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Abstract
While statistical procedures are well-known for comparing hierarchically related (nested)

covariance structure models, statistical tests for comparing non-hierarchically related (nonnested)

models have proven more elusive. While isolated attempts have been made, none exists within

the commonly-used maximum likelihood estimation framework, thereby compromising these

methods' accessibility and general applicability. The current work builds upon a distance

measure originally proposed by Rao (1945; 1949), and its application to distances between

covariance structure models (Kumar & Sharma, 1999), thereby proposing a method for

conducting a statistical test of such distances in order to assess formally the distinctness between

models nested or nonnested. An illustration is presented, and simulation evidence is provided

to validate the performance of the proposed method.
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A Statistical Test For Comparing Nonnested Covariance Structure Models

The comparison of competing models is a keen interest for researchers interested in

structural equation models and related techniques, be they path analysis, confirmatory factor

analysis (CFA), or other members of the structural equation modeling (SEM) family. A number

of indices have been developed for evaluating models individually and are often employed in

comparing alternative models. Model comparisons involving statistical tests have generally been

limited to likelihood ratio tests (x2 difference tests) for models in a hierarchically related

system. We define hierarchically related systems as consisting of at least one nested and one

general model such that the nested model is a special case of the general model. If MA is defined

by a vector of parameters 0A = e,A ) with vA degrees of freedom and MB is defined by a

vector of parameters 0B = (191 . . ) with vB degrees of freedom then MB is nested within MA

when Nis a subset of OA i.e., mB < mA

While the aim of most goodness-of-fit statistical tests is to evaluate the null hypothesis

that one particular model fits the data, often a more pragmatic concern is whether or not two

models approximate the underlying population equally well (Golden, 2000). Along those lines,

Kumar and Sharma (1999) argued that in acknowledging: (1) all models are approximations, (2)

multiple models might fit the data identically, and (3) it is sometimes necessary to respecify

existing models, researchers are led to questions of discrepancy among competing models.

Investigating the relation(s) among competing models directly might offer valuable evidence for

assessing model discrepancy, ultimately as an aide in model selection. The current work is not

as concerned with the discrepancies between individual models and the data as with the

discrepancy between the models themselves. Further, the approach we take is to assess the

discrepancy between models directly, rather than indirectly via a comparison of their respective
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discrepancies to a fixed point, i.e., the sample data. Comparing models that fit the data equally

well via the indirect strategy will not necessarily reveal any discrepancy between the models; a

strategy of direct comparison will. This important distinction is visually represented in Figure 1.

In the center of the diagram is the data to which Models M1, M2, and M3 are fit. The dashed lines

between the data and the models represent data-model (mis)fit. The collinearity between the

data, M1, and M3 reflects that M3 is nested within MI. In hierarchical systems, the distinction

between comparing models directly or indirectly via reference to the individual models' fit to the

data is moot. The discrepancy between MI and M3 is completely captured by the difference

between the data-model fit of each model; here, x2 difference tests (of individual data-model

fit) serve to assess the discrepancy between models. This is not necessarily the case in

nonhierarchical systems. MI and M2 fit the data equally well; the discrepancy between them (the

solid line) cannot be assessed using only the models' respective data-model fit. We therefore

aim at a procedure that statistically tests the discrepancy between competing models directly.

Establishing statistical that tests of discrepancy for non-hierarchically related models has proven

most challenging, though procedures aimed at this problem have been proposed. Still, no

dominant paradigm exists for the comparison of nonnested models within the maximum

likelihood estimation (MLE) framework.

In the next section of this paper, strategies for model comparison in various research

settings are reviewed. Next, a distance measure for evaluating the differences between models

originally proposed by Rao (1945; 1949) and first applied by Kumar and Sharma (1999) to

distances between covariance structure models will be described. An empirical strategy for

conducting a statistical test of such distances will be explored, the purpose being to derive a

general test for models within the SEM framework that provides a statistical assessment of the
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The difference between the x2 values for hierarchically related models M3 and M1,

2,32 X12 can be treated as a x2 with degrees of freedom equal to the difference between

the number of free parameters in each model, D v = v3 v, . Under a true null hypothesis stating

correct and equivalent data-model fit, Ax2 follows a central x2 distribution with t v ; if the null

hypothesis is false, 42 follows the appropriate noncentral distribution. Such 2/2 techniques

are also employed in evaluating model fit individually with respect to the observed data (i.e., not

in a comparative setting as is the main concern of this paper). That is, any individual model can

be thought of as a constrained version of a saturated model, i.e., a model that fits perfectly and

has no degrees of freedom; thus the statistical test of the model 2, 2 can be thought of as a test

between a nested model and a general (saturated) model.

When models are not hierarchically related, the likelihood ratio test is no longer valid,

and thus one typically resorts to a comparison of existing fit indices. As noted by several authors

(e.g., Bagozzi & Yi, 1990; Byrne & Goffin, 1993; Widaman, 1985), differences in fit indices

(absolute, parsimonious, and/or incremental) can provide a useful practical heuristic for

assessing differences in data-model fit. However, these do not provide a formal statistical test.

The Akaike Information Criterion, AIC (Akaike, 1987), is also commonly recommended for

facilitating a choice among models, nested or nonnested. In short, the index allows for a

determination of the relative replicability of the models under comparison, without providing a

direct assessment of their overall adequacy of data-model fit. The AIC is a parsimonious fit

index, in which absolute data-model fit is penalized for model complexity (i.e., having more

parameters). Though common, such a strategy is not without criticism. First, as noted by

Golden (2000) and Mulaik (2001), with increasing sample size such complexity penalties have

less influence on the index (for a detailed discussion of this issue and subsequent criticisms of
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the AIC, see Mulaik, 2001). There exist alternate information criteria, such as the Schwarz

Information Criterion (SIC; Schwarz, 1978) and the Consistent AIC (CAIC; Bozdogan, 1987),

which incorporate sample size into the penalty term. However such adjustments do not

overcome the second and, for the purposes of this work, the most important shortcoming of this

approach, namely that comparison of fit indices or information criteria does not constitute a

formal statistical test of the difference in data-model fit of competing models, nested or

nonnested.

To such end, attempts have been made on a number of fronts for statistically comparing

nonnested models. Work has progressed in combining the psychometric literature on,estimating

latent variables with the econometric literature on testing nonnested models estimated with

instrumental variables. Oczkowski and Farrell (1998) implemented a two-stage least squares

(2SLS) estimator derived from Bollen (1996) and conduct a Cox-type J-test and an

encompassing F-test derived from Smith (1992) to compare models employing different

measures of market orientation. Unfortunately, as Oczkowski and Farrell (1998) noted,

simulations suggest the J-test tends to over-reject the true null hypothesis while the F-test tends

to possess less power when the null is false.

Other approaches in the comparison of nonnested models have come from employing

Bayesian analyses. Most Bayesian methods of comparing nonnested models provide posterior

probabilities that are roughly interpretable as probabilities of model correctness, but only if the

correct model is part of the specified set. A Bayesian Cross Validated Likelihood method

(BCVL) originally proposed by Rust and Schmittlein (1985) has been shown to overcome this

qualification, though if the correct model is not among those being compared, posteriors can only

be treated as conditional probabilities (Fornell & Rust, 1989). The BCVL method consists of
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specifying a prior probability of correctness for each competing model, estimating each model

from half of the observed data and calculating posterior probabilities for each model by

combining (via Bayes theorem) the prior probability for the model and the likelihood of

observing the second half of the data. There have been several extensions of the BCVL since it

was first proposed, notably generalizations to allow the comparison of nonnested models

(Fornell & Rust, 1989) and the comparison of nonnested SEM models that may have unique

observable indicators (Rust et al., 1995)

As potentially useful as the BCVL method and its extensions may be for model selection,

there is no statistical test for it to compare models. To conduct a pseudo-hypothesis test, Rust

and Schmittlein (1985) advocate setting priors for each model to mimic a hypothesis test. In

comparing hierarchically related models (akin to a classical test at the .05 significance level), the

nested model would have a prior of .95 and the rejection of the null hypothesis of equivalent

data-model fit would be justified when the posterior probability for the general model exceeds .5

(Rust & Schmittlein, 1985; for a clear illustration of the relationship between the prior and model

selection, see Fornell & Rust, 1989). However appropriate this approach may be for determining

which model fits better, which was the concern of Rust and Schmittlein (1985) and Fornell and

Rust (1989), it reiterates the difference between the focus of this work and others. It is possible

for the pseudo-hypothesis test to indicate that two models do not differ in data-model fit, even

when the models are different. This may occur because, like other methods that involve the

likelihood, the BCVL indirectly compares the models by virtue of assessing the discrepancy of

each to a fixed point, the sample data. When the likelihood of the data under each model is the

same (e.g., M1 and M2 in Figure 1), comparing the model x2 values or computing the BCVL will
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not be able to distinguish between models. The method proposed in this paper is aimed at being

able to reveal model difference (when present) even when the models fit the data equally well.

Along the lines of a more classical approach, Golden (2000) extends the work of Vuong

(1989), describing a large sample procedure designed to test if the estimated data-model fit for

one model is significantly different from that of another model. Golden (2000) demonstrates this

test on logistic regression models rather than covariance structure models, and while the general

nature of the test suggests its applicability to other analyses warrants investigation, the procedure

(1) is tied to residuals of observations, which are not the unit of analysis in covariance structure

analyses, and (2) involves the assessing the discrepancy between models indirectly via their

discrepancy to the data.

The development of statistical tests of nonnested models has been drawing attention from

varying perspectives, as there is no standard paradigm for conducting such tests of nonnested

models in SEM and related techniques. It is to that end that this enterprise is directed, namely,

the derivation of a test of covariance structure models that is applicable under very general

conditions. This alternative and potentially more accessible line of reasoning draws upon a

distance measure originally proposed by Rao (1945; 1949). Following Kumar and Sharma's

(1999) application of Rao's Distance to describe the distance between two covariance structure

models, our work proposes a procedure for conducting hypothesis tests of covariance structure

models that is applicable under general conditions.

Rao's Distance Measure

For two p-variate normal distributions, each hasp means and p(p+1)/2 variances and

covariances. The well-known Mahalanobis distance,

9
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(3)

(Mahalanobis, 1936), assesses the disparity between the two distributions' pxl mean vectors

(centroids t1 and tt2) alone, thereby assuming homogeneity of covariance matrices. Rao (1945;

1949) extended this work to create a distance measure able to assess distributional disparity

across all p(p+3)/2 first and second moments. If one wishes to assume identical mean vectors

(RI = ti2), a simplified version of Rao's Distance (RD) may be used to assess the disparity

between two p-variate distributions' covariance matrices. As shown by Atkinson and Mitchell

(1981),

RD(Ei, E2) = f5E(111111)2}Y
1.1

(4)

where El and E2 are the covariance matrices, and A, are the i=1,...,p eigenvalues that satisfy the

equation

1E2 AlE11' ° (5)

As noted by Kumar and Sharma (1999), if E, and E2 are positive definite and symmetric, all the

p eigenvalues will be strictly positive.

RD has several desirable characteristics. As discussed by Kumar and Sharma (1999), it

satisfies standard properties of distance such as symmetry with respect to its arguments (i.e.,

RD (Ei, E 2) = RD (E2, El ) ) and invariance to changes in variables' scale when applied to both

populations. In addition, as the reader may easily verify, RD is always nonnegative and the

distance from any population to itself is zero.

Kumar and Sharma (1999) suggest the descriptive application of RD to the model-implied

covariance matrices arising from competing models imposed upon the same sample covariance

10
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matrix. The disparity between two models can be assessed using RD(i 1, E 2 ) where E, and E 2

are model-implied covariance matrices. The focus of this paper is to extend the use of RD as a

comparative index by incorporating a statistical test of significance.

Rao (1945) provided a framework for conducting tests of statistical significance for the

metric. In the case where one population is specified and the other is represented only by a

sample, an estimate of the distance between the populations is defined as the distance between

the set of maximum likelihood parameter estimates based on the sample and the set of

parameters that define the specified population. Rao (1945) also provided a large sample

approximation of the variance of the estimated distance. If 00 is a vector of parameters defining

the null population and o is a vector of the maximum likelihood estimates obtained from a

sample, then the statistic

RD(0,00)

[v(RD(6,0 0)r2
(6)

is asymptotically distributed as a standard normal variate (Rao, 1945). The extension to the case

of two independent samples case is conceptually straightforward. RD is calculated between the

two sets of maximum likelihood estimates and the standard error term is adjusted to reflect the

variability associated with estimating the distance from two independent samples (Rao, 1945).

In terms of covariance structure modeling, the derivation of a sampling distribution for the

distance between independent sample covariance matrices from the same population would rest

(in part) on the distribution of sample covariance matrices. It is well-known that the variances

and covariances obtained from randomly selecting data from a p-variate normally distributed

population follow a Wishart distribution (Wishart, 1928). In the case of independent covariance

matrices, it is possible that an estimate of the sampling distribution could be derived. Unlike
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such a scenario, however, model-implied covariance matrices fit to a common sample covariance

matrix are not independent. The analytical derivation of a standard error for RD requires (in

part) the cross-group covariances of model-implied variances and covariances. Such derivations

are generally unwieldy as well as model-dependent, thus making a derivation of the theoretical

sampling distribution and the hypothesis testing it facilitates practically intractable. The current

paper therefore offers an empirical approach to the estimation of the sampling distribution in

question, thereby facilitating hypothesis testing of the disparity between models, nested or

nonnested, applied to the same data.

An Empirical Approach

Consider Model 1 with mi parameters contained in set 01 = )and Model 2 with

m2 parameters contained in set 02 = (821 , ) . Model 1 and Model 2 may or may not be

correct in truth; the test proposed concerns the distinction between them regardless of their

correctness. Next, consider a Model C with me parameters contained in set

Oc = , Ocm, ) ( This model, referred to as the "Child" model,, )(Th 021, , 02m2 )

contains the complete set of parameters common to both models.

For any population covariance matrix fitting Model C, Model 1 and Model 2 also fit

perfectly. In terms of RD, RD (Ec , EI) = RD (Ec , E 2 ) = RD (El, 2 = 0, where E refers to

the covariance matrix for the ith model. Turning to samples, for any sample covariance matrix S

drawn from a population that fits Model C, Model 1 and Model 2 will fit better, but only due to

chance. RD (Ec , EI) and RD (Ec, E 2 ) fluctuate above 0 only randomly, and thus

RD (E , E 2 ) also fluctuates randomly above 0. It is the distribution of this latter term, i.e., the

12
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distribution of RD between model-implied covariance matrices of nonnested models under the

null condition of equivalent population fit, which serves as the focus of the current work. In

light of the aforementioned difficulties in analytically deriving the sampling distribution of

RD (± , i2) under null conditions, a resampling strategy is employed to approximate this

distribution and facilitate significance tests.

For nxp sample data matrix Y with covariance matrix S, the distance between Model 1

and Model 2 is

RD(E1 Y, 2,

2

.5E(l1 i)
1

where A, are the i=1,...,p eigenvalues that satisfy the equation

/17 l'Y °

(7)

(8)

and ± iy and E 2y are the model-implied covariance matrices obtained from fitting Model 1 and

Model 2 to the data in Y, respectively.' We now seek to derive a null sampling distribution

against which RD (± , E2 y ) may be evaluated.

To that end, the model-implied covariance matrix icy is obtained by applying Model C

to S. The raw data in matrix Y may then be transformed (Bollen & Stine, 1993) to yield

Z = YS-112 , where the covariance matrix of data in Z is now For these data Model C

fits perfectly, as do Models 1 and 2. That is,

RD (E c,z Ei,z ) = RD c,z 2,Z = RD (Ei,z E ) = 0 . For a pseudosample Z. bootstrapped

from Z, the RD value representing the distance between Model 1 and Model 2 will only differ

As there are multiple models fit to data both prior to and after a transformation, a richer notation is required. In
eqs. (7) and (8) and hereafter, model-implied covariance matrices will be indexed by two subscripts, the first
denoting the model, the second denoting the data to which the model is fit.

13
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from (i.e., be greater than) 0 randomly. Upon repeated bootstrap resampling from Z, a sampling

distribution for these RD values can be derived empirically. This distribution is an estimate of

sampling variability under the null condition that RD (i 1, E 2) = 0 , and thus serves as the frame

of reference for evaluating the observed RD (E ,,Y E2,y) from the original raw data in Y.

Specifically, for a desired a-level, if the observed RD (i 2,y ) exceeds the (1 a)x100th

percentile value in the empirical sampling distribution, then the null hypothesis of model

equivalence is rejected and the inference is made that Model 1 and Model 2 are different.

Illustration

Let Model G be the full model depicted in Figure 2; let Model 1 be the constrained

version of Model G such that the cross loadings, 241 and 263 (the dashed paths) are constrained

to be 0. Let Model 2 be the constrained version of Model G such that 021 and 032 (the bold bi-

directional factor covariances) are 0. Model 1 and Model 2 are therefore nonnested models; the

discrepancy between them (with respect to a common set of data) is of interest, and it is such a

discrepancy that stands in need of formal statistical test.

A multivariate normal data set Y of size n = 200 cases was generated based upon Model

G where the loadings (A) for the measured variables and the covariance matrices for the factors

(0) and errors (0) are given in Appendix A. Data was generated in GAUSS (Aptech Systems,

1996) by using Vale and Maurelli's (1983) extension of the method originally proposed by

Fleishman (1978). Specifically, the program NNORMULT (Nevitt & Hancock, 1999) was

used. Both Model 1 and Model 2 were fit to this data using EQS (Bentler, 1998), yielding

14
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model-implied covariance matrices ity and ±2y . Computation of RD (Ely ) was

performed in GAUSS.2

The Child Model containing the complete set of parameters common to both models is

the constrained version of Model G where both sets of constraints have been imposed; /141 5 263 5

021 5
and 032 are all constrained to equal 0. Model C was fit to the data, yielding model-implied

covariance matrix icy . The raw data matrix Y was then transformed to yield Z = YS- 1/2i12y

where S is the covariance matrix of the raw data Y, resulting in transformed data matrix Z with

covariance matrix icy .

A total of 200 bootstrapped pseudosamples, Z: k = 1,...,200, each of size 200 were

obtained by resampling with replacement from Z. For each bootstrapped sample, Model 1 and

Model 2 were fit to the data and RD (±
1 z, ,

.2 z,
) was calculated. The resulting empirical

distribution of RD (1,
1

.
, 2 z,.

) reflects the (sampling) variability in RD (1.1, ±2) under thez, ,

null condition of no discrepancy between models. If the observed RD (i Y , E2 y ) (eq. (7))

exceeds the (1 cx)x100th percentile value in this empirical sampling distribution, then the

discrepancy between Model 1 and Model 2 is statistically significant.

In order to assess the performance of the bootstrap and the possible relationship between

statistical tests of RD and 42 in the case of nested models, Model C was fit to each

bootstrapped pseudosample. Let

= (n 1)(1n
1,Z,

+ tr[Z:±;:z; ] p)

2 A GAUSS (Aptech Systems, 1996) program for computing RD is given in Appendix B

15
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be a test statistic associated with fitting thefh model to p-variate bootstrapped data Z: . The

difference between such test statistics for hierarchically related models (e.g., ATk Tck TI,k

and ATk .== TC,k approximates 42.3 Fitting Model C to the bootstrapped data in addition-72,k)

to fitting Model 1 and Model 2 facilitates an investigation of the relationship between RD and

42 in the case of nested models (i.e., Model C is nested within both Model 1 and Model 2).

For each bootstrapped pseudosample, both RD and AT were calculated for the distance between

Model C and Model 1 and for the distance between Model C and Model 2. To evaluate the

extent of the agreement between the proposed test of RD and the AX2 test, the process of data

generation, fitting, transformation, bootstrapping, and fitting was repeated 100 times.

Results

Summary results from the calculation of the 95th percentile over the 100 replications of

the empirical null distribution of RD (i 1 , E2) are given in Table 1, though in the absence of an

analytical expectation, they are neither easily interpretable nor of interest. In practice, the

empirical 95th percentile from one set of bootstrapped samples would serve as our criterion for

A A

testing RD (E E2,y ) at the .05 level. What is of interest is the relationship between the

proposed test of RD and the Axe test in the cases of hierarchically related models (i.e., Model 1

3 We hesitate to formally treat any Ti (and, by extension, any AT) as Z2 statistics for several reasons (Bollen &

Stine, 1993). First, the distribution of T./ (and AT) to Z2 in an approximate result. Second, while the data-

generating population is continuous, the bootstrap distribution is necessarily discrete. Third, to treat Ti (or AT) as

a
Z2 requires an assumption of multivariate normality, which, even if met in the data-generating population, does

not necessarily hold in transformed data that is to be bootstrapped. Following Bollen and Stine (1993), we

acknowledge these limitations and proceed to treat Ti and AT as approximations to the model Z2 and AZ2 ,

respectively.

16
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to Model C and Model 2 to Model C); if (the proposed test of) RD is operating in the same way

as (the test of) 42, there ought to be a monotonic relationship between the empirical null

sampling distributions of RD and AT . Inspection of plots for both hierarchical systems

indicated a nonlinear monotonic relationship between RD and AT . To assess the degree of

agreement between RD and AT , Spearman's rank-order correlation coefficient (rs) was

computed between RD and AT for the 200 bootstrapped values within each replication, for each

of the two nested comparisons. Over 100 replications, the average values of rs for the

comparison between Models 1 and 2 to Model C were 0.998323 and 0.999477, respectively, and

the worst values of rs for the comparison between Models 1 and 2 to Model C were .993817 and

.998764, respectively (Table 1). These values indicates a high degree of monotonicity and

strongly support our contention that that the result of the proposed test of RD would be

consistent with the result of the 42 test. That is, these results imply that the behavior of RD in

the case of sampling from a true null condition almost perfectly mimics that of Axe in the case

of nested models.

Discussion

The concern of this investigation is the performance of the proposed procedure for testing

RD for competing covariance structure models. In the case of nested models, the test of 42 is

the dominant paradigm within the framework of MLE of SEM models. It is argued here that the

level of agreement between the proposed test of RD and the 42 test is excellent. The

observed Spearman rank-order correlations indicate a high degree of monotonicity between the

distributions of RD and the 42; we have strong evidence to believe that, for any significance

level, the results of the proposed test of RD (i.e., reject or retain the null hypothesis of no model

17
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discrepancy) would be just that of the 42 test. In the case of nested models, the proposed test

of RD meets the standard of consistency with the 42 test. There is no such standard for

evaluating the performance of the empirical distribution of RD in the case of nonnested models.

Its justification rests on appropriateness of employing RD in the analysis of covariance structure

models (Kumar & Sharma, 1999) and the logic of the procedure presented here. If the logic of

the process is sound, the proposed procedure ought to mimic well-known procedures in the case

of nested models. Simulation evidence presented above suggests that this is indeed so. Further,

the method proposed does not rest on distributional assumptions of the metric; the distribution is

empirically generated, allowing the extension to the case of comparing nonnested models.

Conclusion

Though work has progressed on several fronts in the statistical analysis of nonnested

covariance structure models, there is currently no standard procedure for the testing of

differences between such models. A distance measure conceived by Rao (1945; 1949), extended

by Atkinson and Mitchell (1981) and previously applied to covariance analysis (Kumar &

Sharma, 1999) was described. This work builds upon the application of this measure to

covariance structure modeling; we propose a method for conducting a statistical test of the

measure in order to formally assess the distinctness between models nested or nonnested. An

empirical approach for the assessment of the discrepancy between the fit of competing Models 1

and 2 was described and is summarized as:

(1) For sample data matrix Y with covariance matrix S, fit Model 1 and Model 2 to yield

model-implied covariance matrices E, y and E 2y

(2) Compute RD (i

(3) Define the Child Model as 0c (BCI 9CMc ) = I ) (02i 5 92M2 )

18
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(4) Fit the Child Model to Y to yield model-implied covariance matrix icor .

(5) Transform the data (Bollen & Stine, 1993) to yield Z = YS-V2ilgy

(6) For k =1,...,200
a. Bootstrap the kth pseudosample from Z, Z:

b. Fit Model 1 and Model 2 to Z: , yielding ii z; and 2Z;

c. Compute RD

(7)

E2,fk

If the observed RD (± 1y , E 2y) from (2) exceeds the (1 a) x 100th percentile value

from those compiled from (6), reject the null hypothesis of model equivalence.

An illustration designed to mimic applied analyses was embedded in a simulation designed to

assess the approach. The results of these investigations are quite promising; the proposed

procedure is in accordance with existing procedures for the comparison of nested models. It is

argued that employing the procedure in the comparison of nonnested models is justified on

logical grounds.

Further research is currently being conducted to investigate the proposed procedure. In

the context of the relationship between RD and 42 in the case of nested models, areas of

interest are (I) the association between p-values obtained from the test of RD and the test of

6,2,2 and (2) the analytical relationship between RD and 42. Other avenues of pursuit include

investigating the impact of both sample size and the number of bootstraps, and extensions to

multiple model comparisons. The Child Model has been defined as the model with the set of

parameters common to the competing models; another line of research might include the

viability of other definitions, e.g., a subset of the parameters common to the competing models.

Further, the discussion of RD presented here concerns models in which mean vectors are

assumed equal. An equation for RD has been derived in the case of dissimilar mean vectors

(Atkinson & Mitchell, 1981); the method proposed here might then be applied to the comparison

of mean structured models with augmented moment matrices (Sorbom, 1974).
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Figure 1: Dashed lines from models MI, M2, and M3 to the data indicate data-model (mis)fit. The
solid line indicates the discrepancy between MI to M3 , which cannot be assessed by indirect
comparisons of the models' relations to the data.
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Figure 2: Model G is the model with all parameters present; Model 1 constrains 241 and 263 (the

dashed paths) to be 0; Model 2 constrains 021 and 032 (the bold bi-directional factor covariances)

to be 0; Model C imposes the constraints of both Model 1 and Model 2.
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Measure Mean
Standard
Deviation Minimum Maximum

rsi,c 0.998323 0.000959 0.993817 0.999433

rs 2,C 0.999477 0.000176 0.998764 0.999719

95th %ile RD12 0.203446 0.012445 0.175220 0.241889

Table 1: Model Comparison of nested and nonnested models
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Appendix A

Instantiation of Model G for data generation, defined in terms of the matrices of loadings ( A ),
factor variances and covariances ((D ), and error variances and covariances ( 0 ).

A=

1.2 0 0

1.1 0 0

0.7 0 0

0.8 0.6 0

0 1.1 0

0 0.6 1.1

0 0 0.9

0 0 0.8

0 0 0.9_

1.0 0.4 0.7

(13 = 0.4 1.0 0.7

0.7 0.4 1.0_ _

25

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0= 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

_0 0 0 0 0 0 0 0 1_
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Appendix B

GAUSS program to compute Rao's Distance between covariance matrices 'a' and `b'.

new;
a={1.0 0.1,

0.1 1.0 };
b={1.0 0.2,

0.2 1.0 };
c=a*inv(b);
evunsort=eig(c);
ev=rev(sortc(evunsort, 1));
lo=ln(ev);
mult=lo'*lo;
f=.5*mult;
rd=SQRT(f);
PRINT "Distance =" rd;
end;

It should be noted that there are other ways to compute RD . For example, Kumar and Sharma
(1999) include a program based on computing eigenvectors. The program detailed here is used
because it (1) is more in line with eqs. (4) and (5), and (2) is not based on eigenvectors, which
are not unique, the use of which may result in different software packages producing different
values for RD .
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