
GIS		

Competency 20.3: Operate applicable miscellaneous equipment (hoists, winches, pulleys, boilers and associated equipment, drilling equipment)

Competency Builders:

Identify function of equipment Follow appropriate safety precautions Set up equipment Use equipment for desired purpose Shut down equipment

EDU:	12	AD
PC	Ι	R
ESA	Ι	R
HS	Ι	R
ECA		Ι
HM		Ι
WEM	Ι	R
FWM	Ι	R
GIS	Ι	R

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

Competency 20.4: Operate applicable electronic equipment (electrical distribution systems, electronic survey equipment, generators)

Competency Builders:

Identify health hazards Describe safety practices Identify source of electricity Set up electrical equipment Lay electrical cords within safety standards Conduct survey Monitor generator Shut down electronic system

BIL: Essential – ECA Recommended – PC, ESA, HS, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	R
ESA		I
HS	Ι	R
ECA	Ι	P
HM		I
WEM	Ι	R
FWM	Ι	R
GIS		Ι

Competency 20.5: Maintain a preventive maintenance schedule

Competency Builders:

Observe and record any deviations from normal operations Initiate work requests Implement a preventive maintenance schedule Inspect equipment Prepare equipment for maintenance Set up a maintenance schedule Open lines and equipment Change seals and valves on on-line equipment Change seals and packing on pumps and valves Change and replace pipes Check fluid levels in process equipment Conduct vibrational analysis Conduct steam tracing techniques Test and replace pressure release valves Check standards Complete maintenance logbooks Complete calibration records/logbooks Reference O & M (Operations and Maintenance) manuals

EDU:	12	AD
PC	I	R
ESA		
HS	I	R
ECA		Р
HM		P
WEM	I	R
FWM	I	Р
GIS		

BIL: Essential – ECA, HM, FWM Recommended – PC, HS, WEM

Competency 20.6:	Maintain equipment according to owners' manual
	specification

Competency Builders:

Add lubricant and fuel

Analyze engine performance

Make necessary adjustments to engine

Check and adjust tire air pressure

Inspect and service battery

Inspect and service/replace spark plugs

Inspect and service/replace air cleaners

Check and refer for service thermostats, fans, and radiators

Inspect and refer for service water pumps, lines, and connections

Perform seasonal service on cooling systems

Conduct voltage, current, resistance, charging and load tests

Clean, repair, and paint

2()2

Unit 21: Hydraulics & Pneumatics

BIL: Essential – ECA, WEM Recommended – PC, HS

EDU:	12	AD
PC		Ι
ESA		
HS		I
ECA	I	R
HM		
WEM		P
FWM		
GIS		

Competency 21.1: Describe fluid flow concepts

Competency Builders:

Explain Pascal's Law Explain Boyle's Law Explain Bernoulli's Principle Describe flow velocity Explain how heat and pressure relate to power and transmission Describe physical and chemical properties of a fluid Describe fluids in motion in closed conductors Describe continuity of mass flow Identify types of fluids Identify properties of fluids Identify English and metric units of measurement for pressure, density, and viscosity

BIL: Essential – ECA, WEM Recommended – PC, HS

EDU:	12	AD
PC		Ι
ESA		
HS		Ι
ECA	Ι	R
HM		
WEM	Ι	Р
FWM		
GIS		

Competency 21.2: Describe energy considerations

Competency Builders:

Differentiate work and power Differentiate potential and kinetic energy

Explain energy conservation concept

Explain hydraulic horsepower

Explain work of compression in compressible fluids

2()4

BIL: Essential – WEM Recommended – PC, ECA

EDU:	12	AD
PC		I
ESA		
HS		
ECA		I
HM		
WEM		P
FWM		
GIS		

Competency 21.3: Describe system losses

Competency Builders:

Differentiate turbulent and laminar flow Explain Manning's formula for friction Explain friction factor Explain pressure losses Identify potential system losses (e.g., leaks, wear, component sizing, heat, dirt)

BIL: Essential – ECA, WEM Recommended – PC, HS

EDU:	12	AD
PC		Ι
ESA		
HS		I
ECA	Ι	R
HM		
WEM	Ι	Р
FWM		
GIS		

Competency 21.4: Describe hydrostatics

Competency Builders:

Explain pressure, density, and viscosity Explain buoyancy Explain equilibrium

2(16

BIL: Essential – WEM Recommended – PC

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		
HM		
WEM		P
FWM		
GIS		

Competency 21.5: Calculate energy

Competency Builders:

Explain application of Pascal's Law in energy calculation Explain application of Bernoulli's Principle in energy calculation Explain application of Boyle's Law in energy calculation Calculate work and power Calculate potential and kinetic energy Calculate hydraulic horsepower Calculate flow velocity and pressure Calculate pressure losses Calculate pump capacity Calculate system requirements

BIL:	Essential – WEM
	Recommended – PC, HS. ECA

EDU:	12	AD
PC		Ι
ESA		
HS		Ι
ECA	Ι	R
HM		
WEM	Ι	P
FWM		
GIS		

Competency 21.6: Describe hydraulic component operation

Competency Builders:

Identify functions and operation of hydraulic components Identify functions and operation of pneumatic components Explain application(s) of different materials (e.g., plastic, copper, PVC, CPT)

BIL: Essential – WEM Recommended – PC, ECA, FWM

EDU:	12	AD
PC		I
ESA		
HS		
ECA		Ι
HM		
WEM		Р
FWM		Ι
GIS		

Competency 21.7: Assess pipe flow characteristics

Competency Builders:

Determine head and pressure and loss Determine weir flow Determine full flow Determine pressure flow Determine friction loss Determine gravity flow Determine cubic feet per second (CFS) Determine wing walls Determine stability and capacity

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		I
HM		
WEM		Ι
FWM		Ι
GIS		

BIL: Recommended – PC, ECA, WEM, FWM

Competency 21.8: Maintain piping and accessories for high and low pressure fluid power systems

Competency Builders:

Identify components of a piping system

Explain maintenance features of both metallic and non-metallic piping systems Explain types of valves and their operation and maintenance

Explain use and maintenance of strainers, filters, and traps in piping systems Join common fittings

Join pipe

Join copper and steel tubing

Bend copper and steel tubing

Cut copper and steel tubing

Flare tubing

210

BIL: Recommended- PC, ECA, WEM

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		I
HM		
WEM		I
FWM		
GIS		· · · · · · · · · · · · · · · · · · ·

Competency 21.9: Maintain and repair pump

Competency Builders:

Identify types and operating features of pumps Identify pump capacity and system requirements Explain packing and seal requirements Explain operating principles of pumps (e.g., centrifugal, propeller and turbine rotary, metering) Disassemble pumps Reassemble pumps

Perform shaft alignment

Unit 22: Surveying & Mapping

BIL: Essential – PC, FWM, GIS Recommended – ESA, ECA, HM, WEM

EDU:	12	AD
PC		P
ESA	Ι	R
HS		
ECA		Ι
HM	Ι	R
WEM	I	R
FWM	Ι	P
GIS	I	P

Competency 22.1: Identify civil drafting symbols and abbreviations

Competency Builders:

Identify standard symbols and abbreviations Set up a map legend Locate symbols and features on a U.S.G.S. map List common types of symbols used in civil drafting Identify abbreviations for words commonly used in civil drafting Identify factors that determine when an abbreviation should be used State purposes of symbols on maps Draw examples of north arrow symbols Describe general rules for drawing map symbols Describe methods used in drawing symbols Match color codes with corresponding map symbols Identify common material symbols used in structural and architectural drawings Identify common welding symbols

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		
ECA	Ι	Р
HM	Ι	Р
WEM	Ι	R
FWM	I	Р
GIS	Ι	Р

BIL: Essential – PC, ESA, ECA, HM, FWM, GIS Recommended - WEM

Competency 22.2: Read maps

Competency Builders:

Identify major classes of maps Explain terms related to map scales and measurement Create chart of standard measures and their equivalents Identify characteristics of map scales Describe ways map scales are expressed Identify ranges of map scales and their classifications Identify factors affecting the selection of a map scale Match types of maps with their common scales Identify characteristics of a quadrangle scale Match quadrangle scales commonly used on U.S.G.S. topographic maps with their one-inch equivalencies Identify characteristics of graphic scales Explain published map accuracy standards Describe types of scales used in civil drafting Convert a representative fraction to a graphic scale Read a vernier scale Measure with a civil engineer's scale Measure acreage on maps Differentiate between latitude and longitude

213

BIL: Essential – FWM, GIS Recommended – PC, ESA, ECA

EDU:	12	AD
PC		Ι
ESA		Ι
HS		
ECA		Ι
HM		
WEM		
FWM	Ι	P
GIS		Р

Competency 22.3: Utilize surveying skills

Competency Builders:

Describe survey methods used to determine distances and positions of points Identify types of horizontal and vertical angles Explain stationing Explain purpose of field notes Describe the arrangement of field notes in the field book Identify types of field notes Record field notes Explain traverses Differentiate between a bearing and an azimuth Convert azimuths to bearings and bearings to azimuths Describe common methods for plotting traverses

BIL: Essential – GIS Recommended – ESA, ECA, HM, WEM, FWM

EDU:	12	AD
PC		
ESA		Ι
HS		
ECA	Ι	
HM	Ι	R
WEM		Ι
FWM	Ι	Р
GIS	Ι	Р

Competency 22.4: Perform site measurements

Competency Builders:

Determine location and distance from maps Identify major parts of a compass Read a compass Sight along a given bearing Describe compass declination and variation Explain surveying [R-HM] Differentiate among accidental and systematic errors and mistakes Explain use of principal surveying equipment Describe types of surveys and their uses [R-HM] Measure distance in field [R-HM] Measure area in field [R-HM] Measure elevations in field [R-HM] Reference datum [R-HM] Pace horizontal distance [R-HM] Tape horizontal distance [R-HM] Explain differential leveling [R-HM] Explain profile leveling Explain cross-sectional leveling Measure horizontal angles Measure vertical angles Use planimeter [R-HM] Compare microcomputer surveying and mapping application programs Apply GPS technology in surveying [R-HM]

BIL: Essential – GIS Recommended – PC, ECA, FWM

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		Ι
GIS	I	P

Competency 22.5: Draft maps

Competency Builders:

Explain terms related to map drafting procedures Identify characteristics of drafting media List types of lettering used in civil drafting Identify rules for good lettering Differentiate among map registration methods Describe reprographic techniques used in civil drafting Identify types of pressure-sensitive films Describe methods used for coloring maps Describe aerial photography Interpret aerial photographs and maps Record measurements on photos or in records Describe the standard sheet format for a set of civil drawings Label components of a map layout Identify the steps for drafting a map or drawing Make rough tracings of maps Describe common mistakes made in map drafting Differentiate among types of planimeters Label the parts of a polar planimeter Produce finished map of area Identify underground surveying techniques Ink a mapped area Apply transfer film and press-on letters Register a map

BIL: Essential – GIS Recommended – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		Ι
GIS	Ι	P

Competency 22.6: Prepare topographic maps

Competency Builders:

Explain how elevation is shown on a topographic map

List uses of topographic maps

Describe types of surveys used in topographic mapping

Identify field methods for obtaining topography

Identify factors affecting the selection of the field method to be used for a topographic survey

Differentiate between horizontal and vertical controls for topographic surveys

Lay out a topographic survey

Determine topography

Describe methods used to establish contours

Identify national standards for horizontal and vertical accuracy on topographic maps

Create a chart of scale ratios used in the USGS topographic series

Describe the selection of contour intervals

Identify characteristics of contour lines

Match contour line features with their correct configurations

Identify common methods used to calculate area from a topographic map

Calculate cut and fill using the contour area method

Plot a profile from profile leveling notes

Develop a profile from a contour map

List three methods for plotting contours lines

Explain how to fix a grade line

Describe aerial photogrammetry

Identify advantages and disadvantages of using aerial photography for mapping Identify applications of aerial photogrammetry

Explain aerial photo control

Interpolate contours from a grid survey

Prepare profiles from the contour map Set up contours in isometric Calculate grades in percents

.

BIL: Recommended – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS		Ι

Competency 22.7: Map transportation system

Competency Builders:

State the purpose of route surveys

Describe the fundamentals of a route survey

Describe superelevated roadways

Identify elements of a horizontal circular curve

Explain mathematical formulas used for computing a horizontal curve

Describe circular curve layout by tangent offsets

Describe vertical curves

Describe plan views for route surveys

Identify characteristics of profiles for a route survey

Identify characteristics of cross sections for a route survey

Describe field note reduction for a cross section

Explain plotting cross sections

Differentiate among methods used to determine areas of cross sections

Identify formulas for calculating earth volume

List drawings included in a set of highway plans

Identify common horizontal and vertical scales used in transportation mapping

List items that appear on a typical title sheet for a set of highway plans Describe detail sheets

Draft plan views, profiles, and cross sections

Layout open traverses

Layout a survey alignment for a road

Plot field notes for horizontal control, topography, profile, and cross section for a proposed road

BIL: Essential – GIS Recommended – HM, WEM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM	I	R
WEM		I
FWM		
GIS	Ι	Р

Competency 22.8: Map municipal infrastructure

Competency Builders:

Explain terms related to municipal mapping Identify types of utilities List agencies who develop and maintain municipal maps

Identify users of municipal maps

Describe types of drawings used in municipal mapping Describe methods of presenting utilities on maps Describe the surveying and mapping of municipal maps List support information needed to develop utility drawings

Explain utility easements

Identify types of valves and valve housings

Identify types of gas piping and devices

List information included on utility drawings

Describe types of sewers and sewer lines

Research the plats for local utilities

209

Unit 23: Drafting Technology

BIL: Essential – PC, GIS Recommended – ECA, WEM, FWM

EDU:	12	AD
PC	Ι	Р
ESA		
HS		
ECA		Ι
HM		
WEM		Ι
FWM		Ι
GIS	Ι	P

Competency 23.1: Apply basic drafting skills

Competency Builders:

Identify line styles, weights (alphabet of lines) Select proper drawing scale, introduction to different types Prepare title blocks and other drafting formats Apply freehand and other lettering techniques Develop multi-view drawings Develop multi-view sketches Develop orthographic views Develop change control block Describe change control block/revision block Measure angles Draw horizontal, vertical, angular, parallel, and perpendicular lines Transfer an angle Construct tangent lines (to arcs) and tangent arcs (to arcs) Bisect angles and arcs **Bisect** lines Divide lines Construct three-point circle Construct regular hexagon, pentagon, and octagon Reproduce a drawing Develop single-view drawings Develop dimension drawings Interpret notes and dimensions to determine part Draw arcs, circles, and conics Transfer measurements

BIL:	Essential – GIS
	Recommended – PC, ECA, FWM

EDU:	12	AD
PC	Ι	R
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		Ι
GIS		P

Competency 23.2: Prepare drawings

Competency Builders:

Describe types of blueprints and their applications Demonstrate isometric, oblique and perspective sketching techniques Prepare isometric, oblique and perspective sketches Prepare sectional views Prepare auxiliary views Identify ANSI symbols Describe systems drafting techniques Dimension drawings using ANSI, 14.5 standards Describe purpose of auxiliary and sectional views Prepare pictorial drawings Prepare schematics Draw conics Interpret basic pneumatic/hydraulic standard and symbols

BIL: Essential – GIS Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC		I
ESA		
HS		Ι
ECA		Ι
HM		
WEM		Ι
FWM		
GIS		Р

Competency 23.3: Interpret machine, hydraulic and pneumatic, instrument, electrical, process flow, P & ID diagrams, and detail and assembly drawings/prints/schematics

Competency Builders:

Identify the types of information found on floor plans, elevation plans, flow diagrams, piping and instrumentation diagrams, and electrical diagrams Identify commonly used symbols and abbreviations Explain how to trace diagrams Explain how to use diagrams to locate actual components Visualize object from drawing Analyze orthographic projections Analyze isometric views Analyze sectional views Explain dimensions Explain tolerances Identify GD&T symbols Identify basic mechanical standards and symbols

BIL:	Essential – GIS
	Recommended – PC, ECA, FWM

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		I
HM		
WEM		
FWM		I
GIS		Р

Competency 23.4: Analyze structural drawings

Competency Builders:

Explain structural drawing List types of structures Identify types of materials used for structures Describe types of steel members Identify structural steel shapes Explain drawing practices for steel members Describe the placement of gage lines for steel members Describe fastener sizes and spacings Explain dimensioning procedures for steel structures Label a structural steel callout Explain structural steel marking Describe anchor bolts Differentiate among types of concrete Identify types of concrete reinforcement Identify standard pre-stressed concrete units Describe foundation parts Describe types of structural drawings for concrete Create chart of symbols and abbreviations for concrete placing drawings Identify standard practices for documentation of rebar Identify typical details of concrete structures Describe wood construction Identify types of wood connectors Identify types of framing connectors Describe components of wood construction Explain heavy timber construction Prepare detail drawings of structural steel members Draw to scale a concrete engineering drawing Detail a wood truss

BIL: Recommended – PC, ECA, GIS

EDU:	12	AD
PC	Ι	R.
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM		
GIS	I	R

Competency 23.5: Demonstrate dimensioning techniques

Competency Builders:

Convert dimensions and tolerances to and from metric to English units Construct arrowheads using various styles/disciplines

Apply symbols for surface and texture control

Add labels/notes to drawing

Interpret decimal tolerance dimensions

Prepare dimensional drawing of arcs, angles, curves, rounded-end shapes, spherical objects, cylindrical objects, cones, pyramids, prisms, features on circular center line, theoretical point of intersection, object using rectangular coordinate system, object using polar coordinate system, object using tabular coordinate system, object using ordinate dimensioning system

Unit 24: CADD Fundamentals

BIL: Essential – PC, GIS Recommended – ECA, FWM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		Ι
GIS	Ι	Р

Competency 24.1: Identify computer mapping applications

Competency Builders:

Classify hardware used in a CAD system as input, output, or neither Explain data input

List types of data output

Differentiate between digital and interactive computer graphics Identify types of computer drawings

List methods of storing graphic information

List advantages of using computers for mapping applications Describe an interactive data management system for mapping

BIL:	Essential – PC, GIS
	Recommended – ECA, FWM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		Ι
GIS	Ι	P

Competency 24.2: Operate a CADD system

Competency Builders:

Boot system/start up procedure Log on terminal Load start file Use keyboard input Use screen and tablet menus Use other input devices (e.g., scanner, digitizer) Create scaled plots Operate a pen plotter Operate a printer-plotter (i.e., laser plotter) Access on-line help for commands Convert files Transfer data Manage files Plot out drawings Store a file Shut down a system Log off

BIL: Essential – PC, GIS Recommended – FWM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA		
HM		
WEM		
FWM		Ι
GIS	Ι	Р

Competency 24.3: Change existing drawings or details

Competency Builders:

Plan drawing changes Find drawing file Load drawing file Execute changes Obtain approvals/check drawing changes Plot out drawing Update file

BIL: Essential – PC, GIS Recommended – FWM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA		
HM		
WEM		
FWM		Ι
GIS	Ι	Р

Competency 24.4: Compose drawings

Competency Builders:

Plan original drawing Employ system commands Manipulate geometry Select geometry Add test Rotate views Move views Scale views Dimension a drawing Store files

BIL: Essential – GIS Recommended – PC, FWM

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		
HM		
WEM		
FWM		Ι
GIS	Ι	Р

Competency 24.5: Create 2-D orthographic drawings

Competency Builders:

Create primitive drawing entities Draw utilizing absolute Cartesian coordinates Draw utilizing relative Cartesian coordinates Draw utilizing polar coordinates Draw using construction aides (e.g., snaps, grid, snap) Change drawing attributes Edit drawing entity properties (e.g., color, layer, thickness, linetype) Construct drawing entities (e.g., offset, timer, extend, break, mirror) Edit drawing entities Set system variables (e.g., units, scale) Annotate orthographic drawings Create layers Identify layers Manipulate layers Save files Create back-ups Create hatches, patterns, symbols Recall drawing templates/blocks Create text styles Edit text styles Select text styles Apply notes Create dimensions Edit text Control dimension variables/models Apply view control while drawing (e.g., zoom and pan) Control view resolution (e.g., viewers) Save views

Display views Add or remove entities separately Add or remove entities using a window Add or remove entities with a crossing-box Select entities using a fence Select entities by other methods (e.g., last, previous, type)

BIL: Essential – PC, GIS Recommended – ECA, FWM

EDU:	12	AD
PC		Р
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM		Ι
GIS	Ι	P

Competency 24.6: Extract entity and drawing information

Competency Builders:

Measure distances Measure areas Identify locations List entity characteristics (e.g., length, size, location, properties, etc.)

223

Unit 25: Waste Management

BIL: Essential – PC, ESA, HM Recommended – HS, ECA, WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	Ι	R
HM	I	Р
WEM		Ι
FWM		
GIS		

Competency 25.1: Collect waste materials

Competency Builders:

Identify source of waste materials Monitor collection of waste materials Document collection of waste materials Determine sampling method Prepare sampling container Collect sample Prepare chain of custody Test waste materials Document waste materials testing Identify hazardous materials/waste Determine compatibility of waste materials Separate waste materials Identify container type Contain waste materials Label waste materials Review waste material labels Document contained-waste collection Identify regulations

BIL: Essential – PC, ESA Recommended – ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS		
ECA		Ι
HM		Ι
WEM		
FWM		
GIS		

Competency 25.2: Treat waste materials

Competency Builders:

Separate waste materials Verify operating parameters Determine test method Add additional chemicals to material Monitor efficiency of additions Document compliance with treatment standards Document raw-materials usage Maintain inventory of supplies Sort treated materials Release treated materials Seek markets for recovered materials Match recovered materials with end users Identify regulations

234

BIL: Essential – PC, ESA, HM Recommended – HS, ECA

EDU:	12	AD
PC	Ι	P
ESA –		P
HS	Ι	R
ECA		IR
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 25.3: Manage waste

Competency Builders:

Monitor instrumentation Determine material needs Verify the operation of the equipment Reroute source Troubleshoot equipment Identify source of waste materials Document contained-waste collection Identify hazardous materials Determine compatibility of waste materials Separate waste materials Contain waste materials Label waste materials Document contained-waste collection Store material containers Load/unload storage containers Transport waste materials Repair leaking containers Clean up container leaks Verify operating parameters Determine test method Add additional chemicals to material Monitor efficiency of additions Document raw-materials usage Sort treated materials Initiate pollution abatement at the source Document non-reusables Monitor pollution abatement at the source Determine disposal method

Identify container for non-reusables Label non-reusables Monitor clean-up Arrange for transportation of non-reusables Sample waste before disposal Transport non-reusable Monitor disposal by contractor Dispose of non-reusables Destroy non-reusables Perform routine maintenance on implements Perform routine maintenance on test instruments Remove trash

• . .

236

BIL: Essential – PC, HM Recommended – ESA, ECA, WEM

EDU:	12	AD
PC	Ī	Р
ESA		Ι
HS		
ECA	I	R
HM	Ι	Р
WEM		I
FWM		
GIS		

Competency 25.4: Manage waste systems

Competency Builders:

Develop waste system training Coordinate mandatory consultation programs Manage and implement three R's program (i.e., reduce, recycle, reuse) Characterize all waste Register subject waste Arrange waste collection Arrange waste disposal Prepare manifest for subject waste Conduct waste audits including compliance and pollution prevention components Establish waste reduction work plans Manage internal waste disposal operations Monitor leachate collection systems Process leachate Assess leachate treatment options

BIL: Essential – PC, ESA, ECA Recommended - HM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		
ECA	Ι	Р
HM	Ι	R
WEM	_	
FWM		
GIS		

Competency 25.5: Identify characteristics of solid waste treatment

Competency Builders:

Explain solid waste

List sources of solid waste

Identify types of solid waste

Identify physical and chemical compositions of waste

Correlate typical source with locations and type of solid waste

Describe landfill alternatives (reduction, separation, processing, waste of energy and application)

Describe characteristics of a sanitary landfill

List reactions that occur as a landfill matures

BIL: Essential – PC, ESA Recommended – ECA, HM

EDU:	12	AD
PC	I	Р
ESA	I	Р
HS		
ECA	I	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 25.6: Identify the risks associated with solid waste accumulation and disposal

Competency Builders:

Describe the composition, sources, and quantity of solid waste Describe methods of solid waste disposal

Describe various solutions to solid waste accumulations and disposal

Describe the legal aspects and consequences of solid waste pollution

Describe the construction features of a safe landfill

Describe the possibilities of contaminates (leachates) seeping into the groundwater Describe the need to have monitoring wells located around a sanitary landfill Identify those wastes that are permitted by state and federal regulation to be

disposed at a landfill site

EDU:	12	AD
PC		Ι
ESA	Ι	R
HS		
ECA	Ι	R
HM	Ι	R
WEM		
FWM		
GIS		

Competency 25.7: Describe methods of site identification and acceptance

Competency Builders:

List typical factors that may restrict or eliminate a potential location from consideration as a future landfill site

Develop a plan to identify and manage the parts of the waste stream List factors that determine waste acceptability

Identify liquids that may be excluded from landfill

Describe management options for lead acid batteries, used oil, eludes and infectious waste

Identify radioactive waste

Describe operational/equipment limitations that would prevent materials from going into landfills and disposal options

BIL: Essential – PC, ESA Recommended – HS, HM

EDU:	12	AD
PC	Ι	Р
ESA	IR	Р
HS		Ι
ECA		
HM	Ι	R
WEM		
FWM		
GIS		

Competency 25.8: Describe the process of waste decomposition

Competency Builders:

Categorize waste by method of decomposition and by-products created List factors that effect the rate of decomposition List events that occur in a landfill as a result of decomposition Explain subsidence Explain differential settlement Describe settlement control Identify methods to determine whether settlement is occurring Explain landfill gas operation [R-HM] Describe composition of landfill gas and gas generation cycle [R-HM] Explain landfill gas migration [R-HM] List items that intercept migration routes [R-HM] Describe techniques for recognition and control of landfill migration [R-HM] Explain leacheate generation [R-HM] Characterize leacheate Describe leacheate impact [R-HM] List controlling factors in establishing leacheate quality [R-HM]

BIL: Essential – ESA Recommended – PC, HM

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 25.9: Describe sanitary landfill procedures

Competency Builders:

Describe aspects of site security

Describe the importance of excluding unacceptable waste from the landfill Describe the careful execution of a monitoring permit

Identify the size of working at the operations field station

Identify access for vehicles at operations field station

Describe landfill equipment operation

Identify compaction practices at operations field station

Describe scope of work at operations field station

Describe nuisance conditions at operations field station including litter control, odors, and noise

Describe cover at operations field station

Classify field station operation (e.g., daily, intermediate, and final)

- Describe drainage control (i.e., run-on, run-off, depressions, erosions) at operations field station
- Describe liner integrity at field operations site including vegetation, sand blanket, erosion, waste placement, and traffic
- Describe other factors at field operations site including leachate seeps and vegetation screening
- List recommended procedures for maintaining monitoring well
- Complete chain of custody record for equipment at operations field station
- Describe an area of the field operations site that illustrates the best type of soil for different methods of operation

Describe resource recovery and source reduction procedures

BIL: Essential – ESA Recommended – PC, HS, HM

EDU:	12	AD
PC		Ι
ESA	IR	Р
HS		I
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 25.10: Monitor sanitary landfill procedures

Competency Builders:

Explain safety rules and the importance of each

Identify individual safety items needed for landfill personnel to be appropriately equipped

Identify waste types received at operations field station including liquids, hazardous wastes, special wastes

Obtain samples from monitoring well at field operations site including the purging of a well

Complete laboratory analysis form

List various types of soil and their best use

Operate equipment used in soil sampling

Take a meter reading

BIL:	Recommended – PC, ESA, HM
------	---------------------------

EDU:	12	AD
PC		Ι
ESA	Ι	R
HS		
ECA		
HM	Ι	R
WEM		
FWM		
GIS		

Competency 25.11: Describe methods to operate a composting facility

Competency Builders:

Identify materials acceptable in a compost facility Describe the steps necessary to construct a facility Identify procedures used in receiving material Describe operational procedures Describe records/management document

BIL: Essential – HM Recommended – PC, ESA, HS, ECA

EDU:	12	AD
PC		Ι
ESA		I
HS		I
ECA	Ι	R
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 25.12: Describe methods to incinerate waste

Competency Builders:

Identify materials acceptable to be received at facility Describe methods employed in incineration of waste Describe material flow in incinerators Explain methods employed in separating waste Identify data management procedures

237

BIL: Essential – PC, HM Recommended – ESA, ECA

EDU:	12	AD
PC	Ι	Р
ESA	Ι	R
HS		
ECA		Ι
HM	Ī	Р
WEM		
FWM		
GIS		

Competency 25.13: Describe recycling methods

Competency Builders:

Identify materials appropriate to recycle

Describe the economic and physical drivers associated with recycling

Identify methods to receive recycling material

Describe recycling management procedures

Identify markets for recycling material

Identify market factors associated with recycling

BIL: Recommended – PC, ESA, HS, HM, WEM

EDU:	12	AD
PC		I
ESA	Ι	R
HS		I
ECA		
HM		Ι
WEM		Ι
FWM		
GIS		

Competency 25.14: Explain control processes for landfill gas and leacheate

Competency Builders:

List characteristics of decomposition, leacheate, and landfill gas Describe process for determining the potential for landfill gas Describe process for locating test wells List types of test wells Describe monitoring process used to detect the presence of methane Describe control methods for landfill gas Describe methods for landfill gas recovery and use Describe process which prevents leacheate contact with groundwater [R-WEM] Describe control process of surface water [R-WEM] List characteristics of leacheate migration [R-WEM] Describe controls for surface discharge of leacheate [R-WEM] Describe methods for detecting leacheate discharge to groundwater [R-WEM] List methods for control of leacheate migration [R-WEM] Describe remedial actions which may be taken where leacheate is contaminating groundwater [R-WEM] List types of leacheate treatment systems [R-WEM] Describe methods of leacheate recirculation [R-WEM] List representative leacheate treatment technologies both biological and physical/chemical and give characteristics of each [R-WEM] List characteristics of an effective groundwater monitoring program [R-WEM]

BIL:	Essential – HM
	Recommended – PC, ESA, ECA

EDU:	12	AD
PC		Ι
ESA		Ι
HS		
ECA		Ι
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 25.15: Identify design requirements for sanitary landfills

Competency Builders:

Explain how specifications are used in the construction of landfills

- Describe the basic types of plans necessary to show how a facility is to be developed
- List items essential to following facility plans
- Describe methods of measuring horizontal distance determining compliance with a facility plan

BIL: Recommended – PC, ESA, HS, ECA, HM, WEM

EDU:	12	AD
PC		I
ESA	Ι	R
HS		I
ECA		I
HM		Ι
WEM		Ι
FWM		
GIS		

Competency 25.16: Describe standard operational techniques for sanitary landfills

Competency Builders:

Identify elements that dictate facility operations Read sanitary landfill plans Identify elements of a design plan Identify elements of an operational plan Identify items an operator must control for a successful operation List methods for controlling moisture List methods for controlling run-off List methods for controlling waste Explain confinement methods Explain compaction methods Explain ratio of slope to compaction in an ideal landfill situation Describe the advantages of using proper soil for use as cover Describe types of cover and their functions Describe operation of a lined sanitary landfill Describe what must be accomplished to ensure a lined system will function Identify operational problems that are exacerbated by weather Identify strategies to resolve weather related problems Identify hard-to-handle wastes Describe operational problems exacerbated by hard to handle wastes Explain how to handle hard-to-handle wastes Identify failures of site operation principles that could result in environmental and health problems Identify potential nuisance and health problems Identify controls that can be used to reduce nuisance and health problems

249

BIL: Recommended – PC, ESA

EDU:	12	AD
PC		Ι
ESA		Ι
HS		
ECA		
HM		
WEM		
FWM		
GIS		

Competency 25.17: Explain sanitary landfill equipment procurement and maintenance

Competency Builders:

Identify types of equipment and their advantages and disadvantages in the operation of a sanitary landfill

Describe daily maintenance of equipment program

Describe shutdown procedures

Describe a periodic maintenance program

- Describe the role of accurate records of maintenance in the decision to depreciate and replace equipment
- Identify costs that are common to maintain a sanitary landfill

Explain the bid process

List methods of equipment financing

Perform a total cost evaluation (TCE) of equipment considered for purchase or lease-purchase

BIL: Recommended – PC, ESA, ECA

EDU:	12	AD
PC		I
ESA		Ι
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 25.18: Describe site closure methods and post-closure considerations

Competency Builders:

Describe goals that must be met for successful site closure

Describe steps in preplanning the closures

Describe the process that should occur three months prior to closure

Describe steps that should occur at closure

Describe things that need to be done three months after closure

Describe landfill gas control systems and their usefulness in long-term maintenance of a closed landfill

Explain use of data gathered from landfill gas and leacheate monitoring systems Explain how surface water and settlement can effect the containment of waste in a

closed landfill

Describe some end uses for closed sites

Describe buffer layer, gas channel, filter layer, barrier, topsoil, and vegetation Identify guidelines for constructing the final cover system

Identify desirable characteristics for vegetation on final cover

Explain how to determine soil suitability for planting and plant requirements for nutrients

Describe method for planting and protecting the seed

Identify methods for controlling run-on and run-off on a closed site

List information used by inspectors to determine acceptability of closure

Describe methods of financing closure and post closure

Unit 26: Drinking Water Treatment Operations

BIL: Essential – PC, ESA, ECA, WEM Recommended - HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	Ι	Р
HM		
WEM	Ι	Р
FWM		
GIS		

Competency 26.1: Identify characteristics of drinking water treatment

Competency Builders:

Identify constituents inherent to groundwater and/or surface water Describe the pH scale and its importance in the water-treatment processs Correlate treatment processes to types of facility influent and solids Identify commonly measured drinking water items Identify factors affecting raw drinking water Identify waterborne diseases Identify gases found in drinking water

EDU:	12	AD
PC _	I	Р
ESA	IR	Р
HS	Ι	R
ECA	P	R
HM		
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, WEM Recommended - HS

Competency 26.2: Sample drinking water

Competency Builders:

Identify the reasons for sampling and the types of samples (e.g., simple, representative, grab, composite)

Describe methods of sample collection and handling

Identify process control samples (biological or chemical)

Identify representative sampling points

Determine the significance of process control sample results (biological or chemical)

Identify the basic procedure for quality control/quality assurance in sampling Identify the significance of the flow measurement on process control Identify pathogenic organisms, including bacteria, protozoa, and virus, and

describe their disease associations

Identify applicable regulatory sampling guidelines

Test for bacteria

Explain sample chain of custody

Apply correct sample-collection procedures for inorganic and organic analyses Describe the need for chemical analyses in water treatment

Determine whether the finished water is acceptable or unacceptable

BIL: Essential – PC, ESA, ECA, WEM Recommended - HS

EDU:	12	AD
_ PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	P	R
HM		
WEM	Ι	P
FWM		
GIS		

Competency 26.3: Identify constituents of water entering water-treatment facility

Competency Builders:

Differentiate between turbidity and the microbiological quality of raw water Describe the uses of chemical analysis in water-treatment operations Identify commonly used units of constituent measurement

Explain the importance of water treatment for the control of coliform bacteria and algae

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	Р
ECA	Ι	Р
HM		
WEM		Р
FWM		
GIS		

BIL: Essential – PC, ESA, HS, ECA, WEM

Competency 26.4: Analyze the constituents of drinking water

Competency Builders:

Analyze the specific physical, chemical, and biological characteristics of drinking water

Identify ranges in drinking water treatment and limits on facility discharges

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS		Ι
ECA	Ι	R
HM		
WEM	Ι	R
FWM		
GIS		

Competency 26.5: Explain the aeration process in water treatment

Competency Builders:

Differentiate between aeration and air stripping

Identify types of aeration systems

Explain the benefits of aeration

Describe the components of an air-stripping system

Describe process control methods for aeration systems

EDU:	12	AD
PC	I	R
_ ESA		Р
HS		I
ECA		Ι
HM		
WEM		P
FWM		
GIS		

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

Competency 26.6: Monitor the mixing, coagulation, and flocculation processes in water treatment

Competency Builders:

Explain turbidity, color, coagulation, and flocculation

Identify the kinds of equipment used in the coagulation process

Identify coagulant chemicals used in water-treatment facilities

Identify the steps of coagulation

Identify specific sampling locations for control in a coagulation process

Identify factors that would contribute to poor floc formation

Compute the feed rate in pounds per day (lbs/d)

Compute the dosage (mg/l) of coagulant

Compute the dosage rate that is needed to treat a different flow (MGD) at the current dosage

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

EDU:	12	AD
PC	Ι	R
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		Р
FWM		
GIS		

Competency 26.7: Monitor the filtration and sedimentation process in water treatment process

Competency Builders:

Explain concepts related to filtration including types of filters, filter-system components, and the steps for normal filtration operations

Explain common problems of filtering systems including head loss, mudballs,

filter media loss, and blinding

Determine when to backwash a filter

Identify the steps for backwashing a filter

Explain filter backwash rates

Explain concepts of sedimentation, including types of classifiers, sedimentation system components and steps for normal operation

Measure sedimentation rates

BIL:	Essential – ESA, WEM
	Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA	Ι	P
HS		Ι
ECA	Ι	R
HM		
WEM	Ι	Р
FWM		
GIS		

Competency 26.8: Monitor the water-softening process in water treatment

Competency Builders:

Identify treatment processes used for water softening

Describe types of hardness

Describe alkalinity and its components

Calculate the distribution of bicarbonate, carbonate, and/or hydroxide ions when given the total alkalinity and phenolphtalein alkalinity

Describe carbonate removal

Identify the important zones of an upflow clarifier unit

Identify the appropriate chemical(s) to use in chemical-precipitation softening process

Compute lime demand from raw-water analyses

Describe the reasons for recarbonization

Compute hardness removal when the ion-exchange capacity is known

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		P
FWM		
GIS		

Competency 26.9: Monitor the stabilization process in water treatment

Competency Builders:

Identify the chemicals used in stabilization Identify two stabilization indices Conduct marble test Conduct Langelier index

BIL:	Essential – ESA, WEM
	Recommended - PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA	Ι	Р
HS		Ι
ECA		Ι
HM		
WEM		Р
FWM		
GIS		

Competency 26.10: Monitor the corrosion-control process in water treatment

Competency Builders:

Describe problems that can be created by corrosive waters Describe an electrochemical reaction

Identify the factors that influence corrosion

Explain cathode film formation

Describe the conditions for calcium carbonate film formation

Identify the chemicals used in corrosion control

Describe cathodic protection and its application in water-treatment

Describe the basic concepts of electrolysis

Describe effects of lead and copper rule

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA		P
HS		Ι
ECA		Ι
HM		
WEM	Ι	P
FWM		
GIS		

Competency 26.11: Monitor the disinfection process in water treatment

Competency Builders:

Identify chemicals used in primary disinfection

Identify non-chemical methods in primary disinfection

Identify commonly used chlorinators and hypochlorinators

Determine the maximum amount of chlorine gas (in pounds) that may be taken from a cylinder in a 24-hour period

Identify proper maintenance procedures for equipment chlorination

Identify terminology related to chlorination and disinfection

Identify common safety problems or emergency situations that might occur during chlorination

Identify the properties of chlorine and its use in water treatment

Explain the points at which chlorine is applied most effectively in water treatment Compute the feed rate (lbs/d)

Compute the feed rate (lbs/d) of a hypochlorite compound

Compute the new rate of flow and the feed rate that will be needed to maintain the current dosage

Compute the feed rate needed to treat a given amount of water

EDU:	12	AD
PC		Ι
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

Competency 26.12: Monitor the control and treatment of trihalomethanes in water

Competency Builders:

Describe the formation of total trihalomethanes (TTHM) Collect samples to determine trihalomethane levels Compute the quarterly average and the annual TTHM measurements Identify processes that remove trihalomethane precursors Identify processes that remove trihalomethanes after they are formed Identify the benefits of alternate disinfectants Describe chloramination as a control of TTHM

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA	I	Р
HS		I
ECA	I	R
HM		
WEM	I	P
FWM		_
GIS		

Competency 26.13: Monitor the iron and manganese removal processes in water treatment

Competency Builders:

Describe the importance of controlling iron and manganese

Explain the occurrence of iron and manganese in source water and in treated water Perform sample-collection and analysis procedures for iron and manganese

EDU:	12	AD	
PC		Ι	
ESA	I	Р	
HS		Ι	
ECA	Ι	R	
HM			
WEM	Ι	Р	
FWM			
GIS			

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

Competency 26.14: Describe taste and odor control in water treatment

Competency Builders:

Identify common types of complaints about water quality

Identify causes of tastes and odors

Explain how microbial growths affect tastes and odors

Explain how eutrophication contributes to surface-water tastes and odors Describe a cross-connection

Identify the chemicals used in the control and treatment of tastes and odors Describe the Threshold Odor Number (TON) test

Determine the TON when dilution volumes and positive samples are given

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC		I
ESA		P
HS		Ι
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 26.15: Describe the demineralization processes in water treatment

Competency Builders:

Explain concepts related to demineralization (e.g., reverse osmosis (RO), flux, feedwater, permeate, salinity)

Describe the structure, composition, and performance of an RO membrane Describe feedwater impurities, physical parameters, and conditions potentially

harmful to the RO process

Identify items included in a typical RO-facility-operation checklist

Describe the common causes of membrane damage

Describe the procedure for membrane cleaning

Compute the percent of recovery

Compute the percent of mineral rejection

Describe the basic concepts of electrodialysis (ED), such as the cathode and anode relationship and the removal of typical inorganic salts

Describe the most common problem of ED operation in a facility

Explain how the cation membrane and the anion membrane differ

Describe the multi-compartment unit used in the ED process

Describe ED operating procedures in detail

Describe the most common chemical solutions used to flush ED stack membranes

EDU:	12	AD
PC		I
ESA	Ι	Р
HS		Ι
ECA		I
HM		
WEM	Ι	Р
FWM		
GIS		

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA

Competency 26.16: Monitor the fluoridation process in water treatment

Competency Builders:

Identify the basic concepts of fluoridation and the kinds of chemicals used Identify the properties of fluoride and its use

Identify the types of equipment used in fluoridation

Describe proper maintenance procedures for fluoridation equipment

Describe potential safety problems or emergency situations in the fluoridation process, and ways to avoid them

Compute the feed rate of chemicals used in the fluoridation process

BIL: Recommended – PC, ESA, HS, WEM

EDU:	12	AD
PC		I
ESA		Ι
HS		Ι
ECA		
HM		
WEM		I
FWM		
GIS		

Competency 26.17: Correct facility operational problems in water treatment

Competency Builders:

Describe common facility operational problems in the treatment train, effluent disposal, and solids management

Identify appropriate corrective actions for common problems in disposal, and solids management

Troubleshoot coagulation and flocculation

Troubleshoot sedimentation

Troubleshoot disinfection

Troubleshoot filtration

Troubleshoot corrosion control

Troubleshoot taste and odor control

Troubleshoot iron and manganese control

Troubleshoot fluoridation

Troubleshoot softening

Troubleshoot demineralization

Troubleshoot trihalomethanes

BIL:	Essential – I	PC,	ESA,	HS,	ECA,	WEM
-------------	---------------	-----	------	-----	------	-----

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS		Р
ECA	I	P
HM		
WEM	I	P
FWM		
GIS		

Competency 26.18: Explain state and federal environmental protection agency (EPA) rules for drinking water

Competency Builders:

Describe the operator's duties and responsibilities, certification requirements, testing, renewal, staffing, and facility classification

- Complete a EPA monthly operating report (MOR) form
- Describe OSHA, EPA, and local health department rules for procedures such as reclaimed water, reuse, and biosolids residuals management
- Describe federal rules that apply to the operation of a drinking water-treatment facility

BIL: Essential – PC, ESA, WEM Recommended – HS, ECA

EDU:	12	AD
PC	I	Р
ESA	IR	Р
HS	Ι	R
ECA	Ι	R
HM		
WEM		Р
FWM		
GIS		

Competency 26.19: Analyze environmental microbiological techniques

Competency Builders:

Perform coliform analyses Perform sterilization techniques Describe cultivation of microorganisms Perform a standard plate count Perform pressure presence/absence in membrane filter colifon analysis

EDU:	12	AD
PC	I	Р
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		Ι
FWM		
GIS		

BIL: Essential – PC, ESA Recommended – HS, ECA, WEM

Competency 26.20: Identify methods for backflow prevention

Competency Builders:

Explain cross-connection Identify purposes and consequences of backflow prevention Identify approved backflow prevention devices

Unit 27: Wastewater Treatment Operations

BIL: Essential – PC, ESA, WEM Recommended – HS, ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA	I	P
HS	I	R
ECA	I	R
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

Competency 27.1: Identify characteristics of wastewater treatment

Competency Builders:

Identify constituents inherent to groundwater and/or surface water Describe the pH scale and its importance in the water-treatment process Correlate treatment processes to types of facility influent and solids Identify biological organisms used in treatment processes Identify commonly measured wastewater items Identify factors affecting raw wastewater Identify waterborne diseases Identify gases found in wastewater

EDU:	12	AD
PC	Ι	P
ESA	Ι	P
HS	Ι	R
ECA	Ι	Р
HM	Ι	R
WEM	Ι	Р
FWM		
GIS		

Essential - PC, ESA, ECA, WEM **BIL:** Recommended - HM

Competency 27:2 Sample wastewater

Competency Builders:

Identify the reasons for sampling and the types of samples (e.g., simple,

representative, grab, composite)

Describe methods of sample collection and handling

Identify process control samples (biological or chemical)

Identify representative sampling points

Determine the significance of process control sample results (biological or chemical)

Identify the basic procedure for quality control/quality assurance in sampling Identify the significance of the flow measurement on process control

Identify laboratory tests required by the NPDES permit

Identify pathogenic organisms, including bacteria, protozoa, and virus, and describe their disease associations

Identify regulatory sampling guidelines

Perform coliform analyses

Describe cultivation of microorganisms

Test for bacteria

Explain sample chain of custody

Apply sample-collection procedures for inorganic and organic analyses Describe the need for chemical analyses in wastewater treatment

Determine whether the finished water is acceptable or unacceptable

BIL: Essential – PC, ESA, ECA, WEM Recommended - HS, HM

EDU:	12	AD
PC	I	P
ESA		Р
HS	Ι	R
ECA	I	P
HM	Ι	R
WEM	I	Р
FWM		
GIS		

Competency 27.3: Describe wastewater collection systems

Competency Builders:

Identify types of wastewater collection systems

Identify flow variations and conditions that affect plant treatment including infiltration, inflow, and lift stations

Describe methods to detect and correct infiltration and inflow

Identify dissolved gases in wastewater and the effect of their presence/absence on treatment

BIL: Essential – PC, ESA, ECA Recommended – HS

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	Ι	R
ECA	Ι	P
HM		
WEM		
FWM		
GIS		

Competency 27.4: Identify constituents of wastewater entering wastewater treatment facility

Competency Builders:

Describe the uses of chemical analysis in wastewater-treatment operations Identify commonly used units of constituent measurement Identify pollutants, chemical, and microbial in raw water

BIL: Essential – PC, ESA, ECA, WEM Recommended –HS, HM

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS		I
ECA	Ι	P
HM	Ι	R
WEM	Ι	P
FWM		
GIS		

Competency 27.5: Analyze the constituents of wastewater

Competency Builders:

Analyze the specific physical, chemical, and biological characteristics of wastewater

Analyze attached and suspended growth, respiration, gas production, aerobic and anaerobic conditions, differences in effluent disposal, and biosolids management

Identify ranges in wastewater treatment and limits on facility discharges

BIL:	Essential – ESA, WEM
	Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA		Р
HS		
ECA		Ι
HM		
WEM	Ι	P
FWM		
GIS		

Competency 27.6: Troubleshoot collection system

Competency Builders:

Explain the significance of dissolved gases in the influent and the effects of dissolved gases on treatments

Explain the sources of infiltration and inflow and the effects of infiltration and inflow on treatment processes

Detect infiltration and inflow

Correct infiltration and inflow

Explain the effect of lift-station performance on the overall treatment process Implement solutions for lift-station problems, such as surging flows, septic conditions, and power outages

BIL: Essential – ESA, WEM Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA	Ι	
HM		
WEM		P
FWM		
GIS		

Competency 27.7: Describe the mixing, coagulation, and flocculation processes in wastewater treatment

Competency Builders:

Identify coagulant chemicals used in wastewater-treatment facilities Identify the steps of coagulation

Identify specific sampling locations for control in a coagulation process

Identify factors that would contribute to poor floc formation

Compute the feed rate in pounds per day (lbs/d)

Compute the dosage (mg/l) of coagulant

Compute the dosage rate that is needed to treat a different flow (MGD) at the current dosage

BIL: Essential – ESA Recommended – PC, HS, ECA

EDU:	12	AD
PC	Ι	R
ESA		Р
HS	Ι	R
ECA	Ι	R
HM		
WEM		
FWM		
GIS		

Competency 27.8: Describe the disinfection process in wastewater treatment

Competency Builders:

Identify chemical disinfection methods Identify non-chemical disinfection methods Identify commonly used chlorinators and hypochlorinators Determine the maximum amount of chlorine gas (in pounds) that may be taken from a cylinder in a 24-hour period [R-HS] Identify proper maintenance procedures for equipment chlorination Identify terminology related to chlorination and disinfection [R-HS] Identify terminology related to ultraviolet disinfection Identify common safety problems or emergency situations that might occur during chlorination Identify the properties of chlorine and its use in waste water treatment Explain the points at which chlorine is applied most effectively in waste water treatment Compute the feed rate (lbs/d)Compute the feed rate (lbs/d) of a hypochlorite compound Compute the new rate of flow and the feed rate that will be needed to maintain the

current dosage

Compute the feed rate needed to treat a given amount of water

BIL: Essential – ESA, WEM Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA		Р
HS		
ECA	I	R
HM	Ι	R
WEM		Р
FWM		
GIS		

Competency 27.9: Describe the treatment train, effluent disposal, and solids management in wastewater

Competency Builders:

Describe concepts related to preliminary and primary treatment

- Describe the types of preliminary-treatment equipment, the way they function, and the relationship of each to the treatment train
- Describe the types of primary-treatment equipment, the way they function, and the relationship of each to the treatment train
- Describe concepts related to secondary treatment, including attached growth, aeration, and clarification
- Describe process control methods for aeration systems
- Describe the types of secondary-treatment equipment, the way they function, and the relationship of each to the treatment train
- Describe concepts related to tertiary-treatment processes, including sand filtration, nitrification/denitrification, oxic/anoxic, activated carbon, and artificial wetlands
- Describe the types of tertiary-treatment equipment, the way they function, and the relationship of each to the treatment train
- Describe concepts related to disinfection and effluent disposal, including surface water, reuse reclamation, deep well, and ocean outfall
- Describe the types of disinfection and the types of effluent-disposal equipment, they way they function, and the relationship of each to the system
- Describe concepts related to solids management, including thickening, aerobic and anaerobic digestion, stabilization, dewatering, and reuse
- Describe the types of solids-management equipment, the way they function, and the relationship of each to the system

BIL: Essential – ESA, WEM Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA		Р
HS		
ECA		Ι
HM		Ι
WEM		Р
FWM		
GIS		

Competency 27.10: Analyze process optimization for the treatment train, effluent disposal, and biosolids management in waste water treatment

Competency Builders:

- Interpret laboratory data commonly obtained on incoming wastewater to monitor the efficiency of the identified treatment
- Describe possible adjustments to achieve process optimization for handling influent
- Interpret laboratory data commonly obtained on wastewater during primary treatment to monitor the efficiency of the identified treatment
- Describe possible adjustments to achieve process optimization for handling primary treatment
- Interpret laboratory data commonly obtained on wastewater during secondary treatment to monitor the efficiency of the identified treatment
- Describe possible adjustments to achieve process optimization for secondary treatment
- Interpret laboratory data commonly obtained on wastewater during tertiary treatment to monitor the efficiency of the identified treatment
- Describe possible adjustments to achieve process optimization for tertiary treatment
- Interpret laboratory data commonly obtained on reclaimed water during disinfection and disposal to monitor the efficiency of the identified treatment
- Describe possible adjustments to achieve process optimization for disinfection and disposal processes
- Interpret laboratory data commonly obtained during solids management, including solids-content tests, to monitor the efficiency of the identified treatment

Describe possible adjustments to achieve process optimization in solids management

Identify proper disposal of solids based on the analysis of constituents, including accountability records and costs

BIL: Essential – ESA, WEM Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA		Ι
HM		I
WEM		P
FWM		
GIS		

Competency 27.11: Analyze treatment process control for the treatment train, effluent disposal, and biosolids management in wastewater

Competency Builders:

Describe grit-removal process

Describe laboratory tests performed on influent

Describe primary-clarifier removal efficiencies including settleable solids, suspended solids, total solids, BOD, and bacteria

Describe sampling points, frequency of sampling, and the laboratory tests and results that are used for the proper operation of the primary clarifier

Identify and plot on a trend chart the parameters for primary clarification Describe advanced laboratory tests takes in the primary sedimentation tank Evaluate the performance of secondary-treatment processes including attached

growth, suspended growth, aeration, and clarification Describe sampling points, the frequency of sampling, and the laboratory tests and

results used for proper operation of the secondary-treatment processes Identify and plot on a trend chart the parameters for secondary clarification Describe advanced laboratory tests taken in the secondary-treatment processes Evaluate the performance of tertiary-treatment processes, including sand filtration,

phosphorus removal, and nitrogen removal

Describe sampling points, the frequency of sampling, and the laboratory tests and results used for checking the proper operation of tertiary treatment Identify and plot on a trend chart the parameters for tertiary treatment

Describe advanced laboratory tests taken in advanced or tertiary treatment

Evaluate the performance of effluent-disposal processes, including disinfection and dechlorination

Describe sampling points, the frequency of sampling, and the laboratory tests used for checking the proper operation of effluent disposal

Identify and plot on a trend chart the parameters for effluent disposal Describe the chemical and physical properties of chlorine

283 276

Describe the reactions of chlorine with water, ammonia compounds, and sulfides

Describe the safe storage and handling of chlorine, including the use of testing compounds

Explain the points of application of chlorine in wastewater treatment Describe methods of dechlorination

- Describe methods commonly used to dispose of wastewater effluents, including reuse applications
- Describe laboratory tests commonly used on the reuse of effluent

Describe types of sludge and their characteristics

- Evaluate the performance of solids management, including sludge thickening, digestion, dewatering, and disposal processes
- Describe sampling points, the frequency of sampling, and the laboratory tests and results used for checking the proper operation of solids management
- Describe advanced laboratory tests for disinfection, effluent disposal, and solids management

Identify 503 sludge regulations

Identify various recycling methods

284

BIL: Essential – ESA, WEM Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA		I
HM		
WEM		P
FWM		
GIS		

Competency 27.12: Inspect and maintain equipment for the treatment train, effluent disposal, and biosolids management in wastewater

Competency Builders:

Identify equipment used in the treatment train, effluent disposal, and solids Identify the maintenance needs of equipment used in the treatment train, effluent

disposal, and solids management

Document the results of inspections

- Develop preventive maintenance plans for equipment used in preliminary-, primary-, secondary-, and tertiary-treatment processes, and for equipment used in effluent disposal and solids management
- Explain trends analysis used in preventive-maintenance planning for all treatment processes, effluent disposal, and solids management
- Describe the monitoring of facility-equipment operation and usage with remote sensing equipment

BIL: Essential – ESA, WEM Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA		P
HS		
ECA		Ι
HM		
WEM	_	Р
FWM		
GIS		

Competency 27.13: Describe common facility operational problems

Competency Builders:

Check accuracy of observed operational problems in preliminary, primary,

secondary, and tertiary treatment, effluent disposal, and solids management Identify appropriate corrective actions for common problems in disposal, and

solids management

Describe the methods for monitoring results of corrective action taken for common problems in preliminary, primary, secondary, and tertiary treatment, effluent disposal, and solids management

Identify sedimentation problems

Identify disinfection problems

Identify filtration problems

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS		Ι
ECA		P .
HM		
WEM	I	Р
FWM		
GIS		

BIL: Essential – PC, ESA, ECA, WEM Recommended – HS

Competency 27.14: Explain state and federal environmental protection agency (EPA) rules for waste water

Competency Builders:

- Describe the operator's duties and responsibilities, certification requirements, testing, renewal, staffing, and facility classification
- Explain rules concerning samples and analysis at wastewater-treatment facilities Complete an EPA monthly operating report (MOR) form
- Complete a National Pollution Discharge Elimination System (NPDES) MOR form
- Identify OSHA, EPA, and local health department rules for procedures such as reclaimed water, reuse, and biosolids residuals management
- Identify federal rules that apply to the operation of a wastewater-treatment facility

BIL: Essential – PC, ESA Recommended – HS, ECA, WEM

EDU:	12	AD
PC	I	P
ESA		Р
HS		Ι
ECA		Ι
HM		
WEM		Ι
FWM		
GIS		

Competency 27.15: Identify methods for cross-connection and backflow prevention

Competency Builders:

Identify purposes and consequences of backflow prevention Identify approved backflow prevention devices

BIL:	Essential – ESA, WEM Recommended – PC, HS, ECA, HM			CA, HM
	EDU:	12	AD]

Ŀ	<u>DU:</u>	12	AD
	PC	Ι	R
	ESA		P
	HS		Ι
	ECA	Ι	R
	HM	Ι	R
Ι	VEM		Р
F	FWM		
	GIS		

Competency 27.16: Identify industrial pretreatment program

Competency Builders: Identify categorical industries Identify non-categorical industrial Identify purpose of industrial pretreatment Describe federal and state pretreatment regulations

Unit 28: Hazardous Materials Management

BIL: Essential –ESA, ECA, HM Recommended – PC, HS, WEM

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS	Ι	R
ECA	I	Р
HM	Ι	Р
WEM		Ι
FWM		
GIS		

Competency 28.1: Describe risks related to hazardous materials

Competency Builders:

Define hazardous material

Differentiate hazardous materials incidents from other emergencies (First Responder Awareness-FRA; First Responder Operations Level-FRO; Hazardous Materials Technician-HMT; Hazardous Materials Specialist-HMS)

Differentiate between hazardous materials and waste with non-hazardous materials (FRA, FRO, HMT, HMS)

Differentiate between acute and chronic hazards

Describe the properties /nomenclature of hazardous materials

Describe physical, chemical, biological hazards (including explosion/fire hazards) Describe the routes of exposure for hazardous materials

Describe the fundamentals of chemical hazards including but not limited to vapor pressure, boiling points, flash points and pH (FRA, FRO, HMT, HMS)

Describe fire and explosion hazards of chemicals including typical ignition sources (FRA, FRO, HMT, HMS)

Describe viral and bacteriological hazards of biological materials

Describe types of radiation and their effects

Identify examples of a confined space

Describe the hazards related to confined space (FRA, FRO, HMT, HMS)

Describe general safety hazards (e.g., electrical hazards, powered equipment hazards motor vehicle hazards, walking-working surface hazards associated with working in hot and cold temperature extremes (FRA, FRO, HMT, HMS)

Identify routes by which hazardous materials enter the human body upon exposure

290

.

Describe the basic principles of toxicology Describe the human signs and symptoms as responses to exposures to chemical, biological and radiological hazards

BIL: Essential – ESA, HS, ECA, HM Recommended – PC, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS	I	Р
ECA	Ι	Р
HM	Ι	Р
WEM		I
FWM		
GIS		

Competency 28.2: Describe health and safety practices to reduce risks from hazardous materials

Competency Builders:

Describe protocol to control stress from noise

Describe the exposure guidelines for hazardous materials (theshold limit value, permissible exposure limits)

Explain the impact of basic nutrition on the risks from hazardous materials Describe the elements of a spill control program (FRO, HMT)

- Describe examples of engineering controls, equipment and safety technology or safety procedures (FRO, HMT)
- Identify typical design and construction of containers, bulk and non-bulk packaging used to store, process, or transport hazardous materials (e.g., bags, bottles, boxes, cans, carboys, drums, fixed tanks, intermodel portable taks, piping tank cars, tank trucks, and trailers (FRO, HMT)

EDU:	12	AD
PC	Ι	R
ESA	I	P
HS	Ι	Р
ECA	Ι	P
HM	Ι	Р
WEM		
FWM		
GIS		

BIL: Essential – ESA, HS, ECA, HM Recommended – PC

Competency 28.3: Demonstrate appropriate responses for major types of hazardous materials disasters (e.g., chemical, fire and explosion, general safety hazards) (FRA, FRO, HMT, HMS)

Competency Builders:

- Describe the principles and practices of establishing exposure zones, and medical surveillance stations and procedures (HMT, HMS)
- Describe how MSDS (material safety data sheet) may be used to obtain hazard and response information
- Identify risk assessment considerations of hazardous materials (e.g., size and type of container and quantity involved; nature of the container stress; potential behavior of the container and its contents; level of resources available; exposure potential to people, property, environment, and systems; and weather conditions and terrain) (FRA, FRO, HMT, HMS)
- Describe the procedures for implementing continuing response actions consistent with local emergency response plan, the organizations standard operating
 - procedures, and the current edition of Department of Transportations's ERG including extended emergency notification procedures and follow-up communications (FRA, FRO, HMT, HMS)

Demonstrate decontamination procedures

Describe the advantages and limitations of each of the following methods of decontamination: absorption, adsorption, neutralization, and solidification (HMT, HMS)

Identify the steps in critiquing a hazardous materials incident

BIL: Essential –PC, ESA, HS, ECA, HM Recommended – WEM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	I	Р
ECA	Ι	Р
HM	Ι	Р
WEM		Ι
FWM		
GIS		

Competency 28.4: Describe appropriate use of Personal Protective Equipment (PPE)

Competency Builders:

Describe the following terms as associated with chemical protective clothing: degradation; penetration; and permeation

- Identify the physical and psychological stresses that can affect users of specialized protective clothing
- Identify various types of protective breathing apparatus and the advantages and limitations of each at a hazardous materials incident (FRO, HMT, HMS)
- Interpret chemical compatibility chart for chemical protective clothing (FRO, HMT, HMS)
- Explain the four levels of PPE (A, B, C, D) (FRO, HMT, HMS)
- Identify the equipment used with each of the four levels of PPE
- Identify the conditions under which it is safe to enter a space with each of the four levels of PPE

EDU:	12	AD
PC	I	R
ESA	I	Р
HS	I	R
ECA	Ι	Р
HM	I	Р
WEM		Ι
FWM		
GIS		

BIL: Essential – ESA, ECA, HM Recommended – PC, HS, WEM

Competency 28.5: Explain hazardous substance regulations

Competency Builders:

Describe the role of federal, state and local agencies in developing and implementing regulation

Describe the core elements of an occupational safety and health program as identified in 29 CFR1910.120 (q) (FRA, FRO, HMT, HMS)

Describe the components of an effective site safety and health plan consistent with the requirements of 29 CFR1910.120 (b)(4)(ii)

Describe what activities are controlled by OSHA 29 CFR1926 regulations

Describe the record keeping requirements for workmen's compensation, OSHA (100 &200), Department of Transportation, and the Environmental

Protection Agency

Explain the rights and responsibilities of employers and employees under applicable OSHA and EPA laws

Describe confined space considerations as outlined in 29 CFR 1910.146 and lockout tag-out standards

Explain OSHA's hazard-communication standard (29 CFR 1910.1200)

Explain the impact of the following regulations on hazardous substance:

CERCLA- Comprehensive Environmental Response Liability and Compensation Act (Super Fund)

RCRA- Resource Conservation and Recovery Act

TSCA- Toxic Substance Control Act

SDWA- Safe Drinking Water Act

CWA -The Clean Water Act

CAA- Clean Air Act

HM181- Hazardous Materials Regulations

NFPA-704- National Fire Protection Association No. 704

Code of Federal Regulations

SARA- Super Fund Amendment and Reauthorization Act

Explain the competencies of the First Responder at the Awareness level as covered in the National fire Protection Association Standard No. 472 Professional Competence of Responders to Hazardous Materials Incident (FRA)

Explain the competencies of the First Responder at the Operations Level covered in the National Fire Protection Association's Standard No. 472 Professional Competence of Responders to Hazardous Materials Incident (FRO)

Explain the competencies of the Hazardous Materials Technician covered in the National Fire Protection Association's Standard No. 472 Professional Competence of Responders to Hazardous Materials Incident (HMT)

Explain the competencies of the Off-Site Specialist Employee covered in the National Fire Protection Association's Standard No. 472 Professional Competence of Responders to Hazardous Materials Incident (HMS)

BIL:	Essential Recomme			EM
	EDU:	12	AD]

EDU:		AD
PC	Ι	R
ESA		P
HS	Ι	P
ECA	Ι	P
HM	Ι	Р
WEM		I
FWM		
GIS		

Competency 28.6: Demonstrate an ability to obtain and use information addressing hazardous substance release

Competency Builders:

Identify chemical reference materials (i.e., NIOSH)
Describe the use of mapping
Identify suppliers and technical resources
Identify responders
Demonstrate competency using the U.S. Department of Transportation's Emergency Response Guidebook (ERG) (FRA, FRO, HMT)
Demonstrate competence using manufacturer material safety data sheets, CHEMTREC//CANUTEC, shipper or manufacturer contacts, and other sources of information addressing hazardous substance release (FRO, HMT)
Demonstrate competence using hazardous materials computer databases and response models (HMT)
Utilize computer networking

BIL: Essential – PC, ESA, ECA, HM Recommended – HS

EDU:	12	AD
PC	Ι	Р
ESA	Ι	P
HS	Ι	R
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 28.7: Conduct environmental sampling

Competency Builders:

Determine reason for sample

Define risks associated with sampling

Identify sampling protocol

Follow chain of custody procedures

Determine frequency of sampling

Identify testing plan

Define QA/QC protocol

Identify potential sample interferences

Demonstrate preventive maintenance and testing procedures, including operational and calibration checks, for sampling and monitoring equipment

- Demonstrate appropriate use of equipment (e.g., bailers, hand augers, organicvapor analyzers, pumps, radioactivity measuring equipment, split spoons, combustible gas detector, oxygen meter, elorimetric tubes, pH papers and strips, CO meter, radiation detection instruments, colorimetric indicator, combustible-gas indicator, organic-vapor analyzer,OVA, HNU, PID and explosimeter)
- Demonstrate container sampling and safeguarding procedures (e.g., general drum/container handling procedures, special requirement for laboratory waste packs, shock-sensitive wastes, and radioactive wastes (HMS)
- Sample ground water, waste water, sewer line, drum, air, soil, unknown materials, personnel

Perform field tests (i.e., HAZCAT)

Perform OVD test

Identify proper preservation and storage procedures for hazardous materials samples

Demonstrate the appropriate use of the Perform personnel-exposure monitoring Follow chain-of-custody procedures

BIL: Essential – PC, ESA, HS, ECA, HM

EDU:	12	AD
PC	Ι	P
ESA	Ι	Р
HS	I	Р
ECA	Ι	P
HM	Ι	P
WEM		
FWM		
GIS		

Competency 28.8: Demonstrate safe handling procedures for hazardous materials and hazardous waste

Competency Builders:

List and describe containers used to store hazardous chemicals and waste (HMS) Describe safe handling procedures for hazardous materials

Describe different types of hazardous substance transportation vehicles (HMT) Demonstrate appropriate selection and use of the various types of equipment available for plugging or patching transportation containers, vessels or

vehicles (HMS)

- Implement safe chemical-handling procedures (e.g., bonding fire control, grounding, storage, vapor control, ventilation)
- Demonstrate safe handling procedures for bulk chemical containers, drums, and portable and stationary tanks (HMT)
- Prepare to ship sample to laboratory (per Department of Transportation)

BIL: Essential – PC, ESA, HS, ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	P
ECA	Ι	Р
HM	Ι	P
WEM		
FWM		
GIS		

Competency 28.9: Demonstrate record keeping

Competency Builders:

Explain why and how long hazardous materials incidents should be documented including training records, exposure records, incident reports, and critique reports

Keep an activity log and exposure records for a hazardous materials incident Explain the importance of daily record keeping

Keep time sheets

Keep a field diary of sampling activities

Keep inventory records

Prepare chain of custody for sample

Prepare documentation of laboratory results

Prepare documentation of monthly preventive checks and services

Maintain an equipment log

Develop schedules

BIL:	Essential – ESA, ECA, HM
	Recommended – PC, HS

EDU:	12	AD
PC		Ι
ESA	I	Р
HS		Ι
ECA	I	Р
HM	I	P
WEM		
FWM		
GIS		

Competency 28.10: Evaluate laboratory results

Competency Builders: List criteria for the selection of the laboratory Identify laboratory methodology Identify laboratory instrumentation Identify laboratory quality control procedures

BIL: Essential – ESA, HS, ECA, HM Recommended – PC

EDU:	12	AD
PC	Ι	R
ESA	I	Р
HS	I	Р
ECA	I	P
HM	I	P
WEM		
FWM		
GIS		

Competency 28.11: Demonstrate health and safety practices to reduce risks from hazardous substances

Competency Builders:

Demonstrate lead and asbestos safety procedures

Demonstrate confined space safety procedures

Demonstrate decontamination procedures

Demonstrate the procedures to carry out a respirator program to comply with 29 CFR 1910.134 (FRO, HMT)

Demonstrate methods of communication including those used while wearing respirator protection

Demonstrate the donning and doffing of protective equipment (FRO, HMT, HMS) Write a site safety plan

Conduct a site safety meeting

Obtain first aid/CPR certification

EDU:	12	AD
PC	Ι	P
ESA	Ι	Р
HS	Ι	Р
ECA	Ι	P
HM	Ι	P
WEM		
FWM		
GIS		

Competency 28.12: Demonstrate methods for identifying hazardous material

Competency Builders:

- Describe the advantages, disadvantages, and limitations of placards, labels, container markings, and shipping papers used in the transportation of hazardous materials
- Describe the shipping papers found in various modes of transportation, the individual's responsible for the papers, and location where carried and found during an incident
- Explain circumstances for use of the following terms: hazardous substances, hazardous chemicals; extremely hazardous substances; hazardous wastes; hazardous materials; and dangerous goods
- List the advantages and disadvantages of each of the following information sources: MSDS; reference guidebooks; hazardous materials data base; technical information centers such as CHEMTREC; technical information specialist; monitoring equipment; and NIOSH pocket guide to chemical hazards
- Explain labeling of hazardous materials by the chemical and physical properties of color, corrosivity, density, flammability, reactivity, specific gravity, toxicity, and viscosity
- Identify hazardous wastes according acute toxicity, corrosivity, ignitability, reactivity, and toxic characteristic leachate procedure (TCLP)
- Demonstrate proper labeling for hazardous wastes
- Label containers of repackaged materials with appropriate warnings and expiration information

BIL: Essential – ESA, HS, ECA, HM Recommended – PC

EDU:	12	AD
PC	Ι	R
ESA		P
HS	Ι	P
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 28.13: Detect hazardous materials

- Detect toxicity, flammability, reactivity, radioactivity, corrosively, and oxygen deficiency
- Use MSDS in obtaining hazard and response information to determine isolation and evacuation distances
- Use air reactivity; catalysts and inhibitors; concentration; corrosivity; critical temperature and pressure; instability; oxidation ability; pH; polymerization; radioactivity; self-accelerating decomposition temperature (SADT); strength; sublimation; surface tension; viscosity; volatility; and water reactivity in the risk assessment process
- Explain the use of threshold limit value (TLV-TWA); lethal concentration and dose (LD 50/100); parts per million/billion (ppm/ppb); immediately dangerous to life and health (IDLH); permissible exposure limit (PEL); short-term exposure limit (TLV-STEL); and ceiling level (TLV-C)
- Explain the importance of chemical interactions; dose-response relationship; local and systemic effects; acute, subacute, and chronic exposure; and ingestion, absorption, inhalation in the risk assessment process
- Explain half-life, time, distance, and shielding in reference to radiation hazards Demonstrate the analysis procedure for identification of unknown hazardous materials, their physical and chemical properties, and the likely behavior of
- the hazardous substance and its container, vessel, or vehicle (HMS) Compare laboratory and field sample analysis against regulatory limits
- Identify considerations associated with the placement, location, and set up of a decontamination site
- Identify which activities are required in terminating the emergency phase of a hazardous materials incident
- Describe the preparation of a required report with supporting documentation
- Describe the process for implementing the Incident Command System for hazardous materials emergencies

BIL:	Essential – PC, ESA, HS, ECA, H	M
------	---------------------------------	---

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	Ι	Р
ECA	Ι	P
HM	Ι	<u>Р</u>
WEM		
FWM		
GIS		

Competency 28.14: Perform site evaluation

Competency Builders:

Activate site assessment plan Notify appropriate authorities Check for immediate dangers to life and health Determine site topography and accessibility Determine wind direction Implement appropriate site health and safety plan Describe the emergency-response program Establish boundaries Restrict site access Orient zones Determine needs for PPE **Record findings** Report findings to appropriate authorities Control site Monitor site and personnel Close site

BIL: Essential – PC, ESA, HS, ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA	R	P
HS	Ι	P
ECA	Ι	P
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 28.15: Retrieve and evaluate hazardous materials and hazardous waste sample data

Competency Builders:

Interpret prints, charts, curves, graphs, maps, plans, and spreadsheets from plotted and tabulated data

Tabulate data using calculators, computers, databases, graphics, and/or spreadsheets

Perform mathematical calculations

Compare appropriate laboratory and/or field sample analyses against regulatory limits

BIL: Essential – PC, ESA, HS, HM Recommended – ECA

EDU:	12	AD
PC	I	Р
ESA	Ι	P
HS	Ι	P
ECA	Ι	R
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 28.16: Respond to mock hazardous materials emergency situations

Competency Builders:

Maintain certification in first aid and CPR

Describe the elements of a spill control program

Follow a written contingency plan

Use proper chain of command

Ensure that adequate spill-control equipment and supplies are available Contact appropriate hazardous materials public and private resources (HMS) Implement an emergency-response program consistent with local emergency

response plan, and the organization's standard operating procedures (HMS) Select the appropriate strategy for approaching a release site and continuing or

stopping the release (HMS)

Implement an Incident Command System for a hazardous materials emergency Demonstrate competency in first aid, CPR and emergency response

Identify considerations associated with the placement, location, and set up of a decontamination site

Implement decon

Organize and direct the use of multiple teams of hazardous materials technicians in a Command System (ICS) (HMS)

Identify which activities are required in terminating the emergency phase of a hazardous materials incident

Prepare the required report with supporting documentation for a hazardous waste Emergency

Follow media protocol

BIL: Essential – ESA, HM Recommended – PC, HS, ECA

EDU:	12	AD
PC		Ι
ESA	R	Р
HS		I
ECA	Ι	Р
HM	I	P
WEM		
FWM		
GIS		

Competency 28.17: Describe use of equipment related to hazardous materials and hazardous-waste operations

Competency Builders:

Explain appropriate equipment-decontamination procedures

Identify appropriate operations and maintenance procedures, plans, and manuals Identify skill and certification requirements

- Describe proper use of drum crushers, hand tools, heavy equipment, monitoring and sampling equipment, instrumentation, motorized lifting devices, power tools, pumps, valves, meters, vehicles
- Employ communication systems, eyewashes, safety showers, fire extinguishers, and first aid

EDU:	12	AD
PC	I	Р
ESA		P
HS	I	P
ECA	Ι	Р
HM	Ι	P
WEM		
FWM		
GIS		

BIL: Essential – PC, ESA, HS, ECA, HM

Competency 28.18: Prepare hazardous-materials for transportation and storage in accordance with regulations

Competency Builders:

Prepare documentation related to the shipment of hazardous materials and hazardous wastes

- Identify incompatible combinations of chemicals that could result in dangerous situations
- Describe safe and healthful procedures for packaging, loading, documenting, and shipping of hazardous materials and hazardous wastes
- Inspect hazardous-waste storage areas for compliance with appropriate rules and regulations following a checklist

Segregate and store incompatible hazardous materials and hazardous wastes Employing a hazard category list

BIL: Essential – HM Recommended – PC, ESA, HS, ECA

EDU:	12	AD
PC		I
ESA		Ι
HS		Ι
ECA	I	R
HM	Ι	P
WEM		
FWM		
GIS		

Competency 28.19: Demonstrate ability to operate treatment and disposal systems for hazardous-materials and hazardous-waste

Competency Builders:

Record and maintain documentation of operations activities

Contribute to the development and revision of plans and reports

Identify appropriate drums and containers

Document activities of hazardous-waste treatment and disposal contractors

Recommend improvements in the reduction, reuse, recycling, or disposal of waste streams

Describe the collection and disposal of empty hazardous materials containers Describe the preparation of accumulated hazardous waste for proper disposal Describe treatment removal and disposal systems such as this removal and disposal

- Describe treatment, removal and disposal systems such as: bio-remediation, chemical and physical, deep-well injection, incineration, vitrification, and volatile organic compounds
- Describe hazards associated with abatement of materials such as: asbestos, fiberglass, and lead

Describe hazards associated with treatment, removal, and disposal systems and operations

Demonstrate decontamination programs including personnel, equipment and hardware; including level A, B and C ensembles and appropriate decontamination lines

EDU:	12	AD
PC	Ι	Р
ESA		Р
HS	Ι	P
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

BIL: Essential – PC, ESA, HS, ECA, HM

Competency 28.20: Maintain required documents for hazardous-materials and hazardous-waste management activities

Competency Builders:

Demonstrate manifest procedures

Maintain documentation of chain of custody, equipment calibration and maintenance, exception reports, field notebooks, incident documentation, laboratory data, manifests, MSDS, purchase orders, shipping documents,

and vendor invoices

Maintain compliance reports

Ensure current MSDS are available in the workplace

Maintain auditable record-keeping systems

Maintain a hazardous-materials inventory

Maintain a hazardous-waste inventory

Maintain an inventory of empty and full containers

BIL: Essential – ECA, HM Recommended – PC, ESA, HS

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA	Ι	Р
HM	Ι	Р
WEM		
FWM		
GIS		

Competency 28.21: Audit regulatory compliance

Competency Builders:

Describe Phase I and Phase II audits Describe closure reports Describe the penalties for noncompliance Follow organization's policies and procedures Create master file (e.g., data base for record management) Create/follow audit schedule Audit records Interview personnel Inventory materials and equipment Assess environmental factors and conditions (e.g., on-site visits) Write contamination assessment report Propose corrective action Verify follow-up activities Maintain confidentiality Control dissemination of report finds Critique the audit process

BIL: Recommended – PC, ESA, HS, ECA, HM

EDU:	12	AD
PC		Ι
ESA		Ι
HS		Ι
ECA		I
HM		I
WEM		
FWM		
GIS		

Competency 28.22: Contract for services

Competency Builders:

Define scope of work/needs Write or review specifications Consult with legal staff Consult with purchasing department Provide cost justifications Research qualified contractors/vendors for services and products Conduct on-site visits Select contractor Secure and award bid Obtain permits Train contractors Evaluate and verify vendor's performance

BIL: Essential – ECA, HM Recommended – PC, ESA, HS

EDU:	12	AD
PC		Ι
ESA		I
HS		Ι
ECA		Р
HM		P
WEM		
FWM		-
GIS		

Competency 28.23: Conduct preplanning activities

Competency Builders:

Explain need for preplanning Identify type of preplanning needed Identify agency involvement Identify contamination zones Preplan for hurricanes, tornadoes, floods, fires, nuclear accidents, and earthquakes, Describe preplanned deployment Write a contingency plan

Unit 29: Wetlands Management

BIL: Essential – ESA, WEM, FWM Recommended – PC, ECA, GIS

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA	Ι	R
HM		
WEM	Ι	P
FWM	Ι	Р
GIS		Ι

Competency 29.1: Identify properties of wetland

Competency Builders:

Explain differences between uplands, wetlands and open bodies of water Identify the conditions necessary for wetlands to exist Identify sources of water in wetlands

Describe wetland formation

Describe key elements used to define wetlands

Describe a wetland

Describe characteristics of hydric soils

Describe physical differences between wetlands and upland soils

Describe characteristics of hydrophytic plants

Describe factors which influence the distribution and extent of wetlands

Differentiate between temporary and permanent wetlands

List factors used by the U.S. Army Corps of Engineers and the Environmental Protection Agency to define an area as a wetland

Compare definition of wetlands used by the U. S. Fish and Wildlife Service and the Natural Resources Conservation Service of the U. S. Department of Agriculture

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA	I	R
HM		
WEM	Ι	P
FWM	Ι	P
GIS		Ι

BIL: Essential – ESA, WEM, FWM Recommended – PC, ECA, GIS

Competency 29.2: Explain wetlands classification

Competency Builders:

List common types of wetlands

Differentiate between coastal and inland wetlands

Describe types of vegetated wetlands

Describe types of non-vegetated wetlands

Explain common characteristics associated with each major type of wetland Identify qualities that distinguish one type of wetland from another Distinguish between a wetland type and wetland habitat complex

Explain wetland class, form and type

BIL: Essential – ESA, WEM, FWM Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS		
ECA	Ι	R
HM		
WEM	Ι	Р
FWM	Ι	P
GIS		

Competency 29.3: Explain the function of wetlands

Competency Builders:

Identify reasons wetlands are important

Identify ecological functions of wetlands

Identify the role of wetlands as a pollutant removal mechanism

Describe the use of wetlands as part of a comprehensive waste water treatment program

Describe how wetlands can provide a flood control benefit and help prevent soil erosion

Explain the role of wetlands in preserving water quality

Interpret the role of plants in water purification

Explain the role of wetlands in coastal protection

Describe the function of wetlands in ground water discharge and recharge

Describe the ability of wetland soils to filter pollutants from water

Describe the benefits of wetlands in serving as sediment traps

Explain how wetlands can impact atmospheric equilibrium

Describe the filtering ability of wetland plants

Describe how wetland plants remove pollutants from water

List several factors that contribute to wetlands performance in processing waste

Explain the role of wetlands as habitats for commercially important fish, bird and animal populations

Describe the role of the wetlands in primary biological production Describe the role of wetlands in agricultural production

EDU:	12	AD
PC	I	R
ESA	I	Р
HS		
ECA	Ι	R
HM		
WEM	I	Р
FWM	I	Р
GIS		

BIL: Essential – ESA, WEM, FWM Recommended – PC, ECA

Competency 29.4: Describe the living components of wetland habitats

Competency Builders:

Identify common animals (mammals, reptiles, amphibians, macro-invertebrates) that live and use wetlands

Describe the habitats of these animals

Identify common wetland plants

Describe how plants and animals have adapted to the environmental conditions present in wetlands

- Explain morphological, physiological and reproductive adaptations of plants common to wetlands
- Identify animals and plants in a wetland food web and describe their role

Describe interrelationships among wetland organisms

Classify selected wetland plants

List some obligate wetland plants

List some facultative wetland plants

Describe the common characteristics of waterfowl family

Explain the role played by wetlands in waterfowl production

Identify fish species of the wetlands

BIL: Essential – ESA, WEM, FWM Recommended – PC

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS		
ECA		
HM		
WEM		Р
FWM		Р
GIS		

Competency 29.5: Assist in wetland delineation

Competency Builders:

Explain wetland delineation

Identify steps used in offsite determination of wetlands

Determine circumstances where offsite method is most useful

Explain use of National Wetlands Inventory (NWI) maps in wetland determination

Explain use of SCS soil survey maps and county hydric soil lists in wetland determination

Explain aerial photos in offsite determination

Delineate offsite wetland

Contrast offsite and onsite methods of wetland delineation

List equipment and materials needed in routine methods of onsite determination

Identify dominant vegetation by strata

Explain measures of plant species dominance

Determine plant species dominance for a particular stratum

Explain criteria used to determine presence of hydrophytic vegetation

Analyze vegetation

Explain hydrophytes

Record indications of wetland hydrology

Record indications of hydric soil

Determine when soil is hydric

Explain routine onsite determination for small areas

Explain routine onsite determination for large areas

Explain transects in onsite determination of large areas

Explain comprehensive method of onsite determination

Delineate onsite wetland

Explain problems in delineating wetlands in drumlins, seasonal wetlands, prairie potholes and vegetated flats

		, ,
EDU:	12	AD
PC	Ι	R
ESA	I	P
HS		
ECA		
HM		
WEM	Ι	P
FWM	Ι	R
GIS		I

BIL: Essential – ESA, WEM Recommended – PC, FWM, GIS

Competency 29.6:	Explain impact of an increasing human population on
	wetlands

Competency Builders:

Explain the historic decline of wetlands

Explain factors that can cause wetland destruction

Explain nutrient overloading

Describe how nitrogen and phosphorus get into a wetland

Explain the effects of oil spills, acid rain and human wastes on wetlands

Describe how wetlands can be harmed by pollution

Explain the use of bio-monitoring to determine pollution

Describe how an overload of pollutants can affect the filtering ability of plants

Explain the potential impact of dams and levees on a wetland

Identify ways land alteration affects wetlands

Explain effects of alteration on wetland hydrology

Explain effects of alteration on wetland soils

Explain effects of alteration on wetland vegetation

BIL: Essential – WEM Recommended – PC, ESA, ECA, FWM

EDU:	12	AD
PC	I	R
ESA		I
HS		
ECA	Ι	R
HM		
WEM	Ι	P
FWM	Ι	R
GIS		

Competency 29.7: Explain government's role in wetland restoration and conservation

Competency Builders:

Distinguish the role played by federal and state agencies in wetland restoration and conservation

Explain Section 401 of the Clean Water Act and the agencies responsible for compliance oversight

Explain Sections 9 and 10 of the Rivers and Harbors Act and the agency responsible for compliance oversight

Explain Section 404 of the Clean Water Act and oversight agencies involved Describe the National Environmental Policy Act (NEPA)

Explain the Coastal Management Act and identify the oversight agency Explain how flood plain management programs have potential impact on wetlands Explain the North American Waterfowl Management Plan

Explain "swampbuster" provisions in Food Security Act

Identify problems in current wetland regulation

Compare economic, social and environmental tradeoffs in various wetland conservation

Explain the "takings" issue

Describe the pros and cons of a "no net loss" policy in wetlands management

EDU:	12	AD
PC	Ι	R
ESA		I
HS		
ECA	Ι	R
HM		
WEM		Р
FWM		Ι
GIS		Р

BIL: Essential – WEM, GIS Recommended – PC, ESA, ECA, FWM

Competency 29.8: Identify techniques used in wetland management, enhancement and restoration programs

Competency Builders:

Identify key elements in a wetlands management program

Describe steps involved in an impact assessment program

Explain how Geographic Information Systems (GIS) are used to analyze wetland habitats

Explain how aerial photography, satellite imagery, wetland, and topographic maps are used in wetland management

Determine wetland hydrological disturbance

Determine wetland soil disturbance

Determine wetland vegetation disturbance

Explain wetland restoration

Explain hydroperiod restoration

Explain proper wetland topography reestablishment

Describe how changes in watershed may impact restoration

Describe ways to control invasion of undesirable wetland plants

Describe ways to control destructive wildlife

Describe techniques in using wetlands to treat wastewater

BIL: Essential – WEM Recommended – PC, ESA, ECA, FWM

EDU:	12	AD
PC	Ι	R
ESA		I
HS		
ECA	Ι	R
HM		
WEM		P
FWM		I
GIS		

Competency 29.9: Identify principles used in wetland mitigation and restoration

Competency Builders:

Explain wetland mitigation

Explain wetland mitigation banking

Explain factors to consider in determining a site for wetland development

Describe elements used in design of surface-flow wetlands

Describe elements used in design of subsurface flow wetlands

Describe factors used to determine appropriate plant selection

Describe factors used to attract and stock wildlife

Explain various approaches to wetland design, (e.g., rule of thumb, regressionbased empirical and rational approaches)

Compare properties of created and natural wetlands

Unit 30: Watershed Management

BIL: Essential – PC, ESA, HS, WEM, FWM Recommended – ECA, GIS

EDU:	12	AD
PC	I	P
ESA	Ι	Р
HS	Ι	P
ECA	I	R
HM		
WEM	Ι	Р
FWM	Ι	Р
GIS		I

Competency 30.1: Identify properties of watersheds

Competency Builders:

Explain how watersheds are formed

Identify different types of watersheds and the significant characteristics of each Explain basic watershed processes and their interrelated nature

Explain how watersheds function

Identify the benefits of a healthy watershed

Explain how change occurs in watersheds

Evaluate the effects of natural and human disturbances on watersheds: landslides, floods, forestry, urbanization, and agriculture

Identify the three zones in a watershed (waterbody, riparian, and upland) Explain water born pathogen movement in a watershed

EDU:	12	AD
PC	Ι	Р
ESA	I	Р
HS	Ι	R
ECA	Ι	R
HM		
WEM	Ι	P
FWM	Ι	Р
GIS		

BIL: Essential – PC, ESA, WEM Recommended – HS, ECA, FWM

Competency 30.2: Explain watershed management

Competency Builders:

Explain terms associated with watershed ecology

Explain contemporary issues in watershed ecology

Identify different types of watershed management

Identify the principles of long-term watershed management

Identify successful watershed management framework

Identify watershed management benefits

Explain the effect of the 1998 Clean Water Initiative on watershed planning

Identify problems and political aspects of watershed management

Explain how watershed analysis and planning can mitigate watershed disturbances Explain how human activities within a watershed affect it

Explain the purpose of stream stabilization

Explain methods of stream stabilization (e.g., stream mechanics, natural channel geometry, bank paving, stone dikes, bendway weirs, longitudinal peaked toe, willow pole curtain)

Explain stream hydraulics

Explain sediment transport

BIL: Essential – ESA, WEM Recommended – PC, HS, ECA, FWM, GIS

EDU:	12	AD
PC	Ι	R
ESA		Р
HS	I	R
ECA	Ι	R
HM		
WEM	I	Р
FWM		Ι
GIS		I

Competency 30.3: Delineate watersheds

Competency Builders:

Identify watersheds on topographic maps Identify watersheds in the field Determine the true water-parting divide Explain the consequences of the surface and sub-surface water-parting divides being different Explain the use of BASINS software to map watersheds Prepare source maps

EDU:	12	AD
PC	Ι	Р
ESA	Ι	Р
HS	Ι	R
ECA	Ι	R
HM		
WEM		Р
FWM		I
GIS		

BIL: Essential – PC, ESA, WEM Recommended – HS, ECA, FWM

Competency 30.4: Assess source water

Competency Builders:

Identify methods to assess watershed conditions Identify factors that impact quality of water Apply segmentation and risk hierarchy concepts to water Conduct contaminant inventories

BIL: Essential – WEM Recommended – PC, ESA, HS, ECA, FWM

EDU:	12	AD
PC	I	R
ESA	Ι	R
HS	Ι	R
ECA	I	R
HM		
WEM	I	P
FWM		I
GIS		

Competency 30.5: Identify elements of a watershed management plan

Competency Builders:

Identify boundaries of the watershed Determine topography of the watershed Determine soil types within the watershed Identify land uses with the watershed boundary Determine the natural resources of the watershed Identify social trends, particularly economic and employment data, which may affect the watershed Determine human activities within the watershed Identify animals and vegetation in the watershed Assess risks Identify stakeholders Identify environmental objectives Prioritize issues

Unit 31: Wildlife Ecology

BIL: Essential – ESA, FWM Recommended – ECA

EDU:	12	AD
PC		
ESA	P	R
HS		
ECA	Ι	R
HM		
WEM		
FWM	Ι	Р
GIS		

Competency 31.1: Identify representative animal species

Competency Builders:

Identify representative mammals and their life histories Identify representative birds and their life histories Identify representative reptiles and their life histories Identify representative amphibians and their life histories Identify representative invertebrates and their life histories Identify representative fish and their life histories

EDU:	12	AD
PC		
ESA	Р	R
HS		
ECA	Ι	
HM		
WEM		
FWM	Ι	Р
GIS		

Competency 31.2: Identify representative amphibians, reptiles, birds, invertebrates, fish, and mammals typical of Ohio

Competency Builders:

Determine the order, family and other appropriate taxonomic categories Describe differentiating characteristics of the taxonomic groups Identify examples of Ohio species in each taxonomic group Identify animals (field and laboratory) Identify animals from laboratory specimens and field observations

EDU:	12	AD
PC		
ESA	P	R
HS		
ECA	I	
HM		
WEM		
FWM	Ι	P
GIS		

Competency 31.3: Explain animal biology

Competency Builders:

- Describe the basic anatomy of amphibians, reptiles, birds, invertebrates, fish, and mammals
- Describe the major systems of amphibians, reptiles, birds, invertebrates, fish, and mammals with major emphasis on the digestive and reproductive systems
- Describe the nutritional requirements of amphibians, reptiles, birds, invertebrates, fish, and mammals
- Explain the role of genetics in the biology of amphibians, reptiles, birds, invertebrates, fish, and mammals

Unit 32: Wildlife Management

BIL: Essential – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	Р
GIS		

Competency 32.1: Identify the major factors that affect the growth and regulation of animal populations

Competency Builders:

Compare ecosystem, population, and biotic community

Explain environmental resistance, environmental support, biotic potential, natality, mortality, immigration, emigration, density dependent, and density independent, etc.

Graph and label growth curves

Diagram and label age structures for populations that are increasing, decreasing, or stable

Diagram three types of survivorship curves

Identify the characteristics of populations with low densities and populations with high densities

List the major types of population regulation mechanisms

Distinguish between R and K selected species

Explain the basic principles of population genetics and natural selection

Explain the Hardy-Weinberg Principle

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Р	R
GIS		

Explain interdependency of ecosystem **Competency 32.2:**

Competency Builders:

Identify communities

Identify relationship between communities of ecosystem Identify major plant biomes

Differentiate renewable and nonrenewable resources

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		_
FWM	Р	R
GIS		

Competency 32.3: Analyze current trends in the populations of wildlife species in Ohio

Competency Builders:

List the current population trends for various species in Ohio Explain the reasons for stable, increasing, or decreasing populations Identify potential problems

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	I	Р
GIS		

Competency 32.4: Control pests that affect wildlife

Competency Builders:

Identify the major external parasites that affect birds and mammals Identify the major internal parasites that affect birds and mammals Identify the major vertebrate pest species that affect man and wildlife Identify appropriate control measures for both invertebrate and vertebrate pest species

Distinguish control measures for invertebrate and vertebrate pest species

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	P
GIS		

Competency 32.5: Perform population estimates, food habits analyses, aging and sexing, and necropsy exams

Competency Builders:

Identify types of population density surveys

- Identify the measurements made on wildlife species that are used to assess the condition of the wildlife population
- Calculate sex ratios, average measurement data on antler beam, and number of points
- Set up and run NACSM and grid trap lines for mark-recapture and removal studies Calculate or determine population size estimates using the Lincoln-Peterson Index
- plus selected modifications and several removal techniques
- Perform food habits analyses on both herbivores and carnivores

Identify the dentition of deer

- Explain how replacement of deciduous teeth and wear of teeth serve as age indicators
- Identify the major external sexing criteria for bird and mammal species
- Identify the major internal organs of birds and mammals

Dissect birds and mammals

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	P
GIS		

Competency 32.6: Immobilize wildlife

Competency Builders:

Employ safety procedures when handling and firing a cap-chur gun and related equipment

Hit a target when firing a cap-chur gun on the range

List the major drugs used in the immobilization of wildlife

List the integral components of a radiotelemetry system used in wildlife management

Operate a wildlife materials radiotelemetry unit in the tracking and locating of a collared animal

Essential - FWM **BIL:**

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	· P
GIS		

Competency 32.7: Trap animals

Competency Builders: Identify reasons for trapping Identify basic types of traps Identify common animals that are trapped Identify basic sets of each species trapped Identify other equipment needed in trapping Maintain trapline Maintain records

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	I	P
GIS		

Competency 32.8: Apply animal control techniques

Competency Builders:

Operate restraining mechanisms

Tag legs

Identify animal control purposes

Operate small animal carrier, rabbit restrainer, metabolism cage, and shoebox cage

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	I	P
GIS		

Competency 32.9: Control damage from wildlife

Competency Builders:

Identify potential areas of human-animal conflict and methods to minimize their impact

Identify problems caused by wildlife

Select appropriate wildlife control method(s) for the situation

Apply wildlife control method(s)

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	Р
GIS		

Competency 32.10: Explain ecological principles required for habitat evaluation and manipulation

Competency Builders:

Diagram energy flow through food chains and food webs

List examples of organisms which occupy each trophic level

Distinguish between autotrophic and heterotrophic based food webs

Describe both gaseous and sedimentary biogeochemical cycles

Distinguish between primary and secondary succession

List the various serial stages that occur for typical successional patterns in Ohio List the ecosystem development characteristics for early, intermediate, and late

successional stages

Explain the use of bio-monitoring to evaluate habitats

List the physical, chemical, and biological factors that affect microclimate and

how they influence the plant and animal communities

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	I	Р
GIS		

Competency 32.11: Evaluate habitats

Competency Builders:

Calculate, and interpret visual obscurity measurements using a vegetation density board

Explain the use of 1/660 aerial photographs in making a cover map

Field verify cover maps

Correct cover maps

Collect quantitative vegetation

Analyze quantitative vegetation data

Interpret quantitative vegetation

Explain the use of plant indicators, plant condition, soil type, soil moisture, and nutrient conditions in habitat evaluation

Explain the role of maps (including glacial, geologic, physiographic, topographic, and vegetation) in habitat evaluation

Compare the different methods used for habitat evaluation

Use GIS in habitat evaluation

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM	Р	R
GIS		

Competency 32.12: Identify endangered species in Ohio

Competency Builders:

Explain the Endangered Species Act and its primary objectives Explain why species are endangered Explain the efforts to save endangered species in Ohio

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM	P	R
GIS		

Competency 32.13: Identify the habitat requirements for Ohio's major wildlife species and for endangered species

Competency Builders:

- List the habitat requirements for species found in early successional stages, such as rabbit, quail, pheasant and dove
- List the habitat requirements for species found in intermediate successional stages, such as deer and grouse
- List the habitat requirements for species found in late successional stages, such as turkey and squirrel
- List the habitat requirements for species found in wetland types of habitat, such as waterfowl
- Identify factors which limit selected endangered species

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM	Ι	P
GIS		

Competency 32.14: Develop a wildlife management plan

Competency Builders:

Identify reasons for wildlife management

Explain wildlife management practices for forest game, farm game, furbearers, waterfowl, nongame species, and endangered species

Identify animals associated with forest game, farm game, furbearers, waterfowl, and nongame species

Identify types of equipment used in wildlife management

Explain advantages and disadvantages of introduction of wildlife species to new habitats

Explain the importance of healthy wildlife population to local economy

Determine what species of wildlife are to be managed

Establish management practices

Identify management strategies possible in the regulation of ecological succession

EDU:	12	AD
PC		
ESA		
HS		
ECA	I	R
HM		
WEM		
FWM	P	R
GIS		

Competency 32.15: Analyze the role the Ohio Division of Wildlife plays in the total management program of Ohio

Competency Builders:

List the major research units of the ODNR Division of Wildlife Explain the roles of the major research units of the ODNR Division of Wildlife Distinguish between the roles of the major research units and the roles played by the various wildlife area crews in Ohio

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM	Р	R
GIS		

Competency 32.16: Identify wildlife laws used in the regulation of species populations

Competency Builders:

List the types of wildlife laws Explain how wildlife laws help in the harvesting of animals needed to maintain a viable sustained yield

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM	Р	R
GIS		

Competency 32.17: Explain regulations

Competency Builders:

Explain boating regulations Explain fishing regulations Explain littering regulations Explain swimming regulations Explain park regulations Explain game laws Explain stream, lake, pond, and groundwater laws Explain outdoor burning regulations

Unit 33: Fisheries Management

BIL: Essential – ESA, FWM Recommended – ECA, WEM

EDU:	12	AD
PC		
ESA	I	P
HS		
ECA		Ι
HM		
WEM		Ι
FWM	I	P
GIS		

Competency 33.1: Describe the anatomy and taxonomy of fish species

Competency Builders:

Identify the major parts of the external anatomy of fish species, including all fins and other structures used in taxonomic keys

Identify the family level fish species common to Ohio

Identify the species level selected game fish

Identify the major structures in the internal anatomy of fish useful in species identification, reproductive condition, food habits studies, etc.

BIL:	Essential - ESA, WEM, FWM	
	Recommended – ECA	

EDU:	12	AD
PC		
ESA	Ι	Р
HS		
ECA	Ι	R
HM		
WEM	I	Р
FWM	Ι	P
GIS		

Competency 33.2: Identify the major physical, chemical, and biological features of standing water (lentic) and running water (lotic) habitats that affect fish and their distribution

Competency Builders:

Distinguish between lentic and lotic aquatic habitats

- Identify the physical factors, such as flow rates, depth, bottom substrate, temperature, etc. affecting the distribution of fish and other aquatic organisms
- Identify the chemical factors, such as dissolved oxygen, pH, hardness, alkalinity, etc. in the distribution, reproduction, and growth of fish
- Identify the natural assemblages of aquatic organisms that would normally be found in: pools vs. riffles; lentic vs. lotic habitats; polluted vs. clean water habitats; cold vs. warm water habitats; etc.
- Describe changes in the physical, chemical, and biological components of aquatic habitats on a seasonal basis, which will affect fish and their distribution

BIL: Essential – ESA, FWM Recommended – ECA, WEM

EDU:	12	AD
PC		
ESA		Р
HS		
ECA		I
HM		
WEM		Ι
FWM	I	Р
GIS		

Competency 33.3: Conduct fish population surveys

Competency Builders:

Distinguish among the different types of nets used to sample fish populations including seines, trammel nets, gill nets, trap (fyke) nets, and hoop nets Identify the major components of electrofishing goer used for small stream

Identify the major components of electrofishing gear used for small stream surveys and in boat shocking systems

Conduct seining and electrofishing surveys on river/stream and lake/pond habitats Survey shoreline

Interpret data obtained from a 24-hour shoreline survey

BIL:	Essential – ESA, WEM, FWM
	Recommended – ECA

EDU:	12	AD
PC		
ESA	Ι	P
HS		
ECA	Ι	R
HM		
WEM	I	Р
FWM	Ι	Р
GIS		

Competency 33.4: Analyze water quality

Competency Builders:

Obtain water samples from lakes and rivers

Explain use of portable field kit procedures for analyzing dissolved oxygen, pH, hardness, alkalinity, phosphate, conductivity, and temperature

List procedure manuals and books that contain the wet chemistry methods for inlab analyses

Run pH and dissolved oxygen tests on water samples

Run a static bioassay test using selected aquatic organisms

BIL: Essential – ESA, WEM, FWM Recommended – ECA

EDU:	12	AD
PC		
ESA		P
HS		
ECA		Ι
HM		
WEM	Ι	Р
FWM	Ι	Р
GIS		

Competency 33.5: Conduct studies on fish populations and their habitats

Competency Builders:

Explain the basic parameters of fish population dynamics in terms of rate functions and limiting factors

Explain the use of bio-monitoring to evaluate habitats

Sample aquatic organisms used as forage species for fish and/or as pollution indicators

Identify aquatic organisms used as forage species for fish and/or as pollution indicators

Distinguish among the several types of scales

Determine the age of fish

Explain the major techniques used to tag or mark fish

Identify the types of data obtained from mark/recapture studies

Conduct a fish population estimate

Explain the Lincoln/Peterson Mark-Recapture procedure

Set up a water quality study on a river and lake system

Calculate species diversity index values for fish community data

Run an index of biotic integrity on fish community data

Write a life history report for a major fish species

EDU:	12	AD
PC		
ESA		
HS		
ECA	I	R
HM		
WEM		I
FWM	I	Р
GIS		

BIL: Recommended – ECA, WEM, FWM

Competency 33.6: Manage aquatic vegetation

Competency Builders:

Identify owner or agency objectives of water area

Explain physical, chemical, cultural, and biological vegetative control methods Evaluate advantages and disadvantages of aquatic vegetation related to recreation Analyze water quality parameters

Determine surface area to be treated

Determine volume to be treated

EDU:	12	AD
PC		
ESA		
HS		
ECA		I
HM		
WEM		
FWM	Ι	P
GIS		

Competency 33.7: Manage fisheries

Competency Builders:

Identify the components and reasons for making a creel survey

List the types of data obtained in a creel survey

List the major reasons for seasons, bag limits, and restrictions for methods of capture of fish in Ohio

List the reasons for stocking or not stocking fish in aquatic systems Identify fish stocking guidelines

Identify the types of fish hatcheries and the specific warm and cold water species they produce

List the major manipulation techniques that will improve the quality of aquatic habitats for fish

Describe the procedures for culturing fish

Explain the principles of fisheries management as applied to recreational and commercial fisheries

Interpret fisheries management data

Determine appropriate techniques to reach management objectives

Unit 34: Programming Theory

BIL: Recommended – ESA, ECA, GIS

EDU:	12	AD
PC		
ESA		I
HS		
ECA		I
HM		
WEM		
FWM		
GIS		Ι

Competency 34.1: Explain programming language concepts

Competency Builders:

Explain the concept of physical representation of digitized information (e.g., data, text, image, voice)

Describe the hardware-software connection

Explain the concepts of data and procedural representation

Explain the function and operation of compilers and interpreters

Explain the basic principles for analyzing a programming language

Explain the basics of structured, object-oriented, and event-driven programming

Explain how a programming language can support multitasking and exceptionhandling

Identify current key programming languages and the environment they are used in (e.g., C, C⁺⁺, Visual Basic, Java, RPG, COBOL, Assembler)

BIL: Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 34.2: Desribe the stages of program development

Competency Builders:

Identify the use of program design tools

Explain structured/modular programming

Explain the information system (IS) life cycle

Describe the characteristics and uses of batch processing

Describe the characteristics and uses of interactive processing

Describe the characteristics and uses of event-driven, object-oriented processing

BIL: Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		

Competency 34.3: Compile technical documentation associated with software development

Competency Builders:

Secure needed information Analyze specifications Identify constraints Identify input and output (I/O) requirements Prepare logic using a program flowchart

Unit 35: Database Management System Basics

BIL: Essential – ESA, GIS Recommended – PC, ECA, HM

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS		
ECA	Ι	R
HM		I
WEM		
FWM		
GIS	I	P

Competency 35.1: Describe Database Management System (DBMS) basics

Competency Builders:

Interpret terminology associated with relational databases Identify the features, functions, and architecture of a DBMS Identify the uses of a DBMS in business organizations Explain the concepts necessary to access organizational databases Analyze the organization of data in a DBMS

-

BIL: Essential – ESA, ECA, GIS Recommended – PC, HM

EDU:	12	AD
PC	I	R
ESA	I	Р
HS		
ECA	Ι	Р
HM		Ι
WEM		
FWM		
GIS	Ι	Р

Competency 35.2: Develop a report from a database

Competency Builders:

Produce formatted reports

Produce single- and multiple-level control break reports and subtotal and final totals

Query a relational database

BIL: Recommended – PC, ECA

EDU:	12	AD
PC		Ι
ESA		
HS		
ECA		Ι
HM		
WEM		_
FWM		
GIS		

Competency 35.3: Develop database programs

Competency Builders:

Write programs that allow the user to make a menu choice to carry out an appropriate action

Write programs that require statements to be executed multiple times by using structured programming

Write programs that access multiple files

Design an information system within a database environment

Develop a data model for computation

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 35.4: Build DBMS applications

Competency Builders:

Analyze and model organizations using Entity-Relationship and Object technologies

Remove data anomalies through the process of normalization

Create and update a relational database

Query data from an organizational repository

Perform database administration tasks

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 35.5: Monitor a DBMS

Competency Builders:

Coordinate security requirements Identify desired levels of access and security Select monitoring tools and procedures Identify monitoring methodologies Identify problems Document problems Propose solutions that are congruent with application requirements Implement solutions to problems Calibrate DBMS configuration parameters for optimum performance

÷

BIL: Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		
FWM		
GIS		

Competency 35.6: Explain computational and logical operations in software

Competency Builders:

Identify programs that use arithmetic operations Identify programs that use relational operators and compound conditions Identify programs that use control breaks Identify programs that use subtotals and final totals

Unit 36: Database Administration

BIL: Recommended – PC, ESA, HS, ECA, HM, FWM, GIS

EDU:	12	AD
PC	Ι	R
ESA		I
HS	Ι	R
<u> </u>	Ι	R
HM	Ι	R
WEM		
FWM		Ι
GIS		I

Competency 36.1: Apply databases to actual situations and business problems

Competency Builders:

Derive database design from a workflow drawing or other requirement documents Design a database for a Geographic Information System (GIS) Identify the relationship between database components Sort data on multiple fields Add and remove filters Create queries with multiple criteria Create and apply different types of queries Join tables in a query Enhance the design of a form Create needed subforms Group data in reports Make a calculation on a report Imbed data and graphics Import data and graphics Link data and graphics

BIL: Recommended – ECA, HM

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		Ι
WEM		
FWM		
GIS		

Competency 36.2: Apply data modeling techniques

Competency Builders:

.

Interpret terminology associated with data models Compare/contrast various data models Analyze data models Develop a data model to describe an application's data

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.3: Create conceptual data models

Competency Builders:

Analyze model requirements Identify business entities and the relationships between them Identify data in an integrated data dictionary Facilitate user access

· . . .

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.4: Validate conceptual data models

Competency Builders:

Present conceptual data model to client Resolve issues with client Secure client approval for model Revise model based on client recommendations Document validation process

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.5: Integrate conceptual data models with enterprise models

Competency Builders:

Modify conceptual data model to ensure consistency with enterprise model (e.g., entity names, relationships, and definitions)

Develop conceptual schema

Secure client approval for modifications in enterprise models

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.6: Reconcile conceptual models with appropriate-level process models

Competency Builders:

Verify consistencies between models

Identify areas of overlap

Verify that data entities in process model have a corresponding entity data model Document changes or modifications in either model

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.7: Create logical data models

Competency Builders:

Map data model to a relational model Identify attributes of model entities and relationships between them Verify that logical model is consistent with conceptual model Specify integrity constraints

• . •

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.8: Evaluate environment/platform for physical data models

Competency Builders:

Research potential computer environments/platforms Identify platform capabilities and limitations Select environment/platform based on technical, business, and skill information gathered

Secure approval of target environment/platform

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.9: Identify backup and recovery requirements for physical models

Competency Builders:

Establish backup requirements consistent with corporate policy and business needs

Document established backup procedures

Control access to database to maintain security

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		Ι
WEM		
FWM		
GIS		

Competency 36.10: Identify physical database characteristics

Competency Builders:

Identify name, type, and length of attributes

Employ table and file names that conform to naming conventions Group/assign tables to disk files

Index files for performance and integrity

Verify that data types are consistent between attributes

Employ normalization and modeling as cross-checking techniques

Unit 37: Geographic Information Systems (GIS)

BIL: Essential – PC, ESA, WEM, FWM, GIS Recommended – ECA, HM

EDU:	12	AD
PC	Ι	Р
ESA	Р	R
HS		
ECA	I	R
HM		Ι
WEM	Ι	P
FWM	Ι	P
GIS	Р	R

Competency 37.1: Explain GIS Basics

Competency Builders:

Explain what a Geographic Information Systems (GIS) is Identify basic terms associated with geographic information Identify the advantages of digital maps over paper maps Explain why geographic information systems are important Identify some primary uses of GIS Identify the steps of a GIS project Explain how GIS helps define and solve geographic questions Describe primary environmental applications

BIL: Essential – GIS Recommended - ECA

EDU:	12	AD
PC		
ESA		
HS		
ECA	I	
HM		
WEM		
FWM		
GIS	Ι	P

Competency 37.2: Explain the basic principles of remote sensing

Competency Builders:

Explain remote sensing

Explain electromagnetic energy

List measurements of electromagnetic waves

Explain how frequency and wavelength are related

Explain why the relationship between photon energy levels and wave energy

levels is important to remote sensing

Explain Planck's Law and its manipulation

Explain the various types of scattering which occur when electromagnetic energy passes through the atmosphere

Explain absorption

BIL: Essential – GIS Recommended – ECA, HM

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM	Ι	R
WEM		
FWM		
GIS	I	Р

Competency 37.3: Explain the basic principles of aerial photography

Competency Builders:

Identify various camera types Identify various film types Explain basic photographic terms Explain photographic resolution Explain forward motion compensation Identify characteristics of CIR film Explain the use of filters Explain photographic scale Explain the geometry of aerial photography Explain parallax displacement Explain stereoscopic photography

EDU:	12	AD
РС		
ESA		
HS		
ECA		Ι
HM	Ι	R
WEM		I
FWM		I
GIS	I	Р

BIL: Essential – GIS Recommended – ECA, HM, WEM, FWM

Competency 37.4: Interpret aerial photographs

Competency Builders: •

Explain the role of a photo interpreter

Explain how aerial photographs differ from regular photographs

Identify the image elements used in interpretation

Identify the steps in interpretation

Explain interpretation strategies

Explain photogrammetry

Explain relief displacement

Arrange photos for stereo viewing

Determine non-distorted coordinates, horizontal ground distance and angles from measurements on a single vertical photo

Calculate object height from relief displacement

Calculate heights from image parallax measurements

Explain interpretive software

BIL: Recommended – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS		Ι

Competency 37.5: Plan the collection of new photos

.

Competency Builders: Identify the initial considerations Write a specification sheet Provide a flight map

BIL: Essential – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS	Ι	P

Competency 37.6: Evaluate accuracy of aerial photographs

Competency Builders:

Explain accuracy, precision, thematic accuracy, cartographic accuracy, and ground truth

Identify general sources of errors

Identify sources of classification errors and factors affecting the errors

BIL: Essential - GIS Recommended – ECA, WEM, FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA	Ι	R
HM		
WEM		Ι
FWM		Ι
GIS	Р	R

Competency 37.7: Explain map projections

Competency Builders:

Explain map projection

List the three general classifications of map projections

Explain the properties of an ideal map (i.e., conformality, equivalence,

equidistance, and true direction)

Describe the construction, major property and primary use of various map projections

Explain datum as related to map projections

BIL: Essential - GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS		Р

Competency 37.8: Describe data structures

Competency Builders:

Describe the three file types (i.e., simple list, sequential, indexed)

Describe the three types of database file structures (i.e., hierarchical, network, relational)

Compare vector and raster data structures

Describe methods of storing raster data

Describe methods of storing vector data

Describe polygon data structures

Describe a polygon network structure

BIL: Essential – GIS Recommended – HM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM	Ι	R
WEM		
FWM		
GIS		Р

Competency 37.9: Explain digital elevation methods (DEM)

Competency Builders:

.

Explain DEMs List the important uses of DEMs List methods of representing DEMs Explain interpolation techniques Describe products derived from DEMs

BIL: Recommended – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		•
FWM		
GIS		I

Competency 37.10: Explain spatial interpolation

Competency Builders:

Explain spatial interpolation Explain tessellation Explain planar ordinary Voronoi diagram Explain ordinary Voronoi polygons Explain Delaunay triangulation Explain polygonal methods of interpolation Explain triangular methods of interpolation Explain contour generation and 3-D surface plotting Explain landscape metrics

BIL: Recommended – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS		Ι

Competency 37.11: Explain two-dimensional functional spatial analyses

Competency Builders:

Explain area/perimeter/distance calculations Explain vector-to-raster conversion Explain raster-to-vector conversion Explain overlays Explain Thiessen polygons Explain querying/theming Explain corridor analysis Explain proximity analysis Explain network analysis Explain planning rings

BIL: Recommended – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS		I

Competency 37.12: Explain three-dimensional functional spatial analyses

Competency Builders:

Explain contour lines Explain how a DEM is created Explain slope and aspect derivations Explain orthographic/perspective views Explain draping Explain threshold tables Explain surface filtering Explain interviewability Explain surface modeling

BIL: Essential – GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		
FWM		
GIS	I	Р

Competency 37.13: Explain ranging methods

Competency Builders: Explain standard deviation Explain equal interval Explain natural breaks

.

BIL:	Essential – ESA, GIS
	Recommended – ECA, HM, WEM

EDU:	12	AD
PC		
ESA	Ι	P
HS		
ECA	I	R
HM		Ι
WEM		Ι
FWM		
GIS	I	P

Competency 37.14: Identify sources of possible error in GIS

Competency Builders:

Explain accuracy, precision, data quality, and error
Explain the importance of error, accuracy and precision
Identify obvious sources of error (e.g., age of data, areal coverage, map scale, density of observations, relevance, format, accessibility, cost of new vs old data)
Identify errors due to natural variation or from original measurements (e.g., positional accuracy, accuracy of content, sources of variation in data)
Identify errors arising through processing (e.g., numerical errors, errors in topological analysis, classification and generalization problems, digitizing and geocoding)
Explain error propagation

Explain cascading of error

Explain the dangers of undocumented data

Explain how to determine data quality

BIL: Essential – ESA, GIS Recommended – HM, WEM, FWM

EDU:	12	AD
PC		
ESA	Ι	Р
HS		
ECA		
HM		Ι
WEM		R
FWM		R
GIS	Ι	P

Competency 37.15: Determine position on the earth

Competency Builders:

List the major global georeferencing systems

Explain why different coordinate systems have been developed to record location Explain how the shape of the earth is related to geographic position and to the

measurement of distance

Explain how geographic coordinates can be assigned to street address and postal codes using discrete georeferencing

Identify the difficulties and errors that arise in discrete geocoding Explain what a GPS is

Explain what a GPS is

List the major GPS segments as defined by the Department of Defense Explain how a GPS receiver computes position and time from GPS signals Explain major sources of GPS errors

Explain the methodological differences between single-user and differential GPS

Explain the practical differences between using GPS for low-precision and highprecision positioning

Determine location and calculate distances using global coordinate systems (latitude-longitude and UTM)

BIL: Recommended – ECA, GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		
WEM		
FWM		
GIS		I

Competency 37.16: Identify legal issues relating to GIS

Competency Builders:

.

Explain how public access rules affect GIS Identify liability issues related to accuracy and reliability of GIS information Identify privacy issues related to GIS data Explain the use of GIS data as evidence in court cases

BIL: Essential – GIS Recommended – FWM

EDU:	12	AD
PC		
ESA		
HS		
ECA		
HM		
WEM		Ι
FWM		
GIS	I	P

Competency 37.17: Develop a GIS plan

Competency:

Conduct a needs assessment Develop a database model Determine available data Evaluate GIS hardware and software Evaluate potential data sources Develop a detailed database design Perform pilot study and benchmark tests Construct the database Integrate the various components of the GIS Develop GIS database applications Maintain the GIS

EDU:	12	AD
PC		
ESA		
HS		
ECA		Ι
HM		Ι
WEM		Ι
FWM		Ι
GIS		P

BIL: Essential – GIS Recommended – ECA, HM, WEM, FWM

Competency 37.18: Analyze GIS tools

Competency Builders:

Identify the hardware required for an operational GIS

Describe various GIS software packages and their characteristics

Explain the importance of a DBMS to a GIS

Explain layers and coverages

Explain items to consider when acquiring digital map data

Identify sources of digital map data

Explain media conversion

Explain geographic data conversion

Explain coordinate transformation

Explain tiling and edgematching

Describe the digitizing issues to be considered

Automate map features and attribute data associated with map features

Link map features to a database

Design data tables and layers

Determine answers to spatial questions related to the planning objectives of the GIS application

Organize the output of information based on the analyses

Develop a custom user interface for a GIS application that will simplify and increase user productivity

increase user productivity

Unit 38: Communication

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Р	R
ESA	Р	R
HS	Р	R
ECA	Р	R
HM	Р	R
WEM	P	R
FWM	P	R
GIS	P	R

Competency 38.1: Apply communication skills

Competency Builders:

Guide communication activities using established rules for grammar, spelling, and sentence construction

Follow written and/or oral instructions

Apply creativity in oral and written communications

Proofread documents

Interpret oral, written, and nonverbal communications

Evaluate audience (e.g., specific interests, level of technical knowledge)

Adjust communication style to fit audience (e.g., use of jargon, level of technical details)

Determine means of communications appropriate for given situations (e.g.,

telephone, meeting, electronic mail, and written communication)

Reinforce intended message using nonverbal communication

Influence listeners' perceptions through precision questioning

Practice active listening skills (e.g., paraphrasing)

Obtain needed information using questioning techniques

Adjust message and/or its delivery based on feedback from listeners (verbal and nonverbal)

Participate in group discussions and meetings

Assess and refine communication skills

EDU:	12	AD
PC	P	R
ESA	Р	R
HS	Р	R
ECA	Р	R
HM	Р	R
WEM	Р	R
FWM	P	R
GIS	P	R

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

Competency 38.2: Compose documents

Competency Builders:

Identify the characteristics of different approaches to writing (e.g., direct, indirect, and persuasive)

Identify components of an effective message (e.g., clear, concise, complete, accurate, and courteous)

Evaluate audience

Gather information

Organize information

Develop outline

Draft document

Verify spelling, grammar, and punctuation

Verify accuracy of content

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	Р
ESA	P	R
HS	I	Р
ECA	P	R
HM	Р	R
WEM	Р	R
FWM	Р	R
GIS	Р	R

Competency 38.3: Demonstrate sensitivity in communicating with a diverse workforce

Competency Builders:

Identify factors (e.g., culture, ethnicity, equity, special/exceptional needs) that impact communication

Identify strategies for successful communication with a diverse workforce Determine communication style appropriate for listener(s)

Bridge communication styles

Establish guidelines for dealing with conflict

BIL:	Essential	– PC, ESA	, HS, ECA	, HM, [•]	WEM,	FWM,	GIS

EDU:	12	AD
PC	Р	R
ESA	Р	R
HS	Р	R
ECA	Р	R
HM	Р	R
WEM	Р	R
FWM	Р	R
GIS	Р	R

Competency 38.4: Deliver oral presentations

Competency Builders:

Prepare presentation and supporting materials (e.g., handouts, transparencies, electronic slide shows)

- Practice presentation
- Deliver presentation

Obtain feedback

BIL: Essential – PC, ESA, HS, ECA, HM, WEM, FWM, GIS

EDU:	12	AD
PC	Ι	P
ESA	Р	R
HS	Ι	Р
ECA	Р	R
HM	Р	R
WEM	P	R
FWM	Р	R
GIS	P	R

Competency 38.5: Build interpersonal skills with individuals and other team members

Competency Builders:

Analyze the interdependence of empathetic listening, synergy, and consensus building

Define roles within the group decision-making process

Explain group dynamics

Promote teamwork, leadership, and empowerment

Identify strategies for fostering creativity

Analyze the effect of influence, power, and politics on communication

Establish negotiation guidelines

Unit 39: Basic Microbiology

BIL: Essential – ESA, HS, WEM Recommended – PC, ECA

EDU:	12	AD
PC	Ι	R
ESA	I	P
HS	I	P
ECA	Ι	R
HM		
WEM		Р
FWM		
GIS		

Competency 39.1: Apply microbiological principles and procedures

Competency Builders:

Explain microbial taxonomy and classification Explain bacterial metabolism, reproduction, cell structures, and their functions Disinfect and sterilize Explain classification, composition, and preparation of culture media Collect, handle and culture specimen Identify bacteriologic culture techniques necessary for isolation and identification of organisms Test for antibiotic susceptibility Identify commonly encountered aerobic bacteria through morphological, physical, and biochemical properties Prepare Gram stains Explain collection and handling of specimens for fungal, mycobacterial, and viral specimens Prepare specimens Examine specimens Identify difference between autotropic and heterotropic microbes

BIL: Recommended – PC, ESA, HS

EDU:	12	AD
PC		Ι
ESA		Ι
HS	I	R
ECA		
HM		
WEM		
FWM		
GIS		

Competency 39.2: Explain immunological procedures

Competency Builders:

Explain immune system and normal immune response

- Explain physical and chemical properties of immunoglobulins and complement and their reaction in vitro
- Explain principles of basic agglutination, flocculation, and precipitation procedures

Perform basic agglutination, flocculation, and precipitation procedures

Explain principles of complement fixation, immunoelectrophoresis and enzyme immunoassay

Explain clinical significance of commonly performed serological tests

399

BIL: Essential – ESA, HS, WEM Recommended – PC, ECA, FWM

EDU:	12	AD
PC		Ι
ESA	Ι	P
HS	I	Р
ECA		Ι
HM		
WEM		Ι
FWM		Ι
GIS		

Competency 39.3: Describe roles of microorganisms in the environment

Competency Builders:

Categorize common microorganisms (e.g., viruses, bacteria, protozoans, etc.)

- Categorize common pathogenic organisms and common microorganisms found in the environment
- Describe how microorganisms impact nutrient cycles

Explain microbial decomposition and use of microbes in degrading pollutants

400

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC	Ι	R
ESA	Ι	P
HS	Ι	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 39.4: Perform common microbiology procedures

Competency Builders:

Operate microscope, compound microscope, incubator, colony counter, and other basic microbiology and analytical equipment

Identify microorganisms and cells

Quantify microorganisms and cells

Isolate pure cultures

Maintain pure cultures

Analyze fermentation materials

Harvest cells

Transform hosts

Stain cells and/or bacteria

Prepare media

Identify sterile techniques used during handling, sampling, and analytical procedures

Explain Koch's Postulates and their use in determining primary and secondary pathogens

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM

EDU:	12	AD
PC		Ι
ESA	Ι	P
HS	Ι	R
ECA	Ι	R
HM		
WEM		Ι
FWM		
GIS		

Competency 39.5: Conduct bioassay tests

Competency Builders:

Explain bioassay [R-WEM]
Identify the purposes of bioassay testing [R-WEM]
Conduct acute/chronic, freshwater/marines NPDES Permit Bioassays for 1, 2, or 3 species
Conduct sediment bioassays
Conduct LC50 and percent survival bioassays
Conduct hazardous waste bioassays
Conduct terrestrial bioassays
Conduct bioaccumulation studies
Conduct biodegradation testing
Conduct whole effluent toxicity testing
Conduct Toxicity Identification Evaluations/Toxicity Reduction Evaluations (TIE/TRE)

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM, FWM

EDU:	12	AD
PC	Ι	R
ESA	Р	R
HS	Ι	R
ECA	I	R
HM		
WEM		Ι
FWM		Ι
GIS		

Competency 39.6: Contrast prokaryotic and eukaryotic cells

Competency Builders:

List parts of prokaryotic and eukaryotic cells State function of each cell structure Distinguish between those parts that are common to both and those that are not always present

Identify the giant polymeric molecule constituting the cell wall

Explain endospore

Identify conditions that favor the formation of endospores

Explain plasmid

Describe nutritional patterns of fungi

Describe fungal identification and cultivation

BIL: Essential – ESA Necommended – PC, HS, WEM, FWM

EDU:	12	AD
PC	I	R
ESA	I	Р
HS	Ι	R
ECA		
HM		
WEM		Ι
FWM		Ι
GIS		

Competency 39.7: Identify groups of microorganisms

Competency Builders:

Identify various bacterial organisms by shape Identify various cell arrangements or groupings Identify organisms by cell wall types Identify groups of fungi Identify groups of algae Describe types of parasite life cycle

404

BIL: Essential – ESA Recommended – PC, HS

EDU:	12	AD
PC	Ι	R
ESA	Р	R
HS	Ι	R
ECA	_	
HM		
WEM		
FWM		
GIS		

Competency 39.8: Analyze factors affecting microbial growth

Competency Builders:

Correlate how sources of nutrients overlap Explain microbial nutrition type (carbon) Compare inorganic and organic nutrients

Essential – ESA **BIL:** Recommended – PC, HS

EDU:	12	AD
PC	Ι	R
ESA	P	R
HS	Ι	R
ECA		
HM		
WEM		
FWM		
GIS		

Competency 39.9: Describe influence of environmental factors on microbes

Competency Builders: Explain various temperature requirements Describe various gas requirements Describe major types of microbial interaction

BIL: Essential – ESA Recommended – PC, HS, ECA, WEM, FWM

EDU:	12	AD
PC	Ι	R
ESA	Ι	Р
HS	Ι	R
ECA	Ι	
HM		
WEM		Ι
FWM		Ι
GIS		

Competency 39.10: Explain microbial growth

Competency Builders:

Correlate bacterial binary fission with generation time Describe normal bacteria population growth curve Indicate methods of enumerating bacteria and measuring bacterial growth Explain closed bacterial culture Identify phases of bacterial growth curve

U.S. Department of Education Office of Educational Research and Improvement (OERI) National Library of Education (NLE) Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

Х

This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

