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Abstract

This study compares the accuracy of predicting two-group membership obtained from K-

means clustering with those derived from linear probability modeling, linear discriminant

function, and logistic regression under various data properties. Multivariate normally distributed

populations were simulated based on combinations of population proportions, equality of

covariance matrices, and group separation. The four statistical methods were applied to training

samples were drawn based on combinations of sample representativeness and sample size. Error

rates were calculated based on the cross-validation results on test samples. The findings revealed

that, depending on the data pattern, K-means clustering was a viable alternative when the

accuracy of predicting the membership of the smaller population was the main objective.
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Comparisons of K-means Clustering with Linear Probability Model, Linear Discriminant
Function, and Logistic Regression for Predicting Two-group Membership

For predictive studies in which the outcome variable is continuous, the ordinary least

square (OLS) regression modeling is the most popular technique used in educational research

(Elmore & Woehlke, 1996). However, when modeling dichotomous (or binary) outcome

variables, alternative statistical techniques are available. These include linear discriminant

function and logistic regression modeling (Cleary & Angel, 1984; Fraser, Jensen, Kiefer, &

Popuang, 1994). Linear discriminant function (LDF) and logistic regression (LR) are considered

viable alternatives to OLS regression for modeling dichotomous outcome variables (Long, 1997;

Ryan, 1997; Tabachnick & Fidell, 2001; Yarnold, Hart, & Soltysik, 1994).

When the OLS regression model is applied to outcome variables, it is referred to as a

linear probability model (LPM). The LPM is considered less suitable, theoretically, than either

LR or LDF for prediction or classification (Long, 1997; Rice, 1994). However, the main

advantage of LPM is that it is easily interpreted. And OLS regression is often taught in statistic

courses required by Ph.D. programs (Aiken, West, Sechrest & Reno, 1990). Studies utilizing this

technique to predict dichotomous outcomes are still found in the field of education (e.g., Grubb

& Tuma, 1991; Kallio, 1995).

K-means clustering (KM) has seldom been employed in predictive studies. Indirect

evidence supports the proposition that KM may yield better prediction or classification results

than either LDF or LR. Wilson and Hardgrave (1995) compared the ability of a neural network

technique (i.e., the back propagation training algorithm) with traditional methods, such as LDF

or LR, for predicting the academic success of MBA students. Their result revealed that the neural

network models performed at least as well as discriminant analysis or logistic regression.

Balakrishnam, Cooper, Jacob and Lewis (1994) compared neural network techniques (i.e., the
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Kohonen algorithm) with unsupervised learning with KM for classification. They concluded that

KM outperformed the Kohonen algorithm in cluster recovery. Using a data set from a cancer

research project, So (2002) examined the classification accuracy of KM, LDF, and LR and found

the performance of KM to be superior to that of either LDF or LR. There has not been research

documented in the literature that compares the predictive accuracy of KM with that of LDF, LR,

or LPM in a two-group classification under various data properties. Thus, the current study seeks

to fill this void by manipulating five data properties in simulated data sets and systematically

examines the accuracy of predicting two-group membership by KM, LDF, LR, and LPM. The

remainder of this paper is divided into eight sections: (1) Research Design, (2) Method, (3)

Model Fitting, (4) Data Analyses, (5) Results of Group 1 Error Rates, (6) Results of Group 2

Error Rates, (7) Results of Total Error Rates, and (8) Implications for Educational Researchers.

1. Research Design

Five factors regarding data properties were manipulated including (1) population

proportions (3 levels), (2) equality of covariance matrices (3 levels), (3) group separations (3

levels), (4) sample representativeness (3 levels), and (5) sample size (2 levels). The first three

factors were related to features of the underlying population while the latter two were related to

features of samples. Multivariate normal distributions were assumed for both populations.

Data Patterns

Two data patterns were utilized in order to assess the generalizability of the results

(Tables 1 and 2). Data Pattern I had three variables while Data Pattern II had eight. Furthermore,

the two data patterns differed in means as well as in variance-covariance structures. Both were

previously used in Fan and Wang (1999) for comparing LDF and LR in the two-group

classification problem.
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Five Factors

Three levels under Factor 1 (population proportions) were 0.5:0.5, 0.25:0.75, and 0.1:0.9.

Factor 2 (the equality of covariance matrices) had three levels: (a) the equal condition in which

the two populations had equal covariance matrices, (b) the first unequal condition in which

Population #1 had smaller covariances (one-fourth of the size of Population #2's covariances),

and (c) the second unequal condition in which Population #1 had larger covariances (four times

of the size of Population#2's covariances). The larger covariance matrix was set to be four times

the smaller covariance matrix, following the studies of Fan and Wang (1999) and Lei and Koehly

(2000). The ratio of 4 to 1 (or 1 to 4) reflected a moderate degree of variance heterogeneity,

according to Hess, Olejnik, and Huberty (2001). The group separation factor (Factor 3) was

quantified in terms of the Mahalanobis distance (d2) between the two population means. It had

three levels: 6.709, 2.236, and 0.745 for Data Pattern I, or 6.785, 2.262, and 0.754 for Data

Pattern II. The first two levels were considered a large separation (Stevens, 1996; Meshbane &

Morris, 1996) while the third level was considered a moderate separation, according to Huberty,

Wisenbaker, and Smith (1987).

Factor 4 (sample representativeness) had three levels: (i) the modeled group was 20%

over-sampled, (ii) sample proportions equaled to the population proportions, and (iii) the

modeled group was 20% under-sampled. These levels were chosen so as to investigate the effect

of sample representativeness and prior probabilities on prediction. For example, if the two

population proportions were 0.1 and 0.9, the two sample proportions would be 0.12 (=

0.1+0.1x0.2) and 0.88 (=1-0.12), respectively, under the "20% over-sampled" condition.

Two sample sizes (200 or 400) were two levels of the fifth factor manipulated in this

study. Samples of either size were randomly drawn from the two underlying populations. For
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example, if the population proportions were 0.1 and 0.9, a sample of 200 would consist of 24

randomly selected observations from Population #1 and 176 from Population #2 under the "20%

over-sampled" condition (i.e., sample proportions of 0.12 to 0.88). These two sample sizes were

considered moderately large by Fan and Wang (1999).

A fully crossed factorial design with 3 x3 x3 x3 x2 =162 combinations was adopted for the

present study. For each combination, 200 samples were simulated from multivariate normal

distributions according to both data patterns. Thus, a total of 64,800 [=(3 x3 x3 x3 x2 x200)x2]

samples were simulated with overlapping observations between the two groups. Each sample

was analyzed by four statistical methods and error rates in prediction were noted.

2. Method

Multivariate Normal Populations

For each data pattern, multivariate normal distributions were simulated by the matrix

decomposition method with an appropriate linear transformation (Mooney, 1997). The data

simulation procedure was as follows:

1. Generate a (n x k) data matrix of values from normal distribution with mean and

standard deviation of 0 and 1, respectively, where n is the number of observations and

k is the number of variables.

2. Compute the Choleski decomposition, which is equivalent to the square root of the

(k x k) correlation matrix specified by Data Pattern I or II (Tables 1 and 2).

3. Multiply the data matrix from (1) above with the Choleski decomposition from (2) to

ensure that the correlation structure from Data Pattern I or II is built into the data

matrix from (1).
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4. Multiply the data matrix from (3) with the (n x k) standard deviation matrix of Data

Pattern I or II cellwise.

5. Add the (n x k) mean matrix of Data Pattern I or II to the data matrix derived in (4).

The SAS® macro program for completing steps (1) to (5) may be obtained from the first author.

The pseudo random number generator, the IML procedure, and the RANNOR function of SAS®

Version 8.2, installed on an IBM RS/6000 SP machine with AIX 4.3 operating system, were

employed in the execution of the SAS® macro program to simulate data matrices for Populations

#1 and #2.

Population Size

The combined population size is set at 50,000 observations in order to control for the

exact population proportions for the two groups. For example, under the 0.1:0.9 population

proportions condition, 5,000 observations constituted Population #1 and 45,000 observations

constituted Population #2. The ratio of population to sample was higher than 20 times, the

criterion used in Fan and Wang (1999), or 15,000 observations used in Lei and Koehly (2000), to

ensure that the populations simulated were sufficiently stable in terms of correlations among

variables included in Data Pattern I or II.

3. Model Fitting

Once the two populations were simulated, a training sample was drawn first. The training

sample was fitted with K-means clustering (KM), logistic regression model (LR), linear

discriminant function (LDF), and linear probability model (LPM). For LR, LDF, and LPM, the

probability of being from Population #1 was modeled.

Each training sample was first fitted with LR by the SAS® LOGISTIC procedure to

determine the overlapping configuration of the training sample. When a complete separation or
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quasi-complete separation configuration was detected, a new training sample was drawn from

the 50,000 observations simulated. The new training sample was once again examined for data

separation configuration. This process continued until a training sample with overlapping

configuration was obtained. At this point, the training sample was considered suitable for fitting

all four statistical methods. A test sample, with size equal to that of the training sample, was

subsequently drawn randomly from the remaining observations in the populations in order to

compute the error rate.

Four SAS® procedures, FASTCLUS, REG, DISCRIM, and LOGISTIC were employed

to carry out KM, LPM, LDF, and LR on the training sample. Statistical models derived from the

training sample were subsequently cross-validated on the test sample. Error rates incurred in

cross validations in predicting membership in Group 1, Group 2, and both groups (i.e., the

overall) were tracked and used in further analyses.

4. Data Analysis

The performance of KM, LPM, LDF, and LR in predicting two-group membership under

various data conditions was examined in a split-plot factorial (i.e., SPF33332.4) ANOVA design. In

order to contrast these four statistical methods on common grounds, error rates derived from the

KM model were compared to those from the LPM model with a 0.5 probability cut-off, from the

LDF model with prior probabilities equal to sample proportions and a 0.5 probability cut-off, and

from the LR model with a 0.5 probability cut-off. These four methods were considered levels of

a "within-subjects" factor in the SPF design. The five factors, namely, (1) population proportion,

(2) equality of covariance matrices, (3) group separation, (4) sample representativeness, and (5)

sample size, were treated as "between-subjects" factors. The outcome variables were three error

rates incurred in cross-validations. The Group 1 error rate was the proportion of observations in
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the test sample originated from Population #1 that were misclassified as belonging to Population

#2. Similarly, the Group 2 error rate was the proportion of observations from Population #2 that

were misclassified as belonging to Population #1. The Total error rate was the overall proportion

of observations in the test sample that were misclassified.

A full SPF33332.4 ANOVA should have contained 63 main effects and interactions (i.e., 31

between-subjects effects and 32 within-subjects effects). In order to keep the results manageable

and interpretable, a reduced ANOVA design was employed. This reduced ANOVA contained

only 15 between-subjects effects (i.e., 5 main effects and 10 two-way interactions) and 16

within-subjects effects (i.e., 1 main effect, 5 two-way, and 10 three-way interactions). As a result,

for each data pattern, three separate reduced ANOVAs were executed, one for each error rate. A

total of six (i.e., three error rates by two data patterns) split-plot factorial ANOVAs were carried

out.

The ANOVAs were performed by the SAS® GLM procedure. All the effects examined

were considered as fixed effects. Because a large number of F tests (i.e., 31) were performed for

each ANOVA, an alpha level of .0016 was employed in assessing the statistical significance of

each effect. The overall alpha for each ANOVA was kept at a .05 level.

In addition to the ANOVA results, the eta squared and the partial omega squared

(Maxwell, Camp, & Arvey, 1981) for each effect were computed. The eta squared (772)

represents the proportion of sample total variance of the dependent measure explained by a

particular effect. This index is defined as

=
``effect
c.,c,
"" total

10
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where SSeff, is the effect sum of squares and SS,o,1 is the total sum of squares. The partial

omega squared (co2parnal ) is an index of strength of association between a factor (i.e., main or

interaction effect) and the dependent measure with the effects of other factors removed. This

index is suitable for a factorial design (Kirk, 1995). It was calculated according to the formula:

2 dfeffect(Feffect 1)
co

Parna dfeffect(Feffect 1) + N

where dfeffecj is the degrees of freedom for the effect, fieffect is the F ratio for the effect, and N

equals 200x3 x3 x3 x3 x2x4 (= 129,600) in the ANOVA design. Unlike the significance test of an

F ratio, w is not affected by sample size. According to Cohen (1988), a copa2 ,i,/ value

between .06 and .14 indicates a moderate association, while a value of .14 or greater is a large

association. In this study, effects that had at least a moderate association with the dependent

measure were operationally defined as practically significant. Main effects were

comprehensively examined regardless of their copa2 mai values. Because of the large degrees of

freedom associated with the two error terms in the SPF ANOVA, only interaction effects with a

CO2artial value greater than .06 were examined in greater details in later sections.

5. Results of Group 1 Error Rates

As defined previously, Group 1 (G1) error rate was the proportion of observations in test

sample originated from Population #1 that were misclassified as belonging to Population #2. The

means and standard deviations of this error rates based on 200 replications for each combination

of levels of the five factors for Data Pattern I are summarized in Table G1-1. Similarly, the

means and standard deviations for Data Pattern II are presented in Table G1-2. The ANOVA

results of G1 error rates for Data Pattern I are shown in Table G1-3. Out of the 31 main and
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interaction effects, 23 effects were statistically significant at the .0016 level. The ANOVA results

of G1 error rates for Data Pattern II are presented in Table G1-4. Twenty-nine effects were

statistically significant at the .0016 level for Data Pattern II.

Data Property Main Effects

Main effects of the five "between-subjects" factors on G1 error rates were statistically

significant at the .0016 level for both data patterns. For Data Pattern I, four out of five factors

had a co,,2r,,, value larger than .06 (see Table G1-3). These four factors were Factor 1

(population proportion), Factor 2 (equality of covariance matrices), Factor 3 (group separation),

and Factor 4 (sample representativeness). By the operational definition previously established for

02 these four factors were considered practically significant.partial 9

For Data Pattern II, only three of the five factors had a w%, value larger than .06 (see

Table G1-4). These three factors were Factor 1 (population proportion), Factor 3 (group

separation), and Factor 4 (sample representativeness).

Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 23.15% (712 = .2315) of the

sample variance of G1 error rates. This factor had a strong association (copa2 = .614) with G1

error rates. The mean error rates for the three levels of population proportions were .593, .426,

and .215. The Newman-Keuls procedure was performed to compare pairs of mean error rates.

The Newman-Keuls procedure was selected on the basis of its excellent power and its capability

of maintaining the nominal familywise type I error when the factor has only three levels. Results

of the pairwise comparisons indicated that the three mean error rates were statistically
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significantly different from each other. When the population proportions were 0.1:0.9, the mean

G1 error rate (.593) was the highest, while 0.5:0.5 split had the lowest mean error rate (.215).

For Data Pattern II, similar results were obtained. This factor explained 32.86%

(772 = .3286) of the sample variance of G1 error rates. The cop2amai (.634) signified a strong

association between this factor and the 01 error rate. Results from the Newman-Keuls procedure

indicated that the mean error rate (.671) for the 0.1:0.9 population proportions was statistically

significantly higher than that (.489) for the 0.25:0.75 condition. The mean error rate (.275) for

the 0.5:0.5 split was the lowest and it was statistically significantly lower than the mean error

rates for the other two conditions. Based on the results from both data patterns, it was concluded

that the 01 error rate increased as the proportions of Population #1 and Population #2 further

deviated from the 0.5:0.5 split.

Equality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices,

(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 1.04% (r12 = .0104) of the sample

variance of 01 error rates. This factor exhibited a moderate association ( copa .067) with the

01 error rate. Results from the Newman-Keuls procedure indicated that the mean error rates for

the three levels of this factor were statistically significantly different from each other. When

Population #1 had smaller covariances, the mean error rate (.369) was the lowest; it was .416 for

the equal covariance matrices condition and the highest (.449) when Population #1 had larger

covariances.

13
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For Data Pattern II, the equality of covariance matrices factor explained 0.51%

(772 = .0051) of the sample variance of G1 error rates. This factor had a weak association

(wpa2mai = .026) with the error rate. Results from the Newman-Keuls procedure indicated that the

mean error rates for the three levels were statistically significantly different from each other.

When Population #1 had smaller covariances, the mean error rate (.450) was the lowest; it

was .490 for the equal covariance matrices condition and the highest (.495) when Population #1

had larger covariances. Results from both data patterns showed that, in general, sample

observations from Population #1 were less likely to be misclassified when the covariances of

Population #1 were smaller than that of Population #2.

Group Separation

Factor 3 (group separation) explained 24.87% (772= .2487) of the sample variance of G1

error rates for Data Pattern I. A strong association (co2 ,,a, = .631) between this factor and G1

error rate was detected. Results from the Newman-Keuls procedure indicated that three mean

error rates of group separation statistically significantly differed from each other. When the

Mahalanobis distance (d2) between the two populations' means was 6.709, the mean error rate

was the lowest (.204). As d2 decreased, the mean error rate increased. Under the condition of d2

= 2.236, the mean error rate was .436; it was the highest (.594) when d2 was 0.745.

For Data Pattern II, this factor accounted for 28.28% (772= .2828) of the sample variance

of G1 error rates. The association between group separation and the error rate was strong (cop2 mai

= .599). Similar to results obtained from Data Pattern I, as d2 decreased, the mean error rate

increased for Data Pattern II. The mean error rate increased from .281 (when d2 = 6.785) to .509

(when d2 = 2.262) and further increased to .645 (when d2 = 0.754).

14
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Results from both data patterns led to the conclusion that the further the two populations

separated, the lower was G1 error rate. These findings were expected because the less

overlapping of the populations, the less likely that sample observations were misclassified.

Sample Representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised

of observations from Population #1) was 20% over-sampled, (b) sample proportions equal to

population proportions, and (c) Group 1 was 20% under-sampled. For Data Pattern I, 1.46%

(112 = .0146) of the sample variance of Group 1 error rates was explained by this factor. A

moderate association (copc,2ri,/ = .091) was found between this factor and G1 error rates. Results

from the Newman-Keuls procedure indicated that the three mean error rates sample

representativeness differed statistically significantly from each other. The mean G1 error rate for

the "20% over-sampled" condition was .365. It was slightly lower than the mean error rate (.409)

under the "equal" condition and noticeably lower than the error rate (.460) under the "20%

under-sampled" condition.

Similarly, for Data Pattern II, this factor explained 2.03% ( 772 = .0203) of the sample

variance of G1 error rates. A co2 rtial value of .0967 indicated a moderate association between thispa

factor and the error rate. Results from the Newman-Keuls procedure indicated that the mean

error rate for the "20% over-sampled" condition (.431) was statistically significantly lower than

that under the "equal" condition (.475). The mean error rate of "20% under-sampled" condition

(.529) was statistically significantly higher than those of the other two conditions. In general,

results from both data patterns indicated that G1 error rate was low if Population #1 was over-

sampled. When Population #1 was under-sampled, the error rate for G1 increased.

15
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Sample size

Factor 5 (sample size) had two levels: 200 and 400. For Data Pattern I, this factor was not

significant at a = .0016. Less than 0.01% (712 < .0001) of the sample variance of G1 error rates

was explained by this factor. The two levels of sample size were weakly associated with the error

rate (co 2
partial < .0001). The mean G1 error rates for sample sizes of 200 and 400 were .412

and .411, respectively.

For Data Pattern II, the sample size factor was significant at a = .0016. It accounted for

less than 0.01% (r12 < .0001) of the sample variance of the 01 error rate. The co2 valuepartial

of .0001 indicated a virtually non-existent association. The mean error rates for sample sizes of

200 and 400 were .477 and .480, respectively.

By examining Tables G1-1 and G1-2, one notices that the standard deviations of G1 error

rates for sample size of 400 are smaller than those for sample size of 200. In other words, with a

larger sample size, one obtains a more efficient estimate of 01 error rates.

Two-way Interaction among Data Property Factors

For Data Pattern I, only 1 two-way interaction (i.e., population proportion by group

separation) was judged to be practically significant, using wpc,2mai > .06 as the criterion. For Data

Pattern II, 2 two-way interactions among the five data property factors were considered

practically significant. These two interactions were (a) population proportion by group separation

interaction, and (b) equality of covariance matrices by group separation interaction. These are the

only two-way interaction effects discussed here.

Population Proportion by Group Separation Interaction

This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern I, it accounted for 2.44% ( r/2 = .0244) of the sample variance of 01 error rates

16
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and showed a large association (copo2 = .144) with the error rate. For Data Pattern II, this

interaction explained 2.86% (712 = .0286) of the sample variance of G1 error rates and also

exhibited a large association ( copa2ma, = .131). This interaction is graphically presented in Figure

G1-1.

As shown in Figure G1-1, the mean GI error rates for Data Pattern II were slightly higher

than those for Data Pattern I. However, the interaction profiles for the two data patterns were

similar. Regardless of the degree of group separation, the mean GI error rate increased as the

proportions of Population #1 and Population #2 deviated from the 0.5:0.5 split. The population

proportion factor had a relatively small impact on the 01 error rate when the separation of the

two populations was large (i.e., d2 = 6.7). When the separation was smaller (i.e., d2 = 2.2 or 0.7),

the impact of population proportions on the error rate increased. The differences in mean 01

error rates among the three levels of group separation under the condition of 0.5:0.5 population

proportions were relatively small, compared with the corresponding differences under the 0.1:0.9

condition.

Equality of Covariance Matrices by Group Separation Interaction

This two-way interaction explained 0.40% (772 = .0040) of variance in 01 error rates for

Data Pattern I, and 1.43% (772= .0143) for Data Pattern II. The cop,2,,/ value (.027) for Data

Pattern I indicated a weak association between the interaction effect and the error rate. However,

for Data Pattern II, the interaction exhibited a moderate association (copa2 nd = .070). This

interaction is graphically presented in Figure G1-2.

As shown in Figure G1-2, the interaction profiles for the two data patterns were slightly

different. For Data Pattern I, the association between the interaction and the error rate was weak.

17
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The lines connecting the means of the three levels of equality of covariance matrices at each

level of group separations are almost parallel to each other. Unequal covariance matrices had

slightly stronger impact on G1 error rate when the group separation d2 = 6.7 than when d2 = 2.2

or 0.7. The differences among the mean error rates for the three levels of equality of covariance

matrices under the condition of d2 = 2.2 or 0.7 were minimal. The differences increased slightly

when d2 = 6.7.

For Data Pattern II, the impact of equality of covariance matrices on G1 error rate

depended on the degree of group separation. When the group separation was large (i.e., d2 = 6.7),

the mean error rate for the condition in which Population #1 had smaller covariances was

substantially lower than those for the other two conditions. However, when the group separation

became smaller (i.e., d2 = 0.7), the mean error rate for the condition in which Population #1 had

smaller covariances was slightly higher than those found under the other two conditions.

Results from both data patterns indicated that the effect of equality of covariance

matrices was the strongest when the two populations were well separated. When d2 = 6.7, sample

observations from Population #1 were less likely to be misclassified if the covariance matrices of

Population #1 was smaller than that of Population #2.

Effects Concerning Statistical Methods

Did the use of different statistical methods result in significantly differences in the

accuracy of predicting the membership of observations from Population #1? And did the five

"between-subjects" factors related to data property have any joint impact with different statistical

methods on G1 error rate? To answer these questions, the results of the "within-subjects" effects

(i.e., the four statistical methods) were examined.
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Main Effect of the Method Factor

The models from the four statistical methods (i.e., LPM, LDF, LR, and KM) were

treated as levels of the "method" factor. This factor was statistically significant at

a = .0016. It accounted for 19.08% (712= .1908) and 1.67% (772= .0167) of the sample variance

of 01 error rates for Data Patterns I and II, respectively. copa2n,, values of .866 and .205 for Data

Patterns I and II, respectively, indicated a strong association between statistical methods and G1

error rates.

The mean 01 error rate for LPM was .545 for Data Pattern I, and .541 for Data Pattern II.

The mean error rates for LDF were .464 and .462 for Data Patterns I and II, respectively. The

mean error rate for LR was .462 for Data Pattern I and .458 for Data Pattern II. The mean error

rates for KM were .175 and .453 for Data Patterns I and II, respectively. The Dunn-idalc

procedure was performed for pairwise comparisons among the four mean error rates. The

selection of the Dunn-idak procedure was based on its excellent power and capability of exactly

maintaining a small familywise type I error rate, such as .0016 (Kirk, 1995). Results from the

Dunn-idalc procedure indicated that the mean G1 error rates from the four methods were

statistically significantly different from each other for both data patterns. LPM yielded the

highest mean GI error rate. The mean error rates for LDF were only slightly higher than those

for LR even though the differences were statistically significant. The mean error rates for KM

were the lowest.

Results indicated that LDF and LR performed similarly and both methods outperformed

LPM. The performances of KM were not consistent for the two data patterns. KM either

outperformed or performed as well as the other three methods.
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Two-way Method by Data Property Interactions

For both data patterns, the method factor was found to be statistically significantly

interacting with all five data property factors at a = .0016. According to the criterion of

W2 rtial > 06
5
the method by sample size interaction was the only interaction effect not consideredpa

practically significant. The other four interaction effects, considered practically significant, are

discussed below.

Method by population proportion interaction. This two-way interaction accounted for

12.05% (772 = .1205) and 10.48% (772 = .1048) of the sample variance of G1 error rates for Data

Patterns I and II, respectively. The copa2 rua, values of .803 for Data Pattern I, and .618 for Data

Pattern II represented a strong association between this interaction and the error rate. The

interaction is presented graphically in Figure G1-3. The means and standard deviations are

summarized in Table G1-5.

As shown in Figure G1-3 and Table G1-5, KM's performance was independent of the

three conditions of population proportions. However, the mean error rates of KM for Data

Pattern I were lower than those for Data Pattern II. For Data Pattern I, KM outperformed the

other three methods. When the population proportions were 0.5:0.5, the mean G1 error rate for

KM was slightly lower than those for LPM, LDF, or LR. When the population proportions

approached the extreme condition (i.e., 0.1:0.9), the mean error rate for KM was substantially

lower than those for the other three methods. For Data Pattern II, KM outperformed the other

three methods only when the population proportions were 0.25:0.75 or 0.1:0.9. When the

population proportions were 0.5:0.5, KM performed poorly, compared with the other three

2 and 2methods. The discrepancies between 77 a coparttal values for the two data patterns were caused

mainly by the inconsistent performance of KM for the two data patterns.
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Results led to the following conclusions: when the population proportions were extreme

(i.e., 0.1:0.9), KM was the best method; LPM was not the method of choice when the population

proportions were extreme. When the population proportions were 0.25:0.75, KM remained to be

a viable alternative method. When the population proportions were 0.5:0.5, the performances of

LPM, LDF, and LR were identical; KM could perform as well as the other three methods.

Method by equality of covariance matrices interaction. This two-way interaction

accounted for 2.17% (772 = .0217) and 0.44% ( 772 = .0044) of the sample variance of G1 error

rates for Data Patterns I and II, respectively. A strong association was found between this

interaction and the error rate (. auralMal .424) for Data Pattern I. However, for Data Pattern II, the

CO
2
partral value (.063) signified a moderate association. The means and standard deviations are

summarized in Table G1-6. The interaction is presented graphically in Figure G1-4.

As shown in Figure G1-4, unequal covariance matrices conditions had relatively small

impact on the differential performances of LPM, LDF, and LR. Yet, the mean G1 error rates of

KM depended on the degree of equality of covariance matrices. The performances of LPM, LDF,

and LR were similar for each data pattern. However, KM performed quite differently for both

data patterns.

In Table G1-6, for Data Pattern I, KM outperformed the other three methods at all levels

of the equality of covariance matrices. The performance of KM was exceptionally good when the

covariances of Population #1 were one-fourth of those of Population #2. For Data Pattern II, KM

outperformed LPM regardless of the condition of covariance matrices. However, it performed

slightly better than LDF or LR when Population #1 had smaller covariances. The discrepancies

between /72 and co mai values for the two data patterns were caused mainly by the inconsistent

performance of KM for the two data patterns.
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Results led to the following conclusions: all four methods performed better when the

covariances of Population #1 were smaller than those of Population #2. KM was the best method

under this condition. LPM was not the method of choice regardless of the equality of covariance

matrices.

Method by group separation interaction. This two-way interaction accounted for 3.16%

r/2 = .0316) and 5.29% (772 = .0529) of the sample variance of GI error rates for Data Patterns I

and II, respectively. The copa2 iai index equaled .517 for Data Pattern I and .450 for Data Pattern II.

A strong association between this interaction and the error rate was detected. This two-way

interaction is graphically presented in Figure G1-5. The means and standard deviations of G1

error rate are summarized in Table G1 -7.

As shown in Figure G1-5, the performances of the four methods in predicting the

membership of Population #1 depended on the degree of separation between the two

populations' means. The further the two population means separated, the lower was G1 error rate

regardless which method was used. The performances of LPM, LDF, and LR were similar for

each data pattern. However, KM performed differently for the two data patterns and also from

LPM, LDF, and LR.

In Table G1-7, for Data Patten I, KM outperformed the other three methods regardless of

the degree of group separation. The performance of KM was exceptionally good when the group

separation was small (i.e., d2 = 2.2 or 0.7). For Data Pattern II, when d2 = 0.7, KM performed

better than the other three methods. When d2 = 2.2, the mean G1 error rate for KM was only

slightly lower than those of the other three methods. When d2 = 6.7, the performance of KM was

2the worst among the four methods. The discrepancies between 772 and COpartial values for the two
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data patterns were caused mainly by the inconsistent performance of KM for the two data

patterns.

Results led to the following conclusions: LPM or KM was a viable alternative only when

the two populations were not well-separated (i.e., d2 = 2.2 or 0.7); group separation had little

impact on the relative efficiency of LR over LDF.

Method by sample representativeness interaction. This two-way interaction accounted

for only 0.69% (772 = .0069) and 0.66% (772 = .0066) of the sample variance of G1 error rates for

Data Patterns I and II, respectively. However, for Data Pattern I, this interaction exhibited a

strong association (cpc,2 = .189) with the error rate. For Data Pattern II, a moderate association

(02 = .092) was detected. The interaction is graphically presented in Figure G1-6. The meanspartial

and standard deviations of 01 error rate are summarized in Table G1-8.

As shown in Figure G1-6, the performance of the four methods depended on sample

representativeness. The performances of LPM, LDF, and LR are similar for either data pattern

but different from KM. The mean G1 error rates were the highest when Group 1 was "20%

under-sampled;" the mean error rates were the lowest when Group 1 was "20% over-sampled."

Although the performance of KM was different for the two data patterns, the mean error rates of

KM were similar under the three conditions of sample representativeness.

In Table G1-8, the mean 01 error rates for LPM were slightly higher than those for LDF

and LR regardless of the condition of sample representativeness. Meanwhile, LR performed

slightly better than LDF in all three conditions of sample representativeness.

For Data Pattern I, KM outperformed the other three methods. When Group 1 was "20%

over-sampled," the mean error rate was the highest. The mean error rate was the lowest when

Group 1 was "20% under-sampled." However, the differences between the "equal" condition and
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the other two conditions were less than .01. For Data Pattern II, KM performed similarly

regardless of the condition of sample representativeness. It outperformed the other three methods

when Group 1 was either "equal" or "20% under-sampled." When Group 1 was "20% over-

sampled," KM was not as good as LDF or LR, but better than LPM. The discrepancies between

12 and a2ma values for the two data patterns were caused mainly by the inconsistent

performance of KM for the two data patterns.

Results led to the following conclusions: KM was the method of choice especially when

the sample representativeness was questionable. LPM was not a method of choice regardless of

sample representativeness.

Three-way Method by Data Property Interactions

For Data Pattern I, 2 three-way interactions concerning statistical methods were

pa2 mai>considered practically significant (i.e., effects with co 06): (a) method by population

proportion by group separation interaction, and (b) method by equality of covariance matrices by

group separation interaction. However, for Data Pattern II, only the method by population

proportion by group separation interaction was considered practically significant. In addition to

the 2 three-way interactions, the method by population by equality of covariance matrices

interaction is also included in this section. They are the only results discussed below.

Method by population proportion by group separation interaction. This three-way

interaction explained 1.87% (r72 = .0187) and 2.18% (772= .0218) of the sample variance of G1

error rates for. Data Patterns I and II, respectively. This interaction exhibited a strong association

k pCO

2
rtaial = .388 and .252 for Data Patterns I and II, respectively) with the error rate. The

interaction is graphically presented in Figure G1-7. Separate plots of mean G1 error rates due to

the population proportion by group separation interaction are presented in (a), (b), (c), and (d) for
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the four methods. The means and standard deviations for the interaction are summarized in Table

G1-9.

As shown in Figure G1-7, the interaction profiles for LPM, LDF, and LR are similar for

the two data patterns. The mean G1 error rates were the highest when the population proportions

were 0.1:0.9 while those for the 0.5:0.5 condition were the lowest regardless of the degree of

group separation. However, the impact of group separation on G1 error rate was intensified when

the population proportion deviated from the 0.5:0.5 split.

Figure G1-7(d) illustrates the population proportion by group separation interaction under

KM. The interaction profiles were different for the two data patterns. For Data Pattern I, the

mean G1 error rates increased as the separation between the two populations decreased

regardless of population proportions. The impact of population proportions on G1 error rate was

consistent for the three levels of group separation. Unlike the other three methods, the mean error

rates for KM were the lowest when the population proportions were 0.1:0.9 and the highest for

the 0.5:0.5 condition. Compared with the other three methods, KM outperformed the others

under all conditions except when the population proportions were 0.5:0.5 and d2 = 6.7. For Data

Pattern II, the mean G1 error rates increased as the separation between the two populations

decreased regardless of population proportions. KM performed similarly regardless of population

proportions when d2 = 2.2 or 0.7. However, when d2 = 6.7, KM performed the best under the

0.5:0.5 population proportions. Compared with the other three methods, KM outperformed the

others under all conditions of population proportions when d2 = 2.2 or 0.7. When d2 = 6.7, KM

performed poorly especially under the population proportions of 0.50:0.5 or 0.25:0.75. The

and 2discrepancies between 2 and coparnal values for the two data patterns were caused mainly by the

inconsistent performance of KM for the two data patterns.
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Results indicated that (a) LPM was not the method of choice in predicting the

membership of Population #1 especially when the population proportions were extreme and the

two populations were well-separated, (b) KM was a viable alternative when population

proportions deviated from the 0.5:0.5 split, regardless of the degree of group separation.

Method by equality of covariance matrices by group separation interaction. This three-

way interaction explained 0.63% ( 772 = .0063) and 0.18% (772= .0018) of the sample variance of

01 error rates for Data Patterns I and II, respectively. For Data Pattern I, although this

interaction accounted for less than 1% of the sample variance of the error rate, a strong

association (coa2,, = .175) between the interaction and the error rate was detected. For Data

Pattern II, a weak association (cop,72 = .027) was found. The means and standard deviations of

GI error rate for the three-way interaction are summarized in Table G1-10. The interaction is

graphically presented in Figure G1-8. Separate plots of mean 01 error rates due to the equality of

covariance matrices by group separation interaction are presented in (a), (b), (c), and (d) for the

four methods.

As shown in Figure G1-8, the interaction profiles for LPM, LDF, and LR are similar for

the two data patterns. The plots illustrate that the impact of equality of covariance matrices on

01 error rate depended on the degree of group separation. When the group separation was large

(i.e., d2 = 6.7), the mean error rate for the condition in which Population #1 had smaller

covariances was substantially lower than those for the other two conditions. However, when the

group separation became small (i.e., d2 = 2.2 or 0.7), the mean error rate for the condition in

which Population #1 had smaller covariances was slightly higher than those for the other two

conditions.
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In Figure G1-8(d), the mean G1 error rates are plotted for the equality of covariance

matrices by group separation interaction under KM. The interaction profiles were different for

the two data patterns. For Data Pattern I, the mean error rates increased as the degree of group

separation decreased regardless of the condition of equality of covariance matrices. In Table G1-

10, the mean error rates for the condition in which Population #1 had smaller covariances were

consistently the lowest at each level of the group separation. For Data Pattern II, a similar

conclusion was reached. However, the impact of the equality of covariance matrices factor on the

error rate was small when d2 = 0.7 or 2.2. The discrepancies between 112 and cox,2mc values for

the two data patterns were caused mainly by the inconsistent performance of KM for the two

data patterns.

Results indicated that (a) for LPM, LDF, and LR, a strong impact of heterogeneity of

covariance matrices on predicting the membership of Population #1 was found only when the

two populations were well-separated, and (b) KM was a viable alternative when the separation

between the two populations' means were small (i.e., d2 = 2.2 or 0.7) regardless of the equality of

covariance matrices.

Method by population proportion by equality of covariance matrices interaction. This

three-way interaction explained 0.15% ( /72 = .0015) of the sample variance of G1 error rates for

both data patterns. This interaction exhibited a weak association (cop,72 mai= .048 and .022 for Data

Patterns I and II, respectively) with the error rate. This interaction is included here in order to

contrast the results of this study with the findings from Fan and Wang (1999). The means and

standard deviations of G1 error rate for the three-way interaction are summarized in

Table G1-11.

27



27

In Table G1-11, the G1 error rates of LPM were higher than those of the other three

methods when the population proportions deviated from the 0.5:0.5 split. LPM and LDF

performed similarly when the population proportions were 0.5:0.5, regardless of the condition of

equality of covariance matrices. The difference in performance of LDF and LR depended on the

combinations of population proportions and equality of covariance matrices.

The performance of KM was different for the two data patterns. For Data Pattern I, KM

outperformed the other three methods in all joint conditions except when population proportions

were 0.5:0.5 and Population #1 had larger covariances. For Data Pattern II, KM performed better

than the other three methods under four joint conditions: population proportions were either

0.1:0.9 or 0.25:0.75 and the two populations either had equal covariance matrices or Population

#1 had smaller covariances. The direction of impact of heterogeneity of covariance matrices on

the performances of KM was consistent for both data patterns regardless of population

proportions. The condition in which Population #1 had smaller covariances exhibited a small but

positive effect on G1 error rates, while the condition in which Population #1 had larger

covariances had a small but negative effect.

Results indicated that (a) LPM was not the method of choice when population

proportions deviated from 0.5:0.5 split, (b) the direction of impact of heterogeneity of covariance

matrices on the performance of LPM, LDF, and LR depended on population proportions, (c) the

direction of impact of heterogeneity of covariance matrices on the performance of KM was

consistent regardless of population proportions, (d) selection of LDF or LR required the

consideration of both population proportions and the heterogeneity of covariance matrices, and

(e) if the 01 error rate was the main concern, KM was a viable method especially when

population proportions deviated from 0.5:0.5 and Population #1 had smaller covariances.
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6. Results of Group 2 Error Rates

Group 2 (G2) error rate was the proportion of observations in test sample originated from

Population #2 that were misclassified as belonging to Population #1. The means and standard

deviations of the error rates of 200 replications for each combination of levels of the five factors

for Data Pattern I are summarized in Table G2-1. Similarly, the means and standard deviations

for Data Pattern II are presented in Table G2-2. The results of ANOVA on G2 error rates for

Data Pattern I are summarized in Table G2-3. Out of 31 main and interaction effects, 23 effects

were statistically significant at the .0016 alpha level. The ANOVA results for G2 error rate for

Data Pattern II are presented in Table G2-4. Twenty-eight effects were statistically significant at

the .0016 level for Data Pattern II.

Data Property Main Effects

For Data Pattern I, four of the five "between-subjects" (i.e., data property) main effects

on G2 error rate were statistically significant at the .0016 level. These four factors also had a

Wpartial value larger than .06 (see Table G2-3). For Data Pattern II, all five main effects were

statistically significant at a = .0016. However, only the same four factors had a cop2mcd value

larger than .06 (see Table G2-4). These four factors were Factor 1 (population proportion),

Factor 2 (equality of covariance matrices), Factor 3 (group separation), and Factor 4 (sample

representatives). Thus, these four factors were considered practically significant.

Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 12.52% (772 = .1252) of the

sample variance of G2 error rates. This factor demonstrated a strong association (wpa2 = .421)

with the error rate. The mean error rates for the three levels of population proportions

were .096, .101, and .216. Results from the Newman-Keuls pairwise procedure indicated that the
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three mean error rates were statistically significantly different from each other. When population

proportions were 0.1:0.9, the mean G2 error rate (.096) was the lowest, while the 0.5:0.5

condition had the highest mean error rate (.216).

Similarly, for Data Pattern II, this factor explained 9.76% (712 = .0976) of the sample

variance of G2 error rates. The copa2 mai index (.483) signified a strong association. Results from

the Newman-Keuls procedure indicated that the mean error rate (.275) for the 0.5:0.5 population

proportion condition was statistically significantly higher than that (.158) for the 0.25:0.75

condition. The mean error rate (.131) for the 0.1:0.9 condition was the lowest and it was

statistically significantly lower than the means for the other two conditions. Based on the results

from both data patterns, we concluded that G2 error rate decreased, in general, as the proportions

of Population #1 and Population #2 deviated from the 0.5:0.5 split.

Equality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices,

(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 5.75% (772 = .0575) of sample variance of

G2 error rates. This factor exhibited a large association (cop2 n,/ = .250) with the error rate.

Results from the Newman-Keuls procedure indicated that the mean error rates were statistically

significantly different from each other. Under the unequal condition in which Population #2 had

larger covariances, the mean G2 error rate (.179) was the highest. The mean error rate was .147

for the equal covariance matrices condition. Under the unequal covariance condition in which

Population #2 had smaller covariances, the mean error rate (.088) was the lowest.

Similar results were obtained for Factor 2 from Data Pattern II. This factor explained
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1.86% (772= .0186) of the sample variance of G2 error rates. This factor had a large association

(a)2 ma/ .151) with the error rate. Results from the Newman-Keuls procedure indicated that the

mean error rates for the three levels were statistically significantly different from each other.

Under the unequal condition that Population #2 had larger covariances, the mean error rate was

the highest (.217). The mean error rate was .196 for the condition of equal covariance matrices.

The mean error rate was the lowest (.151) for the unequal condition in which Population #2 had

smaller covariances. Results from both data patterns showed that observations from Population

#2 were less likely to be misclassified when Population #2 had smaller covariances than those of

Population #1.

Group Separation

Factor 3 (group separation) explained 9.27% (772= .0927) of the sample variance of G2

error rates for Data Pattern I. A strong association (CO pa2 mai = .350) between this factor and G2

error rates was detected. Results from the Newman-Keuls procedure indicated that the mean

error rates of the three levels of group separation differed from each other. When the

Mahalanobis distance (d2) between the two populations' means was 6.709, the mean error rate

was .075. As d2 decreased, the mean error rate also increased. Under the condition of d2 = 2.236,

the mean error rate was .147. The mean error rate was .191 when d2 = 0.745.

For Data Pattern II, this factor accounted for 2.69% (712 = .0269) of the sample variance

of G2 error rates. The association between this factor and the error rate was strong (CO pa2

= .205). Similar to the results obtained from Data Pattern I, as d2 decreased, the mean G2 error

rate increased for Data Pattern II. The mean error rate increased from .144 (when d2 = 6.785)

to .197 (when d2 = 2.262) and further increased to .223 (when d2 = 0.754). Results from both
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data patterns led to the conclusion that the further the two populations separated, the lower was

G2 error rate. These findings were expected because the less overlapping between the two

populations, the less likely that sample observations would be misclassified.

Sample Representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised

of observations from Population #1) was 20% over-sampled, (b) sample proportions equal to the

population proportions, and (c) Group 1 was 20% under-sampled. When Group 1 was over-

sampled, Group 2 was under-sampled. Similarly, when Group 1 was under-sampled, Group 2

was over-sampled. When the population proportions were 0.1:0.9, Group 2 was either 2.2%

under-sampled or over-sampled. When the population proportions were 0.25:0.75, Group 2 was

either 6.7% under-sampled or over-sampled. When the population proportions were 0.5:0.5, the

sample representativeness condition of Group 2 was either 20% under-sampled or over-sampled.

This factor was statistically significant at a = .0016 for both data patterns. For Data

Pattern I, only 1.82% (772 = .0182) of the sample variance of G2 error rate was explained by this

factor. A moderate association (com2rt./ = .096) was found between this factor and the error rate.

Results from the Newman-Keuls procedure indicated that the mean error rates of the three levels

differed statistically significantly from each other. The mean G2 error rate for the "20% over-

sampled" condition was .165 for Data Pattern I. It was slightly higher than the mean error rate

under the "equal" condition (.135). The "20% under-sampled" condition had the lowest mean

error rate (.114).

Similarly, for Data Pattern II, this factor explained only 1.27% (r72 = .0127) of the sample

variance of G2 error rate. The cop,,2nw value (.108) indicated a moderate association between this

factor and the error rate. Results from the Newman-Keuls procedure indicated that the mean
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error rate for the "20% over-sampled" condition (.217) was statistically significantly higher than

that under the "equal" condition (.186). The mean error rate of "20% under-sampled" condition

(.162) was the lowest which was statistically significantly smaller than those of the other two

conditions.

Results from both data patterns indicated that, in general, there was a tendency for G2

error rate to increase if Group 1 was over-sampled, hence, Group 2 was under-sampled. When

Group 1 was under-sampled, therefore, Group 2 was over-sampled, the G2 error rate decreased.

Sample size

Factor 5 (sample size) had two levels: 200 and 400. For Data Pattern I, less than 0.01%

(112 < .0001) of the sample variance of G2 error rate was explained by this factor. This factor was

weakly associated with the error rate (copa2ral < .0001). The mean error rates for both sample

sizes were .138. Similar results were obtained from Data Pattern II. The sample size factor

accounted for less than 0.01% (712 < .0001) of the sample variance of G2 error rate. o.

indicated a virtually non-existent association. The mean error rates for sample sizes of 200 and

400 were .189 and .187, respectively.

By examining Tables G2-1 and G2-2, one notices that standard deviations of G2 error

rates for sample size of 400 were smaller than those for sample size of 200. In other words, with

a larger sample size, one obtains a more efficient estimate of G2 error rate.

Two-way Interaction Among Data Property Factors

Using the copa2riga > .06 as the criterion for practical significance, 3 two-way interactions

among the five factors were considered practically significant for both data patterns. These three

interactions were (a) population proportion by equality of covariance matrices, (b) population

proportion by group separation, and (c) population proportion by sample representativeness.

33



33

They are the only results discussed below.

Population Proportion by Equality of Covariance Matrices

This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern I, it accounted for 9.27% (72= .0927) of the sample variance of G2 error rate

and had a large association (copa2 = .350) with the error rate. However, for Data Pattern II, this

interaction explained 0.74% 2 = .0074) of the sample variance of the error rate and also

exhibited a moderate association ( copa2 n,/ = .066). This interaction is graphically presented in

Figure G2-1.

As shown in Figure G2-1, similar interaction profiles were found for the two data

patterns. When the population proportions were 0.1:0.9 or 0.25:0.75, the effect of equality of

covariance matrices on the error rate was relatively small. However, when the population

proportions were 0.5:0.5, the mean G2 error rate under the condition in which Population #2 had

smaller covariances was considerably lower than those of the other two covariance matrix

conditions.

Population Proportion by Group Separation Interaction

This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern I, it accounted for 4.01% /72 = .0401) of the sample variance of G2 error rates

and had a large association (copa2 = .277) with the error rate. For Data Pattern II, this factor

explained 4.74% (712= .0474) of the sample variance of G2 error rate and also exhibited a large

association ( copa2 = .216). This interaction is graphically presented in Figure G2-2.

As shown in Figure G2-2, the interaction profiles for the two data patterns were similar.

The population proportion factor had a relatively small effect on G2 error rate when the
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separation of the two populations was large (i.e., d2 = 6.7). However, when the separation was

smaller (i.e., d2 = 2.2 or 0.7), the impact of population proportion on G2 error rate increased. The

differences of mean error rates among the three levels of group separation under 0.5:0.5

population proportions were large, compared with corresponding differences under either the

0.1:0.9 or the 0.25:0.75 condition.

Population Proportion by Sample Representativeness Interaction

This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern I, it accounted for 2.44% (712 = .0244) of the sample variance of G2 error rate

and had a moderate association (copal ,,,d = .124) with the error rate. For Data Pattern II, this factor

explained 1.33% (712 = .0133) of the sample variance of the error rate and also exhibited a

moderate association (copal ai = .0113). This interaction is graphically presented in Figure G2-3.

As shown in Figure G2-3, similar interaction profiles were found for the two data

patterns. G2 error rate increased if Group 1 was over-sampled, hence, Group 2 was under-

sampled. When Group 1 was under-sampled, therefore, Group 2 was over-sampled, the G2 error

rate.decreased. The sample representativeness factor had a small impact on G2 error rates when

the population proportions were 0.1:0.9. The impact of sample representativeness on the error

rate increased as population proportions approached 0.5:0.5.

Effects Concerning Statistical Methods

The results of the "within-subjects" effects (i.e., four statistical methods) were examined

in order to investigate: (a) the effect of using different statistical methods on G2 error rates, and

(b) the joint effect of the five data property factors with statistical methods on G2 error rate.

Main Effect of Method Factor

The models from the four statistical methods (i.e., LPM, LDF, LR, and KM) were
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treated as levels of the "method" factor. This factor was statistically significant at

a = .0016. It accounted for 26.69% (712 = .2669) and 64.35% ( r/2 = .6435) of the sample variance

of G2 error rate for Data Patterns I and II, respectively. copa2 rim/ values (.883 and .944 for Data

Patterns I and II, respectively) indicated a strong association between statistical methods and G2

error rate.

The mean G2 error rate for LPM was .086 for Data Pattern I, and .089 for Data Pattern II.

The mean error rates for LDF were .093 and .097 for Data Patterns I and II, respectively. The

mean error rate for LR was .095 for Data Pattern I and .100 for Data Pattern II. The mean error

rates for KM were .278 and .467 for Data Patterns I and II, respectively. Results from the Dunn -

gidalc comparison procedure indicated that the mean G2 error rates from the four methods were

statistically significantly different from each other for both data patterns. LPM yielded the lowest

mean G2 error rate while KM the highest. The mean error rates for LDF were only slightly lower

than those for LR even though the differences were statistically significant.

Results indicated that, in general, KM did not perform as well as the other three methods

in predicting the membership of Population #2 for both data patterns. LPM outperformed LDF

and LR whereas LDF and LR performed similarly.

Two-way Method by Data Property Interactions

The method factor was found statistically significantly interacting with all five data

property factors at a = .0016 for both data patterns. For Data Pattern I, the method by sample size

interaction was the only interaction effect considered not to be practically significant according

to the criterion of copa2 > .06. For Data Pattern II, only two data property factors (i.e.,

population proportions and sample representativeness) were found practically significantly

interacting with the method factor. The interactions between the method factor and four data
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property factors (i.e., population proportion, equality of covariance matrices, group separation,

and sample representativeness) are discussed in this section.

Method by population proportion interaction. This two-way interaction effect accounted

for 16.64% (rig = .1664) and 5.84% (712 = .0584) of the sample variance of G2 error rates for

Data Patterns I and II, respectively. The wpa2 ma values (.824 for Data Pattern I and .603 for Data

Pattern II) indicated a strong association between this interaction and the error rate. The

interaction is presented graphically in Figure G2-4. The means and standard deviations are

summarized in Table G2-5.

As shown in Figure G2-4, the performance of the four methods depended on sample

representativeness. The performance of KM was inconsistent across the two data patterns. In

Table G2-5, for Data Pattern I, KM slightly outperformed the other three methods in predicting

the membership of Population #2 only when the population proportions were 0.5:0.5. When

population proportions were 0.25:0.75 or 0.1:0.9, G2 error rates of KM were substantially higher

than those for the other three methods. For Data Pattern II, KM performed poorly, compared to

the other three methods in all three population proportion conditions. The discrepancies between

772 and copa2,,I values for the two data patterns were caused mainly by the inconsistent

performance of KM for the two data patterns.

Results led to the following conclusions: when the population proportions deviated from

0.5:0.5, LPM was the best method. KM was not the method of choice when the population

proportions were extreme. When the population proportions were 0.5:0.5, the performances of

LPM, LDF, and LR were identical; KM could perform as well as the other three methods for

Data Pattern I, but not for Data Pattern II.

Method by equality of covariance matrices interaction. This two-way interaction effect
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accounted for 3.31% (r72 = .0331) and 0.18% (712 = .0018) of the sample variance of G2 error

rate for Data Patterns I and II, respectively. Wpa rual (.482) indicated a strong association between

this interaction and the error rate for Data Pattern I. However, for Data Pattern II, copa2 ma, (.045)

signified a weak association. The interaction is presented graphically in Figure G2-5. The means

and standard deviations are summarized in Table G2-6.

As shown in Figure G2-5, unequal covariance matrices conditions had small impacts on

the differential performances of LPM, LDF, and LR. Yet, the mean G2 error rates of KM

depended on the degree of equality of covariance matrices. The performances of LPM, LDF, and

LR were similar for either data pattern. However, KM performed quite differently for the two

data patterns, also from LPM, LDF, and LR. All four methods performed better when the

covariances of Population #2 were four times of those of Population #1.

In Table G2-6, for both data patterns, KM performed poorly compared to the other three

methods regardless of the equality of covariance matrices. The G2 error rates of KM for Data

Pattern I were lower than those of Data Pattern II. The discrepancies between /12 and

(02prtaial values for the two data patterns were caused mainly by the inconsistent performance of

KM for the two data patterns.

Results led to the following conclusions: all four methods performed better when the

covariances of Population #1 were larger than those of Population #2. LPM was uniformly the

best method. KM was not the method of choice regardless of the condition of equality of

covariance matrices.

Method by group separation interaction. This two-way interaction effect accounted for

2.56% (772= .0256) and 0.06% (772 = .0006) of the sample variance of G2 error rate for Data
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Patterns I and II, respectively. copa2,,,d (.419) indicated a strong association between this

interaction and the error rate for Data Pattern I. For Data Pattern II, to2
partial value (.014) signified

a weak association. The interaction is presented graphically in Figure G2-6. The means and

standard deviations are summarized in Table G2-7.

As shown in Figure G2-6, the performances of the four methods depended on the degree

of separation between the two populations' means. The further the two populations separated, the

lower was G2 error rate regardless which method was used. The performances of LPM, LDF,

and LR were similar for either data pattern. However, KM performed differently for the two data

patterns, also differently from LPM, LDF, and LR.

In Table G2-7, the mean G2 error rates for LPM were slightly lower than those for LDF

and LR regardless the degree of group separation. LDF and LR performed similarly for three

group separation levels. For both data patterns, KM performed poorly compared to the other

three methods. The impact of group separation on the performance of KM was larger for Data

2 and 2Pattern I than for Data Pattern II. The discrepancies between ana co partial values for the two

data patterns were caused mainly by the inconsistent performance of KM for the two data

patterns.

Results led to the following conclusions: LPM was a viable alternative regardless of the

degree of group separation whereas KM was not the method of choice. Group separation had

little impact on the relative efficiency of LR over LDF.

Method by sample representativeness interaction. This two-way interaction effect

accounted for 1.27% ( /12 = .0127) and 0.49% (772= .0049) of the sample variance of G2 error

rate for Data Patterns I and II, respectively. cop,,2 rj,/ (.264) for Data Pattern I indicated a strong
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association between this interaction and the error rate. However, for Data Pattern II, coparuai value

of .113 signified a moderate association. The interaction is presented graphically in Figure G2-7.

The means and standard deviations are summarized in Table G2-8.

As shown in Figure G2-7, the performances of the four methods depended on sample

representativeness. The performances of LPM, LDF, and LR were similar for each data pattern

but different from KM. The mean G2 error rates were the highest when Group 1 was 20% over-

sampled; the mean error rates were the lowest when Group 1 was 20% under-sampled. Although

the performance of KM was different for the two data patterns, the mean error rates of KM under

the three conditions of sample representativeness were similar.

In Table G2-8, for both data patterns, the mean G2 error rates of KM were higher than

those of the other three methods regardless of sample representativeness. KM was not as good as

the other three methods. However, unlike the other three methods, KM performed similarly at all

levels of sample representativeness. The mean error rates were lower under the condition of 20%

Group 1 over-sampled than those of the equal condition. Meanwhile, the mean error rates of the

20% under-sampled condition were slightly higher than those of the equal condition. The

2 2discrepancies between ana partral values for the two data patterns were caused mainly by the

inconsistent performance of KM for the two data patterns.

Results led to the following conclusions: LPM was the best method. The impact of

sample representativeness on predictive performances was similar for LPM, LDF, and LR, but

different from KM. Although KM did not perform as well as the other three methods, its

performance was least influenced by sample representativeness.

Three-way Method by Data Property Interactions

Five three-way interactions regarding the method factor are discussed in this section.
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They were (a) method by population proportion by equality of covariance matrices interaction, (b)

method by population proportion by group separation interaction, (c) method by population

proportion by sample representativeness interaction, (d) method by equality of covariance

matrices by group separation interaction, and (e) method by group separation by sample

representativeness interaction. For Data Pattern I, interactions (a), (b), (c) and (e) from the list

above were considered practically significant based on the criterion of copa2 > .06. However,

for Data Pattern II, only three interactions [i.e., (b), (c) and (d) from the list above] were

considered practically significant.

Method by population proportion by equality of covariance matrices interaction. This

three-way interaction effect accounted for 0.34% (712 = .0034) and 0.08% (712 = .0008) of the

sample variance of G2 error rate for Data Patterns I and II, respectively. cop,,2 mai value (.087) for

Data Pattern I indicated a moderate association between this interaction and the error rate.

However, for Data Pattern II, C t pa2 (.019) signified a weak association. The interaction is

presented graphically in Figure G2-8. The means and standard deviations are summarized in

Table G2-9.

As shown in Figure G2-8, the interaction profiles for LPM, LDF, and LR were similar for

the two data Patterns. The mean G2 error rates decreased as the population proportions deviated

from the 0.5:0.5 split, regardless of the equality of covariance matrices. For all levels of

population proportions, the mean error rate was the highest (i.e., a negative effect) if Population

#1 had smaller covariances and the lowest (i.e., a positive effect) if Population #1 had larger

covariances. The impact of inequality of covariance matrices on G2 error rate was small when

the population proportions were 0.1:0.9. The impact increased as the population proportions

approached the 0.5:0.5 split.
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Figure G2-8(d) illustrates the population proportion by equality of covariance matrices

interaction under KM. The interaction profiles were different for the two data patterns. In Table

G2-9, the mean G2 error rates of KM increased as the population proportions deviated from the

0.5:0.5 split, regardless of equality of covariance matrices. For all levels of population

proportions, the mean error rate was the highest if Population #1 had smaller covariances and the

lowest if Population #1 had larger covariances. The impact of inequality of covariance matrices

on G2 error rate was small when the population proportions were 0.1:0.9. The impact increased

as the population proportions approached the 0.5:0.5 split. The mean error rates of KM for Data

Pattern I were lower than those for Data Pattern II. Yet the impact of equality of covariance

matrices on error rates was greater in Data Pattern I than in Data Pattern II. The mean G2 error

rates of KM were higher than those of LPM, LDF, or LR in most conditions for Data Pattern I.

When the population proportions were 0.5:0.5 and either both covariances were equal or

Population #1 had larger covariances, KM performed better than the other three methods. For

Data Pattern II, KM performed poorly compared to the other three methods in all combinations

of population proportion by equality of covariance matrices. KM performed as well as the other

three methods when the population proportions were 0.5:0.5 and covariances were either equal

or Population #1 had larger covariances.

Method by population proportion by group separation interaction. This three-way

interaction effect accounted for 2.26% (772= .0226) and 0.41% (712 = .0041) of the sample

variance of G2 error rate for Data Patterns I and II, respectively. cypa2 ,,ai (.389) for Data Pattern I

indicated a strong association between this interaction and the error rate. However, for Data

Pattern II, the copa value (.097) signified a moderate association. The interaction is presented

graphically in Figure G2-9. Separate plots of mean G2 error rates due to the population
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proportion by group separation interaction are presented in (a), (b), (c), and (d) for the four

methods. The means and standard deviations are summarized in Table G2-10.

As shown in Figure G2-9, performances of the four methods in predicting the

membership of Population #2 depended on the joint conditions of population proportions and

group separation. The interaction profiles for LPM, LDF, and LR were similar for the two data

Patterns. Yet they were different from KM's.

In Figures G2-9(a), (b), and (c), the mean error rates were the highest when the

population proportions were 0.5:0.5 and the lowest under the 0.1:0.9 condition, regardless of

degrees of group separation. The impact of group separation on G2 error rate was inconsistent

under different population proportions. The inconsistency was not only in magnitude, but also in

direction. When population proportions were 0.1:0.9, the mean G2 error rates were extremely

low regardless of degrees of group separation. The mean error rate decreased as the group

separation decreased. When population proportions equaled 0.25:0.75, the mean error rates were

slightly higher than when they were 0.1:0.9. The mean error rate increased slightly as the group

separation decreased from 6.7 to 2.2; it decreased only slightly when the group separation

decreased from 2.2 to 0.7. The mean error rate increased as the group separation decreased, when

the population proportions were 0.5:0.5. The performances of LPM, LDF and LR were

comparable when the population proportions were 0.5:0.5.

Figure G2-9(d) presents the population proportion by group separation interaction under

KM. KM performed as well as the other three methods when the population proportions were

0.5:0.5, especially when the two populations were not well separated (Table G2-10). For Data

Pattern II, the mean error rates of KM were substantially higher than those of the other three

methods. Different conditions of population proportions had little impact on the performance of
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KM when group separation (d2) was 2.2 or 0.7. When d2 = 6.7, the mean G2 error rate increased

as the population proportions deviated from 0.5:0.5.

Results indicated that LPM was the best method especially when the population

proportions deviated from 0.5:0.5. The impact of group separation on performances of LPM,

LDF, and LR depended on population proportions. Group separation had little impact on the

relative efficiency of LR over LDF. KM performed as well as the other three methods when the

two populations were not well separated and the population proportions were 0.5:0.5.

Method by population proportion by sample representativeness interaction. This three-

way interaction effect accounted for 0.70% (112 = .007) and 0.41% ( q2 = .0041) of the sample

variance of G2 error rate for Data Patterns I and II, respectively. copa2mai (.165) for Data Pattern I

indicated a strong association between this interaction and the error rate. For Data Pattern II,

however, the copa2 value (.097) signified a moderate association. The interaction is presented

graphically in Figure G2-10. The means and standard deviations are summarized in Table G2-11.

As shown in Figure G2-10, the performances of the four methods depended on the

combination of population proportions and sample representativeness. The interaction profiles

for LPM, LDF, and LR were similar for the two data patterns. Yet they were different from those

of KM.

In Figures G2-10(a)-(c), the mean G2 error rates decreased as the population proportions

deviated from 0.5:0.5 regardless of sample representativeness. The mean G2 error rates were the

lowest when Group 1 was 20% under-sampled while the mean error rates were the highest when

Group 1 was 20% over-sampled regardless of population proportions. The performances of LPM,

LDF and LR were comparable when the population proportions were 0.5:0.5. The performances

of LDF and LR were similar in all combinations of population proportions and sample
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representativeness.

Figure G2-10(d) presents the population proportion by sample representativeness

interaction under KM. The interaction profiles were different for the two data patterns. In Table

G2-11, for Data Pattern I, the mean G2 error rates increased as the population proportions

deviated from 0.5:0.5 regardless of sample representativeness. Unlike the results of the other

three methods, the mean G2 error rates of KM were the highest when Group 1 was 20% under-

sampled and the lowest when Group 1 was 20% over-sampled, regardless of population

proportions. KM performed as well as the other three methods only when the population

proportions were 0.5:0.5 and Group 1 was either 20% over-sampled or "equally" sampled. For

Data Pattern II, the mean G2 error rates increased as the population proportions deviated from

0.5:0.5 regardless of sample representativeness. However, sample representativeness had little

impact on KM's performance.

Results indicated that, for LPM, LDF, and LR, the impact of sample representativeness

on G2 error rates depended on population proportions. For KM, the impact was consistent for

each level of population proportions. LPM performed the best when the population proportions

deviated from 0.5:0.5. The performances of LDF and LR were similar. Depending on the data

pattern, KM could be a viable alternative when population proportions were 0.5:0.50 and sample

representativeness was either "equal" or Group 1 was over-sampled.

Method by equality of covariance matrices by group separation interaction. This three-

way interaction effect accounted for 0.06% (772= .0006) and 0.27% (772= .0027) of the sample

variance of G2 error rates for Data Patterns I and II, respectively. copa2ni, (.016) for Data Pattern I

indicated a weak association between this interaction and the error rate. However, for Data

Pattern II, the copc,2ma, value (.066) signified a moderate association. The interaction is presented
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graphically in Figure G2-11. The means and standard deviations are summarized in Table G2-12.

As shown in Figure G2-11, the performances of the four methods depended on the

combination of equality of covariance matrices and group separation. The interaction profiles for

LPM, LDF, and LR were similar for the two data patterns. Yet they were different from those of

KM.

In Figures G2-11(a)-(c), these interaction profiles for the three methods were similar. The

mean G2 error rates increased as the separation between the two populations decreased

regardless of the equality of covariance matrices. For each level of group separation, the

performances of the three methods were the best, when Population #2's covariances were

smaller than those of Population #1.

Figure G2-11(d) presents the equality of covariance matrices by group separation

interaction under KM. The interaction profiles were different for the two data patterns. The mean

G2 error rates of KM increased as the separation between the two populations decreased

regardless of the equality of covariance matrices (also Table G2-12). At each level of group

separation, the performance of KM was the best when the covariances of Population #2 were

smaller than those of Population #1. The mean G2 error rates of KM for Data Pattern I were

lower than those for Data Pattern II. Impacts of this interaction on G2 error rates of KM's were

stronger for Data Pattern I than for Data Pattern II. KM performed poorly compared to the other

three methods in all combinations of equality of covariance matrices and group separation.

Results indicated that the further the two populations separated, the lower was the G2

error rate, regardless which statistical method was used. The mean error rate was lower if

Population #2 had smaller covariances than the other two conditions, regardless of the degree of

group separation. LPM was the best method in all combinations of equality of covariance
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matrices and group separation. KM's performance was the worst. LDF and LR performed

differently under unequal covariance matrices. LR performed better than LDF when Population

#2 had larger covariances. However, LDF performed better than LR when Population #2 had

smaller covariances.

Method by group separation by sample representativeness interaction. This three-way

interaction effect accounted for 0.25% (772= .0025) and 0.13% (ri 2 = .0013) of the sample

variance of G2 error rate for Data Patterns I and II, respectively. co2 ,i,/ (.067) for Data Pattern I

indicated a moderate association between this interaction and the error rate. However, for Data

Pattern II, the copc,2 value (.032) signified a weak association. The interaction is presented

graphically in Figure G2-12. The means and standard deviations are summarized in Table G2-13.

As shown in Figure G2-12, the performances of the four methods depended on the

combination of group separation and sample representativeness. The interaction profiles for LPM,

LDF, and LR were similar for the two data patterns. Yet they were different from those of KM.

In Figures G2-12(a)-(c), the interaction profiles for LPM, LDF, and LR were similar. The

mean G2 error rates increased as the group separation decreased regardless of sample

representativeness. For each level of group separation, the mean error rate was the highest when

Group 1 was 20% over-sampled and the lowest when Group 1 was 20% under-sampled. The

impact of sample representativeness on the error rate increased as the group separation decreased.

The differences between the equal sample represenativeness and the other two conditions

increased as the degree of group separation decreased.

Figure G2-12(d) presents the group separation by sample representativeness interaction

under KM. The interaction profiles were different for the two data patterns. For both data

patterns, the mean G2 error rates of KM increased as the group separation decreased regardless .
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of sample representativeness. Unlike the other three methods, the mean error rate of KM was the

lowest when Group 1 was 20% over-sampled and highest when Group 1 was 20% under-

sampled, regardless of group separation. The impact of sample representativeness on the error

rates of KM was consistent across the three levels of group separation. The mean G2 error rates

of KM for Data Pattern II were higher than those for Data Pattern I. Yet the impact of group

separation on G2 error rates was larger for Data Pattern I than for Data Pattern II. For both data

patterns, KM performed poorly, compared to the other three methods.

Results indicated that the group separation by sample representativeness interaction for

LPM, LDF, and LR were similar. Yet they were different from those of KM. For LPM, LDF, and

LR, the impact of sample representativeness on G2 error rate increased as the separation between

the two populations decreased. For KM, the impact was consistent for each level of the group

separation. LPM yielded the lowest mean G2 error rates in all combinations of group separation

and sample representativeness. The performances of LDF and LR were comparable. Although

KM performed poorly compared to the other three methods, KM was least affected by sample

representativeness.

7. Results of Total Error Rates

Total error rate was the proportion of observations in the test sample that were

misclassified. The means and standard deviations of the error rates of 200 replications for each

combination of levels of the five factors for Data Pattern I are summarized in Table T-1.

Similarly, the means and standard deviations for Data Pattern II are presented in Table T-2. The

results of ANOVA on Total error rates for Data Pattern I are summarized in Table T-3. Out of 31

main and interaction effects, 23 effects were statistically significant at the .0016 level. The

ANOVA results for Total error rate for Data Pattern II are presented in Table T-4. Twenty-seven
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effects were statistically significant at the .0016 level for Data Pattern II.

Data Property Main Effects

The effects of the five "between-subjects" main factors on Total error rate were

statistically significant at the .0016 level for both data patterns. However, only three of the five

factors were found to be practically significant using the criterion of copa2 rn, > .06 for Data

Pattern I (see Table T-3). These three factors were Factor 1 (population proportion), Factor 2

(equality of covariance matrices), and Factor 3 (group separation). For Data Pattern II, only two

factors (i.e., Factor 1 and Factor 3) had a cop,72 ni, value greater than .06 (see Table T-4).

Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 6.68% ( /12 = .0668) of the

sample variance of Total error rates. This factor signified a strong association (com2 = .277)

with Total error rates. The mean error rates for the three levels of population proportions

were .146, .182, and .216. Results from the Newman-Keuls procedure indicated that the three

mean error rates were statistically significantly different from each other. The mean Total error

rate (.146) was the lowest under 0.1:0.9 population proportions and the highest (.216) under the

0.5:0.5 condition.

Similarly, for Data Pattern II, this factor explained 5.37% (772= .0537) of the sample

variance of Total error rates. The co 2
prtaial value (.385) signified a strong association between

population proportions and Total error rates. Results from the Newman-Keuls procedure

indicated that the mean error rate (.275) for the 0.5:0.5 population proportion condition was

statistically significantly higher than that (.241) for the 0.25:0.75 condition. The mean error rate

(.185) was the lowest for the 0.1:0.9 condition; it was statistically significantly lower than the
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means for the other two conditions. Based on the results from both data patterns, Total error rate

decreased as the proportions of Population #1 and Population #2 deviated from the 0.5:0.5 split.

Equality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices,

(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 1.23% (712 = .0123) of the sample

variance of Total error rates. The factor exhibited a moderate association ( cop,,2 = .0657) with

the Total error rate. Results from the Newman-Keuls procedure indicated that the mean Total

error rates for the three levels were statistically significantly different from each other. When

Population #1 had larger covariances, the mean error rate was the lowest (.164). The mean error

rate was .173 under the equal covariance matrices condition. The mean error rate was the highest

(.191) when Population #1 had smaller covariances.

For Data Pattern II, the equality of covariance matrices factor explained 0.36%

(772= .0036) of sample variance of Total error rates. This factor had a weak association (copa2mai

= .040) with Total error rates. Results from the Newman-Keuls procedure indicated that the

mean Total error rates for the three levels were statistically significantly different from each

other. When Population #1 had larger covariances, the mean error rate (.220) was the lowest. The

mean error rate (.242) was the highest for the equal covariance matrices condition. When

Population #1 had smaller covariances, the mean error rate was .238.

This factor was statistically significant at a = .0016 for both data patterns; the absence of

strong associations implied that the differences in mean Total error rates for the three levels of

equality of covariance matrices were practically insignificant. In other words, a ratio of 1:4 (or
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4:1) for heterogeneity of covariance matrices exhibited only a small impact on Total error rates.

Group Separation

Factor 3 (group separation) explained 37.97% (772 = .3797) of the sample variance of

Total error rates for Data Pattern I. A strong association (co p2atrial 685) between this factor and

Total error rates was detected. Results from the Newman-Keuls procedure indicated that three

mean error rates of this factor differed from each other. When the Mahalanobis distance (d2)

between the two populations' means was 6.709, the mean error rate was .093 (the lowest). As d2

decreased, the mean error rate increased. Under the condition of d2 = 2.236, the mean error rate

was .192. The mean error rate was .259 (the highest) when d2 was 0.745.

For Data Pattern II, similar results were obtained. This factor accounted for 11.19%

(172 = .1119) of the sample variance of the Total error rate. The association between this factor

and the error rate was strong ( wp2 = .567). Similar to the results obtained from Data Pattern I,

as d2 decreased, the mean Total error rate increased. The mean error rate increased from .163

(when d2 = 6.785) to .245 (when d2 = 2.262) and further increased to .293 (when d2 = 0.754).

Results from both data patterns led to the conclusion that the further the two populations

separated, the lower was Total error rate. These findings were expected because the less

overlapping of the populations, the less likely that sample observations would be misclassified.

Sample representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised

of observations from Population #1) was 20% over-sampled, (b) sample proportions equal to the

population proportions, and (c) Group 1 was 20% under-sampled. This factor was statistically

significant at a = .0016 for both data patterns. However, for Data Pattern I, only 0.06%

(772= .0006) of the sample variance of Total error rates was explained by this factor. A negligible
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association (copanjai = .004) was found between this factor and the Total error rate. Results from

the Newman-Keuls procedure indicated that the mean error rate (.180) of the "20% over-

sampled" condition was statistically significantly smaller than that (.185) obtained under the

"20% under-sampled" condition. These two mean error rates were statistically significantly

higher than that (.179) of the "equal" condition.

Similarly, for Data Pattern II, this factor explained 0.02% (712 = .0002) of the sample

variance of Total error rates. co2 rtial (.002) indicated a negligible association between grouppa

representativeness and Total error rates. Results from the Newman-Keuls procedure showed that

the mean error rate (.233) of the "20% over-sampled" condition was statistically significantly

smaller than that (.236) of the "20% under-sampled" condition. Both mean error rates were

statistically significantly higher than that (.231) of the "equal" condition.

Although this factor was statistically significant at a = .0016 for both data patterns, an

absence of strong associations implied that the differences in mean Total error rates were not

likely to be attributable to the three levels of sample representativeness.

Sample size

Two levels of sample size (i.e., 200 and 400) were considered in this study. For Data

Pattern I, less than 0.01% (772< .0001) of the sample variance of Total error rate was explained

by this factor. This factor was virtually not associated with the error rate (coppaHra! < .0001). The

mean error rates for sample sizes of 200 and 400 were .182 and .181, respectively. Similar results

were obtained from Data Pattern II. This factor accounted for 0.01% (,2 = .0001) of the sample

variance of Total error rate. The coi,a2 mai value (.0008) indicated a virtually non-existent

association between this factor and Total error rate. The mean error rates for sample sizes of 200
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and 400 were .234 and .233, respectively.

Although this factor was statistically significant at a = .0016 for both data patterns,

evidence of a non-existent association implied that the differences in mean error rates were not

likely to be attributable to the two levels of sample size. By examining Tables T-1 and T-2, one

notices that the standard deviations of Total error rates for sample size of 400 were smaller than

those for sample size of 200. In other words, with a larger sample size, one obtains a more

efficient estimate of Total error rates.

Two-way Interaction among Data Property Factors

Judged against the copa2,,a, > .06 criterion, the sole two-way interaction considered

practically significant was the population proportion by group separation interaction. This

interaction is the only result discussed here.

Population Proportion by Group Separation Interaction

This interaction was statistically significant at a = .0016 for both data patterns. For Data

Pattern I, it accounted for 5.31% (r12 = .0531) of the sample variance of the Total error rate and

had a large association (& nt, = .233) with the error rate. For Data Pattern II, this factor

explained 3.57% (772 = .0357) of the sample variance of the error rate and also exhibited a large

association (Cote,.,,,,,rttal = .294). This interaction is graphically presented in Figure T-1.

As shown in Figure T-1, the interaction profiles for the two data patterns were similar.

The Total error rates were slightly lower for Data Pattern I than for Data Pattern II. When the

separation of the two populations was large (i.e., d2 = 6.7), the population proportion factor had a

smaller impact on the Total error rate. However, when the separation was smaller (i.e., d2 = 2.2

or 0.7), the impact of population proportion on the error rate increased. The differences in the

mean Total error rates between 0.50:05 and 0.1:0.9 population proportion conditions increased

53



53

from .001 (when d2 = 6.7) to .18 (when d2 = 0.7).

Results from both data patterns indicated that the impact of population proportions on

Total error rates was the strongest when the two populations were not well separated (i.e., d2 =

0.7). When the two populations were well separated (i.e., d2 = 6.7), differences in population

proportions had little impact on Total error rates.

Effects Concerning Statistical Methods

For Data Pattern I, four effects concerning the method (i.e., the "within-subjects") factor

were considered practically significant according to the criterion of copa2 > .06. These five

effects were: (a) the main effect of methods, (b) method by population proportion interaction, (c)

method by equality of covariance matrices interaction, (d) method by group separation

interaction, and (e) method by population proportion by group separation interaction. For Data

Pattern II, four of the five effects listed above were considered practically significant except for

the method by equality of covariance matrices interaction.

Main Effect of the Method Factor

The four statistical methods (i.e., LPM, LDF, LR, and KM) were treated as levels of the

"method" factor. This factor was statistically significant at a = .0016 and accounted for 18.49%

( 772 = .1849) and 68.48% (772= .6848) of the sample variance of Total error rates for Data

Patterns I and II, respectively. coma, equaled .829 and .947 for Data Patterns I and II,

respectively indicating a strong association.

The mean Total error rate for LPM was .157 for Data Pattern I, and .158 for Data Pattern

II. The mean error rates for LDF were .152 and .155 for Data Patterns I and II, respectively. The

mean error rate for LR was .153 for Data Pattern I and .157 for Data Pattern II. The mean error

rates for KM were .264 and .464 for Data Patterns I and II, respectively. The Dunn-idalc
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procedure was applied to further examine pairwise mean differences among the four methods.

Results from the Dunn-S idak procedure indicated that the means Total error rates were

statistically significantly different from each other for both data patterns.

In general, KM yielded the highest mean Total error rate and LDF the lowest. The mean

error rates for LPM were only slightly higher than those for LR, even though the differences

were statistically significant.

Two-way Method by Data Property Interaction

For both data patterns, the method factor was found statistically significantly interacting

with all five data property factors at a = .0016. For Data Pattern I, only 3 two-way interactions

were considered practically significant according to the criterion of copa2,,,, > .06. These three

interactions were (a) method by population proportions interaction, (b) method by equality of

covariance matrices interaction, and (c) method by group separation interaction. For Data Pattern

II, only the method by population proportions interaction and the method by group separation

interaction were considered practically significant. These three interactions are discussed in

greater details below.

Method by population proportion interaction. This two-way interaction accounted for

18.27% (772= .1827) and 4.34% (712 = .0434) of the sample variance of Total error rates for Data

Patterns I and II, respectively. copa,,,,, values (.827 for Data Pattern I and .533 for Data Pattern II)

indicated a strong association between this interaction and the error rate. The interaction is

graphically presented in Figure T-2. Similar interaction profiles were found for both data patterns.

The means and standard deviations for the interaction are summarized in Table T-5.

As shown in Figure T-2, the interaction profiles for the two data patterns were similar to

the profiles shown in Figure G2-4. The performances of the four methods depended on sample
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representativeness. For each data patter, the performances of LPM, LDF, and LR were similar

but different from KM. The mean Total error rates of these three methods were the lowest when

the population proportions were 0.1:0.9 and the highest under the 0.5:0.5 split.

Although the performance of KM was different for the two data patterns, the mean error

rates were the lowest under the 0.5:0.5 condition and the highest under the 0.1:0.9 condition.

According to Table T-5, for Data Pattern I, KM slightly outperformed the other three methods

only when the population proportions were 0.5:0.5. When population proportions were 0.25:0.75

and 0.1:0.9, Total error rates of KM were substantially higher than those for the other three

methods. For Data Pattern II, KM performed poorly in all three population proportion conditions,

compared to the other three methods. The discrepancies between 772 and cop,,2 mai values were

caused mainly by the inconsistent performance of KM for the two data patterns.

Results led to the following conclusions: when the population proportions were extreme

(i.e., 0.1:0.9 or even 0.25:0.75), LDF was the best method in predicting group memberships. KM

was not a method of choice when population proportions were extreme. When population

proportions were 0.5:0.5, the performances of LPM, LDF, and LR were almost identical; KM

performed as well as the other three methods only for Data Pattern I.

Method by equality of covariance matrices interaction. This two-way interaction

accounted for 0.46% (772= .0046) and 0.04% (r72= .0004) of the sample variance of Total error

rates for Data Patterns I and II, respectively. The top2 r, value (.107 for Data Pattern I) indicated

a moderate association between this interaction and the error rate. However, for Data Pattern II,

the copa2,,,,, value (.011) signified a weak association. The interaction is graphically presented in

Figure T-3. A similar interaction profile was found for both data patterns. The means and

standard deviations for the interaction are summarized in Table T-6.
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As shown in Figure T-3, unequal covariance matrices conditions had a small impact on

the differential performances of LPM, LDF, and LR. Yet, the mean Total error rates of KM

depended on the condition of equality of covariance matrices. The performances of LPM, LDF,

and LR were similar for each data pattern. However, KM performed differently for the two data

patterns and also from LPM, LDF, and LR.

All four methods performed slightly better when the covariances of Population #1 were

four times of those of Population #2. KM performed poorly compared to the other three methods

regardless of the conditions of equality of covariance matrices (see Table T-6). Total error rates

of KM for Data Pattern I were lower than those of Data Pattern II. The discrepancies between 772

and cop,,2mai values were caused mainly by the inconsistent performance of KM for the two data

patterns.

Results led to the following conclusions: all four methods performed better when

Population #1's covariances were larger than Population #2's. LDF was the best method

regardless of the condition of equality of covariance matrices whereas KM was the poorest.

Method by group separation interaction. This two-way interaction accounted for 0.93%

(772 = .0093) of the Total error rate variance for Data Pattern I, and 0.79% (772= .0079) for Data

Pattern II. A strong association between this interaction and the error rate was detected

(ft) 2pa mai = 195 and .173 for Data Patterns I and II, respectively). The interaction is graphically

presented in Figure T-4 and the means and standard deviations of Total error rate are

summarized in Table T-7.

As shown in Figure T-4, the performances of the four methods depended on the degree of

separation between the two populations' means. The further the two populations separated, the

lower was the Total error rate regardless which method was used. The performances of LPM,
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LDF, and LR were similar for each data pattern. However, KM performed differently for the two

data patterns, also from LPM, LDF, and LR.

In Table T-7, for both data patterns, KM performed poorly compared to the other three

methods regardless of the degree of group separation. The mean Total error rates of KM were

lower for Data Pattern I than for Data Pattern II. The impact of group separation on Total error

rates was larger for Data Pattern I than for Data Pattern II. The differences among the mean Total

error rates of the three levels of group separation were larger for Data Pattern I than for Data

Pattern II.

Results led to the following conclusions: LPM performed as well as LDF or LR when the

two populations were not well separated. KM did not perform as well as the other three methods.

Three-way Method by Data Property Interaction

The method by population proportion by group separation interaction was the only three-

way interaction considered practically significant according to the criterion of Wpa2mai > .06. In

addition to this three-way interaction, the method by population proportion by equality of

covariance matrices interaction is also included to contrast the results of this study with the

findings from Fan and Wang (1999). They are the only results discussed here.

Method by population proportion by group separation interaction. This interaction

explained 1.85% (712 = .0185) and 0.26% (772= .0026) of the sample variance of Total error rates

for Data Patterns I and II, respectively. A strong association between this interaction and the

error rate was detected (copa = .326) for Data Pattern I. However, for Data Pattern II, only a

moderate association (co2

partial .065) was found. The means and standard deviations of the error

rate for the three-way interaction are summarized in Table T-8. The interaction is graphically

presented in Figure T-5.
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As shown in Figure T-5, the performances of the four methods in predicting the group

membership depended on the combinations of population proportions and group separation. The

interaction profiles for LPM, LDF, and LR were similar for the two data Patterns. Yet they were

different from those of KM.

As shown in Figures T-5(a)-(c), the mean Total error rates increased as the group

separation decreased regardless of population proportions. The mean Total error rates were the

highest when population proportions were 0.5:0.5 and the lowest when proportions were 0.1:0.9,

regardless of the degree of group separation. However, the differences among the mean error

rates, at the three levels of population proportions, became larger as the separation between the

two populations decreased.

Figure T-5(d) illustrates the population proportion by group separation interaction under

KM. The interaction profiles were different for the two data patterns. For Data Pattern I, the

mean Total error rates increased as the separation between the two populations decreased,

regardless of population proportions. Meanwhile, the mean error rates increased as the

population proportions deviated from the 0.5:0.5 split, regardless of group separation. KM

performed as well as the other three methods when the population proportions were 0.5:0.5 and,

especially, when the two populations were not well separated (see Table T-8). For Data Pattern II,

the mean error rates of KM were substantially higher than those of the other three methods.

Different population proportions had little impact on KM's performances, when group

separations (d2) were 2.2 and 0.7. When d2 = 6.7, the mean Total error rates increased as the

population proportions deviated from 0.5:0.5.

Results indicated that LPM performed as well as LDF and LR when either the population

proportions were within the range (i.e., 0.25:0.75 0.5:0.5) or the two populations were not well
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separated (i.e., d2 = 2.2 or 0.7). LR did not outperform LDF when the population proportions

were 0.1:0.9. KM performed as well as the other three methods when the population proportions

were 0.5:0.5 and the two populations were not well separated.

Method by population proportion by equality of covariance matrices interaction. This

three-way interaction explained 0.23% ( r/2= .0023) and 0.01% (r72 = .0001) of the sample

variance of Total error rates for Data Patterns I and II, respectively. This interaction exhibited a

weak association ( cop,,2 ,jar = .058 and .003 for Data Patterns I and II) with the Total error rate.

This interaction is included here in order to contrast the results of this study with the findings

from Fan and Wang (1999). The means and standard deviations of Total error rate for the three-

way interaction are summarized in Table T-9.

In Table T-9, Total error rates of LPM, LDF, and LR were comparable. The performance

of LPM was not as good as the other two methods when population proportions deviated from

0.5:0.5. The performance of KM was different for the two data patterns. For Data Pattern I, KM

performed slightly better than the other three methods when population proportions were 0.5:0.5.

For Data Pattern II, KM did not perform as well as the other three methods in all combinations of

population proportion and equality of covariance matrices. When population proportions were

either 0.1:0.9 or 0.25:0.75, smaller covariances in Population #1 had a negative impact on the

Total error rates whereas larger covariance in Population #1 had a positive impact. However,

when population proportions were 0.5:0.5, both conditions of covariance matrices had a positive

impact on the error rates.

Results indicated that (a) when population proportions were 0.5:0.5, violation of

homogeneity of covariance matrices did improve the accuracy in predicting group membership;

(b) if the Total error rate was the main concern, any of LPM, LDF, or LR methods performed as
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well as the others; and (c) KM was a viable alternative when population proportions were 0.5:0.5

and the Total error rate was the objective of the research.

8. Implications for Educational Researchers

Classification enables men and women to make sense of the information they encounter.

Aldenderfer and Blashfield (1984) state,

[c]lassification is also a fundamental process of the practice of science since

classification systems contain the concepts necessary for the development of theories

within a science. (p. 7)

Classification is closely related to another important human activityprediction. In this study,

the accuracies of predicting two-group membership by K-means clustering were compared with

those derived from linear probability modeling, linear discriminant function, and logistic

regression under various data properties. Three predictive error rates (Group 1, Group 2, and

Total) provided the basis for comparisons.

Findings in this study echoed Gilbert's (1969) conclusion that moderate violation of

homogeneity of covariance matrices assumption had only a mild impact on error rates. The use

of a ratio of 4 in the two conditions of heterogeneity of covariance matrices exhibited only a

small impact on the three error rates. The direction of impact of heterogeneity of covariance

matrices on the performances of LPM, LDF, LR and KM depended on population proportions

and the type of error rates.

In the field of education, the targeted population proportions are mostly extreme. The

accuracy of predicting membership of the smaller population (i.e., Population #1 in this study) is

frequently the main focus. The selection of LPM, LDF, or LR in this situation depended on the

conditions of heterogeneity of covariance matrices. When population proportions were 0.1:0.9,
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the condition in which Population #1 had smaller covariances exhibited a negative impact while

the condition in which Population #1 had larger covariances had a positive impact on the error

rates of LPM and LDF. However, both conditions of heterogeneity of covariance matrices had a

positive impact on the performance of LR. LPM was not the method of choice when the

accuracy of predicting membership in the smaller population (i.e., Population #1) was the main

objective. LR should be selected when Population #1 had smaller covariances; LDF should be

selected when Population #1 had larger covariances.

For KM, when unequal covariance matrices of the two populations existed, observations

from the population with smaller covariances were less likely to be misclassified than members

of the population with larger covariances. When population proportions deviated from 0.5:0.5,

the condition in which Population #1 had larger covariances minimized the Group 2 error rate.

Consequently, this condition had the lowest Total error rate. When population proportions were

0.5:0.5, both conditions of heterogeneity of covariance matrices minimized the Total error rate,

compared to the Total error rate obtained when the two populations had equal covariance

matrices. Depending on the data pattern, KM could be an alternative method especially when the

population proportions were extreme.

Without the knowledge of population proportions, samples representative of population

proportions are hard to obtain in some situations. Kao and McCabe (1991) suggested that equal

sample sizes for the two populations should be used in these situations. Findings of this study

elaborated on the appropriateness of this suggestion. If the proportions of the two populations

were similar, maintaining equal sample sizes would have little impact on individual group's as

well as the total error rates. However, if the population proportions were extreme, equal sample

sizes implied that Population #1 was over-sampled while Population #2 was under-sampled.
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Consequently, for LPM, LDF, and LR, there would be a reduction in Group 1 error rate while an

increment in Group 2 error rate, compared to the error rates obtained from a representative

sample. Sampling equal number of observations from the underlying populations would favor

the prediction of membership for the smaller population, but, had little impact on the Total error

rates.

For KM, when Population #1 was over-sampled, there would be an increment in Group 1

error rate while a reduction in Group 2 error rate, compared to the error rate obtained from a

representative sample. In other words, sampling equal number of observations from the

underlying populations would favor the prediction of membership for the larger population.

Consequently, higher Group 1 and lower Total error rates would be obtained in this case,

compared to the error rates obtained from a representative sample.

Findings in this study partially supported the proposition that the further the two

populations separated, the lower was the error rate. For KM, this proposition correctly described

the impact of group separation on Total as well as separate group error rates. For LPM, LDF, and

LR, this proposition describes the impact of group separation on only Group 1 and Total error

rates. However, the impact of group separation on Group 2 error rate was not fully consistent

with the above proposition. When population proportions were 0.5:0.5, the further the two

populations separated, the lower was Group 2 error rate. However, when population proportions

were 0.25:0.75, the mean error rate was the lowest when d2 = 6.7 and the highest when d2 = 2.2.

The irregular impact of group separation on Group 2 error rate was unexpected. Additional

studies are needed in order to fully investigate this phenomenon. Findings of this study did not

support the notion that increasing group separation should have a negative impact on the

superiority of LR over LDF. Increasing group separation may lower the efficiency of LR relative
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to LDF in parameter estimations (Efron, 1975). However, the inefficiency in parameter

estimations did not seem to have a strong impact on the accuracies of prediction within the range

of Mahalanobis distance from 0.7 to 6.7.

The present study found similar performances by LPM, LDF, and LR for the two data

patterns. This implies that the data property factors had consistent and uniform impacts on the

error rates regardless of the data pattern. However, for KM, the performances were different for

the two data patterns. This implies that some factor(s) other than those manipulated and

investigated in this study had an influence on the performance of KM in predicting two group

memberships. One of the possible factors is the mean structures of the two data patterns. For

Data Pattern I, all three means of Population #2 were higher than those of Population #1.

However, for Data Pattern II, five out of eight means (i.e., Xl, X3, X3, X4, and X8) were higher

in Population #1 than Population #2; Population #2 had higher means in the remaining three

covariates. The differences in mean structure indicated that the two populations overlapped

differently for the two data patterns. The pattern of how the two populations overlapped affected

the performances of KM, but had little effect on the performances of the other three methods.
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Table 1

Data Pattern I

Common correlation matrix (R)

X1

X1

1.00
X2 X3

X2 .30 1.00
X3 .50 .40 1.00

Mean structure

111 5.00 5.00 5.00
112 9.00 9.00 9.00

d2 =6.709

Equal variance condition:

2...2
(2) " (pooled)

X1 X2 X3
4.00 4.00 4.00

Unequal variance conditions [where Population #1 has smaller variances]:

Population
proportions: .50:.50

a20) 1.60 1.60 1.60

02(2) 6.40 6.40 6.40

Population
proportions: .25:.75

02(1) 1.23 1.23 1.23
62(2) 4.92 4.92 4.92

Population
proportions: .10:.90

62(1) 1.08 1.08 1.08

62(2) 4.32 4.32 4.32

Unequal variance conditions [where Population #1 has larger variances]:

Population
proportions: .50:.50

02(1) 6.40 6.40 6.40

02(2) 1.60 1.60 1.60

Population
proportions: .25:.75

02(1) 9.16 9.16 9.16

02(2) 2.29 2.29 2.29

Population
proportions: .10:.90

62(1) 12.32 12.32 12.32
02(2) 3.08 3.08 3.08

d2=2.236

Equal variance condition:

6 (1)=62(2)= 0(pooled)

X1 X2 X3
12.00 12.00 12.00
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Unequal variance conditions [where Population #1 has smaller variances]:

Population Population Population proportions:
proportions: .50:.50 proportions: .25:.75 .10:.90

a2
(1) 4.80 4.80 4.80 a2(1) 3.69 3.69 3.69

CY2 (1) 3.24 3.24 3.24
62(2) 19.2 19.2 19.2 a2(2) 14.76 14.76 14.76 a2(2) 12.96 12.96 12.96

Unequal variance conditions [where Population #1 has larger variances]:

Population
proportions: .50:.50

a2(1) 19.2 19.2 19.2

a2(2) 4.80 4.80 4.80

Population
proportions: .25:.75

a2(1) 27.44 27.44 27.44
a2(2) 6.86 6.86 6.86

2
a (1)

2
a (2)

Population proportions:
.10:.90

36.92 36.92 36.92
9.23 9.23 9.23

d2=0.745

Equal variance condition:

0(1)=a(2)= 0(pooled)

X1 X2 X3
36.00 36.00 36.00

Unequal variance conditions [where Population #1 has smaller variances]:

Population
proportions: .50:.50

02(1) 14.4 14.4 14.4

02(2) 57.6 57.6 57.6

Population
proportions: .25:.75

a2(1) 11.08 11.08 11.08
62(2) 44.32 44.32 44.32

a2 (1)
2

a (2)

Population proportions:
.10:.90

9.73 9.73 9.73
38.92 38.92 38.92

Unequal variance conditions [where Population #1 has larger variances]:

Population

2

proportions: .50:.50
a(1) 57.6 57.6 57.6
a2(2) 14.4 14.4 14.4

Population
proportions: .25:.75

a2(1) 82.28 82.28 82.28
(52(2) 20.57 20.57 20.57

2
(1)

02(2)

Population proportions:
.10:.90

110.76 110.76 110.76
27.69 27.69 27.69

Note. d2 is group separation measured in Mahalanobis distance: 0-11 P2 YE poi oled(111 P2)

where E pooled = X R x 6pooled and C r pooled is a diagonal matrix with pooled standard

deviations of the variables in the diagonal.
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Table 2

Data Pattern II

Common correlation matrix (R)
X1 X2

X1 1.00
X3 X4 X5 X6 X7 X8

X2 .45 1.00
X3 .05 .25 1.00
X4 .35 .05 .25 1.00
X5 .35 .10 .35 .55 1.00
X6 .05 .25 .50 .15 .40 1.00
X7 -.35 .05 .40 .15 .30 .41 1.00
X8 .30 .30 .50 .35 .60 .50 .45 1.00

Mean structure
!A1 12.50 15.00 15.95 12.65 12.15 14.15 18.20 15.20
g2 11.40 14.25 15.00 11.30 12.90 15.00 19.20 14.50

d2=6.785

Equal variance condition:

X1 X2 X3 X4 X5 X6 X7 X8
a2(1)=0 2(2)=a2 (pooled) 1.00 2.00 2.00 1.50 1.20 2.00 2.50 2.00

Unequal variance condition [where Population #1 has smaller variances]:

Population
proportions: .50:.50

G2(1) = a2 (pooled) / 2.5
02(2) = a (pooled) x 4/2.5

Population
proportions: .25:.75

G2(1) = a2 (pooled) / 3.25
a (2) = 02 (pooled) x 4/3.25

Population
proportions: .10:.90

G2(1) = a2 / 3.7
02(2) = 02 (pooled) x 4/3.7

Unequal variance condition [where Population #1 has larger variances]:

Population
proportions: .50:.50

G2(1) = 02 (pooled) x 4/2.5
G2(2) = a2 (pooled) / 2.5

Population
proportions: .25:.75

02(1) = Cr2 (pooled) x 4/1.75
G2(2) = a (pooled) / 1.75

00

Population

2
proportions: .10:.90

_2
a (i) u (pooled) x 4/1.3
02(2) = 02 (pooled) / 1.3
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d2=2.262

Equal variance condition:

a2(1)=a (2)=02 (pooled)

X1 X2 X3 X4 X5 X6 X7 X8
3.00 6.00 6.00 4.50 3.60 6.00 7.50 6.00

Unequal variance 'condition [where Population #1 has smaller variances]:

Population
proportions: .50:.50

a2(1) = a2 (pooled) / 2.5
a2(2) = a2 (pooled) x 4/2.5

Population
proportions: .25:.75

02(1) = a2 (pooled) / 3.25
a2(2) = a2 (pooled) x 4/3.25

Population
proportions: .10:.90

2 2
a (1) a (pooled) / 3.7
a2(2) = a2(poolec) x 4/3.7

Unequal variance condition [where Population #1 has larger variances]:

Population
proportions: .50:.50

a2(1) = a2
2

a
(pooled) x 4/2.5

a (2) gu (pooled) / 2.5

Population
proportions: .25:.75

a2(l) = a2 (pooled) x 4/1.75
a2(2) a2 (pooled) / 1.75

Population
proportions: .10:.90

020) = a2 (pooled) x 4/1.3
2 _2

a (2) (pooled) / 1.3

d2=0.754

Equal variance condition:

2 2 __2
a (1)-0 (2)-o (pooled)

X1 X2 X3 X4 X5 X6 X7 X8
9.00 18.00 18.00 13.50 10.8 18.00 22.5 18.00

Unequal variance condition [where Population #1 has smaller variances]:

Population
proportions: .50:.50

a2(1) = a2 (pooled) / 2.5
a2(2) = a2 (pooled) x 4/2.5

Population
proportions: .25:.75

a22(1) = a2 (pooled) / 3.25
a (2) = a2 (pooled) x 4/3.25

Population
proportions: .10:.90

0.2(1) a2 (pooled) / 3.7
_2
t-) (2) = a (pooled) x 4/3.7

Unequal variance condition [where Population #1 has larger variances]:

Population
proportions: .50:.50

2

2
Li (1) = k-) (pooled) X 4/2.5
a Li (2) = a (pooled) / 2.5

Population
proportions: .25:.75

02(1) = a2 (pooled) x 4/1.75
2 2

a (2) a (pooled) / 1.75
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Population
proportions: .10:.90

0-2(1) = a2 (pooled) x 4/1.3
a2(2) = a2 (pooled) / 1.3
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Note. d2 is group separation measured in Mahalanobis distance: (p, 2 pooled (Pi P2)

where spooled = C r pooled x R X Cr pooled , and (spooled is a diagonal matrix with pooled standard

deviations of the variables in the diagonal.
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Table G1-1

Means and Standard Deviations of Group 1 Error Rates of 200 Replications for Data Pattern I

Covariance matrices = Equal and Group separation = 6.7

= cn =0.,... 0
'-' 0
Ct. Cl.0 2

0.. c,

-ci

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .536 .521 .652 .660 .800 .817

Std .131 .091 .136 .082 .119 .082

LDF Mean .298 .302 .337 .340 .379 .369
0.10

Std .114 .077 .118 .076 .131 .080

0.90
LR Mean .292 .299 .332 .337 .371 .363

Std .121 .078 .118 .077 .128 .082

KM Mean .031 .029 .027 .022 .022 .022

Std .0041 .026 .040 .022 .033 .026

LPM Mean .183 .174 .222 .218 .283 .293

Std .061 .039 .069 .048 .076 .052

LDF Mean .174 .165 .200 .193 .229 .233
0.25

Std .059 .038 .066 .045 .067 .049

0.75
LR Mean .171 .165 .201 .194 .229 .232

Std .061 .037 .068 .046 .068 .050

Mean .069 .068 .069 .064 .064 .059

Std .038 .028 .036 .026 .039 .024

LPM Mean .0074 .070 .101 .100 .129 .098

Std .029 .019 .032 .023 .035 .022

LDF Mean .074 .071 .101 .100 .129 .098
0.50

Std .029 .019 .032 .023 .035 .022

0.50
LR Mean .074 .072 .102 .100 .129 .098

Std .029 .019 .035 .025 .037 .023

KM Mean .103 .101 .100 .099 .093 .099

Std .035 .027 .033 .025 .030 .023
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Covariance matrices = Equal and Group separation = 2.2

'''
.2 g8 'E
D 0
ra. 0..o 0

a., ft'

-o

f
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .930 .945 .979 .983 .996 .998

Std .070 .049 .039 .025 .017 .008

LDF Mean .726 .721 .772 .773 .820 .803
0.10

Std .116 .083 .115 .072 .115 .080

0.90
LR Mean .712 .714 .760 .767 .812 .798

Std .120 .088 .121 .077 .119 .082

KM Mean .094 .111 .117 .106 .110 .094

Std .076 . .054 .070 .046 .070 .050

LPM Mean .463 .454 .553 .545 .692 .698

Std .093 .058 .091 .053 .091 .057

LDF Mean .438 .426 .495 .485 .573 .582
0.25

Std .091 .056 .085 .051 .087 .060

0.75
LR Mean .436 .425 .493 .484 .570 .579

Std .092 .057 .084 .052 .087 .061

KM Mean .170 .166 .151 .161 .154 .146

Std .060 .041 .051 .044 .054 .039

LPM Mean .154 .159 .229 .228 .320 .319

Std .037 .031 .049 .035 .055 .038

LDF Mean .155 .161 .229 .228 .319 .317
0.50

Std .038 .031 .049 .035 .055 .038

0.50
LR Mean .156 .161 .230 .228 .318 .317

Std .039 .031 .049 .036 .054 .038

KM Mean .245 .248 .226 .226 .212 .217

Std .051 .037 .050 .036 .052 .033
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Covariance matrices = Equal and Group separation = 0.7

Z cn
0 °0
1.3 t
= 0
fa, 0.

00 'sa.

0
i

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

0.10

0.90

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.999

.008

.958

.054

.953

.057

.238

.098

.999

.005

.960

.040

.958

.043

.223

.063

1.00

.000

.974

.043

.097

.048

.234

.108

1.00

.002

.973

.034

.971

.035

.239

.069

1.00

.000

.981

.034

.979

.038

.221

.099

1.00

.000

.983

.027

.982

.027

.223

.068

0.25

0.75

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.738

.084

.702

.086

.701

.084

.288

.064

.751

.056

.713

.054

.712

.054

.280

.046

.861

.075

.808

.081

.803

.083

.278

.064

.853

.057

.787

.063

.787

.063

.272

.051

.950

.048

.879

.073

.877

.073

.269

.069

.950

.034

.872

.056

.870

.057

.263

.051

0.50

0.50

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.188

.050

.190

.050

.191

.050

.350

.064

.185

.033

.189

.034

.189

.034

.355

.044

.339

.053

.339

.053

.339

.053

.337

.055

.334

.042

.334

.042

.334

.042

.332

.041

.522

.069

.518

.069

.518

.070

.318

.062

.525

.046

.521

.046

.520

.046

.318

.040
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Covariance matrices = 1:4 and Group separation = 6.7

= u'

a.o 00.o 0
a. ti,

o
15

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .520 .559 .772 .782 .934 .954

Std .171 .120 .137 .100 .080 .046

LDF Mean .145 .154 .206 .201 .282 .255
0.10

Std .092 .068 .115 .073 .125 .085

0.90
LR Mean .170 .177 .215 .209 .264 .240

Std .093 .072 .116 .074 .128 .079

KM Mean .000 .000 .000 .000 .000 .000

Std .000 .001 .000 .002 .000 .000

LPM Mean .047 .042 .076 .079 .175 .160

Std .035 .023 .043 .031 .073 .049

LDF Mean .042 .037 .058 .059 .101 .088
0.25

Std .034 .021 .035 .026 .049 .036

0.75
LR Mean .092 .085 .017 .107 .151 .136

Std .051 .033 .050 .039 .057 .044

KM Mean .001 .002 .001 .002 .001 .001

Std .006 .004 .004 .004 .003 .003

LPM Mean .012 .012 .022 .020 .040 .040

Std .013 .007 .017 .010 .022 .017

LDF Mean .013 .012 .022 .020 .040 .039
0.50

Std .013 .007 .017 .010 .022 .016

0.50
LR Mean .043 .039 .064 .060 .092 .088

Std .023 .015 .028 .020 .036 .027

KM Mean .007 .006 .006 .005 .006 .006

Std .009 .006 .009 .005 .007 .006

76



76

Covariance matrices = 1:4 and Group separation = 2.2

0aQo 0
0. a.

-o

±)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .996 .999 1.00 1.00 1.00 1.00

Std .016 .004 .006 .002 .000 .000

LDF Mean .851 .850 .905 .911 .949 .956
0.10

Std .102 .073 .089 .057 .064 .042

0.90
LR Mean .759 .773 .825 .838 .889 .902

Std .129 .093 .125 .086 .102 .068

KM Mean .008 .006 .007 .006 .004 .006

Std .021 .013 .020 .012 .014 .012

LPM Mean .380 .403 .610 .597 .816 .836

Std .101 .076 .126 .089 .100 .070

LDF Mean .340 .357 .502 .487 .637 .653
0.25

Std .093 .071 .123 .082 .115 .088

0.75
LR Mean .351 .370 .476 .464 .585 .594

Std .088 .065 .112 .076 .108 .086

KM Mean .020 .017 .016 .015 .015 .015

Std .020 .013 .018 .012 .018 .013

LPM Mean .061 .059 .126 .117 .241 .242

Std .028 .017 .039 .026 .059 .044

LDF Mean .061 .060 .126 .117 .239 .238
0.50

Std .029 .017 .039 .026 .058 .044

0.50 LR Mean .091 .088 .167 .157 .275 .273

Std .035 .021 .044 .030 .059 .040

KM Mean .046 .044 .040 .038 .037 .036

Std .030 .017 .024 .017 .022 .016
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Covariance matrices = 1:4 and Group separation = 0.7

= -
....0 85 t
= Q.0,0 0

ri, 15,

-0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean 1.00 1.00 1.00 1.00 1.00 1.00

Std .000 .000 .000 .000 .000 .000

LDF Mean .999 .999 1.00 1.00 1.00 1.00
0.10

Std .007 .005 .005 .002 .003 .000

0.90
LR Mean .996 .997 .999 .999 .999 1.00

Std .015 .009 .007 .005 .010 .002

KM Mean .063 .059 .065 .061 .060 .055

Std .054 .036 .060 .041 .056 .040

LPM Mean .849 .859 .963 .970 .998 .998

Std .095 .061 .043 .029 .007 .008

LDF Mean .807 .812 .920 .929 .978 .983
0.25

Std .101 .070 .067 .048 .033 .021

0.75
LR Mean .777 .783 .892 .905 .961 .971

Std .105 .073 .079 .058 .047 .029

KM Mean .084 .081 .083 .080 .077 .077

Std .045 .034 .049 .032 .047 .032

LPM Mean .093 .089 .246 .250 .553 .560

Std .035 .024 .056 .039 .094 .074

LDF Mean .095 .092 .246 .250 .548 .552
0.50

Std .035 .025 .056 .039 .093 .073

0.50
LR Mean .109 .104 .265 .268 .544 .549

Std .038 .027 .056 .040 .088 .069

KM Mean .153 .142 .133 .126 .119 .116

Std .056 .041 .054 .038 .047 .034
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Covariance matrices = 4:1 and Group separation = 6.7

0= =0 o7..-. .-.5 t
sa. fa.
=

2
o

oa la,

-S

1:3o

±

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .545 .543 .598 .593 .674 .678

Std .117 .090 .115 .084 .126 .090

LDF Mean .412 .401 .404 .405 .430 .426
0.10

Std .111 .085 .117 .080 .123 .082

0.90
LR Mean .397 .396 .401 .407 .429 .447

Std .115 .091 .122 .085 .129 .092

KM Mean .218 .205 .193 .184 .170 .163

Std .100 .072 .105 .071 .103 .068

LPM Mean .279 .276 .308 .296 .344 .335

Std .068 .051 .070 .048 .072 .050

LDF Mean .271 .266 .285 .276 .302 .297
0.25

Std .067 .050 .069 .047 .068 .047

0.75
LR Mean .218 .211 .238 .228 .259 .252

Std .063 .046 .065 .044 .067 .046

KM Mean .250 .250 .252 .243 .243 .243

Std .065 .048 .069 .046 .067 .045

LPM Mean .123 .125 .160 .151 .187 .180

Std .036 .026 .039 .027 .040 .030

LDF Mean .124 .126 .160 .151 .187 .179
0.50

Std .037 .027 .039 .027 .040 .030

0.50
LR Mean .086 .087 .111 .101 .128 .123

Std .031 .021 .034 .022 .036 .026

KM Mean .227 .229 .224 .215 .219 .210

Std .047 .035 .046 .034 .043 .034
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Covariance matrices = 4:1 and Group separation = 2.2

=0 g
5'.-- 't-0 0t:,, 0.o 0'

-0

S),

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .827 .844 .877 .887 .926 .936

Std .109 .076 .101 .069 .077 .056

LDF Mean .641 .664 .672 .672 .700 .678
0.10

Std .121 .085 .125 .082 .126 .093

0.90 LR Mean .674 .704 .710 .721 .736 .731

Std .127 .085 .127 .085 .129 .090

KM Mean .278 .276 .262 .272 .266 .255

Std .101 .075 .105 .063 .104 .065

LPM Mean .480 .489 .546 .541 .600 .607

Std .078 .053 .079 .060 .087 .060

LDF Mean .463 .470 .507 .503 .533 .530
0.25

Std .077 .051 .077 .056 .083 .059

0.75
LR Mean .443 .449 .497 .492 .536 .533

Std .078 .052 .082 .055 .089 .062

KM Mean .358 .368 .348 .348 .327 .322

Std .073 .056 .076 .053 .075 .055

LPM Mean .211 .209 .286 .281 .348 .347

Std .050 .030 .048 .034 .053 .041

LDF Mean .212 .210 .286 .281 .347 .345
0.50

Std .050 .030 .048 .034 .053 .041

0.50
LR Mean .195 .195 .254 .250 .310 .309

Std .045 .027 .044 .032 .052 .040

KM Mean .395 .396 .387 .389 .369 .376

Std .059 .037 .058 .038 .055 .041
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Covariance matrices = 4:1 and Group separation = 0.7

0 v2
.0- g
11 *-E
0 00.. 0.0a. ti.

-0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .962 .976 .975 .986 .984 .995

Std .055 .034 .048 .025 .035 .014

LDF Mean .852 .857 .858 .872 .864 .890
0.10

Std .112 .087 .112 .082 .109 .077

0.90
LR Mean .875 .882 .879 .902 .890 .918

Std .106 .077 .107 .072 .098 .066

KM Mean .364 .352 .346 .367 .361 .347

Std .112 .077 .102 .080 .122 .079

LPM Mean .698 .695 .753 .767 .838 .843

Std .097 .059 .089 .068 .089 .064

LDF Mean .669 .667 .704 .712 .757 .755
0.25

Std .095 .056 .089 .066 .099 .066

0.75
LR Mean .668 .667 .711 .720 .772 .774

Std .098 .058 .091 .068 .098 .066

KM Mean .400 .411 .391 .391 .380 .379

Std .071 .054 .071 .053 .071 .052

LPM Mean .235 .227 .376 .371 .501 .501

Std .051 .040 .048 .038 .060 .038

LDF Mean .237 .230 .376 .371 .499 .498
0.50

Std .051 .040 .048 .038 .060 .038

0.50
LR Mean .238 .232 .364 .360 .484 .483

Std .050 .039 .048 .038 .060 .037

KM Mean .464 .474 .458 .459 .444 .445

Std .058 .040 .059 .043 .063 .045
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Table G1-2 Means and Standard Deviations of Group 1 Error Rates of 200 Replications for

Data Pattern II

Covariance matrices = Equal and Group separation = 6.7

= cn
.9. 0Si t
0 °0. 0.0 0

04 it,

"0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .526 .530 .647 .652 .791 .801

Std .135 .101 .135 .091 .116 .076

LDF Mean .308 .299 .340 .336 .376 .362
0.10

Std .114 .075 .114 .083 .124 .082

0.90
LR Mean .309 .300 .337 .330 .361 .355

Std .119 .080 .122 .085 .134 .083

KM Mean .475 .465 .442 .475 .476 .463

Std .143 .111 .136 .107 .139 .106

LPM Mean .185 .179 .226 .210 .291 .282

Std .062 .040 .061 .046 .074 .056

LDF Mean .176 .170 .203 .186 .236 .223
0.25

Std .060 .040 .057 .045 .067 .050

0.75
LR Mean .179 .172 .206 .187 .240 .222

Std .064 .041 .061 .046 .068 .050

KM Mean .429 .441 .422 .455 .445 .443

Std .122 .092 .112 .086 .110 .093

LPM Mean .080 .076 .107 .098 .137 .132

Std .027 .021 .034 .026 .040 .026

LDF Mean .081 .076 .107 .098 .136 .132
0.50

Std .027 .021 .034 .026 .040 .026

0.50
LR Mean .082 .078 .110 .099 .139 .131

Std .030 .022 .036 .026 .043 .028

KM Mean .402 .423 .392 .406 .401 .414

Std .105 .085 .117 .104 .109 .096
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Covariance matrices = Equal and Group separation = 2.2

oo
tz'

o
0
0

at4

. o
-o

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .926 .942 .969 .972 .990 .995

Std .066 .047 .047 .031 .027 .012

LDF Mean .722 .719 .749 .756 .807 .807
0.10

Std .117 .085 .117 .088 .108 .076

0.90
LR Mean .706 .708 .726 .746 .789 .793

Std .117 .092 .123 .087 .111 .085

KM Mean .496 .489 .497 .485 .487 .499

Std .121 .101 .129 .087 .124 .090

LPM Mean .459 .450 .552 .556 .679 .674

Std .079 .056 .081 .065 .097 .062

LDF Mean .435 .426 .501 .497 .573 .561
0.25

Std .079 .055 .081 .059 .093 .064

0.75
LR Mean .428 .425 .494 .495 .565 .556

Std .079 .056 .082 .059 .096 .065

KM Mean .476 .493 .482 .485 .494 .482

Std .083 .063 .084 .065 .088 .057

LPM Mean .157 .161 .243 .234 .327 .331

Std .042 .030 .043 .032 .057 .037

LDF Mean .158 .163 .243 .234 .325 .329
0.50

Std .042 .030 .043 .032 .057 .036

0.50
LR Mean .161 .163 .242 .233 .326 .329

Std .043 .031 .045 .032 .057 .037

KM Mean .486 .492 .490 .490 .488 .490

Std .062 .049 .062 .046 .067 .052
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Covariance matrices = Equal and Group separation = 0.7

=0 g
0

0fa. 0.0a ft,

-0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .995 .998 .999 1.00 .999 1.00

Std .017 .006 .008 .003 .005 .000

LDF Mean .937 .945 .955 .966 .965 .983
0.10

Std .069 .042 .056 .036 .046 .024

0.90
LR Mean .929 .943 .948 .963 .955 .979

Std .073 .042 .061 .038 .056 .026

KM Mean .512 .499 .493 .501 .484 .503

Std .113 .078 .133 .080 .108 .086

LPM Mean .722 .735 .831 .843 .926 .940

Std .083 .064 .072 .053 .050 .038

LDF Mean .688 .700 .778 .779 .849 .859
0.25

Std .085 .066 .081 .058 .066 .057

0.75
LR Mean .684 .698 .774 .776 .842 .855

Std .086 .068 .081 .060 .069 .058

KM Mean .501 .496 .505 .495 .489 .498

Std .083 .056 .074 .055 .078 .054

LPM Mean .197 .191 .346 .341 .516 .512

Std .046 .033 .057 .037 .063 .047

LDF Mean .200 .194 .346 .341 .513 .509
0.50

Std .046 .033 .057 .037 .063 .047

0.50
LR Mean .201 .194 .348 .341 .513 .507

Std .046 .034 .057 .038 .063 .047

KM Mean .498 .500 .495 .498 .493 .495

Std .062 .042 .062 .043 .059 .044
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Covariance matrices = 1:4 and Group separation = 6.7

0 0t
"a. 0as0 0a. t.

0

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .497 .537 .741 .754 .932 .941

Std .146 .119 .148 .101 .080 .053

LDF Mean .149 .150 .195 .186 .266 .255
0.10

Std .088 .065 .099 .077 .126 .089

0.90
LR Mean .179 .182 .218 .195 .255 .244

Std .103 .077 .109 .077 .130 .082

KM Mean .318 .369 .359 .364 .393 .378

Std .166 .129 .171 .127 .187 .126

LPM Mean .049 .043 .074 .079 .156 .161

Std .032 .021 .047 .032 .064 .050

LDF Mean .044 .036 .056 .058 .089 .094
0.25

Std .030 .019 .040 .025 .047 .036

0.75
LR Mean .100 .089 .111 .112 .143 .143

Std .051 .035 .058 .037 .056 .041

KM Mean .192 .225 .215 .235 .253 .315

Std .141 .125 .124 .108 .157 .134

LPM Mean .014 .011 .022 .022 .040 .041

Std .013 .008 .017 .011 .020 .016

LDF Mean .014 .011 .022 .022 .040 .040
0.50

Std .013 .008 .017 .011 .020 .016

0.50
LR Mean .046 .041 .069 .061 .092 .091

Std .026 .016 .028 .020 .036 .025

KM Mean .150 .176 .165 .181 .192 .214

Std .132 .121 .127 .119 .128 .123
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Covariance matrices = 1:4 and Group separation = 2.2

00 g
'. ,E
0 0a. 20.0

A., fa,

-0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .992 .997 1.00 1.00 1.00 1.00

Std .026 .011 .004 .000 .000 .000

LDF Mean .820 .843 .881 .900 .930 .945
0.10

Std .114 .079 .096 .067 .076 .045

0.90
LR Mean .723 .749 .794 .813 .840 .880

Std .131 .096 .124 .098 .129 .076

KM Mean .453 .428 .453 .454 .457 .455

Std .160 .107 .146 .121 .151 .118

LPM Mean .385 .393 .560 .570 .805 .821

Std .098 .071 .111 .086 .095 .067

LDF Mean .348 .349 .467 .465 .626 .639
0.25

Std .095 .065 .102 .080 .111 .080

0.75
LR Mean .361 .361 .446 .450 .564 .575

Std .089 .061 .093 .073 .107 .078

KM Mean .398 .416 .413 .426 .416 .422

Std .126 .093 .123 .105 .127 .094

LPM Mean .063 .060 .120 .116 .250 .242

Std .029 .019 .038 .027 .062 .041

LDF Mean .064 .061 .120 .116 .247 .239
0.50

Std .029 .019 .038 .027 .062 .041

0.50 LR Mean .097 .092 .165 .158 .285 .277

Std .034 .024 .045 .030 .060 .040

KM Mean .384 .424 .391 .412 .398 .422

Std .120 .084 .120 .090 .109 .080
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Covariance matrices = 1:4 and Group separation = 0.7

0.10

0.90

0.25

0.75

0.50

0.50

o
ti

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean 1.00 1.00 1.00 1.00 1.00 1.00

Std .000 .000 .000 .000 .000 .000

LDF Mean .998 .999 1.00 .999 1.00 1.00

Std .013 .004 .002 .005 .004 .000

LR Mean .991 .998 .999 .998 .999 1.00

Std .028 .008 .006 .008 .009 .003

KM Mean .468 .473 .446 .476 .486 .449

Std .143 .100 .139 .097 .149 .111

LPM Mean .815 .836 .943 .961 .994 .997

Std .096 .065 .051 .033 .014 .006

LDF Mean .773 .787 .891 .915 .961 .974

Std .102 .073 .073 .051 .042 .026

LR Mean .146 .757 .856 .886 .936 .958

Std .102 .077 .082 .062 .060 .036

KM Mean .439 .462 .447 .460 .451 .470

Std .110 .077 .108 .084 .112 .083

LPM Mean .101 .094 .245 .248 .529 .551

Std .038 .022 .058 .037 .090 .072

LDF Mean .103 .096 .245 .248 .524 .543

Std .038 .022 .058 .037 .090 .072

LR Mean .122 .110 .267 .267 .523 .541

Std .041 .024 .057 .037 .087 .068

KM Mean .444 .448 .444 .445 .443 .459

Std .078 .062 .086 .066 .095 .067
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Covariance matrices = 4:1 and Group separation = 6.7

0 c"o 0
-... .9.cd t
0 0a 204o

la, ty

-oi
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .538 .541 .607 .599 .708 .676

Std .123 .081 .112 .093 .109 .085

LDF Mean .421 .411 .438 .419 .483 .434
0.10

Std .115 .080 .103 .085 .123 .083

0.90
LR Mean .402 .401 .436 .426 .480 .442

Std .113 .085 .114 .092 .127 .087

KM Mean .502 .488 .485 .501 .500 .493

Std .126 .091 .119 .083 .126 .090

LPM Mean .286 .279 .308 .310 .350 .347

Std .071 .046 .072 .051 .077 .050

LDF Mean .278 .269 .291 .293 .315 .309
0.25

Std .072 .045 .068 .050 .073 .049

0.75
LR Mean .226 .215 .241 .239 .272 .268

Std .069 .044 .068 .046 .072 .046

KM Mean .490 .492 .467 .481 .467 .484

Std .094 .068 .092 .069 .095 .064

LPM Mean .133 .127 .160 .159 .188 .187

Std .035 .025 .041 .028 .042 .032

LDF Mean .133 .128 .160 .159 .188 .186
0.50

Std .035 .025 .041 .028 .042 .032

0.50
LR Mean .096 .090 .116 .109 .132 .128

Std .032 .021 .037 .023 .037 .027

KM Mean .484 .490 .480 .483 .450 .451

Std .079 .057 .080 .063 .078 .074
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Covariance matrices = 4:1 and Group separation = 2.2

= 0o 0
z: ---cd t
0. 0-

0
0 0

a., La.

-rso
..=
15

2

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .821 .841 .856 .871 .907 .922

Std .105 .069 .104 .067 .082 .055

LDF Mean .670 .668 .674 .673 .698 .686
0.10

Std .121 .076 .119 .088 .115 .092

0.90
LR Mean .685 .696 .696 .707 .713 .726

Std .126 .080 .127 .088 .122 .096

KM Mean .501 .510 .513 .509 .509 .497

Std .110 .081 .117 .090 .113 .076

LPM Mean .498 .495 .539 .539 .602 .605

Std .072 .050 .078 .052 .082 .056

LDF Mean .479 .478 .505 .504 .540 .535
0.25

Std .072 .051 .076 .050 .081 .056

0.75
LR Mean .475 .457 .488 .490 .530 .535

Std .072 .050 .080 .051 .084 .057

KM Mean .514 .508 .515 .510 .519 .511

Std .080 .050 .079 .053 .075 .051

LPM Mean .215 .211 .298 .287 .357 .355

Std .046 .033 .047 .034 .056 .035

LDF Mean .216 .212 .298 .287 .356 .353
0.50

Std .046 .033 .047 .034 .056 .035

0.50
LR Mean .201 .196 .265 .256 .315 .315

Std .044 .030 .046 .033 .054 .035

KM Mean .519 .518 .519 .516 .514 .504

Std .061 .042 .059 .043 .059 .045
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Covariance matrices = 4:1 and Group separation = 0.7

2

0 0a. 0.o
a. 0`-.

0
15

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .929 .953 .954 .974 .971 .990

Std .067 .050 .058 .032 .045 .020

LDF Mean .809 .837 .815 .842 .825 .865
0.10

Std .101 .078 .102 .072 .101 .076

0.90
LR Mean .826 .861 .831 .870 .841 .891

Std .106 .073 .101 .069 .094 .071

KM Mean .499 .509 .512 .505 .515 .503

Std .129 .079 .112 .079 .114 .084

LPM Mean .668 .686 .741 .751 .798 .823

Std .079 .060 .078 .066 .087 .063

LDF Mean .646 .658 .696 .700 .726 .741
0.25

Std .080 .060 .079 .066 .089 .068

0.75
LR Mean .642 .656 .698 .708 .735 .758

Std .082 .063 .082 .068 .092 .067

KM Mean .519 .508 .520 .506 .512 .508

Std .075 .054 .076 .047 .075 .049

LPM Mean .254 .243 .390 .382 .511 .505

Std .050 .040 .053 .035 .057 .037

LDF Mean .256 .246 .390 .382 .509 .502
0.50

Std .050 .040 .053 .035 .057 .037

0.50 LR Mean .255 .247 .379 .369 .491 .488

Std .049 .039 .051 .034 .059 .038

KM Mean .522 .516 .525 .515 .520 .512

Std .057 .037 .055 .040 .054 .040
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Table G1-3

ANOVA Results, Eta-squared, and Partial-Omega squared of Group 1 Error Rate for Data

Pattern I on Comparing Four Methods

Source of Variation df SS MS
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 3104.29 1552.15 103075.0 <.0001 .2315 .6140

Equality of covariance (COV) 2 139.17 69.59 4621.06 <.0001 .0104 .0666

Group separation (GS) 2 3335.82 1667.91 110763.0 <.0001 .2487 .6309

Sample representativeness (SR) 2 196.25 98.13 6516.39 <.0001 .0146 .0914

Sample size (SS) 1 0.0035 0.0035 0.23 .6289 <.0001 <.0001

PP*COV 4 55.37 13.84 919.30 <.0001 .0041 .0276

PP*GS 4 327.65 81.91 5439.72 <.0001 .0244 .1437

PP*SR 4 23.48 5.87 389.84 <.0001 .0018 .0119

PP*SS 2 0.12 0.058 3.85 .0213 <.0001 <.0001

COV*GS 4 54.26 13.56 90.80 <.0001 .0040 .0270

COV*SR 4 13.43 3.36 222.98 <.0001 .0010 .0068

COV*SS 2 0.051 0.026 1.70 .1819 <.0001 <.0001

GS*SR 4 16.02 4.00 265.93 <.0001 .0012 .0081

GS*SS 2 0.14 0.071 4.72 .0090 <.0001 .0001

SR*SS 2 0.049 0.025 1.63 .1956 <.0001 <.0001

Error (between) 32358 487.26 0.015

Within-subject effects:

Method (4M) 3 2558.71 852.90 279409.0 <.0001 .1908 .8661

4M*PP 6 1616.77 269.46 88274.90 <.0001 .1205 .8034

4M*COV 6 291.08 48.51 15892.80 <.0001 .0217 .4239

4M*GS 6 424.10 7.68 23155.50 <.0001 .0316 .5174

4M*SR 6 91.93 15.32 5019.11 <.0001 .0069 .1885

4M*SS 3 0.052 0.017 5.69 .0007 <.0001 .0001

4M*PP*COV 12 2.08 1.67 548.27 <.0001 .0015 .0482

4M*PP*GS 12 25.92 2.91 685.15 <.0001 .0187 .3881

4M*PP*SR 12 11.64 0.97 317.75 <.0001 .0009 .0285

4M*PP*SS 6 0.12 0.021 6.77 <.0001 <.0001 .0003

4M*COV*GS 12 83.92 6.99 2291.08 <.0001 .0063 .1749

4M*COV*SR 12 2.58 0.22 7.45 <.0001 .0002 .0064

4M*COV*SS 6 0.022 0,0037 1.20 .3047 <.0001 <.0001

4M*GS*SR 12 1.64 0.89 29.48 <.0001 .0008 .0261

4M*GS*SS 6 0.045 0.0075 2.44 .0230 <.0001 .0001

4M*SR*SS 6 0.016 0.0027 0.88 .5095 <.0001 <.0001
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Source of Variation
Partial

Eta-df SS MS F P Omega-
Squared

Omega -
Squared

Error (within) 97074 296.32 0.0031

SS
Note. Eta square (772) is defined as: 77 = , where SSe ff ect

is the effect sum of squares, and SSima is the
SS

effe

total

total sum of squares. Partial omega squared was calculated from the formula: co2
dfeffect(Feffect 1)

mma/
df ffect(F ffect 1)+ N

where dfeffect is the degrees of freedom for the effect, Feffect is the F ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.
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Table G1-4

ANOVA Results, Eta-squared, and Partial-Omega squared of Group 1 Error Rate for Data

Pattern II on Comparing Four Methods

Source of Variation df SS MS
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 3402.68 1701.34 112308.0 <.0001 .3286 .6341

Equality of covariance (COV) 2 53.01 26.51 1749.78 <.0001 .0051 .0263

Group separation (GS) 2 2928.04 1464.02 96642.30 <.0001 .2828 .5986

Sample representativeness (SR) 2 21.15 105.08 6936.18 <.0001 .0203 .0967

Sample size (SS) 1 0.25 0.25 16.72 <.0001 <.0001 .0001

PP*COV 4 67.36 16.84 1111.67 <.0001 .0065 .0331

PP*GS 4 296.40 74.10 4891.46 <.0001 .0286 .1311

PP*SR 4 22.13 5.53 365.23 <.0001 .0021 .0111

PP*SS 2 0.22 0.11 7.39 .0006 <.0001 .0001

COV *GS 4 148.57 37.14 2451.86 <.0001 .0143 .0703

COV*SR 4 14.86 3.72 245.24 <.0001 .0014 .0075

COV*SS 2 0.32 0.16 1.45 <.0001 <.0001 .0001

GS*SR 4 13.71 3.43 226.30 <.0001 .0013 .0069

GS*SS 2 0.34 0.17 11.07 <.0001 <.0001 .0002

SR*SS 2 0.004 0.002 0.13 .8769 <.0001 <.0001

Error (between) 32358 49.19 .015

Within-subject effects:

Method (4M) 3 173.36 57.79 11165.10 <.0001 .0167 .2054

4M*PP 6 1085.50 18.92 34955.60 <.0001 .1048 .6181

4M*COV 6 45.41 7.57 1462.22 <.0001 .0044 .0634

4M*GS 6 547.84 91.31 17641.70 <.0001 .0529 .4496

4M*SR 6 68.16 11.36 2194.91 <.0001 .0066 .0922

4M*SS 3 0.16 0.052 1.01 <.0001 <.0001 .0002

4M*PP*COV 12 15.13 1.26 243.58 <.0001 .0015 .0220

4M*PP*GS 12 225.40 18.78 3629.16 <.0001 .0218 .2515

4M*PP*SR 12 11.34 0.94 182.52 <.0001 .0011 .0165

4M*PP*SS 6 0.28 0.046 8.87 <.0001 <.0001 .0004

4M*COV*GS 12 18.43 1.54 296.70 <.0001 .0018 .0266

4M*COV*SR 12 1.51 0.13 24.28 <.0001 .0001 .0022

4M*COV*SS 6 0.28 0.046 8.95 <.0001 <.0001 .0004

4M*GS*SR 12 1.34 0.86 166.41 <.0001 .0010 .0151

4M*GS*SS 6 0.77 0.13 24.90 <.0001 .0001 .0011

4M*SR*SS 6 0.025 0.0041 0.79 .5784 <.0001 <.0001
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Source of Variation df SS MS
Eta-

Partial

Squared
Omega-
Squared

Error (within) 97074 502.42 0.0052

SSeffect

Note. Eta square 072 ) is defined as: 77 = 'where SSeffect is the effect sum of squares, and SStorai is the
SSfowl

ffect (Feffec, 1)
total sum of squares. Partial omega squared was calculated from the formula: copa ma/ =

dfeffect

dieffect(Feffed 1) + N

where df effect is the degrees of freedom for the effect, Feffe, is the F ratio for the effect, and N equals

200x3 x3 x3 x3 x2x4 (=129600) in this ANOVA model.
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Table G1-5

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportion

Interaction

Method

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

0.10:0.90 .873 .180 .682 .292 .680 .289 .138 .138

0.25:0.75 .545 .291 .495 .278 .489 .271 .176 .145

0.50:0.50 .216 .153 .216 .152 .216 .145 .212 .154

Data Pattern II

0.10:0.90 .866 .180 .676 .285 .670 .281 .473 .127

0.25:0.75 .537 .284 .488 .270 .482 .260 .448 .123

0.50:0.50 .221 .152 .220 .151 .221 .143 .437 .128

95



95

Table G1-6

Means and Standard Deviations of Group 1 Error Rate for Method by Equality of Covariance

Matrices Interaction

Equality of
covariance
matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

1:4 .540 .402 .449 .384 .451 .357 .038 .051

Equal .551 .337 .472 .303 .470 .301 .169 .111

4:1 .543 .285 .472 .238 .464 .262 .318 .110

Data Pattern II

1:4 .533 .399 .442 .379 .444 .348 .381 .155

Equal .549 .331 .470 .294 .466 .291 .475 .096

4:1 .542 .276 .474 .227 .463 .248 .502 .081
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Table G1-7

Means and Standard Deviations of Group 1 Error Rate for Method by Group Separation

Interaction

Method

Group
separation

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 .326 .281 .198 .141 .197 .132 .095 .103

2.2 .581 .319 .500 .258 .492 .247 .173 .144

0.7 .728 .305 .695 .288 .696 .287 .258 .148

Data Pattern II

6.7 .325 .276 .201 .144 .202 .134 .394 .157

2.2 .578 .314 .498 .253 .486 .237 .475 .102

0.7 .721 .299 .685 .280 .684 .277 .490 .089
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Table G1-8

Means and Standard Deviations of Group 1 Error Rate for Method by Sample

Representativeness Interaction

Method

Sample
representativeness

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

20% over .468 .347 .406 .316 .404 .309 .182 .152

Equal .542 .340 .462 .311 .459 .306 .176 .149

20% under .625 .328 .525 .303 .522 .301 .168 .145

Data Pattern II

20% over .465 .341 .405 .308 .402 .300 .451 .131

Equal .537 .335 .458 .304 .455 .296 .451 .127

20% under .622 .323 .522 .296 .516 .291 .456 .122
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Table G1-9

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportions

by Group Separation Interaction

Method

Group
separation

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 0.10:0.90 .675 .175 .319 .135 .319 .134 .072 .100

0.25:0.75 .211 .111 .182 .106 .182 .077 .104 .111

0.50:0.50 .091 .062 .091 .062 .089 .038 .109 .092

2.2 0.10:0.90 .951 .078 .781 .138 .768 .122 .126 .125

0.25:0.75 .573 .147 .499 .113 .488 .104 .174 .143

0.50:0.50 .219 .097 .219 .097 .221 .083 .218 .147

0.7 0.10:0.90 .993 .025 .945 .084 .953 .074 .215 .145

0.25:0.75 .852 .118 .803 .123 .797 .119 .249 .140

0.50:0.50 .339 .162 .338 .160 .338 .154 .308 .144

Data Pattern II

6.7 0.10:0.90 .668 .172 .324 .141 .325 .139 .441 .142

0.25:0.75 .212 .113 .185 .109 .187 .079 .386 .152

0.50:0.50 .096 .065 .096 .065 .095 .041 .353 .163

2.2 0.10:0.90 .945 .080 .775 .133 .749 .120 .483 .118

0.25:0.75 .566 .140 .496 .108 .482 .099 .471 .096

0.50:0.50 .224 .100 .223 .099 .226 .084 .470 .088

0.7 0.10:0.90 .987 .035 .930 .093 .935 .086 .493 .111

0.25:0.75 .834 .120 .785 .121 .776 .117 .488 .082

0.50:0.50 .342 .157 .341 .154 .342 .148 .487 .067
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Table G1-10

Means and Standard Deviations of Group 1 Error Rate for Method by Equality of Covariance

Matrices by Group Separation Interaction

Group
separation

Equality of
covariance

matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 1:4 .292 .352 .099 .103 .130 .092 .002 .006

Equal .329 .264 .211 .123 .209 .122 .063 .043

4:1 .355 .204 .283 .127 .251 .146 .219 .070

2.2 1:4 .582 .373 .513 .332 .493 .291 .021 .023

Equal .591 .314 .501 .237 .498 .235 .164 .073

4:1 .569 .260 .484 .181 .486 .207 .333 .085

0.7 1:4 .746 .341 .734 .336 .729 .327 .091 .055

Equal .733 .297 .705 .282 .703 .281 .280 .081

4:1 .704 .269 .648 .231 .657 .242 .402 .085

Data Pattern II

6.7 1:4 .284 .343 .096 .099 .132 .092 .261 .160

Equal .331 .258 .214 .120 .213 .119 .437 .114

4:1 .361 .205 .295 .134 .262 .151 .483 .089

2.2 1:4 .576 .371 .503 .325 .479 .277 .424 .119

Equal .590 .309 .500 .231 .494 .226 .489 .083

4:1 .568 .252 .491 .180 .485 .201 .511 .075

0.7 1:4 .740 .339 .725 .333 .720 .323 .459 .102

Equal .727 .293 .694 .274 .692 .272 .498 .077

4:1 .696 .256 .636 .212 .641 .222 .513 .075
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Table G1-11

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportion by

Equality of Covariance Matrices Interaction

Population

Proportion

Equality of
covariance

matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

0.10:0.90 1:4 .918 .165 .704 .362 .681 .349 .022 .040

Equal .879 .179 .693 .279 .687 .281 .120 .106

4:1 .822 .182 .650 .212 .672 .223 .271 .114

0.25:0.75 1:4 .548 .371 .488 .360 .489 .330 .033 .043

Equal .549 .274 .498 .258 .496 .257 .167 .098

4:1 .539 .206 .498 .190 .482 .213 .328 .087

0.50:0.50 1:4 .155 .170 .154 .168 .182 .157 .059 .061

Equal .226 .143 .226 .142 .226 .141 .221 .106

4:1 .268 .121 .268 .121 .240 .129 .354 .110

Data Pattern II

0.10:0.90 1:4 .911 .173 .695 .362 .670 .346 .429 .147

Equal .874 .180 .685 .275 .677 .274 .486 .113

4:1 .814 .174 .648 .191 .663 .202 .503 .103

0.25:0.75 1:4 .536 .365 .476 .351 .478 .318 .370 .150

Equal .541 .266 .491 .250 .489 .248 .474 .087

4:1 .535 .194 .498 .179 .479 .201 .502 .073

0.50:0.50 1:4 .154 .165 .153 .163 .184 .153 .344 .157

Equal .233 .139 .232 .138 .233 .137 .464 .085

4:1 .276 .123 .276 .122 .247 .130 .502 .063
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Table G2-1

Means and Standard Deviations of Group 2 Error Rates of 200 Replications for Data Pattern I

Covariance matrices = Equal and Group separation = 6.7

= cri
.9 c9 -c)

Vs 1
.)f0 00 0.0 0a. ft

0.10

0.90

0.25

0.75

0.50

0.50

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .005 .004 .002 .002 .000 .000

Std .005 .003 .004 .002 .001 .001

LDF Mean .022 .020 .017 .017 .014 .014

Std .013 .008 .011 .008 .010 .007

LR Mean .024 .020 .020 .017 .016 .015

Std .014 .009 .012 .008 .012 .008

KM Mean .257 .255 .270 .278 .298 .315

Std .060 .041 .057 .043 .058 .044

LPM Mean .049 .050 .037 .035 .025 .023

Std .020 .013 .016 .012 .013 .010

LDF Mean .053 .054 .046 .042 .036 .035

Std .021 .014 .018 .013 .015 .012

LR Mean .054 .055 .047 .043 .038 .035

Std .022 .014 .019 .014 .017 .012

KM Mean .135 .139 .146 .145 .160 .160

Std .041 .028 .039 .029 .046 .030

LPM Mean .129 .129 .101 .100 .073 .099

Std .035 .025 .034 .023 .028 .023

LDF Mean .129 .129 .101 .100 .074 .099

Std .035 .025 .034 .023 .028 .023

LR Mean .131 .128 .104 .102 .075 .099

Std .038 .027 .034 .025 .028 .025

KM Mean .092 .093 .100 .101 .106 .099

Std .029 .021 .036 .027 .035 .026
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Covariance matrices = Equal and Group separation = 2.2

0= =o
--o. .52cd t
5
fa. "o e

0

a sa,

Ivo=

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .002 .001 .000 .000 .000 .000

Std .004 .002 .001 .001 .000 .000

LDF Mean .020 .020 .016 .015 .011 .010
0.10

Std .014 .009 .011 .008 .011 .007

0.90
LR Mean .022 .021 .018 .016 .012 .010

Std .015 .011 .013 .009 .013 .008

KM Mean .389 .405 .403 .408 .415 .416

Std .052 .040 .054 .041 .048 .039

LPM Mean .085 .086 .052 .054 .026 .023

Std .029 .019 .023 .016 .016 .011

LDF Mean .095 .097 .070 .073 .050 .048
0.25

Std .030 .020 .025 .018 .023 .015

0.75
LR Mean .097 .098 .071 .073 .052 .048

Std .031 .020 .025 .018 .023 .015

KM Mean .300 .303 .310 .314 .332 .329

Std .051 .034 .052 .039 .051 .039

LPM Mean .324 .320 .232 .232 .154 .154

Std .056 .040 .046 .034 .041 .028

LDF Mean .322 .318 .232 .232 .155 .156
0.50

Std .055 .039 .046 .034 .041 .028

0.50
LR Mean .322 .317 .232 .233 .155 .156

Std .057 .040 .047 .034 .043 .028

KM Mean .217 .216 .232 .233 .243 .242

Std .054 .035 .051 .036 .051 .038
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Covariance matrices = Equal and Group separation = 0.7

.2 tg

Orz-0
a., ifs.,

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .001 .000 .000 .000 .000 .000

LDF Mean .007 .005 .004 .003 .003 .002
0.10

Std .010 .006 .007 .004 .005 .003

0.90
LR Mean .008 .005 .005 .004 .004 .002

Std .011 .007 .008 .005 .006 .003

KM Mean .443 .447 .454 .455 .458 .459

Std .053 .039 .050 .033 .051 .036

LPM Mean .071 .066 .033 .030 .008 .007

Std .033 .024 .024 .016 .010 .006

LDF Mean .086 .081 .054 .049 .025 .026
0.25

Std .036 .026 .030 .021 .020 .014

0.75
LR Mean .088 .082 .056 .050 .027 .026

Std .036 .026 .031 .021 .021 .014

KM Mean .390 .393 .407 .394 .406 .414

Std .052 .035 .051 .036 .054 .036

LPM Mean .529 .522 .335 .337 .189 .182

Std .064 .046 .055 .041 .048 .037

LDF Mean .527 .517 .335 .337 .191 .184
0.50

Std .064 .045 .055 .041 .048 .037

0.50
LR Mean .526 .516 .335 .337 .193 .185

Std .064 .045 .055 .042 .048 .037

KM Mean .321 .319 .330 .337 .352 .350

Std .058 .038 .054 .042 .057 .038
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Covariance matrices = 1:4 and Group separation = 6.7

cn0

1%1

0 0
't
a

o J..°

A. 0.,

V

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .007 .006 .003 .003 .001 .000

Std .007 .004 .004 .003 .002 .001

LDF Mean .026 .024 .021 .021 .017 .016
0.10

Std .014 .009 .012 .008 .010 .007

0.90
LR Mean .025 .023 .022 .020 .020 .017

Std .013 .009 .013 .008 .011 .008

KM Mean .275 .284 .296 .301 .325 .329

Std .052 .035 .052 .038 .055 .040

LPM Mean .072 .069 .055 .053 .033 .034

Std .023 .016 .021 .015 .016 .011

LDF Mean .076 .073 .064 .062 .048 .050
0.25

Std .023 .017 .023 .016 .020 .014

0.75
LR Mean .052 .050 .046 .045 .039 .039

Std .019 .014 .021 .012 .019 .012

KM Mean .204 .202 .213 .210 .228 .230

Std .041 .028 .044 .031 .040 .031

LPM Mean .189 .178 .159 .152 .128 .122

Std .041 .029 .040 .026 .036 .026

LDF Mean .188 .177 .159 .152 .128 .123
0.50

Std .041 .029 .040 .026 .036 .026

0.50
LR Mean .132 .121 .108 .102 .091 .087

Std .037 .025 .034 .023 .031 .022

KM Mean .216 .211 .220 .215 .222 .225

Std .042 .033 .042 .031 .045 .037
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Covariance matrices = 1:4 and Group separation = 2.2

o

0Q. a.C 0
a.

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .003 .002 .001 .000 .000 .000

Std .005 .003 .002 .001 .001 .000

LDF Mean .027 .027 .020 .018 .012 .011
0.10

Std .018 .011 .014 .009 .011 .007

0.90
LR Mean .040 .038 .033 .027 .021 .019

Std .022 . .014 .019 .013 .017 .010

KM Mean .434 .427 .437 .434 .434 .441

Std .049 .033 .050 .037 .048 .035

LPM Mean .118 .111 .071 .073 .037 .035

Std .033 .023 .026 .021 .022 .014

LDF Mean .128 .123 .091 .093 .067 .065
0.25

Std .033 .024 .029 .023 .026 .018

0.75
LR Mean .125 .012 .096 .098 .076 .075

Std .031 .022 .028 .022 .026 .018

KM Mean .387 .387 .397 .398 .398 .404

Std .048 .037 .049 .034 .050 .031

LPM Mean .355 .353 .286 .285 .208 .206

Std .054 .038 .051 .037 .044 .033

LDF Mean .354 .351 .286 .285 .209 .208
0.50

Std .053 .038 .051 .037 .044 .033

0.50 LR Mean .320 .314 .256 .254 .195 .193

Std .053 .034 .048 .036 .043 .031

KM Mean .380 .379 .392 .388 .393 .395

Std .052 .042 .054 .040 .055 .041
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Covariance matrices = 1:4 and Group separation = 0.7

0 `n
.2
ici .'t
0 00. 0.0 0a It

"0
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .000 .000 .000 .000 .000 .000

LDF Mean .009 .006 .005 .004 .003 .001
0.10

Std .011 .006 .007 .005 .006 .002

0.90
LR Mean .014 .009 .008 .006 .005 .002

Std .015 .008 .011 .007 .010 .003

KM Mean .483 .480 .480 .487 .483 .491

Std .047 .034 .048 .034 .050 .033

LPM Mean .099 .095 .047 .039 .012 .010

Std .036 .026 .028 .018 .014 .009

LDF Mean .116 .113 .069 .063 .035 .033
0.25

Std .038 .027 .036 .021 .025 .018

0.75
LR Mean .127 .123 .082 .074 .045 .042

Std .039 .028 .038 .024 .029 .022

KM Mean .471 .477 .473 .473 .475 .478

Std .048 .034 .049 .036 .048 .037

LPM Mean .501 .502 .373 .372 .230 .228

Std .061 .035 .057 .038 .054 .037

LDF Mean .498 .499 .373 .372 .232 .231
0.50

Std .061 .035 .057 .038 .054 .037

0.50
LR Mean .483 .485 .361 .361 .234 .233

Std .061 .037 .056 .037 .052 .036

KM Mean .433 .446 .460 .461 .471 .473

Std .060 .044 .065 .044 .060 .043
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Covariance matrices = 4:1 and Group separation = 6.7

Ho =

0 00. "o 0
a. ri,

o
lil

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .001 .001 .001 .000 .000 .000

Std .003 .002 .002 .001 .001 .000

LDF Mean .010 .009 .008 .008 .006 .007
0.10

Std .009 .005 .008 .006 .006 .005

0.90
LR Mean .012 .010 .011 .008 .007 .006

Std .011 .006 .010 .006 .008 .005

KM Mean .109 .107 .134 .129 .171 .190

Std .072 .050 .082 .071 .095 .081

LPM Mean .016 .013 .010 .008 .005 .006

Std .011 .007 .009 .006 .006 .005

LDF Mean .018 .015 .013 .011 .009 .010
0.25

Std .012 .008 .010 .007 .009 .006

0.75
LR Mean .038 .035 .027 .026 .019 .019

Std .019 .012 .016 .012 .013 .009

KM Mean .022 .019 .020 .019 .022 .021

Std .016 .010 .014 .012 .017 .011

LPM Mean .038 .041 .022 .022 .012 .014

Std .020 .015 .016 .012 .012 .009

LDF Mean .038 .040 .022 .022 .012 .014
0.50

Std .020 .015 .016 .012 .012 .009

0.50 LR Mean .090 .091 .063 .062 .043 .042

Std .031 .024 .027 .020 .027 .016

KM Mean .005 .005 .005 .006 .007 .007

Std .007 .005 .008 .006 .009 .006
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Covariance matrices = 4:1 and Group separation = 2.2

:4)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size
o.

200 400 200 400 200 400

LPM Mean .001 .000 .000 .000 .000 .000

Std .002 .001 .001 .001 .000 .000

LDF Mean .010 .008 .007 .007 .006 .006
0.10

Std .010 .007 .007 .006 .008 .005

0.90
LR Mean .008 .005 .005 .004 .004 .003

Std .009 .005 .007 .005 .007 .003

KM Mean .302 .317 .327 .333 .349 .355

Std .074 .058 .074 .054 .075 .050

LPM Mean .032 .031 .018 .017 .009 .006

Std .017 .012 .013 .009 .009 .005

LDF Mean .038 .038 .028 .027 .020 .018
0.25

Std .019 .013 .016 .011 .015 .009

0.75
LR Mean .049 .048 .031 .031 .020 .017

Std .021 .016 .018 .012 .015 .009

KM Mean .110 .106 .127 .125 .145 .143

Std .051 .037 .054 .039 .060 .042

LPM Mean .246 .243 .119 .123 .061 .061

Std .063 .041 .039 .031 .025 .021

LDF Mean .243 .239 .119 .123 .062 .062
0.50

Std .062 .041 .039 .031 .026 .021

0.50
LR Mean .278 .275 .159 .166 .090 .091

Std .062 .042 .045 .034 .032 .025

KM Mean .038 .035 .038 .040 .046 .045

Std .022 .017 .026 .018 .025 .018
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Covariance matrices = 4:1 and Group separation = 0.7

0.10

0.90

0.25

0.75

0.50

0.50

-o

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .001 .000 .000 .000 .000 .000

LDF Mean .004 .002 .003 .002 .003 .001

Std .006 .004 .007 .003 .005 .003

LR Mean .002 .001 .002 .001 .002 .001

Std .005 .003 .006 .002 .004 .002

KM Mean .400 .405 .410 .411 .413 .427

Std .067 .046 .060 .046 .065 .044

LPM Mean .021 .019 .009 .007 .003 .001

Std .017 .012 .011 .007 .007 .003

LDF Mean .029 .027 .019 .016 .012 .009

Std .020 .014 .016 .012 .013 .008

LR Mean .031 .027 .018 .014 .009 .006

Std .022 .015 .016 .012 .011 .007

KM Mean .253 .249 .272 .268 .296 .302

Std .069 .053 .067 .046 .072 .051

LPM Mean .548 .572 .250 .247 .092 .091

Std .080 .063 .054 .039 .036 .027

LDF Mean .542 .564 .250 .247 .094 .094

Std .088 .063 .054 .039 .036 .027

LR Mean .538 .559 .270 .267 .107 .106

Std .084 .060 .052 .040 .042 .030

KM Mean .116 .121 .132 .124 .141 .141

Std .049 .035 .051 .038 .057 .043

110
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Table G2-2

Means and Standard Deviations of Group 2 Error Rates of 200 Replications for Data Pattern II

Covariance matrices = Equal and Group separation = 6.7

= {n.° c
s- '-e"
= 0ci. o.o 0a. ra'"

-o

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .006 .005 .002 .002 .001 .000

Std .006 .004 .004 .002 .002 .001

LDF Mean .024 .021 .020 .018 .015 .014
0.10

Std .013 .008 .011 .008 .011 .007

0.90
LR Mean .029 .023 .026 .020 .022 .016

Std .014 .009 .014 .009 .014 .008

KM Mean .484 .490 .488 .492 .497 .490

Std .056 .037 .050 .037 .051 .035

LPM Mean .053 .051 .038 .038 .027 .023

Std .020 .014 .019 .011 .016 .009

LDF Mean .056 .055 .045 .045 .038 .035
0.25

Std .021 .014 .020 .012 .019 .011

0.75
LR Mean .059 .056 .050 .047 .043 .037

Std .024 .014 .024 .013 .021 .011

KM Mean .453 .468 .457 .480 .477 .476

Std .080 .058 .074 .050 .066 .050

LPM Mean .136 .131 .105 .101 .077 .076

Std .040 .026 .033 .024 .027 .021

LDF Mean .135 .131 .105 .101 .077 .076
0.50

Std .040 .026 .033 .024 .028 .021

0.50
LR Mean .138 .132 .107 .103 .080 .077

Std .040 .028 .035 .025 .029 .021

KM Mean .391 .414 .399 .407 .410 .433

Std .112 .095 .126 .104 .111 .088
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Covariance matrices = Equal and Group separation = 2.2

0 o

2O

-o
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .003 .002 .001 .000 .000 .000

Std .005 .002 .003 .001 .001 .000

LDF Mean .028 .023 .021 .017 .015 .012
0.10

Std .018 .010 .015 .008 .012 .007

0.90
LR Mean .032 .025 .026 .019 .018 .014

Std .020 .011 .016 .010 .014 .008

KM Mean .501 .498 .498 .496 .494 .497

Std .052 .033 .048 .036 .055 .033

LPM Mean .090 .090 .062 .056 .032 .027

Std .028 .019 .023 .017 .018 .013

LDF Mean .099 .100 .080 .074 .058 .053
0.25

Std .029 .020 .026 .019 .021 .018

0.75
LR Mean .103 .102 .083 .075 .061 .055

Std .029 .020 .026 .019 .022 .019

KM Mean .493 .489 .492 .490 .494 .495

Std .055 .038 .053 .039 .052 .040

LPM Mean .329 .321 .238 .233 .163 .156

Std .048 .043 .046 .033 .044 .029

LDF Mean .328 .319 .238 .233 .165 .158
0.50

Std .048 .043 .046 .033 .044 .029

0.50
LR Mean .325 .318 .239 .235 .166 .158

Std .049 .043 .048 .033 .046 .030

KM Mean .492 .487 .492 .489 .487 .490

Std .065 .048 .065 .048 .067 .045
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Covariance matrices = Equal and Group separation = 0.7

=

irs

0
'2

0 00. ,0 2
A. fa,

-0

i
2

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .002 .000 .001 .000 .000 .000

LDF Mean .013 .008 .009 .005 .007 .003
0.10

Std .012 .007 .011 .005 .008 .004

0.90
LR Mean .015 .009 .012 .005 .009 .004

Std .014 .008 .013 .006 .011 .005

KM Mean .497 .499 .494 .504 .499 .502

Std .051 .037 .049 .035 .046 .038

LPM Mean .088 .074 .048 .034 .014 .009

Std .033 .025 .026 .015 .014 .007

LDF Mean .104 .091 .071 .055 .039 .030
0.25

Std .035 .027 .032 .019 .024 .014

0.75
LR Mean .106 .092 .072 .056 .041 .032

Std .036 .027 .032 .019 .025 .015

KM Mean .497 .499 .489 .494 .508 .498

Std .054 .036 .056 .038 .048 .039

LPM Mean .525 .516 .346 .343 .209 .194

Std .069 .050 .054 .041 .050 .031

LDF Mean .522 .511 .346 .343 .211 .197
0.50

Std .068 .049 .054 .041 .050 .031

0.50
LR Mean .520 .511 .347 .343 .212 .198

Std .067 .050 .054 .041 .050 .031

KM Mean .500 .494 .491 .493 .492 .494

Std .057 .048 .063 .043 .057 .046
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Covariance matrices = 1:4 and Group separation = 6.7

= "'

= 0
fa. 0.,o 0

,..o

±)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .007 .006 .003 .003 .001 .001

Std .007 .004 .004 .003 .002 .001

LDF Mean .027 .026 .023 .021 .019 .017
0.10

Std .014 .009 .012 .009 .012 .007

0.90
LR Mean .029 .025 .029 .023 .027 .020

Std .014 .009 .014 .009 .016 .009

KM Mean .511 .510 .511 .506 .505 .505

Std .049 .034 .050 .033 .049 .035

LPM Mean .076 .072 .059 .055 .041 .035

Std .025 .018 .021 .015 .017 .013

LDF Mean .080 .077 .069 .064 .056 .050
0.25

Std .025 .019 .021 .017 .019 .015

0.75
LR Mean .059 .053 .054 .048 .050 .040

Std .022 .015 .019 .015 .019 .014

KM Mean .491 .504 .504 .514 .504 .513

Std .069 .054 .064 .044 .063 .042

LPM Mean .197 .189 .165 .159 .134 .127

Std .045 .029 .041 .027 .037 .026

LDF Mean .196 .188 .165 .159 .134 .127
0.50

Std .045 .029 .041 .027 .037 .027

0.50
LR Mean .139 .131 .116 .109 .096 .090

Std .041 .025 .036 .023 .032 .022

KM Mean .456 .463 .480 .475 .489 .490

Std .085 .070 .084 .071 .078 .064
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Covariance matrices = 1:4 and Group separation = 2.2

G 2
o o
174

0a. 0.o 0a rt t±)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .003 .002 .001 .000 .000 .000

Std .005 .003 .002 .001 .001 .000

LDF Mean .033 .029 .024 .020 .017 .014
0.10

Std .017 .012 .014 .010 .014 .008

0.90
LR Mean .049 .042 .039 .033 .031 .024

Std .022 .016 .019 .013 .019 .012

KM Mean .513 .506 .509 .505 .508 .503

Std .051 .036 .051 .036 .048 .037

LPM Mean .121 .120 .086 .080 .043 .036

Std .032 .022 .028 .022 .021 .013

LDF Mean .132 .131 .107 .102 .073 .065
0.25

Std .034 .022 .030 .024 .026 .018

0.75
LR Mean .130 .128 .113 .106 .086 .077

Std .032 .021 .029 .025 .028 .018

KM Mean .517 .509 .514 .512 .522 .517

Std .055 .038 .049 .036 .052 .036

LPM Mean .363 .353 .296 .287 .215 .208

Std .055 .040 .051 .035 .045 .032

LDF Mean .362 .352 .296 .287 .216 .209
0.50

Std .055 .040 .051 .035 .045 .033

0.50 LR Mean .324 .314 .262 .257 .199 .093

Std .054 .038 .049 .033 .042 .031

KM Mean .516 .514 .527 .522 .526 .517

Std .059 .041 .060 .045 .061 .043
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Covariance matrices = 1:4 and Group separation = 0.7

cn

= 0
00. 0.oa ti.

o
r)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .002 .000 .000 .000 .000 .000

LDF Mean .013 .008 .007 .005 .004 .002
0.10

Std .012 .007 .008 .006 .006 .003

0.90
LR Mean .021 .012 .013 .009 .009 .004

Std .017 .011 .012 .008 .011 .005

KM Mean .507 .509 .506 .506 .510 .505

Std .047 .035 .050 .035 .051 .036

LPM Mean .120 .106 .065 .050 .020 .013

Std .038 .028 030 .021 .016 .010

LDF Mean .138 .124 .093 .075 .048 .038
0.25

Std .040 .029 .036 .025 .026 .017

0.75
LR Mean .149 .134 .107 .087 .062 .048

Std .041 .030 .036 .028 .032 .021

KM Mean .519 .515 .519 .511 .522 .511

Std .052 .036 .054 .039 .046 .036

LPM Mean .505 .503 .391 .375 .259 .237

Std .052 .039 .052 .042 .053 .040

LDF Mean .503 .501 .391 .375 .261 .240
0.50

Std .051 .039 .052 .042 .053 .040

0.50
LR Mean .485 .485 .379 .364 .261 .240

Std .051 .039 .052 .041 .051 .039

KM Mean .524 .518 .517 .518 .528 .515

Std .057 .041 .056 .044 .061 .042
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Covariance matrices = 4:1 and Group separation = 6.7

.2 0
o
0.o 0
tt'

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .002 .001 .001 .000 .000 .000

Std .004 .002 .002 .001 .001 .001

LDF Mean .011 .009 .010 .008 .008 .007
0.10

Std .009 .006 .008 .005 .008 .005

0.90
LR Mean .018 .012 .016 .010 .014 .009

Std .013 .007 .013 .007 .012 .006

KM Mean .437 .468 .453 .469 .459 .476

Std .096 .046 .071 .052 .075 .039

LPM Mean .016 .014 .012 .010 .007 .006

Std .012 .008 .011 .006 .007 .005

LDF Mean .017 .016 .015 .013 .012 .011
0.25

Std .013 .008 .012 .007 .010 .007

0.75
LR Mean .041 .037 .035 .030 .027 .022

Std .020 .013 .018 .012 .015 .011

KM Mean .268 .369 .304 .359 .325 .402

Std .142 .106 .150 .126 .148 .116

LPM Mean .040 .039 .023 .022 .014 .013

Std .020 .016 .016 .012 .013 .008

LDF Mean .039 .039 .023 .022 .014 .013
0.50

Std .020 .016 .016 .012 .013 .008

0.50
LR Mean .093 .089 .066 .065 .048 .044

Std .034 .023 .027 .020 .024 .015

KM Mean .186 .236 .169 .190 .145 .163

Std .129 .116 .120 .120 .121 .117
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Covariance matrices = 4:1 and Group separation = 2.2

= w

o.
rio ck'

o

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .002 .001 .001 .000 .000 .000

Std .003 .001 .002 .001 .001 .000

LDF Mean .016 .010 .012 .009 .009 .008
0.10

Std .012 .006 .010 .007 .009 .006

0.90
LR Mean .015 .007 .013 .006 .010 .005

Std .012 .006 .012 .006 .011 .005

KM Mean .466 .476 .469 .474 .468 .479

Std .061 .039 .058 .044 .057 .043

LPM Mean .039 .031 .024 .019 .012 .009

Std .019 .013 .016 .010 .010 .006

LDF Mean .046 .038 .034 .029 .025 .022
0.25

Std .021 .014 .019 .012 .015 .010

0.75
LR Mean .060 .048 .043 .034 .029 .023

Std .023 .016 .023 .014 .017 .012

Mean .431 .454 .435 .457 .447 .463

Std .087 .069 .073 .056 .074 .054

LPM Mean .242 .244 .121 .121 .065 .062

Std .059 .043 .038 .025 .028 .019

LDF Mean .239 .241 .121 .121 .066 .063
0.50

Std .058 .042 .038 .025 .028 .019

0.50
LR Mean .279 .278 .165 .165 .101 .093

Std .059 .044 .044 .028 .033 .024

KM Mean .406 .413 .397 .422 .412 .423

Std .114 .089 .113 .085 .104 .088

I
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Covariance matrices = 4:1 and Group separation ,= 0.7

= c"
.....0 $

a. 0.
=

2
o

o

-oo
t>

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .000 .000 .000 .000 .000 .000

Std .002 .000 .001 .000 .000 .000

LDF Mean .010 .005 008 .004 .008 .003
0.10

Std .011 .005 .009 .005 .008 .005

0.90
LR Mean .008 .003 .007 .002 .008 .002

Std .011 .005 .009 .004 .011 .003

KM Mean .469 .479 .477 .480 .470 .488

Std .057 .039 .057 .043 .057 .040

LPM Mean .037 .023 .018 .009 .007 .003

Std .023 .013 .016 .007 .007 .005

LDF Mean .046 .032 .031 .019 .020 .013
0.25

Std .024 .014 .022 .012 .016 .010

0.75
LR Mean .049 .033 .032 .018 .018 .010

Std .027 .016 .022 .012 .014 .009

KM Mean .448 .466 .457 .473 .449 .476

Std .075 .057 .072 .056 .067 .049

LPM Mean .525 .537 .248 .245 .106 .093

Std .088 .076 .057 .038 .035 .025

LDF Mean .521 .531 .248 .245 .107 .096
0.50

Std .087 .075 .057 .038 .036 .025

0.50
LR Mean .520 .529 .270 .266 .125 .111

Std .083 .071 .060 .038 .039 .028

KM Mean .444 .456 .434 .460 .435 .457

Std .096 .068 .095 .069 .088 .060
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Table G2-3

ANOVA Results, Eta-squared, and Partial-Omega squared of Group 2 Error Rate for Data

Pattern Ion Comparing Four Methods

Source of Variation df SS MS
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 398.99 199.50 47059.40 <.0001 .1252 .4207

Equality of covariance (COV) 2 183.22 91.61 21609.60 <.0001 .0575 .2401

Group separation (GS) 2 295.45 147.72 34846.50 <.0001 .0927 .3497

Sample representativeness (SR) 2 58.11 29.05 6853.52 <.0001 .0182 .0956

Sample size (SS) 1 0.0043 0.0043 1.02 .3125 <.0001 <.0001

PP*COV 4 44.43 11.11 2620.28 <.0001 .0139 .0748

PP*GS 4 151.09 37.77 8909.89 <.0001 .0474 .2157

PP*SR 4 77.90 19.48 4594.08 <.0001 .0244 .1242

PP*SS 2 0.0197 0.0099 2.33 .0977 <.0001 <.0001

COV*GS 4 3.68 0.92 216.78 <.0001 .0012 .0066

COV*SR 4 0.53 0.13 31.04 <.0001 .0002 .0009

COV*SS 2 0.018 0.0088 2.09 .1241 <.0001 <.0001

GS*SR 4 27.50 6.88 1621.77 <.0001 .0086 .0476

GS*SS 2 0.0005 0.0003 0.06 .9390 <.0001 <.0001

SR*SS 2 0.014 0.007 1.66 .1910 <.0001 <.0001

Error (between) 32358 137.17 0.0042

Within-subject effects:

Method (4M) 3 850.91 283.64 324376.0 <.0001 .2669 .8825

4M*PP 6 530.42 88.40 101101.0 <.0001 .1664 .8240

4M*COV 6 105.41 17.57 20092.10 <.0001 .0331 .4819

4M*GS 6 81.75 13.63 15582.80 <.0001 .0256 .4191

4M*SR 6 40.55 6.76 7729.08 <.0001 .0127 .2635

4M*SS 3 0.0493 0.0164 18.80 <.0001 <.0001 .0004

4M*PP*COV 12 10.81 0.90 1029.97 <.0001 .0034 .0870

4M*PP*GS 12 72.15 6.01 6876.40 <.0001 .0226 .3890

4M*PP*SR 12 22.38 1.87 2133.14 <.0001 .0070 .1649

4M*PP*SS 6 0.040 0.0066 7.57 <.0001 <.0001 .0003

4M*COV*GS 12 1.84 0.15 175.71 <.0001 .0006 .0159

4M*COV*SR 12 0.46 0.039 44.26 <.0001 .0001 .0040

4M*COV*SS 6 0.0071 0.0012 1.36 .2274 <.0001 <.0001

4M*GS*SR 12 8.10 0.67 771.85 <.0001 .0025 .0666

4M*GS*SS 6 0.0028 0.0005 0.54 .7812 <.0001 <.0001

4M*SR*SS 6 0.0076 0.0013 1.44 .1940 <.0001 <.0001
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Source of Variation df SS MS
Eta-

Partial

Squared
Omega-
Squared

Error (within) 97074 84.88 0.0009

SSeffect

Note. Eta square (772) is defined as: 77 = , where SSeffect is the effect sum of squares, and SSiow is the
SSiouil

dfeffect (Fefirec, 1)
total sum of squares. Partial omega squared was calculated from the formula: 072parttal =

dfeffect(Fesea-1)+N

where dfeffect is the degrees of freedom for the effect, Feffect is the F ratio for the effect, and N equals

200x3 x3 x3 x3 x2 x4 (=129600) in this ANOVA model.
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Table G2-4

ANOVA Results, Eta-squared, and Partial-Omega squared of Group 2 Error Rate for Data

Pattern II on Comparing Four Methods

Source of Variation df SS MS F P
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 510.26 255.13 60414.90 <.0001 .0976 .4825

Equality of covariance (COV) 2 97.39 48.70 11531.40 <.0001 .0186 .1511

Group separation (GS) 2 140.77 70.38 16667.00 <.0001 .0269 .2046

Sample representativeness (SR) 2 66.17 33.08 7834.55 <.0001 .0127 .1079

Sample size (SS) 1 0.11 0.11 25.19 <.0001 <.0001 .0002

PP*COV 4 38.92 9.73 2303.83 <.0001 .0074 .0664

PP*GS 4 209.60 52.40 12408.50 <.0001 .0401 .2769

PP*SR 4 69.40 17.35 4108.51 <.0001 .0133 .1125

PP*SS 2 0.0070 0.0035 0.82 .4385 <.0001 <.0001

COV*GS 4 4.22 1.06 249.88 <.0001 .0008 .0076

COV*SR 4 0.55 0.14 32.59 <.0001 .0001 .0010

COV*SS 2 0.47 0.23 55.25 <.0001 .0001 .0008

GS*SR 4 24.43 6.11 1446.17 <.0001 .0047 .0427

GS*SS 2 0.2807 0.1404 33.24 <.0001 .0001 .0005

SR*SS 2 0.015 0.0077 1.82 .1619 <.0001 <.0001

Error (between) 32358 136.65 0.0042

Within-subject effects:

Method (4M) 3 3363.46 1121.15 723635.0 <.0001 .6435 .9437

4M*PP 6 305.18 50.86 32829.20 <.0001 .0584 .6031

4M*COV 6 9.45 1.57 1016.03 <.0001 .0018 .0449

4M*GS 6 2.92 0.49 314.06 <.0001 .0006 .0143

4M*SR 6 25.70 4.28 2764.23 <.0001 .0049 .1134

4M*SS 3 1.21 0.40 260.27 <.0001 .0002 .0060

4M*PP*COV 12 3.98 0.33 213.86 <.0001 .0008 .0193

4M*PP*GS 12 21.66 1.80 1164.87 <.0001 .0041 .0973

4M*PP*SR 12 21.46 1.79 1154.08 <.0001 .0041 .0965

4M*PP*SS 6 0.21 0.035 22.78 <.0001 <.0001 .0010

4M*COV*GS 12 14.22 1.19 764.87 <.0001 .0027 .0661

4M*COV*SR 12 0.26 0.022 13.88 <.0001 <.0001 .0012

4M*COV*SS 6 0.66 0.11 70.73 <.0001 .0001 .0032

4M*GS*SR 12 6.70 0.56 360.24 <.0001 .0013 .0322

4M*GS*SS 6 0.24 0.039 25.29 <.0001 <.0001 .0011

4M*SR*SS 6 0.0067 0.0011 0.72 .6328 <.0001 <.0001
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Source of Variation
Partial

Eta-
df SS MS F p Omega-

Squared
Squared

Error (within) 97074 150.40 0.0015

Note. Eta square ( ij2 ) is defined as: 772 =
SSeffect

, where SSeffect is the effect sum of squares, and SStow is the
SS total

total sum of squares. Partial omega squared was calculated from the formula: c02 mma/ =
df

effect(Feffect 1 )

df ffec,(F 1) + N

where dfeffed is the degrees of freedom for the effect, Feffeci is the F ratio for the effect, and N equals

200x3 x3 x3 x3x2x4 (=129600) in this ANOVA model.
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Table G2-5

Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportion

Interaction

Method

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

0.10:0.90 .00086 .0026 .011 .011 .013 .014 .360 .116

0.25:0.75 .038 .034 .051 .037 .053 .037 .263 .147

0.50:0.50 .218 .153 .218 .152 .218 .145 .211 .154

Data Pattern II

0.10:0.90 .0011 .0029 .014 .012 .017 .016 .491 .051

0.25:0.75 .044 .037 .057 .040 .061 .040 .471 .088

0.50:0.50 .221 .151 .221 .150 .222 .142 .439 .129

1°4
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Table G2-6

Means and Standard Deviations of Group 2 Error Rate for Method by Equality of Covariance

Matrices Interaction

Equality of
covariance

matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

1:4 .109 .136 .119 .131 .112 .123 .374 .109

Equal .091 .129 .099 .125 .100 .125 .296 .122

4:1 .056 .121 .060 .118 .071 .121 .164 .145

Data Pattern II

1:4 .115 .138 .126 .132 .119 .123 .508 .053

Equal .094 .130 .104 .125 .106 .124 .482 .065

4:1 .057 .116 .062 .113 .075 .117 .411 .126

1°5
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Table G2-7

Means and Standard Deviations of Group 2 Error Rate for Method by Group Separation

Interaction

Method

Group
separation

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 .043 .055 .050 .052 .050 .041 .158 .108

2.2 .090 .112 .099 .107 .103 .103 .296 .137

0.7 .124 .181 .130 .177 .132 .174 .379 .121

Data Pattern II

6.7 .045 .057 .052 .054 .053 .042 .426 .133

2.2 .093 .113 .104 .107 .108 .102 .484 .068

0.7 .128 .178 .136 .173 .138 .171 .491 .059
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Table G2-8

Means and Standard Deviations of Group 2 Error Rate for Method by Sample

Representativeness Interaction

Method

Sample
representativeness

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

20% over .127 .174 .133 .169 .134 .165 .267 .152

Equal .082 .114 .089 .110 .091 .108 .277 .153

20% under .048 .072 .057 .070 .059 .068 .290 .152

Data Pattern II

20% over .129 .171 .136 .165 .137 .161 .465 .096

Equal .085 .116 .094 .112 .097 .108 .466 .098

20% under .051 .076 .061 .073 .065 .070 .469 .097

127
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Table G2-9

Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Equality of Covariance Matrices Interaction

Population
proportions

Equality of
covariance
matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

0.10:0.90 1:4 .0014 .0034 .015 .013 .019 .016 .407 .089

Equal .0009 .0026 .012 .011 .013 .012 .379 .088

4:1 .0003 .0012 .006 .007 .005 .007 .294 .133

0.25:0.75 1:4 .059 .038 .076 .037 .075 .040 .361 .116

Equal .042 .029 .057 .030 .058 .031 .287 .114

4:1 .013 .013 .020 .015 .026 .019 .140 .114

0.50:0.50 1:4 .268 .122 .268 .121 .241 .129 .354 .111

Equal .230 .140 .229 .139 .230 .139 .221 .106

4:1 .156 .170 .155 .168 .183 .158 .058 .060

Data Pattern II

0.10:0.90 1:4 .0015 .0035 .017 .014 .024 .018 .507 .043

Equal .0013 .0031 .015 .012 .018 .014 .496 .044

4:1 .0005 .0017 .009 .008 .009 .010 .470 .057

0.25:0.75 1:4 .067 .040 .084 .039 .085 .043 .512 .050

Equal .047 .031 .063 .032 .065 .033 .486 .055

4:1 .017 .016 .024 .018 .033 .021 .416 .112

0.50:0.50 1:4 .276 .121 .276 .121 .247 .129 .505 .065

Equal .233 .140 .233 .139 .234 .138 .464 .086

4:1 .153 .162 .153 .160 .184 .150 .347 .157

128
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Table 02-10

Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Group Separation Interaction

Method

Group
separation

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 0.10:0.90 .002 .004 .015 .011 .016 .011 .240 .096

0.25:0.75 .033 .023 .040 .026 .039 .019 .128 .086

0.50:0.50 .095 .063 .095 .063 .093 .039 .108 .092

2.2 0.10:0.90 .0006 .002 .014 .012 .017 .017 .390 .069

0.25:0.75 .049 .038 .065 .039 .068 .039 .279 .122

0.50:0.50 .220 .099 .220 .098 .223 .085 .220 .148

0.7 0.10:0.90 .00003 .0004 .004 .006 .005 .008 .449 .056

0.25:0.75 .032 .036 .048 .040 .051 .044 .383 .098

0.50:0.50 .339 .163 .338 .161 .339 .154 .307 .145

Data Pattern II

6.7 0.10:0.90 .002 .004 .016 .011 .020 .013 .486 .056

0.25:0.75 .035 .026 .042 .028 .044 .020 .437 .119

0.50:0.50 .097 .066 .097 .066 .096 .040 .355 .164

2.2 0.10:0.90 .0009 .002 .018 .013 .023 .019 .492 .049

0.25:0.75 .054 .039 .070 .041 .075 .040 .485 .062

0.50:0.50 .2232 .099 .2229 .099 .226 .084 .474 .086

0.7 0.10:0.90 .00009 .0008 .007 .008 .008 .011 .494 .047

0.25:0.75 .041 .041 .059 .044 .064 .047 .492 .057

0.50:0.50 .342 .155 .342 .153 .342 .146 .487 .070

129



129

Table G2-11

Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Sample Representativeness Interaction

Method
Sample Population

represent- proportions
LPM LDF LR KM

ativeness
Mean SD Mean SD Mean SD Mean SD

Data Pattern I

20% over 0.10:0.90 .002 .004 .014 .013 .016 .016 .346 .123

0.25:0.75 .061 .040 .070 .043 .072 .042 .253 .147

0.50:0.50 .318 .181 .315 .179 .313 .172 .202 .149

Equal 0.10:0.90 .0006 .002 .011 .011 .013 .013 .358 .117

0.25:0.75 .036 .027 .049 .032 .051 .033 .262 .147

0.50:0.50 .208 .116 .208 .116 .209 .108 .212 .155

20%under 0.10:0.90 .0001 .0008 .008 .009 .009 .011 .376 .105

0.25:0.75 .017 .017 .033 .024 .035 .026 .275 .146

0.50:0.50 .128 .076 .129 .076 .132 .069 .220 .157

Data Pattern II

20% over 0.10:0.90 .002 .004 .017 .014 .021 .018 .490 .054

0.25:0.75 .068 .042 .077 .046 .080 .044 .466 .092

0.50:0.50 .316 .176 .314 .174 .312 .167 .439 .122

Equal 0.10:0.90 .0008 .002 .013 .012 .017 .015 .491 .050

0.25:0.75 .042 .030 .057 .036 .061 .036 .470 .088

0.50:0.50 .212 .119 .212 .119 .214 .110 .438 .130

20%under 0.10:0.90 .0002 .0009 .010 .010 .014 .014 .492 .049

0.25:0.75 .020 .018 .038 .025 .042 .027 .478 .082

0.50:0.50 .134 .081 .135 .081 .138 .073 .439 .133
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Table G2-12

Means and Standard Deviations of Group 2 Error Rate for Method by Equality of Covariance

Matrices by Group Separation Interaction

Group
separation

Equality of
covariance

matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 1:4 .070 .069 .079 .062 .058 .043 .245 .059

Equal .048 .048 .056 .043 .057 .044 .175 .087

4:1 .012 .015 .015 .014 .034 .031 .055 .077

2.2 1:4 .119 .129 .132 .120 .128 .104 .406 .049

Equal .097 .112 .108 .106 .109 .105 .317 .085

4:1 .054 .081 .059 .077 .071 .091 .165 .132

0.7 1:4 .139 .179 .148 .174 .150 .167 .472 .048

Equal .128 .179 .135 .175 .136 .174 .396 .067

4:1 .103 .182 .106 .178 .109 .179 .271 .128

Data Pattern II

6.7 1:4 .074 .072 .083 .065 .063 .044 .496 .062

Equal .048 .049 .056 .043 .059 .043 .456 .084

4:1 .012 .015 .016 .014 .037 .031 .326 .162

2.2 1:4 .123 .130 .137 .121 .134 .102 .514 .047

Equal .100 .113 .112 .105 .114 .104 .493 .049

4:1 .055 .080 .062 .075 .076 .090 .444 .080

0.7 1:4 .147 .181 .157 .175 .159 .167 .514 .047

Equal .133 .179 .142 .173 .143 .172 .497 .047

4:1 .103 .173 .108 .169 .112 .171 .462 .067
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Table G2-13

Means and Standard Deviations of Group 2 Error Rate for Method by Group Separation by

Sample Representativeness Interaction

Group
separation

Sample
representat-

iveness

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 20% over .055 .063 .061 .059 .061 .047 .146 .100

Equal .043 .053 .049 .050 .049 .039 .156 .106

20% under .032 .045 .040 .042 .039 .034 .173 .116

2.2 20% over .128 .138 .137 .131 .139 .127 .285 .138

Equal .087 .103 .097 .098 .100 .094 .296 .138

20% under .055 .074 .065 .071 .069 .068 .307 .136

0.7 20% over .197 .240 .202 .235 .201 .231 .369 .123

Equal .115 .151 .122 .147 .125 .146 .379 .121

20% under .059 .088 .065 .086 .068 .087 .390 .117

Data Pattern II

6.7 20% over .058 .066 .064 .062 .0646 .049 .422 .127

Equal .044 .055 .051 .052 .053 .039 .425 .134

20% under .032 .045 .040 .042 .042 .032 .431 .136

2.2 20% over .131 .138 .140 .130 .143 .125 .482 .070

Equal .090 .105 .101 .099 .106 .093 .483 .068

20% under .057 .076 .069 .071 .075 .068 .486 .066

0.7 20% over .198 .233 .204 .227 .204 .223 .491 .060

Equal .121 .152 .130 .148 .133 .147 .490 .059

20% under .065 .095 .074 .092 .077 .092 .492 .058

132



Table T-1

132

Means and Standard Deviations of Total Error Rates of 200 Replications for Data Pattern I

Covariance matrices = Equal and Group separation = 6.7

= cn
2 0
174 't
0 00. 0.0 0

04 Li.,

"0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .057 .055 .066 .067 .079 .081

Std .017 .012 .019 .013 .020 .014

LDF Mean .050 .048 .049 .049 .050 .049
0.10

Std .015 .011 .015 .011 .017 .010

0.90
LR Mean .051 .048 .051 .049 .051 .049

Std .016 .011 .015 .010 .017 .011

KM Mean .235 .233 .246 .253 .271 .286

Std .054 .038 .051 .039 .053 .040

LPM Mean .082 .082 .083 .081 .090 .091

Std .018 .013 .019 .014 .021 .015

LDF Mean .083 .082 .084 .080 .085 .084
0.25

Std .018 .013 .019 .015 .020 .014

0.75
LR Mean .083 .083 .085 .081 .086 .085

Std .020 .013 .019 .015 .020 .014

KM Mean .119 .121 .127 .124 .136 .135

Std .030 .021 .030 .021 .034 .022

LPM Mean .102 .100 .101 .100 .101 .098

Std .019 .015 .022 .013 .021 .016

LDF Mean .101 .100 .101 .100 .101 .098
0.50

Std .019 .015 .022 .013 .021 .016

0.50
LR Mean .103 .100 .103 .101 .102 .099

Std .020 .015 .023 .014 .021 .015

KM Mean .098 .097 .100 .100 .100 .099

Std .020 .014 .022 .014 .022 .016
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Covariance matrices = Equal and Group separation = 2.2

o 0

a.a. f0o 0a a,

"CI

±11

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .095 .095 .097 .099 .101 .100

Std .022 .015 .022 .015 .019 .014

LDF Mean .092 .090 .091 .091 .092 .089
0.10

Std .021 .014 .021 .014 .020 .014

0.90
LR Mean .092 .090 .092 .091 .093 .089

Std .021 .014 .022 .014 .020 .013

KM Mean .360 .376 .375 .377 .385 .384

Std .047 .036 .049 .037 .044 .035

LPM Mean .179 .178 .179 .176 .192 .191

Std .031 .018 .030 .020 .032 .020

LDF Mean .180 .179 .177 .175 .181 .181
0.25

Std ..031 .018 .030 .020 .029 .020

0.75
LR Mean .181 .179 .178 .175 .181 .180

Std .031 .018 .029 .019 .028 .020

KM Mean .268 .269 .272 .276 .289 .284

Std .039 .025 .037 .029 .040 .029

LPM Mean .239 .240 .230 .230 .238 .237

Std .032 .022 .029 .022 .032 .021

LDF Mean .239 .240 .230 .230 .237 .237
0.50

Std .032 .022 .029 .022 .032 .021

0.50
LR Mean .239 .239 .230 .230 .237 .236

Std .032 .022 .029 .022 .032 .021

KM Mean .231 .232 .229 .230 .228 .229

Std .032 .022 .030 .022 .030 .021
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Covariance matrices = Equal and Group separation = 0.7

= H

= 0
o" 0"

a., ra."

.=

i"

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .102 .099 .100 .101 .100 .101

Std .022 .016 .020 .016 .021 .014

LDF Mean .103 .100 .101 .102 .101 .100
0.10

Std .022 .016 .021 .016 .020 .014

0.90
LR Mean .104 .100 .101 .102 .102 .100

Std .022 .017 .021 .017 .020 .014

KM Mean .422 .425 .432 .433 .434 .436

Std .048 .035 .046 .030 .045 .032

LPM Mean .237 .237 .240 .239 .234 .242

Std .030 .022 .028 .022 .032 .020

LDF Mean .240 .239 .243 .236 .239 .237
0.25

Std .031 .022 .028 .021 .031 .020

0.75
LR Mean .241 .240 .243 .237 .239 .236

Std .031 .022 .028 .020 .032 .020

KM Mean .365 .365 .375 .363 .372 .377

Std .037 .026 .038 .027 .041 .027

LPM Mean .359 .355 .337 .335 .354 .353

Std .039 .025 .034 .026 .037 .025

LDF Mean .358 .354 .337 .335 .353 .353
0.50

Std .039 .024 .034 .026 .036 .025

0.50
LR Mean .358 .354 .337 .335 .354 .352

Std .039 .024 .034 .027 .037 .025

KM Mean .336 .337 .334 .334 .335 .334

Std .033 .024 .032 .024 .033 .025
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Covariance matrices = 1:4 and Group separation = 6.7

O rho c5 -o
-..12..-.: t -

0 0 40. 0.
O 2

ra, ta,

0.10

0.90

0.25

0.75

0.50

0.50

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .057 .061 .080 .079 .095 .095

Std .018 .015 .022 .016 .022 .015

LDF Mean .037 .037 .039 .038 .043 .039

Std .014 .010 .015 .010 .015 .010

LR Mean .039 .038 .041 .039 .044 .039

Std .013 .010 .016 .010 .015 .010

KM Mean .248 .256 .266 .272 .292 .296

Std .049 .032 .049 .036 .051 .037

LPM Mean .066 .062 .060 .059 .068 .065

Std .017 .013 .017 .011 .019 .013

LDF Mean .067 .064 .062 .061 .061 .059

Std .017 .013 .017 .012 .017 .012

LR Mean .062 .058 .062 .060 .066 .063

Std .016 .012 .017 .011 .018 .013

KM Mean .153 .152 .159 .158 .172 .173

Std .032 .022 .034 .024 .031 .025

LPM Mean .100 .095 .090 .086 .085 .081

Std .022 .015 .022 .014 .020 .013

LDF Mean .100 .095 .090 .086 .084 .081

Std .022 .015 .022 .014 .020 .014

LR Mean .087 .080 .086 .081 .092 .087

Std .020 .014 .021 .015 .022 .014

KM Mean .111 .109 .112 .111 .114 .116

Std .023 .017 .023 .017 .025 .019
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Covariance matrices = 1:4 and Group separation = 2.2

0 8
0Q.0 0a. "

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .101 .102 .100 .100 .102 .101

Std .022 .014 .022 .015 .022 .015

LDF Mean .109 .110 .108 .106 .108 .106
0.10

Std .022 .015 .023 .015 .021 .015

0.90
LR Mean .112 .112 .112 .108 .110 .108

Std .023 .016 .024 .016 .022 .014

KM Mean .392 .384 .394 .392 .390 .397

Std .046 .030 .046 .034 .044 .033

LPM Mean .183 .184 .205 .204 .229 .236

Std .030 .019 .031 .020 .031 .023

LDF Mean .181 .181 .194 .192 .208 .212
0.25

Std .028 .019 .030 .019 .028 .023

0.75
LR Mean .182 .182 .191 .189 .202 .205

Std .029 .019 .029 .018 .027 .023

KM Mean .297 .294 .303 .302 .304 .306

Std .038 .030 .039 .027 .039 .024

LPM Mean .209 .206 .206 .201 .225 .224

Std .028 .021 .030 .020 .033 .023

LDF Mean .209 .206 .206 .201 .224 .223
0.50

Std .028 .021 .030 .020 .032 .023

0.50
LR Mean .206 .202 .212 .206 .235 .233

Std .028 .019 .030 .020 .033 .023

KM Mean .214 .212 .215 .214 .214 .216

Std .027 .023 .030 .021 .029 .024
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Covariance matrices = 1:4 and Group separation = 0.7

= ")o E -o.-
11

:4= 0

0.10

0.90

0.25

0.75

0.50

0.50

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .099 .099 .099 .100 .100 .100

Std .021 .015 .022 .016 .020 .016

LDF Mean .107 .105 .103 .103 .102 .101

Std .024 .016 .023 .016 .021 .016

LR Mean .112 .108 .106 .105 .104 .102

Std .026 .017 .024 .017 .022 .016

KM Mean .441 .438 .438 .444 .441 .447

Std .042 .031 .042 .031 .044 .029

LPM Mean .287 .285 .276 .273 .258 .257

Std .030 .022 .033 .021 .030 .022

LDF Mean .290 .287 .282 .281 .269 .271

Std .030 .022 .034 .021 .031 .024

LR Mean .291 .288 .285 .283 .273 .275

Std .030 .022 .034 .022 .031 .024

KM Mean .374 .378 .376 .374 .376 .377

Std .037 .025 .037 .027 .036 .028

LPM Mean .298 .297 .309 .311 .392 .393

Std .033 .023 .033 .026 .042 .033

LDF Mean .298 .297 .309 .311 .390 .391

Std .033 .023 .033 .026 .042 .032

LR Mean .297 .296 .313 .314 .389 .390

Std .033 .023 .034 .026 .041 .031

KM Mean .294 .295 .295 .294 .295 .295

Std .033 .023 .030 .024 .031 .024
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Covariance matrices = 4:1 and Group separation = 6.7

= 0
o 0=

7.-, t.-el
o 0a. f

,9
a,o

o. ca,

-o

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .055 .054 .061 .059 .068 .068

Std .017 .012 .017 .013 .020 .014

LDF Mean .049 .047 .048 .047 .049 .049
0.10

Std .015 .010 .016 .011 .017 .012

0.90
LR Mean .050 .048 .050 .048 .050 .051

Std .016 .011 .016 .011 .017 .012

KM Mean .120 .117 .140 .135 .171 .187

Std .061 .042 .070 .060 .082 .070

LPM Mean .081 .079 .084 .081 .089 .088

Std .020 .014 .020 .012 .021 .014

LDF Mean .081 .078 .081 .078 .082 .081
0.25

Std .019 .014 .019 .012 .020 .013

0.75
LR Mean .083 .079 .079 .077 .079 .077

Std .020 .013 .019 .013 .020 .013

KM Mean .079 .077 .077 .076 .077 .076

Std .019 .013 .019 .013 .019 .013

LPM Mean .080 .083 .091 .086 .100 .097

Std .020 .014 .021 .014 .020 .015

LDF Mean .081 .083 .091 .086 .100 .097
0.50

Std .020 .015 .021 .014 .020 .015

0.50
LR Mean .088 .089 .087 .082 .086 .083

Std .021 .014 .021 .014 .020 .014

KM Mean .116 .117 .114 .110 .114 .109

Std .024 .018 .023 .017 .023 .017
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Covariance matrices = 4:1 and Group separation = 2.2

0= =
...... -
es

m.
rao, ki

o
-.5..

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .086 .085 .088 .088 .093 .093

Std .022 .014 .022 .016 .020 .015

LDF Mean .075 .073 .074 .073 .076 .073
0.10

Std .019 .013 .020 .013 .019 .014

0.90
LR Mean .076 .075 .076 .075 .078 .075

Std .020 .013 .020 .013 .019 .014

KM Mean .300 .313 .320 .327 .340 .345

Std .067 .051 .067 .049 .066 .045

LPM Mean .143 .147 .151 .149 .158 .156

Std .025 .019 .027 .019 .027 .019

LDF Mean .143 .147 .148 .147 .149 .146
0.25

Std .026 .019 .026 .018 .026 .019

0.75
LR Mean .146 .149 .148 .147 .150 .146

Std .026 .019 .026 .018 .027 .018

KM Mean .171 .172 .183 .181 .191 .188

Std .036 .024 .034 .028 .041 .029

LPM Mean .229 .226 .203 .202 .204 .204

Std .031 .020 .027 .021 .028 .022

LDF Mean .228 .225 .203 .202 .204 .204
0.50

Std .032 .021 .027 .021 .028 .022

0.50 LR Mean .237 .235 .207 .208 .200 .200

Std .032 .021 .028 .020 .029 .022

KM Mean .217 .216 .213 .214 .207 .211

Std .032 .022 .030 .020 .030 .022
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Covariance matrices = 4:1 and Group separation = 0.7

o 2.0 0
rt 't0 0
ta.0 L.,a, 0.,

-,0

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .095 .095 .098 .099 .099 .100

Std .021 .014 .023 .015 .020 .014

LDF Mean .088 .086 .089 .089 .090 .091
0.10

Std .021 .015 .022 .015 .020 .015

0.90
LR Mean .089 .087 .091 .091 .091 .093

Std .022 .015 .023 .015 .020 .014

KM Mean .397 .400 .404 .407 .408 .419

Std .062 .043 .054 .043 .060 .040

LPM Mean .191 .187 .196 .197 .213 .209

Std .029 .021 .033 .021 .033 .025

LDF Mean .190 .186 .191 .189 .200 .193
0.25

Std .028 .020 .031 .020 .032 .022

0.75
LR Mean .191 .186 .192 .190 .201 .196

Std .028 .020 .032 .020 .033 .023

KM Mean .291 .290 .302 .298 .317 .321

Std .049 .035 .049 .034 .052 .036

LPM Mean .393 .400 .312 .309 .297 .298

Std .041 .027 .034 .024 .033 .024

LDF Mean .391 .398 .312 .309 .297 .297
0.50

Std .041 .027 .034 .024 .034 .024

0.50
LR Mean .390 .396 .317 .314 .296 .296

Std .041 .026 .034 .024 .034 .023

KM Mean .289 .296 .294 .292 .292 .294

Std .030 .022 .030 .023 .035 .023
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Table T-2

141

Means and Standard Deviations of Total Error Rates of 200 Replications for Data Pattern II

Covariance matrices = Equal and Group separation = 6.7

"'o 0
.t,.9

= 0"0 °
13. 'el.

-oo
..o
15

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .058 .057 .067 .066 .081 .080

Std .018 .012 .020 .013 .020 .015

LDF Mean .052 .048 .052 .049 .052 .049
0.10

Std .016 .011 .015 .011 .015 .011

0.90
LR Mean .057 .051 .058 .051 .056 .050

Std .016 .011 .017 .011 .017 .011

KM Mean .483 .488 .483 .491 .495 .488

Std .055 .036 .045 .035 .046 .033

LPM Mean .086 .083 .085 .081 .094 .087

Std .021 .013 .018 .013 .022 .016

LDF Mean .086 .084 .084 .080 .088 .081
0.25

Std .022 .013 .018 .013 .021 .015

0.75
LR Mean .089 .085 .089 .082 .093 .083

Std .023 .014 .020 .014 .020 .015

KM Mean .447 .462 .448 .474 .469 .468

Std .079 .059 .072 .047 .064 .052

LPM Mean .108 .104 .106 .100 .107 .104

Std .022 .016 .023 .016 .023 .016

LDF Mean .108 .103 .106 .100 .107 .104
0.50

Std .022 .016 .023 .016 .023 .016

0.50
LR Mean .110 .105 .108 .101 .109 .104

Std .023 .017 .024 .016 .024 .016

Mean .396 .418 .396 .407 .406 .423

Std .098 .083 .112 .099 .101 .085
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Covariance matrices = Equal and Group separation = 2.2

cn

9 o
0 0o.o

-o
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .094 .094 .094 .096 .098 .100

Std .021 .015 .021 .015 .023 .016

LDF Mean .096 .091 .091 .090 .093 .092
0.10

Std .024 .014 .022 .015 .022 .015

0.90
LR Mean .099 .092 .094 .091 .094 .093

Std .024 .014 .021 .015 .023 .015

KM Mean .501 .498 .498 .495 .494 .497.

Std .045 .031 .044 .032 .049 .030

LPM Mean .181 .179 .184 .180 .192 .191

Std .028 .018 .028 .022 .027 .021

LDF Mean .182 .181 .185 .179 .185 .182
0.25 Std .028 .018 .028 .021 .025 .021

0.75
LR Mean .184 .182 .185 .180 .186 .181

Std .029 .018 .028 .021 .026 .021

KM Mean .488 .490 .490 .489 .494 .492

Std .041 .031 .046 .034 .042 .033

LPM Mean .244 .241 .240 .234 .245 .243

Std .029 .023 .030 .020 .034 .023

LDF Mean .244 .241 .240 .234 .245 .243
0.50 Std .029 .023 .030 .020 .034 .022

0.50
LR Mean .245 .241 .240 .234 .246 .243

Std .029 .023 .031 .019 .033 .022

KM Mean .489 .490 .491 .489 .488 .490

Std .043 .031 .041 .032 .046 .033
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Covariance matrices = Equal and Group separation = 0.7

= 6')

9. o
IT's

o 0a. 0.o 0
a.. EL

-o

i
Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .100 .098 .098 .100 .100 .100

Std .020 .015 .021 .015 .020 .014

LDF Mean .105 .100 .102 .101 .103 .101
0.10

Std .021 .015 .021 .015 .020 .014

0.90
LR Mean .106 .100 .104 .102 .104 .101

Std .022 .015 .021 .015 .021 .014

KM Mean .498 .499 .494 .503 .497 .502

Std .046 .032 .045 .031 .042 .034

LPM Mean .245 .240 .243 .237 .243 .245

Std .029 .021 .031 .021 .031 .022

LDF Mean .248 .243 .247 .237 .241 .240
0.25

Std .030 .022 .030 .021 .030 .022

0.75
LR Mean .249 .244 .248 .237 .242 .240

Std .031 .022 .030 .021 .030 .022

KM Mean .498 .498 .492 .495 .504 .498

Std .040 .027 .042 .028 .037 .029

LPM Mean .362 .353 .347 .342 .361 .354

Std .034 .026 .034 .026 .035 .024

LDF Mean .362 .352 .347 .342 .361 .353
0.50

Std .034 .026 .034 .026 .035 .024

0.50
LR Mean .361 .352 .347 .342 .361 .353

Std .034 .026 .035 .026 .036 .025

KM Mean .499 .497 .493 .496 .492 .495

Std .037 .028 .036 .027 .038 .030
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Covariance matrices = 1:4 and Group separation = 6.7

0 20 0
472. . ...at t-6 o
a. 204o

fli Q.

't,

.e1)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .056 .059 .077 .077 .095 .096

Std .018 .014 .020 .014 .021 .015

LDF Mean .039 .038 .040 .038 .044 .041
0.10

Std .014 .010 .013 .010 .016 .010

0.90
LR Mean .044 .041 .047 .040 .050 .043

Std .015 .010 .015 .010 .017 .011

KM Mean .491 .496 .496 .492 .493 .492

Std .047 .033 .048 .032 .048 .032

LPM Mean .069 .065 .063 .061 .070 .066

Std .019 .014 .018 .012 .018 .014

LDF Mean .071 .067 .065 .062 .065 .061
0.25

Std .019 .014 .017 .012 .017 .013

0.75
LR Mean .069 .062 .068 .064 .073 .066

Std .019 .013 .019 .013 .019 .013

KM Mean .415 .434 .432 .445 .441 .462

Std .071 .059 .065 .048 .070 .046

LPM Mean .105 .101 .094 .091 .086 .083

Std .024 .016 .021 .015 .020 .014

LDF Mean .105 .100 .094 .091 .086 .084
0.50

Std .024 .016 .021 .015 .020 .014

0.50
LR Mean .092 .087 .092 .085 .094 .090

Std .022 .014 .022 .015 .020 .016

KM Mean .303 .321 .323 .328 .338 .352

Std .092 .083 .091 .083 .090 .081
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness
o 02't ..-o o= Over Equal Under

0
a a t±.)

Sample size Sample size Sample size
A. 'a

0.10

0.90

0.25

0.75

0.50

0.50

200 400 200 400 200 400

LPM Mean .102 .103 .104 .100 .100 .099

Std .022 .014 .021 .015 .021 .015

LDF Mean .111 .111 .112 .107 .108 .106

Std .022 .016 .022 .015 .022 .015

LR Mean .116 .114 .117 .110 .112 .109

Std .023 .016 .022 .015 .023 .016

KM Mean .507 .498 .503 .500 .502 .498

Std .044 .030 .043 .031 .040 .033

LPM Mean .187 .188 .205 .204 .232 .233

Std .028 .020 .029 .022 .030 .024

LDF Mean .185 .186 .197 .193 .211 .209

Std .029 .020 .027 .022 .030 .024

LR Mean .187 .186 .197 .193 .205 .202

Std .028 .020 .027 .021 .029 .023

KM Mean .486 .486 .488 .490 .496 .493

Std .044 .034 .044 .032 .041 .031

LPM Mean .213 .206 .209 .202 .232 .225

Std .032 .022 .029 .021 .034 .023

LDF Mean .213 .206 .209 .202 .231 .224

Std .032 .022 .029 .021 .034 .023

LR Mean .210 .203 .214 .208 .234 .235

Std .032 .020 .029 .021 .033 .022

KM Mean .451 .468 .459 .467 .463 .470

Std .062 .048 .063 .051 .052 .039
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Covariance matrices = 1:4 and Group separation = 0.7

o c''

o 0o. 0.o 0a 15.

o
.)

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

0.10

0.90

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.099

.021

.110

.023

.117

.024

.503

.041

.101

.015

.107

.016

.112

.018

.505

.030

.101

.021

.107

.022

.112

.024

.500

.041

.101

.015

.106

.015

.108

.017

.503

.030

.096

.021

.100

.022

.104

.023

.507

.043

.101

.015

.103

.016

.105

.016

.504

.030

0.25

0.75

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.290

.032

.293

.031

.295

.031

.500

.037

.288

.024

.290

.024

.290

.023

.502

.027

.283

.030

.291

.029

.293

.028

.501

.037

.275

.025

.283

.024

.285

.024

.498

.028

.264

.030

.277

.030

.281

.033

.504

.036

.261

.022

.274

.022

.278

.021

.501

.026

0.50

0.50

LPM

LDF

LR

KM

Mean

Std

Mean

Std

Mean

Std

Mean

Std

.301

.030

.301

.030

.301

.029

.484

.040

.299

.023

.299

.023

.298

.023

.483

.032

.318

.034

.318

.034

.323

.034

.481

.044

.311

.024

.311

.024

.316

.024

.481

.035

.395

.042

.394

.042

.393

.041

.485

.047

.394

.030

.392

.030

.391

.029

.487

.032
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Covariance matrices = 4:1 and Group separation = 6.7

=0 g
/IS

= 0
sa. 0.0oac,,

-o
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Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .056 .055 .062 .060 .072 .070

Std .016 .012 .017 .013 .020 .014

LDF Mean .052 .049 .053 .050 .057 .051
0.10

Std .015 .011 .016 .011 .018 .011

0.90
LR Mean .056 .051 .058 .052 .061 .053

Std .016 .011 .017 .012 .019 .012

KM Mean .444 .470 .456 .472 .463 .477

Std .088 .044 .067 .049 .069 .037

LPM Mean .083 .080 .085 .084 .092 .092

Std .020 .014 .019 .015 .022 .016

LDF Mean .082 .079 .084 .083 .087 .086
0.25

Std .020 .014 .018 .015 .022 .015

0.75
LR Mean .087 .081 .086 .082 .088 .084

Std .022 .014 .020 .015 .021 .014

KM Mean .324 .400 .345 .389 .360 .423

Std .117 .087 .124 .104 .123 .096

LPM Mean .086 .083 .092 .091 .101 .100

Std .020 .015 .022 .016 .022 .016

LDF Mean .086 .083 .092 .091 .101 .099
0.50

Std .019 .015 .022 .016 .022 .016

0.50 LR Mean .095 .089 .091 .087 .090 .086

Std .021 .015 .022 .015 .020 .014

KM Mean .334 .363 .325 .337 .297 .307

Std .087 .072 .086 .080 .088 .086

148



148

Covariance matrices = 4:1 and Group separation = 2.2

o c
ot
o

o.
R. at

0

Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .082 .085 .087 .086 .092 .093

Std .018 .015 .021 .013 .021 .014

LDF Mean .080 .076 .079 .075 .079 .076
0.10

Std .018 .014 .019 .013 .019 .014

0.90
LR Mean .081 .076 .082 .075 .081 .078

Std .018 .013 .020 .013 .019 .014

KM Mean .470 .479 .473 .477 .472 .481

Std .056 .036 .052 .041 .053 .040

LPM Mean .154 .148 .153 .151 .157 .158

Std .025 .016 .027 .019 .026 .020

LDF Mean .155 .149 .152 .149 .151 .150
0.25

Std .025 .016 .026 .018 .025 .019

0.75
LR Mean .160 .151 .154 .150 .152 .151

Std .026 .016 .026 .018 .026 .019

KM Mean .452 .467 .455 .470 .465 .475

Std .066 .051 .059 .045 .056 .042

LPM Mean .229 .227 .209 .204 .212 .209

Std .030 .023 .029 .018 .031 .021

LDF Mean .228 .227 .209 .204 .211 .208
0.50

Std .030 .023 .029 .018 .031 .021

0.50
LR Mean .240 .237 .214 .211 .208 .204

Std .031 .023 .030 .019 .030 .021

KM Mean .462 .465 .458 .469 .463 .463

Std .059 .046 .062 .044 .053 .047
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Covariance matrices = 4:1 and Group separation = 0.7

ch= =
too 0a. 0.o 0i...

-oo
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Sample representativeness

Over Equal Under

Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .094 .093 .095 .099 .098 .099

Std .023 .014 .019 .015 .022 .016

LDF Mean .090 .086 .088 .090 .090 .090
0.10

Std .022 .014 .019 .015 .020 .015

0.90
LR Mean .091 .087 .089 .091 .092 .091

Std .022 .014 .019 .015 .022 .015

KM Mean .472 .482 .480 .482 .475 .489

Std .052 .036 .052 .039 .052 .037

LPM Mean .193 .190 .199 .194 .204 .207

Std .026 .020 .028 .021 .031 .024

LDF Mean .194 .189 .198 .189 .196 .194
0.25

Std .026 .020 .029 .020 .029 .023

0.75
LR Mean .196 .190 .198 .190 .196 .196

Std .027 .020 .029 .020 .030 .023

KM Mean .466 .477 .473 .181 .465 .484

Std .054 .042 .054 .042 .050 .038

LPM Mean .389 .391 .319 .313 .309 .299

Std .041 .032 .035 .022 .033 .022

LDF Mean .388 .389 .319 .313 .309 .299
0.50

Std .041 .032 .035 .022 .034 .022

0.50
LR Mean .387 .388 .324 .318 .309 .299

Std .040 .031 .037 .022 .033 .023

KM Mean .483 .486 .479 .487 .478 .484

Std .045 .036 .047 .031 .044 .033
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Table T-3

ANOVA Results, Eta-squared, and Partial-Omega squared of Total Error Rate for Data Pattern

I on Comparing Four Methods

Source of Variation df SS MS
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 105.67 52.84 24782.80 <.0001 .0668 .2766

Equality of covariance (COV) 2 19.44 9.72 4560.38 <.0001 .0123 .0657

Group separation (GS) 2 600.81 300.41 140908.0 <.0001 .3797 .6850

Sample representativeness (SR) 2 1.00 0.50 235.03 <.0001 .0006 .0036

Sample size (SS) 1 0.014 0.014 6.66 .0099 <.0001 <.0001

PP*COV 4 10.11 2.53 1185.34 <.0001 .0064 .0353

PP*GS 4 84.08 21.02 9859.56 <.0001 .0531 .2333

PP*SR 4 0.96 0.24 112.89 <.0001 .0006 .0034

PP*SS 2 0.016 0.008 3.82 .0220 <.0001 <.0001

COV*GS 4 2.18 0.54 255.43 <.0001 .0014 .0078

COV*SR 4 0.95 0.24 111.58 <.0001 .0006 .0034

COV*SS 2 0.0009 0.0004 0.20 .8165 <.0001 <.0001

GS*SR 4 0.36 0.09 42.38 <.0001 .0002 .0013

GS*SS 2 0.0052 0.0026 1.22 .2960 <.0001 <.0001

SR*SS 2 0.008 0.004 1.87 .1538 <.0001 <.0001

Error (between) 32358 68.99 0.0021

Within-subject effects:

Method (4M) 3 292.53 97.51 208717.0 <.0001 .1849 .8285

4M*PP 6 289.03 48.17 103109.0 <.0001 .1827 .8268

4M*COV 6 7.22 1.20 2576.55 <.0001 .0046 .1065

4M*GS 6 14.66 2.44 5230.26 <.0001 .0093 .1949

4M*SR 6 0.68 0.11 241.15 <.0001 .0004 .0110

4M*SS 3 0.043 0.014 30.47 <.0001 <.0001 .0007

4M*PP*COV 12 3.71 0.31 661.45 <.0001 .0023 .0576

4M*PP*GS 12 29.25 2.44 5217.19 <.0001 .0185 .3257

4M*PP*SR 12 0.64 0.05 114.92 <.0001 .0004 .0104

4M*PP*SS 6 0.022 0.0036 7.66 <.0001 <.0001 .0003

4M*COV*GS 12 3.78 0.32 675.07 <.0001 .0024 .0587

4M*COV*SR 12 0.63 0.052 111.73 <.0001 .0004 .0101

4M*COV*SS 6 0.0007 0.0001 0.27 .9522 <.0001 <.0001

4M*GS*SR 12 0.22 0.018 39.12 <.0001 .0001 .0035

4M*GS*SS 6 0.0007 0.0001 0.24 .9622 <.0001 <.0001

4M*SR*SS 6 0.0064 0.0011 2.28 .0337 <.0001 .0001
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Source of Variation df SS MS
Eta-

Partial

Squared
Omega-
Squared

Error (within) 97074 45.35 0.0005

SSeffect

Note. Eta square ( /72 ) is defined as: 77 = where S S is the effect sum of squares, and SSfotai is theSSeffect th
SSmai

total sum of squares. Partial omega squared was calculated from the formula: comma =
dfeffect(Feffect 1)

dfesecf(Fejjea 1) + N

where dfeffect is the degrees of freedom for the effect, Feffect is the F ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.
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Table T-4

ANOVA Results, Eta-squared, and Partial-Omega squared of Total Error Rate for Data Pattern

II on Comparing Four Methods

Source of Variation df SS MS F P
Eta-

Squared

Partial
Omega-
Squared

Between-subject effects:

Population proportion (PP) 2 180.04 90.02 40628.50 <.0001 .0537 .3854

Equality of covariance (COV) 2 12.02 6.01 2713.00 <.0001 .0036 .0402

Group separation (GS) 2 375.38 187.69 84709.80 <.0001 .1119 .5666

Sample representativeness (SR) 2 0.57 0.29 128.63 <.0001 .0002 .0020

Sample size (SS) 1 0.011 0.011 4.91 .0268 <.0001 <.0001

PP*COV 4 7.48 1.87 843.86 <.0001 .0022 .0254

PP*GS 4 119.79 29.95 13516.10 <.0001 .0357 .2943

PP*SR 4 0.52 0.13 58.85 <.0001 .0002 .0018

PP*SS 2 0.02 0.01 4.42 .0121 <.0001 .0001

COV*GS 4 3.30 0.83 372.63 <.0001 .0010 .0113

COV*SR 4 1.16 0.29 131.13 <.0001 .0003 .0040

COV*SS 2 0.10 0.05 22.59 <.0001 <.0001 .0003

GS*SR 4 0.23 0.06 25.87 <.0001 .0001 .0008

GS*SS 2 0.077 0.039 17.40 <.0001 <.0001 .0003

SR*SS 2 0.011 0.006 2.49 .0831 <.0001 <.0001

Error (between) 32358 71.69 0.0022

Within-subject effects:

Method (4M) 3 2297.18 765.73 778723.0 <.0001 .6848 .9474

4M*PP 6 145.59 24.27 24677.50 <.0001 .0434 .5332

4M*COV 6 1.45 0.24 244.97 <.0001 .0004 .0112

4M*GS 6 26.65 4.44 4516.30 <.0001 .0079 .1729

4M*SR 6 0.22 0.037 37.17 <.0001 .0001 .0017

4M*SS 3 0.86 0.29 292.84 <.0001 .0003 .0067

4M*PP*COV 12 0.41 0.034 34.57 <.0001 .0001 .0031

4M*PP*GS 12 8.84 0.74 749.28 <.0001 .0026 .0648

4M*PP*SR 12 0.31 0.026 26.19 <.0001 .0001 .0023

4M*PP*SS 6 0.12 0.02 20.35 <.0001 <.0001 .0009

4M*COV*GS 12 4.12 0.34 349.54 <.0001 .0012 .0313

4M*COV*SR 12 0.19 0.016 16.07 <.0001 .0001 .0014

4M*COV*SS 6 0.20 0.033 33.98 <.0001 .0001 .0015

4M*GS*SR 12 0.11 0.0089 9.02 <.0001 <.0001 .0007

4M*GS*SS 6 0.28 0.047 48.11 <.0001 .0001 .0022

4M*SR*SS 6 0.016 0.0026 2.63 .0151 <.0001 .0001
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Source of Variation df SS MS
Eta-

Partial

Squared
Omega-
Squared

Error (within) 97074 95.45 0.0010

SSeffect
Note. Eta square 072 ) is defined as: 772 = , where SSeffect is the effect sum of squares, and SStotai is the

SStotai

2
dfeffect (Feffect 1)

total sum of squares. Partial omega squared was calculated from the formula: copangd =
d./ effecr

,

where dfeffect is the degrees of freedom for the effect, Feffect is the F ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.

154



154

Table T-5

Means and Standard Deviations of Total Error Rate for Method by Population Proportion

Interaction

Method

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern 1

0.10:0.90 .088 .024 .078 .030 .079 .031 .338 .105

0.25:0.75 .165 .074 .162 .075 .162 .075 .241 .107

0.50:0.50 .217 .106 .217 .106 .217 .107 .212 .086

Data Pattern 11

0.10:0.90 .088 .023 .080 .030 .082 .030 .489 .046

0.25:0.75 .167 .074 .165 .075 .166 .075 .466 .070

0.50:0.50 .221 .106 .221 .106 .221 .106 .438 .090
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Table T-6

Means and Standard Deviations of Total Error Rate for Method by Equality of Covariance

Matrices Interaction

Method
Equality of
covariance
matrices

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

1:4 .162 .096 .158 .100 .159 .100 .285 .108

Equal .162 .093 .158 .096 .159 .095 .277 .112

4:1 .146 .088 .140 .090 .141 .091 .228 .112

Data Pattern II

1:4 .164 .097 .161 .100 .162 .100 .467 .073

Equal .164 .095 .161 .097 .163 .096 .481 .058

4:1 .148 .088 .143 .090 .145 .090 .445 .083
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Table T-7

Means and Standard Deviations of Total Error Rate for Method by Group Separation

Interaction

Method

Group
separation

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 .080 .022 .071 .026 .070 .025 .151 .074

2.2 .165 .059 .161 .060 .162 .060 .279 .080

0.7 .225 .105 .224 .106 .225 .106 .361 .066

Data Pattern II

6.7 .082 .023 .074 .027 .075 .026 .420 .098

2.2 .167 .061 .164 .061 .166 .061 .482 .047

0.7 .226 .107 .227 .107 .228 .106 .491 .040

157



157

Table T-8

Means and Standard Deviations of Total Error Rate for Method by Population Proportions by

Group Separation Interaction

Method

Group
separation

Population
proportions

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

6.7 0.10:0.90 .069 .021 .045 .014 .046 .014 .224 .080

0.25:0.75 .077 .019 .075 .019 .075 .019 .122 .043

0.50:0.50 .093 .019 .093 .019 .091 .019 .108 .021

2.2 0.10:0.90 .096 .019 .091 .023 .092 .023 .364 .056

0.25:0.75 .180 .036 .173 .032 .173 .031 .253 .062

0.50:0.50 .219 .030 .219 .030 .222 .030 .219 .027

0.7 0.10:0.90 .099 .019 .098 .020 .099 .020 .426 .046

0.25:0.75 .237 .041 .237 .045 .238 .045 .349 .050

0.50:0.50 .339 .048 .338 .048 .339 .047 .308 .034

Data Pattern II

6.7 0.10:0.90 .069 .021 .047 .014 .051 .015 .482 .051

0.25:0.75 .079 .020 .078 .019 .079 .020 .424 .092

0.50:0.50 .097 .021 .097 .021 .095 .021 .354 .098

2.2 0.10:0.90 .095 .019 .093 .022 .095 .023 .491 .043

0.25:0.75 .182 .035 .177 .031 .177 .030 .482 .046

0.50:0.50 .224 .031 .223 .031 .227 .031 .472 .050

0.7 0.10:0.90 .099 .018 .099 .020 .100 .021 .494 .042

0.25:0.75 .239 .042 .240 .046 .241 .046 .491 .040

0.50:0.50 .342 .046 .342 .045 .342 .045 .487 .038
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Table T-9

Means and Standard Deviations of Total Error Rate for Method by Population Proportion by

Equality of Covariance Matrices Interaction

Population

Proportion

Equality of
covariance

matrices

Method

LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I

0.10:0.90 1:4 .093 .023 .083 .036 .085 .037 .368 .082

Equal .089 .024 .080 .028 .081 .028 .354 .086

4:1 .083 .024 .070 .023 .072 .024 .292 .125

0.25:0.75 1:4 .181 .091 .179 .093 .179 .093 .279 .094

Equal .169 .068 .167 .068 .167 .068 .257 .105

4:1 .144 .053 .139 .051 .140 .052 .187 .098

0.50:0.50 1:4 .212 .106 .211 .106 .211 .107 .207 .079

Equal .228 .105 .228 .105 .228 .105 .221 .100

4:1 .212 .107 .212 .106 .212 .108 .206 .078

Data Pattern II

0.10:0.90 1:4 .093 .023 .085 .036 .089 .037 .499 .038

Equal .088 .023 .082 .028 .083 .028 .495 .040

4:1 .082 .023 .073 .022 .075 .022 .473 .053

0.25:0.75 1:4 .184 .092 .182 .093 .183 .093 .476 .054

Equal .171 .069 .170 .069 .171 .069 .483 .050

4:1 .146 .051 .143 .050 .144 .050 .437 .090

0.50:0.50 1:4 .215 .106 .214 .105 .215 .107 .425 .094

Equal .233 .105 .233 .105 .234 .104 .464 .075

4:1 .215 .106 .214 .105 .215 .107 .424 .093
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Figure G1-1. Population proportion by group separation interaction on Group 1 error rate.
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Figure G1-2. Equality of covariance matrices by group separation interaction on Group 1 error

rate.
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Figure G1-3. Method by population proportion interaction on Group 1 error rate.
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Figure G1-4. Method by equality of covariance matrices interaction on Group 1 error rate.
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Figure G1-5. Method by group separation interaction on Group 1 error rate.
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Figure G1-6. Method by sample representativeness interaction on Group 1 error rate.
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Figure G1-7. Method by population proportion by group separation interaction on Group 1 error

rate.
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(d) Method = KM (d) Method = KM
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Figure G1-8. Method by equality of covariance matrices by group separation interaction on

Group 1 error rate.
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(d) Method
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Figure G2-1. Population proportion by equality of covariance matrices interaction on Group 2

error rate.
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Figure G2-2. Population proportion by group separation interaction on Group 2 error rate.
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Figure G2-3. Population proportion by sample representativeness interaction on Group 2 error

rate.
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Figure G2-4. Method by population proportion interaction on Group 2 error rate.
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Figure G2-5. Method by equality of covariance matrices interaction on Group 2 error rate.
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Figure G2-6. Method by group separation interaction on Group 2 error rate.
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Figure G2-7. Method by sample representativeness interaction on Group 2 error rate.
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Figure G2-8. Method by population proportion by equality of covariance matrices interaction on

Group 2 error rate.
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Figure G2-9. Method by population proportion by group separation interaction on Group 2 error

rate.
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Figure G2-10. Method by population proportion by sample representativeness interaction on

Group 2 error rate.
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Figure G2-11. Method by equality of covariance matrices by group separation interaction on

Group 2 error rate.
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Figure G2-12. Method by group separation by sample representativeness interaction on Group 2

error rate.
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Figure T-1. Population proportion by group separation interaction on Total error rate.
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Figure T-2. Method by population proportion interaction on Total error rate.
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Figure T-3. Method by equality of covariance matrices interaction on Total error rate.
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Figure T-4. Method by group separation interaction on Total error rate.
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Figure T-5. Method by population proportion by group separation interaction on Total error rate.
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