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An Item Fit Statistic 2

Introduction

The generalized graded unfolding model (GGUM; Roberts, Donoghue & Laughlin,

2000) is a unidimensional, polytomous item response theory (IRT) model that

implements single-peaked, nonmonotonic item characteristic curves (ICCs). It is a

proximity-based model that suggests respondents are more likely to receive higher item

scores to the extent that they are close to an item on the latent continuum. Researchers

have argued that these differences make unfolding models like the GGUM more

appropriate for analyzing responses to "Liken- type" questionnaires where the response

scale is framed in terms of graded levels of agreement (Andrich, 1996; Roberts,

Laughlin, Wedell, 1999; van Schuur & Kiers, 1994). The model is also suitable for

certain types of preference measurement and for measuring individual differences within

developmental processes that occur in distinct stages (Noel, 1999).

The GGUM defines the probability that the jth respondent will choose the zth response

category when responding to the ith item as:

P[Zi= zl O]
exp [z (0i-45 ) E To, ] + exp ( c c z)(0 Trkl )

k-0 k-0

p W w)(8ex13 ).( ai[w (e-8f) ik +exp a) (i [
J

) E T
ik )1

for z=0, 1... C; where ej is the location of the jth individual on the latent continuum, Si

is the location of the ith item on the latent continuum, ai is the discrimination parameter

for the item, tik is the le" subjective response category threshold for the item, C is

the number of response categories minus 1, and M is equal to 2*C+1. In contrast to

traditional IRT models with monotonic ICCs, the GGUM yields ICCs that are
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An Item Fit Statistic 3

nonmonotonic and suggest higher item scores to the extent that the distance between Of

and Si approaches zero.

Insert Figure 1 About Here

Figure 1 illustrates item characteristic curves for three hypothetical items under the

GGUM. Each curve is centered and symmetric about the point Sion the latent

continuum. The height and width of each curve are controlled by the eti and 'Li k

parameters. The single peaked nature of each curve reflects a proximity-based response

process where higher item scores are expected to the extent that the individual is located

near the item on the latent continuum. For example, in the case of attitude measurement

using a Likert-type questionnaire, the GGUM predicts higher levels of agreement to the

extent that the content of the item matched an individual's own attitude. The location of

the item on the latent continuum (Si) reflects its content, and the location of the

individual on the continuum (On) reflects the individual's attitude. Consequently, the

GGUM predicts higher levels of agreement (i.e., higher item scores) to the extent that

iOn 8ii approaches zero.

The GGUM offers the same advantages provided by other parametric IRT models.

Specifically, it offers interpretations of person parameters that are invariant to the items

under study, interpretations of item parameters that are invariant to the persons in the

sample, and estimates of measurement precision at the individual level. These

advantages open the door to applications like computerized adaptive testing (CAT), item

banking, and test equating. CAT applications with the GGUM have been studied and

appear quite promising (Roberts, Lin & Laughlin, 2001), and several methods to link
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GGUM parameter estimates from separate calibrations involving alternative respondent

groups have been successfully implemented (Roberts, 2001a). Such applications are

generally feasible to the extent that anal' model fits a given set of responses. However,

methods to assess item/model fit have yet to be studied systematically in the GGUM.

The nonmonotonic ICCs that are characteristic of the GGUM lead to a test

characteristic function that may possess multiple peaks. Consequently, if an observed

test score is obtained simply by summing responses to questionnaire items, then the

expected observed score will generally be associated with more than one location on the

latent continuum, and the particular locations in question may be quite discrepant. This

is also true when the observed score is obtained after reverse scoring responses to

negatively worded items presuming that some moderate and/or neutral items are included

on the questionnaire. The lack of a one-to-one relationship between true scores and the

latent trait makes assessing modeUitem fit by conditioning on an observed test score

more difficult than in the domain of cumulative IRT models. For example, Orlando and

Thissen (2000) have developed a method in which expected responses can be quickly

aggregated across all response patterns which lead to a given observed test score. These

expectations can then be contrasted with observed responses after conditioning on the

observed test score. Unfortunately, the effect of nonmonotonicity between the observed

score and the latent trait makes this method less attractive, because conditioning on the

observed test score does not yield responses associated with individuals who are

homogenous with regard to the latent trait.

An alternative to conditioning on the observed score would be to condition instead on

the estimated 0 value (i.e., 0 ), and compare observed and expected item responses for
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An Item Fit Statistic 5

individuals who are homogenous with respect to 6 . Chi-squared methods such as those

suggested by Bock (1972), Yen (1981), Andrich (1978) typify this approach. However,

these methods ignore the fact that 0 contains measurement error. As a result,

respondents are misclassified into supposedly homogeneous groups to the extent that

is imprecise. This form of misclassification generally results in Type I errors that may be

severely inflated when the number of test items is relatively small (Orlando & Thissen,

2000).

Stone and colleagues (Stone, Ankenmann, Lane & Liu, 1993; Stone, Mislevy &

Mazzeo, 1994; Stone, 2000) have proposed a fit index that explicitly accounts for the

measurement error inherent in 0 . This statistic will be denoted here as )d*. The

elements of Xi2 * are natural byproducts of the marginal maximum likelihood (MAC)

procedure used to estimate GGUM parameters, and thus, it is economical to compute.

However, the distribution of the index has not yet been analytically derived in the case

where polytomous item parameters are estimated from the data (Donoghue & Hombo,

2001). On the other hand, many simulation studies suggest that the statistic is

approximated reasonably well by a rescaled chi-squared distribution when data follow

from cumulative models (Donoghue, 1998; Hombo & Donoghue, 1999; Stone et al.,

1993; 1994; Stone, 2000).

The objective of this paper is to generalize the x12* statistic to the GGUM situation.

The behavior of the X2 * under the GGUM will be examined using alternative simulation

techniques. The results from these simulations will then be used to develop hypothesis

testing criteria for item misfit assessment.

The Index of Item Fit Under the GGUM

6
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GGUM item parameter estimates can be easily estimated with a marginal maximum

likelihood (MML) approach, and then expected a posteriori (EAP) estimates of person

locations can be readily obtained. Both of these methods augment the traditional

likelihood function by incorporating a continuous prior distribution for 0 . In practice,

the prior distribution is approximated at a discrete number of points on the latent

continuum referred to as quadrature points. The MML estimation procedure yields the

following quantities at each of F quadrature points:

H. izr iLi(Vf) A(V f)
rizf'

P1

N=if izf
z=0

where lif is a dummy variable that is equal to 1 when the response to the ith item by

the jth subject is equal to z . Otherwise, Hilz is equal to 0. In Equation 2, Vf is a

quadrature point (Stroud & Secrest, 1966), and A(Vf) is the rescaled density of a prior

distribution for 0 at Vf. The scale of the A(Vf) values is such that:

(2)

(3)

A(Vf) = 1 . (4)
f =1

Additionally, Li(Vf) is the conditional probability of response vector at quadrature

point Vf under the GGUM, and fili is the marginal probability of response pattern N. The

quantity r, can be interpreted as the expected number of respondents at quadrature

point [if who receive a score of z on the ith item. Similarly, the quantity Nif can be
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thought of as the expected number of individuals at quadrature point VI who respond to

the ith item. These expectations can be used to derive the X2i * statistic as follows:

Xi

-
*

=
( fz Eifz)2j

f=1 z=0 Elfz

where:

E = P[Z1 =z IV ]fz f if

is the expected frequency of response z at quadrature point VT given by the GGUM.

Relative to the fit indices proposed by Bock (1972), Yen (1981), and Andrich (1978), the

* -
Xi index treats each respondent's location on the latent continuum as a random variable

rather than a fixed quantity, and thus, it properly reflects the uncertainty associated with

each e .

Unfortunately, the sampling distribution of xi2 * under the GGUM is unknown.

Donoghue and Hombo (1999; 2001a) have determined that Xi2 * is distributed as a

quadratic form of normal variables when item parameters are known and either biriary

and polytomous cumulative models are studied. However, there has been no research to

suggest whether this result will hold for unfolding lRT models. Additionally, item

parameters are generally unknown, and their estimation complicates the analytical

determination of the )d * distribution (Donoghue & Hombo, 2001b).

Given that the theoretical distribution of xi2. under the GGUM is unknown, a series

of simulations was performed to a) describe the behavior of xi2 * under both the null

hypothesis of perfect fit and a reasonable alternative, and b) determine whether
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simulation results can be used to develop a practical hypothesis testing strategy based on

a rescaled chi-squared distribution.

Simulation Study

Simulation Design and Response Data Generation

The number of simulated questionnaire items and the number of hypothetical

respondents were both varied using a 3 x 4 factorial design. The number of questionnaire

items was either /=10, 20 or 30. True item parameters were sampled from a set of 47

item parameter estimates published by Roberts, Lin and Laughlin (2001). These authors

derived the item parameter estimates from responses to an abortion attitude questionnaire

with 6 response categories per item (0=strongly disagree, 1=disagree, 2=slightly

disagree, 3=slightly agree, 4=agree, 5=strongly agree). The model in Equation 1 was

used to obtain the parameter estimates in their study.

The number of simulees generated was either N=500, 750, 1000 or 2000. True values

of 0 were independently sampled from a N(0,1) distribution on every replication. With

the true values for persons and items in hand, item responses were then generated using

Equation 1. Following the generation of data for a given replication, the item parameters

were replaced into the pool for resampling on subsequent replications.

Estimation of Model Parameters and yi2*

GGUM parameter estimates were derived from the simulated item response data using

a modified version of the GGUM2000 software (Roberts, 2001). The modifications

increased the program execution speed but had no impact on the ultimate solution.

MML estimates of item parameters were obtained using a N(0,1) prior distribution for 0

along with 30 equally-spaced quadrature points ranging from -4 to +4. The iterative

9
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estimation algorithm continued until no item parameter changed by more than .001 from

one cycle to the next.

The pseudocounts generated after the final iteration of the MML algorithm were

stored and later used to calculate the value of x?* for each item using Equation 5. Due

to the fact that the pseudocounts were stored with finite precision, there were instances

where Eft values were equal to zero. In those instances, the values of E:1- and were

both incremented by 1E-8. As the results of the simulation were compiled, it became

2*evident that small values of Eft led to distributions of xi that did not follow a resealed

chi-squared distribution. Specifically, the observed values corresponding to the upper

percentiles of the X2* distribution were noticeably too large. Therefore, a second value

of waswas calculated in which .1 was added to every Eft and T; before applying

Equation 5. In order to avoid ambiguity, the original willwill be called the "uncorrected

x? *" value whereas this second calculation will be referred to as a "corrected xi 2* » . A

total of 30 replications were conducted in each cell of the factorial design. On a given

replication, item response data were generated for N simulees to I items, item parameters

were estimated, pseudocounts were saved, and the uncorrected and corrected values of

*Xi were produced.

Developing Alternative Sampling Distributions for xi?* : The Null Hypothesis Case

On a given replication in the null distribution case, the data were generated in

accordance with Equation 1, and a model with the same form was used to estimate the

item parameters and pseudocounts which could ultimately be used to calculate xi?* .

Consequently, the data were fit perfectly by the model except for measurement error and

the associated X12* values reflected this perfect fit. After the item parameters were

10
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estimated on a given replication, they were treated as known (i.e., true) item parameters,

and their values were used along with Equation 1 to generate 1000 new item response

data sets; each data set having N simulees and I items. These data sets were used to

develop sampling distributions for two alternative versions of xi2i .

The first sampling distribution for waswas developed under the assumption that

GGUM item parameters were not known. For this case, the GGUM item parameters

were re-estimated in each of the 1000 data sets produced on a given replication of the

simulation. The resulting item parameter estimates were used along with the simulated

item responses to develop pseudocounts which, in turn, provided the necessary input to

calculate e . This strategy yielded 1000 values of in in which the original item

parameters were treated as random variables, and these 1000 X2* values formed a

sampling distribution under the null hypothesis. To identify in in the case where item

parameters were re-estimated for each of these 1000 data sets, an additional subscript, E,

will be added to the notation (x4.).

As mentioned earlier, the original values obtained for Xi2. were noticeably skewed in

a positive direction, and this skewness was attributed to extremely small Ef, values in

some cells. Therefore a "corrected" value of waswas calculated in which .1 was added

to both the observed and expected values in each cell before calculating Equation 5. This

proved to reduce the skew substantially. (Note that alternative constants such as .05, .15

and .20 were explored, but .1 was the smallest constant that yielded a good

approximation to a rescaled chi-squared distribution.)

An alternative sampling distribution for waswas developed in which the original item

parameter estimates were used along with the 1000 sets of simulated data to produce

11
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1000 x12* values. In other words, the item parameters were treated as known, and they

were not re-estimated when analyzing the 1000 data sets. This method of developing a

sampling distribution for x12* decreased calculation time enormously because the

estimation of GGUM item parameters required a substantial amount of computer time

when calculating Xil.. The generation of pseudocounts was quite fast when known item

parameters and item responses were input into the program. The x2* values produced

with this procedure will be denoted with a new "K" subscript ( x12.) to designate that the

item parameters were treated as known quantities when deriving the statistic.

As noted by Stone (2000), the sampling distributions of either xii2r. or
x1K

derived

from cumulative IRT models are generally well approximated by a scaled chi-squared

distribution:

X* Y * (x2(u)) (7)

where x2(u) is a standard chi-squared distribution with u degrees of freedom and y is a

scale factor. The parameters v and y can be estimated using the method of moments as

outlined by Stone (2000):

E(x2 ) = E[Y *X2 (u)] = Y * E[X2(0] = Y *u (8)

V ar *) = V ar * X2(0) = 2y2u , (9)
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The mean and variance of the sampling distribution for corrected xj2. was substituted

into Equations 10 and 11 to obtain the scale factor, y and the degrees of freedom, v .

Then, the observed corrected x2i* was rescaled by a factor of 1/y and the result was

compared to a critical value from a standard chi-squared distribution with v degrees of

freedom. In short, the sampling distribution for corrected xi2. provided a means to use a

standard chi-squared distribution to evaluate the statistical significance of the observed,

corrected X2i*. This in itself was not pragmatically useful because an enormous amount

of computing effort was expended to calculate the sampling distribution of corrected

x4., from which, v and y were derived. However, the sampling distribution of

corrected xj2. was relatively easy to compute. Following Stone (2000), this distribution

of corrected Xi 2. was used to estimate v and y . The observed corrected xi2. was then

rescaled by a factor of 1/y and compared to a critical value from a standard chi-squared

distribution with v - s degrees of freedom, where s was equal to the number of estimated

item parameters for the ith item. Because there were 6 response categories, there were 7

item parameters estimated per item using Equation 1 (i.e., Si , ai and five-cik parameters

13
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were estimated for each item).

The reader should note that when rescaled statistics were calculated, the corrected

(rather than uncorrected) version of the fit statistic was rescaled. This is because Q-Q

plots generally suggested that the uncorrected statistics did not follow a chi-squared

distribution. The top panel of Figure 2 illustrates a rather typical Q-Q plot for an

uncorrected xi2. distribution and a chi-squared distribution with degrees of freedom equal

to the mean of the uncorrected x12. values. The extreme positive values obtained in the

uncorrected x12. distribution degraded its relationship with the chi-squared distribution.

In contrast, the Q-Q plot for the corresponding corrected x.2. distribution exhibited

fewer extreme values. It suggested that the corrected x12. distribution was better

approximated by a rescaled chi-squared distribution than was the uncorrected version of

the statistic. Similar plots were observed for xj..

Insert Figure 2 About Here

To recapitulate, there were 30 replications in each of 12 cells defined by calibration

sample size (500, 750, 1000, or 2000 simulees) and questionnaire length (10, 20 or 30

items). For each item on a given replication, an observed xi?* value was generated.

Alternative sampling distributions for xi2* were generated by assuming that the item

parameters underlying the observed value of werewere estimated (x12) or known ( x4.).

Calculation of observed X2i * and the corresponding sampling distributions for x i2.

and waswas repeated after adding .1 to both the observed and expected values in every

term in Equation 5. Each of these sampling distributions was used to derive the

parameters v and y that were subsequently used to rescale observed xi2* values so that

14
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they followed a standard chi-squared distribution. A critical value from this chi-squared

distribution was used to evaluate the statistical significance of the rescaled observed X2* .

Evaluations were performed using nominal Type I error levels of a =.05 and a =.01.

Developing Alternative Sampling Distributions for )(i2* : The Alternative Hypothesis

Case

Recall that the data generated in each of the 30 replications for a given cell in the

experimental design was produced using the GGUM defined in Equation 1. Alternative

GGUMs can be derived by constraining model parameters. If one constrains the GGUM

so that 1) item discriminations are equal to 1 for all items and 2) a common set of

thresholds is applicable across all items, then the following "rating scale" form of the

GGUM is obtained:

exp

P[Zi= ej.

[z(ej.-8;) -rk]
k-O

exp ( [(M-z)(01-0 tk]
k-O

z I ]-

w-O
exP( [w (ej-8,) tk

k-O
÷exPl Wil-w)(03-8) 'Ed )

k-O

In the alternative hypothesis condition, the item responses originally generated with

Equation 1 were analyzed using the rating scale version of the model. This produced

substantial discrepancies between the response data and the model (i.e., the alternative

hypothesis of imperfect model fit was true).

The methods described in the preceding section were applied in the alternative

hypothesis scenario in order to evaluate the power of each statistical technique. First, the

data that were formerly generated with Equation I were analyzed with the model in

Equation 12. The pseudocounts from this analysis were used to produce an observed

15
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value of xi2* for each item. The item parameters from the data analysis were treated as

true parameters and were used to generate 1000 independent data sets in which the item

responses followed the model in Equation 12. In the case of x12., the item parameters

were re-estimated for each of these 1000 data sets and the sampling distributions for the

corrected and uncorrected werewere calculated from the corresponding pseudocounts. In

the case of xi
K.,

the item parameters were fixed at the values used to generate the data,

and pseudocounts were then derived from the 1000 data sets. These pseudocounts were

used to calculate the sampling distributions for both the corrected and uncorrected

versions of

The sampling distributions for the corrected andand xi2. statistics were used to

estimate v and y parameters as outlined in the previous section. The only difference

here was that, in the case of x12., the degrees of freedom for the chi-squared distribution

were approximated as v- 1- 5
. This was due to the fact that the 5 threshold parameters

(tk) were constant across the I items whereas the 1 other item parameter (i.e., Si ) was

allowed to vary across items.

Results

Type I Error

The upper panel of Table 1 portrays the proportion of observed uncorrected x2* values

in the null hypothesis condition that exceeded either the 95th or 99th percentile of the

uncorrected sampling distribution for x12. (i.e., empirical Type 1 error rates). The

proportions were obtained by collapsing across all items and replications for a given

calibration sample size and questionnaire length condition. When the nominal a =.05,

the proportion of rejections was generally close to this nominal value. Specifically, the

16
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average proportion of rejections across all sample size and questionnaire length

conditions was equal to .0505 and there was no systematic deviation from this average as

a function of either calibration sample size or questionnaire length. Similarly, the

average proportion of rejected null hypotheses when nominal the a =.01 was equal to

.0113. Again, there was no systematic influence of sample size or questionnaire length.

The rejection rates reported in the upper panel of Table 1 correspond to the situation

where 1) item parameters were treated as random variables that are estimated and 2)

there was no correction for extremely small expected values. The second panel of Table

1, reports the corresponding proportion of rejected null hypotheses when observed xi2.

are corrected by adding .1 to the observed and expected pseudocounts in each cell.

Again, the empirical rejection rates were close to their nominal values and there was no

systematic relationship to either calibration sample size or number of questionnaire

items. When the nominal a =.05, the average empirical rejection rate equaled .0470, and

when the nominal a =.01, the average empirical rejection rate equaled .0083. These

values were slightly smaller than their uncorrected counterparts and tended to

underestimate the nominal a very slightly. However, the differences were quite small,

and thus, the correction for sparse expected values did not induce a pragmatic change in

the empirical Type I error rate.

The third panel in Table 1 gives the empirical Type I error rate achieved when an

observed, rescaled, corrected X12. statistic was compared to a critical value derived from

a chi-squared distribution with v degrees of freedom. As in the previous panels, the

empirical rejection rates were close to their nominal values and the variability was not

related to sample size or questionnaire length. The average rejection rate when the

17
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nominal a =.05 was equal to .0486 and that for the nominal a =.01 was equal to .0100.

Thus, the rejection rates obtained by comparing the observed, rescaled, corrected toto

a critical value from a corresponding chi-squared distribution were very similar to those

obtained using a critical value from the sampling distribution of corrected X .2..
E

The last panel in Table 1 gives the empirical Type I error rate achieved when an

observed, rescaled, corrected xt2. statistic was compared to a critical value derived from

a chi-squared distribution with v - s degrees of freedom. The empirical Type I error

rates underestimated the nominal values by slightly more than 60%. The average

empirical rejection rate was equal to .0192 when the nominal a =.05, and it was equal to

.0036 when the nominal a =. 01. Consequently this method, tended to yield conservative

test results in which the null hypothesis was rejected less frequently than expected.

Again, the variability of the rejection rates was not dependent on the sample size or the

questionnaire length.

Power Rates

Table 2 gives the rejection rates for the situation in which the model in Equation 1

was used to generate the item response data, but the constrained model in Equation 12

was used to analyze the data. In this case, there was an unspecified degree of misfit

between the model and the data, although one could speculate that the degree of misfit

was pronounced given the variability in item parameters used to generate the data

(Roberts et al., 2001). The top panel of Table 2 illustrates the observed power rates

obtained by using the 95th or 99th percentile of the uncorrected xt2s distribution as the

critical value for the item fit test. The average empirical power rate was equal to .915

and .738 for the a =.05 and a =.01 cases, respectively. In each case, the observed power

18
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increased as the calibration sample size increased. In the case where the a =.05, the

power was consistently near or above 80%. However, there was a noticeable increase in

power as the sample size increased from 500 to 750, after which, differences for observed

power rates were mitigated. In the a =.01 case, the observed proportion of rejections

increased steadily as the calibration sample size increased. However, the smaller sample

sizes (N=500 or N= 750) produced somewhat mediocre power rates that were noticeably

different from larger sample size conditions.

The second panel of Table 2 provides rejection proportions for the case where the

95th or 99th percentile of the corrected x12. distribution was used to determine a critical

value for an item fit test. In this case, the empirical rejection rate was .967 when a =.05

and .942 when a =.01. Again, the observed power increased with increasing calibration

sample size in all conditions. The conspicuously lower power seen with the uncorrected

xi2. statistic when a =.05 and N=500 was not present with the corrected statistic. With

the corrected statistic, all observed power rates were equal or greater than .883 when

a =.05. Additionally, the relatively mediocre power rates obtained with the uncorrected

xj;i. statistic when a =.01 were eliminated with the corrected xj2. statistic. In the

corrected xi2. case, the smallest power rate achieved when a =.01 was .803. When each

test result from the uncorrected xj2. procedure was compared to that for the corrected

procedure, the proportion of tests with consistent outcomes equaled .942 when

a =.05. This corresponded to a Cohen's lc value of .472. For the a =.01 case, the

proportion of consistent test outcomes equaled .784 and lc was equal to .260. Whenever

the uncorrected xi2. procedure led to a rejected null hypothesis, the corrected x4.

procedure yielded the same test result in all but 3 cases. Thus, the addition of .1 to every
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cell when calculating xi2. generally improved the power rate obtained when using the

percentiles of its sampling distribution to establish a statistical cutoff. Moreover, this

improvement in power occurred with little impact on the corresponding Type I error rate

as indicated in the preceding section.

The observed power rates calculated from the corrected xi2. statistic tended to

increase slightly as the number of questionnaire items increased when calibration sample

sizes were less than 1000. This behavior was not seen with the uncorrected Xi2* statistic.

The cause of this result is not currently known. As the number of informative

questionnaire items increases, the posterior distribution for a given respondent's 0 will

generally become less variable, and thus, 0 will be more precise; All of the x12* statistics

partition information about observed responses across the latent continuum using each

respondent's posterior distribution of 0 to allocate the information (i.e., the distribution

of pseudocounts is dependent on the posterior distribution of each respondent's 0 ).

Perhaps the increased precision afforded by longer questionnaires is responsible for the

effect seen with the corrected x12. statistics. However, if this is the case, then it is not

clear why the effect is lacking for uncorrected xi2.. Obviously, more work must be

performed to better understand this effect.

The third panel of Table 2 gives the observed proportion of rejections when the

observed, corrected xi2. was rescaled and compared to a critical value from a chi-

squared distribution. The power rates achieved with this strategy were very similar to

those found with the corrected x12. approach in the preceding panel for every sample size

and questionnaire length condition. When a =.05, the average observed proportion of

rejections was equal to .966. The corresponding average was .944 when a =.01. When
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each test result obtained with the rescaled, corrected x12. procedure was compared to that

for the corrected x12. method, there was a 99% level of consistency in both the nominal

a =.05 and nominal a =.01 cases. The corresponding x values equaled .980 and .962,

respectively. These results indicate that if the appropriate scale factor and degrees of

freedom are known, then a chi-squared distribution can approximate the rescaled

sampling distribution of the corrected Xi2. quite well.

The bottom panel of Table 2 lists the observed rejection proportions using the

resealed, corrected xi2. procedure. As with the previously described methods, the

observed power rates associated with this procedure increased with calibration sample

size, and there was a tendency for rates to increase with questionnaire length when the

sample size was less than 1000. The average power rates obtained with the resealed,

corrected xi2. procedure were only slightly smaller than those found when GGUM item

parameters were estimated. With the rescaled, corrected x.2., the average proportion of,
rejections was equal to .956 and .924 in the a =.05 and a =.01 cases, respectively. When

the test outcomes from the rescaled, corrected xj2. method were individually compared

with those from the resealed, corrected xi2. procedure, the proportion of consistent

decisions equaled .992 when a =.05, and .987 when a =.01. The corresponding x values

were .876 and .873. Thus, with regard to observed power, the resealed, corrected xi2.

performed similarly to its resealed, corrected x12. counterpart.

Discussion

The empirical Type I error and power rates obtained when using the 95th and 99th

percentiles of the corrected xi2. sampling distribution as statistical decision criteria under

the GGUM were both quite reasonable. In some respects, these Type I error and power

21



An Item Fit Statistic 21

rates provide a gold standard for what might be expected with a Xi2* oriented approach to

item fit. If the distribution of under the GGUM is eventually determined in an

analytical fashion, then the application of an analytical procedure will not, in all

likelihood, lead to much better Type I error or power rates than those seen here with the

corrected X12. method. Any analytical specification of the sampling distribution for

corrected Xj2. will, no doubt, be an approximation to the empirical sampling distribution

that was examined in this study. Nonetheless, most psychometric researchers would

prefer the mathematical insight and rigor provided by an analytically derived statistical

test for item fit.

It appears that sparse expected frequencies may adversely affect the performance of a

xii2 approach when it is applied to the GGUM. This adverse impact is seen in a

reduction of power to detect misfitting items. Sparse expected frequencies may also lead

to xi2. sampling distributions that are not approximated well by a scaled chi-squared

distribution. This latter point ultimately limits the utility of the xi; approach if one

desires to use the chi-squared distribution to approximate it. Therefore, the corrected

x12. statistic is preferred over its uncorrected counterpart. The corrected xi2. statistic

was approximated well by a scaled chi-squared random variable, and it has similar Type I

error and noticeably better power as compared to its uncorrected counterpart.

The primary difficulty in using the sampling distribution of the corrected xi2. to

assess item fit is that a large number of replications are required to produce adequate

estimates of the 95th and 99th percentiles. This process is extremely time consuming.

For example, the sampling distributions of corrected xi2. for the 30 item condition with

2000 respondents took over 3.5 days to calculate using a 2.4 GHz computer. Therefore,
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it is unlikely that this approach will be implemented in most practical measurement

situations.

An alternative to the sampling distribution method is to use a rescaled chi-squared

distribution to approximate the 95th and 99th percentile points of X12.. However, a

sampling distribution of the corrected xt2. is, itself, required to estimate the scale

parameters of the chi-squared distribution that approximates it. It may be possible to

adequately estimate the scale parameters with far fewer than 1000 points from the

sampling distribution. If so, then the rescaled, corrected x12. method may be useful in

practice. This possibility is currently being explored.

From the standpoint of computational efficiency and practical application, the

rescaled, corrected x12. method of testing item fit under the GGUM may be particularly

useful. The Type I error rate for this procedure was moderately conservative, and this

characteristic is somewhat problematic. However, it exhibited reasonably good empirical

power rates when compared to both the corrected x12. and rescaled, corrected x4.

methods. Calculating the sampling distribution of xt2 is quite fast given that GGUM

item parameters are not re-estimated for each element of the sampling distribution.

Moreover, it may be possible to estimate the scale parameters of the corresponding chi-

squared distribution with far fewer than 1000 elements in the sampling distribution. This

would make the method even faster.

As noted in the title, this paper is a preliminary report, and much more work remains

to be done in this study. For example, the power of the X2i * methods to detect less serious

amounts of misfit should be explored more thoroughly. The misfitting model studied

here constrains both at and tik parameters across all items. Models which constrain only
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one of these two parameters would presumably show smaller degrees of misfit, and thus,

would provide more information about the ability of the x2' to detect less

conspicuous deviations from the null hypothesis of perfect fit. Additionally, an index

that quantifies the amount of misfit that occurs when applying a constrained GGUM

model would be desirable. Such an index would facilitate more useful interpretations of

the power rates reported here. Further effort should also be devoted to finding an

"optimal" constant which is added to each cell in the corrected xi2* methods. The

optimal constant may be a function of sample size and questionnaire length, and this

needs to be determined. The minimal size of the sampling distribution required to

adequately estimate scale parameters should also be fully explored. The rescaled,

corrected xiz. and methods would both be more practical if accurate estimates of y

and v were available from more sparse sampling distributions than those studied here.

Finally, the relationship that emerged between observed power and questionnaire length

when small samples were used with the corrected Xi2* should be explored further. All of

these issues will be addressed in the near future.

As with any simulation study, one should avoid overgeneralizing the results. The

simulations presented in this paper were based on item characteristics found in real

attitude data, and thus, it is hoped that this will improve the generality of these findings.

Additionally, both item characteristics and respondent attitudes were resampled on every

replication within the simulation. This should also increase the generalizability of the

results. Although further replication is still necessary, these preliminary results suggest
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that the X 2* family of item fit assessment methods are promising in the context of the

GLUM.
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Table 1. Empirical Type I error rates.

Uncorrected xE2*

Sample
a=.05

Number of Items
a =.01

Number of Items
Size 10 20 30 10 20 30

500 .073 .042 .046 .017 .005 .006

750 .057 .053 .047 .013 .013 .011

1000 .040 .053 .056 .017 .013 .013

2000 .040 .057 .042 .007 .013 .008

Corrected xE2*

500 .053 .035 .037 .007 .005 .010

750 .063 .045 .053 .020 .008 .008

1000 .053 .035 .056 .007 .003 .008

2000 .047 .047 .040 .003 .015 .006
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Table 1. Empirical Type I error rates (continued).

Rescaled 42*

Sample
a =.05

Number of Items
a =.01

Number of hems
Size 10 20 30 10 20 30

500 .053 .038 .036 .007 .005 .012

750 .067 .047 .056 .020 .008 .009

1000 .057 .037 .054 .013 .005 .009

2000 .053 .047 .038 .010 .015 .007

Rescaled x2;

500 .017 .015 .021 .003 .003 .009

750 .017 .017 .030 .003 ,003 .003

1000 .023 .007 .024 .003 .003 .004

2000 .013 .025 .021 .000 .008 .001
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Table 2. Empirical power rates.

Uncorrected xE2*

Sample
a =.05

Number of Items
a =.01

Number of Items
Size 10 20 30 10 20 30

500 .787 .792 .780 .567 .488 .454

750 .917 .922 .916 .697 .668 .671

1000 .953 .962 .957 .807 .803 .792

2000 1.00 .993 .998 .970 .977 .966

Corrected x2E*

500 .883 .925 .944 .803 .872 .882

750 .943 .967 .983 .923 .942 .968

1000 .977. .990 .988 .957 .980 .978

2000 1.00 .998 1.00 1.00 .997 .999
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Table 1. Empirical power rates (continued).

Rescaled xE2*

Sample
a =.05

Number of Items
a =.01

Number of Items
Size 10 20 30 10 20 30

500 .873 .925 .948 .813 .875 .892

750 .943 .968 .983 .923 .945 .968

1000 .980 .990 .988 .960 .982 .979

2000 1.00 .998 1.00 1.00 .997 .999

Rescaled x

500 .840 .910 .938 .750 .857 .876

750 .933 .962 .981 .880 .933 .964

1000 .940 .990 .984 .890 .973 .979

2000 .997 .998 1.00 .990 .997 .999
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Figure Captions

Figure 1. Item characteristic curves for three hypothetical items under the GGUM.

Figure 2. Q-Q plots for an uncorrected xE2* (top panel) and a corrected xE2* (bottom

panel) distribution for a typical item as a function of a theoretical chi-squared

distribution.
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