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Abstract

The feature that makes item response theory (IRT) models the models of choice for many

psychometric data analysts is parameter invariance, the equality of item and examinee

parameters from different populations. Using the well-known fact that item and examinee

parameters are identical only up to a set of linear transformations specific to the functional form

of a given IRT model, violations of these transformations for unidimensional IRT models are

algebraically investigated and bias coefficients are derived for some violations. Since a lack of

invariance constitutes item parameter drift (IPD) at the individual item level or item-set level, the

magnitude and types of biases introduced by IPD along with their impact on examinee true

scores can be algebraically derived and these connections are demonstrated with results from a

recently published simulation study (Wells, Subkoviak, & Serlin, 2002). This paper facilitates a

deeper understanding of different types of lack of parameter invariance and their practical

consequences for decision-making through a framework that combines analytical, numerical, and

visual perspectives on parameter invariance as a fundamental property of measurement.
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Bias Coefficients for Lack of Invariance in Unidimensional IRT Models

Item response theory (IRT) is one of the most popular current methodological frameworks

for modeling response data from assessments. It is used directly in computer adaptive testing,

cognitively diagnostic assessment, and test equating among other applications (e.g., Hambleton,

Swaminathan, & Rogers, 1991; Junker, 1999; Kaskowitx & de Ayala, 2001). Furthermore,

output from IRT models has more recently been incorporated into hierarchical regression models

for multilevel data (e.g., Adams, Wilson, & Wu, 1997; Fox & Glas, 2001). The versatility of IRT

models has made them the preferred tool of choice for many psychometric modelers, but beyond

the flexibility of IRT models it is the often misunderstood feature of parameter invariance that is

frequently cited in introductory or advanced texts as one of their most important characteristics

(e.g., Hambleton & Jones, 1993; van der Linden & Hambleton, 1997; Hambleton et al., 1991;

Lord, 1980). Since invariance relates to generalizability across contexts, parameter invariance in

IRT models allows for the generalizability of inferences across context and thus constitutes a

fundamental property of measurement.

In this paper, the mathematical formalization of parameter invariance is used to develop a

framework for algebraic, numeric, and visual investigations of biases introduced by different

types of lack of invariance (L01). The derivations in this paper are presented to clarify facets and

implications of parameter invariance for a broad and more applied audience. In the term

`parameter invariance', the parameters referred to are both the set of item parameters and the set

of examinee parameters. The word 'parameter' indicates that the term refers to population

quantities, which are treated as fixed but unknown (in a frequentist framework) or random but

unknown (in a Bayesian framework) and whose values are estimated with data collected within a

random sampling framework. The word invariance indicates that parameter values are identical
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in separate populations, which is commonly of concern when parameters are estimated

repeatedly with different calibration samples that represent subsets of different populations of

interest. Most importantly, parameter invariance denotes an absolute ideal state that holds only

for perfect model fit and any discussion about whether there are "degrees of invariance" or

whether there is "some invariance" are technically inappropriate (Hambleton et al., 1991).

Moreover, the question of whether there is invariance in a given population is illogical as well as

invariance requires at least two populations or conditions for parameter comparisons to be

possible and meaningful.

The mathematical relationships that define parameter invariance are of course not novel per

se and can be found, albeit often more cryptically, in other sources (e.g., Lord, 1980). In

addition, work in score equating, differential item functioning (DIF), and item parameter drift

(IPD) deals with LOI and the biases introduced thereby (e.g., Donoghue & Isham, 1998).

However, the literature does not provide simple and widely accessible algebraic work on the

conditions of parameter invariance and possible violations of these, which is why the work in

this paper seeks to clarify many of the subtleties of parameter invariance for practitioners and

theoreticians alike.

Mathematically, parameter invariance is a simple identity for parameters that are on the

same scale.:Yet the latent scale in IRT models is arbitrary so that unequated sets of model

parameters are invariant only up to a set of linear transformations specific to a given IRT model.

When estimating these parameters in unidimensional IRT models with calibration samples, this

indeterminacy is typically resolved by requiring that the latent indicator 9 be normally

distributed with mean 0 and standard deviation 1 (i.e., 9 N (0,1)). In orthogonal

multidimensional IRT models, the latent scale indeterminacy implies that parameters are
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identical up to an orthogonal rotation, a translation transformation, and a single dilution or

contraction. When estimating these parameters with calibration samples, the indeterminacy is

typically resolved by requiring that the multivariate latent indicator 0 be multivariate normally

distributed with,mean 0 and variance-covariance matrix I where I is the identity matrix of

appropriate size (i. 9 MTN (0 , I)), which is the multidimensional analogue to the

unidimensional case (Davey, Oshima, & Lee, 1996; Li & Lissitz, 2000). Once estimated values

of the parameters for different populations are available on their respective scales, it is of interest

to determine the type of relationship that exists between them as a yardstick to assess whether the

same IRT model is likely to hold in both populations (i.e., whether parameter invariance across

the populations holds). However, the methods that are used to assess a LOI need to be carefully

chosen as simple indices such as correlation coefficients may miss additive group level effects,

for example (Rupp & Zumbo, 2002).

In this paper we use the term bias coefficients while acknowledging that the work 'bias' has a

variety of different usages in the statistical and non-statistical literature. In textbooks of statistical

inference, bias is generally defined as the difference between the expected value of an estimator

and the quantity it is trying to estimate (Casella & Berger, 1990, p. 303). In the literature on

differential item functioning (DIF), bias is sometimes referred to as an undesired differential

functioning-of items that is not attributable to ability differences on the latent dimensions the test

is intended to measure. Under this operationalization bias produces an unfair advantage for one

group of examinees over another as the examinees in both groups possess differing amounts of

proficiency on the nuisance dimensions (Shealy & Stout, 1993). In this paper, the term bias

coefficients is used to denote quantities that are derived from differences in model parameters

due to IPD, because, if IPD goes undetected, the examinees are assigned a score that is different

6
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from the one they should be correctly assigned if the drift were detected. As an additional point

of clarification, all of the following equations involve population quantities only, because the

focus of this paper is not the estimation of biases but the analytical derivation of the idealized

population analogues. Circumventing the estimation process allows for discussions of what can

be considered "best-case" and "worse-case" scenarios with any real data applications being

instantiations of these cases.

To derive bias coefficients, consider the unidimensional two-parameter logistic (2PL) model

for illustrative purposes where examinees are indexed by i = 1,..., I , items are indexed by j =

1,..., J, and P1(0,) is the probability of examinee i responding to item j correctly as a function

of the latent trait O. The 2PL model can be written as follows (Hambleton, 1989):

exp(cci(ei fl; )) ;a. >0,...<flpei <°"'
Pi(e l) 1 + exp(tx ))

where a is the item slope or "item discrimination" parameter, is the item location or "item

difficulty" parameter, and 9 is the latent predictor or "proficiency" variable. In the following

parameters from a second population of interest are denoted by a prime (`); conceptually, neither

population is considered more 'important' in any sense. Thus, they will not be semantically

distinguished with terms such as 'reference' or 'focal' population as is done in, for example, the

literature on differential item functioning (DIF; see Clauser & Mazor, 1998; Donoghue & Isham,

1998; Zumbo, 1999).

For parameters in the 2PL to be invariant in the populations of interest, one simply requires

ce; = aj, fl; =fli, and 0', = 0 to hold jointly for all items and examinees that are relevant to the

practical context at hand if the parameters are linked onto the same scale. Due to the
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indeterminacy of the latent scale for 0, the above identities are equivalent to the following

equations for unlinked scales:

where E and S are non-zero real numbers. Mathematically, parameters fail to be invariant if at

least one of these equations does not hold for at least one item or examinee in the populations of

interest depending on which parameters are investigated for invariance. The above equations

represent restrictive kinds of linear transformations, which is why it is inappropriate to compare

parameter estimates from different calibrations with indices that measure linear association only.

Hence, considerations about invariance need to include considerations of item sets as well as of

individual items (e.g., Donoghue & Isham, 1998, Zumbo, 2003). To understand the types of

biases that are possible under a LOI, it is insightful to consider the impact of different violations

of the conditions above on the response probabilities.

In generic terms, the linked parameters from the first and second population are related by a'

= f(a), /3' = g(/3), and 0' = h(0) and are invariant only if the transformation functions

f , g), and hOare identity functions for all items and examinees; otherwise, they fail to be

invariant. For the sake of simplicity, the following examples of parameter invariance will be

restricted to item parameters and will consider only linear transformation functions for ce and 13;

the derivations for 9 are very similar to those for # since the two parameters are on the same

scale even though the meanings behind these invariance investigations are very different. Since

each linear relationship is represented by a line with an intercept and a slope, there are three

cases to consider for each item parameter.



For (../9 we have

where co] and r are non-zero real numbers.

For fij we similarly have
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aJ =aJ
+rJ (I)

a
J

=a).1 aJ (II)

a.=co.a.J +r.
1

(III)J

= 1Ci

=

Nj = +Kj

where lc and A . are non-zero real numbers. Note that these six cases are not distinguishable for a

given item. That is, if an item parameter value has drifted and only the drifted value is observed

as is generally the case when we work with estimates then there is exactly one real-valued

constant z, one real-valued factor o., and an infinite number of real-valued pairs { z , 63.} that

could have given rise to the transformed value. However, if a transformation applies to setsof

items, a distinction between the above cases is crucial as the biases under different

transformations are of different form and magnitude across the drifted items. The six basic cases

(I) (VI) lead to a total number of 15 cases if joint violations of invariance in (4 and A are

considered.-However, they will not all be described in detail because some cases are

combinations of the six basic cases and follow logically from those. Hence, in the following

section, only the six basic cases are used to express biases first on the logit scale. The section

after that then shows how these biases can be translated into biases on the probability scale to

clearly highlight their practical utility as differences in response probabilities and related true

scores are the focus of practical decision-making.
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Bias on the Logit Scale

For some cases, the biases that are introduced by violations (I) (VI) can be compactly

written with coefficients on the scale that is defined by the link function. The logit scale was

chosen for analytical convenience but any other transformation with appropriate properties (e.g.,

the probit transformation) will technically work as well. We will present only the simple cases (I)

and (IV) below and have collected the remaining four cases in the Appendix. For each case (a)

the new relationship between the parameter values and (b) the introduced bias on the logit scale

will be presented. The bias coefficients will then be interpreted but it is thus crucial to note that

the interpretation is with respect to the logit scale and does not necessarily mirror the

interpretation that would be appropriate on the probability scale. Since most practitioners are

probably more interested in the implications of biases for response probabilities and test scores,

these will be discussed in a later section and several biases on the probability scale will be

interpreted there. The following description therefore primarily highlights succinctly the

interrelationships between the parameter transformation function (i.e., the type of LOI) and the

logit scale formulation of the two-parameter kernel.

Case (I) Non-zero intercept for a'

For non-zero real numbers Sand Tj,

(a) -= 8-1(o e + j) = 5-1c e + 8-1r

(b) logit[P; (0; )] = (aj+-cf)(0,-13.j)=aj(19, 13, ) + Tj (9i -133 )= logit[Pj (0, )] + kei

where B.e,'fl = rf(t9, Ai) is an additive bias coefficient whose absolute magnitude depends on

the location difference a - Q and Sis the global transformation parameter hence, no subscript

required to link scales. Therefore, for a given item, the introduced logit-scale bias is larger in

absolute magnitude for an examinee whose ability is very different from the difficulty of the item

10
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than for an examinee whose ability level is closer to the difficulty of the item. No bias exists for

examinees whose ability level is identical to the item difficulty.

Case (IV) Different intercept for #'

For non-zero real numbers e, (5, and /c,

(a) = e + 5(#i + Ki ) = (e + cy)+ 813

(b) logit[P:i(0;)] = ay(9,(13y+icy))=ay(0, a1 = logit[Pj(0;)]+ B7

where .117 = - cvc is an additive bias coefficient whose magnitude depends, for each item, on its

discrimination parameter and E and (Sue the global transformation parameters again, no

subscript required to link scales. Therefore, items with higher discrimination values will have a

larger logit-scale bias independent of the location difference between examinee and item, which

is actually an accurate description of the bias on the probability scale for this case as well.

In all cases it is clear that the biases result in differences in item characteristic curves (ICCs),

which equal differences in response probabilities for all or almost all examinees. But since the

logit transformation is non-linear, the effects of biases on the logit and probability scales are

different and the additivity of bias on the logit scale is not preserved on the probability scale. It is

thus necessary to translate the logit-scale biases into probability-scale biases. The following

section discusses the practical utility of the bias coefficients for the estimation of response

probabilities and true scores and shows how these results are useful for the study of IPD.

Bias on the Probability Scale

It is possible to use the above formulations to analytically compute differences in response

probabilities at the population level as is done empirically in studies of IPD for calibration

samples (e.g., Wells et al., 2002; see also Donoghue & Isham, 1998). Conceptually, IPD is

typically defined as the differential shift of item parameters over time (Goldstein, 1983), which is

11
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often attributed to educational, technological, or cultural changes (Bock; Muraki, &

Pfeiffenberger, 1988). Mathematically, it is readily seen that IPD represents LOI at the item level

where IPD in either a or heads to a change in the respective parameter value with the form of

the exact transformation from a to a' or 13 to p' unknown. Hence, one way to represent IPD at

the item level is

a. =a. +r.J J

13:1 = Pi + ICJ

(A)

(B)

where aj < rj <0., 0. < <0. with the first inequality ensuring that di > 0 . In other

words, all cases (I) (VI) are cases of IPD but the simplest way to simulate drift and to

analytically investigate it is by casting it as an additive formulation. Since graphical comparisons

of ICCs are made on the probability scale it is helpful to translate the above statements into bias

statements on that scale. To combine the discussion for both cases into one, consider a general

additive bias on the logit scale where 0 is any non-zero real number:

logit[Pj (0; = aj(0, Ad+ 0 = logit[Pj (0, )] + 0 .

On the probability scale, this is written as

exp[a (0, 13j)]exp[0] exp[a j(0; fij)]

1+ exp[aj (9, /3j )]exp[0] exp [O] + exp[aj (0; f3j )]

which can lie compared to the response function with item parameters that have not drifted,

exp[a;(0; P)]
P; (0,) 1+ exp[ai (0, 131)]

A few basic algebraic steps result in the following relationships:

12
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0 <o= P'i(61;)< Pj(0,) (R1)

0 = 0 P J: (0;) = P (6 (R2)

0 >O Pj(0;)>Pi(0,) (R3)

where the arrow denotes an implication. In other words, if the additive logit-scale bias is

positive, the probability under the drifted parameters will be positively biased; if it is negative, it

will be negatively biased; otherwise, the two probabilities will be identical. The relationships

(R1) (R3) are not equivalences, however, because differences in response probabilities can

have many causes only one of which is an additive bias on the logit scale.

Consider the Wells et al. (2002) study for illustrative purposes. The authors simulated drift in

the population values of the item difficulty and discrimination parameters in a 2PL. Only

positive amounts of drift were considered and the effect of item parameter drift on the estimation

of examinee ability parameters was estimated under 48 conditions: Test length (2 levels) x

sample size (2 levels) x type of drift (3 levels) x number of drift items (4 levels). More

specifically, if an item was selected to display item parameter drift, the authors increased either

the discrimination parameter by .5 or the difficulty parameter by .4 or both simultaneously by .5

and .4 respectively.

It is immediately clear that increasing a difficulty parameter by some positive number leads

to an ICC that is shifted to the right and that increasing a discrimination parameter by some

positive number leads to an unchanged inflection point but a steeper slope. Yet, in addition to the

conceptual understanding, it is possible to quantify these changes more precisely and the bias

coefficients allow us to do just that. When the authors changed an item discrimination parameter

value by .5, they introduced a bias of

B9 '16 = (0, Q;) = .5(0 ,6j)

13
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according to case (I). For drifted items, this results in ICC segments that are shifted upward for

positive bias (R3), which occurs when 9, > fly , ICC segments that are shifted downward for

negative bias (R1), which occurs when 0, < A, and an identical ICC value for no bias (R2) at

= pi. This pattern was observed (see Wells et al, 2002, Figure 1 a, p. 80) and plotted with

respect to the estimated true score, which is computed as the sum of the ICCs over all items in

the test:

T(0,)=

The resulting curve that traces the true score as a function of the latent indicator 0 is called the

test characteristic curve (TCC) and it was seen that the overall shift in the TCC was relatively

minimal, because only a few items exhibited drift in each of the design conditions in the study.

This also stems from the fact that the differences in response probabilities are actually relatively

minor. To illustrate this, let us formally denote the difference in response probabilities by Au,

Au = (0, )P,(0;) with 1_5 A,y 51 .

Table Al shows the L values (cell entries) for an a-drift of .5 as a function of the original

discrimination value of an item (row value) and the location difference between an examinee and

an item on the 0 scale, 0 p; (column value). For example, take an item with an original

discrimination value of .75 and an examinee whose location on the latent scale is .5 units above

the location of the item (i.e., 9, fly = .5 ). The bias that gets introduced for this examinee on

this item under drift of the discrimination parameter manifests itself in a difference in response

probabilities of only i . = .0586883. In other words, the response probability under the drifted

discrimination parameter is about 6% higher than under the non-drifted parameter. It can be seen

14
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in this table that most Ay values are between .05 and .10. In other words, between 10 to 20 items

with an a-drift of this magnitude are necessary to result in a true score difference of only 1 point,

a difference that would probably be considered rather trivial for most practical circumstances.

When the authors changed an item difficulty parameter value by .4, they introduced a

negative bias of B7 = --co)aj = .4a) < 0 , according to case (III), where the inequality stems

from the fact that item discrimination values are always positive. For drifted items, this results in

ICCs that are shifted to the right according to (R1) independent of the values of a and /3j , which

was observed with again relatively minimal effects in terms of the TCC (see Wells et al., 2002,

Figure 2a, p. 82). Again, the Ay values for a variety of item discrimination parameters and

location differences can be computed (see Table A2) and, again, most of the Ay values for

moderately discriminating items and moderate location differences are between .05 and .10 albeit

some cases with higher values can be observed. Just as before this means that for the majority of

cases between 10 to 20 items with a /3-drift of this magnitude are required to produce a true-score

change of 1 point, a relatively minor effect.

Finally, when the authors changed both the item discrimination parameter value by .5 and the

item difficulty parameter value by .4, they introduced multiple biases. Even though conditions

for when upward and downward shifts of the ICCs occur can be formally stated, those conditions

are relatively cumbersome to present and are omitted here. In the study, the authors report that

the TCCs cross at a value 00 where 00 > . The effects of the biases as seen in the TCCs were

again relatively minimal for most values of 0 but now started to increase in magnitude for

specific sub-regions of the 0 space compared to the previous scenarios (see Wells et al., 2002,

Figure 3a, p.83). Table A3 shows the Ay values for this scenario and it can be seen that these are

15
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still often between .05 and .10 but that now there are also quite a few values in the range of .10 to

.15 with some even reaching .20. Thus, even though between 10 and 20 items are required to

produce a true score difference of 1 point for many cases under this joint a- and /drift, only

around 5 to 7 items are required in other cases.

All three scenarios show that when the pattern of introduced biases is expressed with respect

to response probabilities it appears quite complex due to the curvature and asymptotic behavior

of the ICCs. It is possible to plot the Au values to illustrate this complex behavior more closely.

Figure 1 shows the Au surface and contour plots for the a-drift of .5, item discrimination values

of non-drifted items between 0 and 2, and location differences between 2 and 2 to match the

structure of Table Al while utilizing more grid points. Note that for the surface plot Ay is labeled

`Delta', the location difference is labeled 'Theta-Beta', and the non-drifted discrimination values

are labeled 'Alpha'. Furthermore, the orientation of the contour plot matches the orientation of

the surface plot so that the horizontal axis represents the location difference values, the vertical

axis represents the item discrimination values, and the contour lines and shades represent the Au

values with lighter shades corresponding to higher Ay values and darker shades corresponding to

lower Ay values.

(a) Surface Plot for a-drift

16

(b) Contour Plot for a-drift
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Figure 1. Surface and contour plots of Au for a' = a+ .5.

To understand these plots, note that when an item discrimination parameter drifts the slope of the

ICC for the item with the drifted parameter is steeper, which results in increasing differences in

response probabilities in both directions from the inflection point for some range of 9 values

followed by decreasing differences as the original ICC and the ICC under drift approach their

asymptotes. As an example of this behavior, Figure 2 shows a plot of a drifted item with original

discrimination value a= 1, discrimination value a' = a+ .5 = 1.5 after drift, and difficulty value

fi= 0. Note that the latent trait B is labeled 'Theta' and that Pi (0) is labeled 'Probability'.

Probability
1

0.8

0.6

0.4

0.2

Theta
-2 0 2 4

Figure 2. ICCs for item with a-drift of .5.

The differences are positive to the left of the inflection point and negative to the right of the

inflection point as a result of how Ad was defined here. The surface and contour plots of Figure 3

show graphically how differences are largest in absolute magnitude for the least discriminating

items and smallest for the most discriminating items for the range of location differences

considered. This makes sense, because if the slope of an ICC is already rather steep without drift

present (i.e., when an item is already highly discriminating) then a further increase in slope will

have relatively little impact on response probability differences. This implies that if items are of

at least reasonable discriminatory power for a given population (e.g., if they have an a, value of

at least 1) biases are not as extreme.
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Figure 3 shows the surface and contour plots for the ,8 -drift of .4, item discrimination

values of non-drifted items between 0 and 2, and location differences between 2 and 2 to match

the structure of Table A2 while again utilizing more grid points. The labeling corresponds to that

of Figure 1.

2

1.5

0.5

-2 -1 0 1 2

(a) Surface Plot for Adrift (b) Contour Plot for /3-drift

Figure 3. Surface and contour plots of Ay for /3' =16+ .4.

This shows that when an item difficulty parameter drifts, the effect is asymmetric with respect to

the inflection point of the ICC. Figure 4 shows a plot of a drifted item with original difficulty

value )6 = 0, drifted difficulty value /3' = /3+ .4 = .4, and discrimination value a= 1 to illustrate

this behavior. The labeling corresponds to that of Figure 2.

-2

Figure 4. ICCs for item with 8-drift of .4.

18

2 4
Theta.
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As previously seen in the surface and contour plots of Figure 3, the difference in response

probabilities gets larger in absolute magnitude as the discrimination value gets larger and items

with higher discrimination values have a higher bias for smaller location differences.

Finally, Figure 5 shows the Ao surface and contour plots for ajoint a-drift of .5 and )6-drift of

.4 for item discrimination values between 0 and 2, and location differences between 2 and 2 to

match the structure of Table A3 while again utilizing more grid points. The labeling corresponds

to that of Figure 1 and Figure 3.

1.5

Alpha 1

0.5/

0.2
0.1

Delta 0

-2
-1

0

'Theta - Beta

(a) Surface Plot for joint a- and /3 -drift (b) Contour Plot for joint a- and )6-drift

Figure 5. Surface and contour plots of A for a' = a+ .5 and /3' = /3+ .4.

This plot shows the complex effects that both drift types have on the difference in response

probabilities and one can readily identify characteristics of the previous two cases. For example,

note the almost linear difference values for poorly discriminating items in the location difference

range considered here due to flat ICCs and the pronounced spike in difference values for highly

discriminating items similar to the cases before. As an example of the complex behavior of the

Ay values, Figure 6 shows the ICC of an item with original parameter values g= 0, a= 1, and

the ICC of the same item with drifted parameter values /3' = .4 and a' = 1.5. The values were

chosen to match the effects shown in Figure 2 and Figure 4 and the labeling is identical to these

figures as well:

19
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-2 0 2 4
Theta

Figure 6. Plot of ICCs for item with joint a-drift of .5 and /3-drift of .4.

These complex relationships raise the issue of what kind of discrimination values and

location differences are typically observed in practice. It seems clear that extreme differences of,

say, ± 2 or 3 units, can be observed in many practically relevant cases if test data are collected

with item and examinee population subsets that yield a wide range of item and examinee

parameter values. Indeed, a good test often consists of items with a wide variety of difficulty

levels and a moderate range of discrimination values and is typically given to examinees with a

wide range of ability levels with the implicit hope that item and examinee properties are well

captured by the chosen model. Whether or not the intersection of a given examinee with a given

item results in a large bias under drift of some parameter cannot be generally answered, however,

and depends on the type and magnitude of drift.

Conclusions

This paper also underscored that parameter invariance is an ideal state that is technically

violated if at least one identity condition does not hold for at least one examinee or item.

Violations can be of any kind but three linear non-identity transformations were considered and

the biases introduced on the logit scale by this LOI were represented with bias coefficients

whenever possible. The bias coefficient framework primarily serves to highlight the

dependencies of different types of bias on model parameters that have not drifted and it allows

one to quickly gauge the severity of biases on the logit and probability scales. From a practical
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viewpoint, the different perspectives taken here allow one to compute and visualize different

biases directly, without having to resort to simulation studies or real data sets, which can easily

be done for a variety of different conditions. The framework can thus be used to cleanly assess

the impact certain biases have on the response probabilities and examinee true scores; any real-

life data set will be a mixed bag of different biases that falls somewhere between the clean

analytical extremes. Most importantly, this paper and other research suggest that IRT models

inferences about examinees are relatively robust toward moderate amounts of IPD across a wide

range of theoretical conditions. It is hoped that this paper contributes to the on-going process of

clarifying what is meant by parameter invariance and to demystify its status, which is often

misperceived as a "mysterious" property that all IRT models seem to possess bydefinition across

an almost infinite range of populations and conditions. If sound theoretical discussions about

scientific generalizability are desired, this paper shows that the mathematical foundations of

parameter invariance as a fundamental property of measurement cannot be ignored.
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