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Abstract

This study compares the accuracy of predicting two-group membership obtained from K-
means clustering with those derived from linear probability modeling, linear discriminant
function, and logistic regression under various data properties. Multivariate normally distributed
populations were simulated based on combinations of population proportions, equality of
covariance matrices, and group separation. The four statistical methods were applied to training
samples were drawn based on combinations of sample representativeness and sample size. Error
rates were calculated based on the cross-validation results on test samples. The findings revealed
that, depending on the data pattern, K-means clustering was a viable alternative when the

accuracy of predicting the membership of the smaller population was the main objective.



Comparisons of K-means Clustering with Linear Probability Model, Linear Discriminant
Function, and Logistic Regression for Predicting Two-group Membership

For predictive studies in which the outcome variable is continuous, the ordinary least
square (OLS) regression modeling is the most popular technique used in educational research
(Elmore & Woehlke, 1996). However, when modeling dichotomous (or binary) outcome
variables, alternative statistical techniques are available. These include linear discriminant
function and logistic regression modeling (Cleary & Angel, 1984; Fraser, Jensen, Kiefer, &
Popuang, 1994). Linear discriminant function (LDF) and logistic regression (LR) are considered
viable alternatives to OLS regression for modeling dichotomous outcome variables (Long, 1997;
Ryan, 1997; Tabachnick & Fidell, 2001; Yarnold, Hart, & Soltysik, 1994).

When the OLS regression model is applied to outcome variables, it is referred to as a
linear probability model (LPM). The LPM is considered less suitable, theoretically, than either
LR or LDF for prediction or classification (Long, 1997; Rice, 1994). However, the main
advantage of LPM is that it is easily interpreted. And OLS regression is often taught in statistic
courses required by Ph.D. programs (Aiken, West, Sechrest & Reno, 1990). Studies utilizing this
technique to predict dichotomous outcomes are still found in the field of education (e.g., Grubb
& Tuma, 1991; Kallio, 1995).

K-means clustering (KM) has seldom been employed in predictive studies. Indirect
evidence supports the proposition that KM may yield better prediction or classification results
than either LDF or LR. Wilson and Hardgrave (1995) compared the ability of a neural network
technique (i.e., the back propagation training algorithm) with traditional methods, such as LDF
or LR, for predicting the academic success of MBA students. Their result revealed that the neural
network models performed at least as well as discriminant analysis or logistic regression.

Balakrishnam, Cooper, Jacob and Lewis (1994) compared neural network techniques (i.e., the
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Kohonen algorifhm) with unsupervised learning with KM for classification. They concluded that
KM outperformed the Kohonen algorithm in cluster recovery. Using a data set from a cancer
research project, So (2002) examined the classification accuracy of KM, LDF, and LR and found
the performance of KM to be superior to that of either LDF or LR. There has not been research
documented in the literature that compares the predictive accuracy of KM with that of LDF, LR,
or LPM in a two-group classification under various data properties. Thus, the current study seeks
to fill this void by manipulating five data properties in simulated data sets and systematically
examines the accuracy of predicting two-group membership by KM, LDF, LR, and LPM. The
remainder of this paper is divided into eight sections: (1) Research Design, (2) Method, (3)
Model Fitting, (4) Data Analyses, (5) Results of Group 1 Error Rates, (6) Results of Group 2
Error Rates, (7) Results of Total Error Rates, and (8) Implications for Educational Researchers.
1. Research Design

Five factors regarding data properties were manipulated including (1) population
proportions (3 levels), (2) equality of covariance matrices (3 levels), (3) group separations (3
levels), (4) sample representativeness (3 levels), and (5) sample size (2 levels). The first three -
factors were related to features of the underlying population while the latter two were related to
features of samples. Multivariate normal distributions were assumed for both populations.
Data Patterns

Two data patterns were utilized in order to assess the generalizability of the results
(Tables 1 and 2). Data Pattern I had three variables while Data Pattern II had eight. Furthermore,
the two data patterns differed in means as well as in variance-covariance structures. Both were
previously used in Fan and Wang (1999) for comparing LDF and LR in the two-group

classification problem.



Five Factors

Three levels under Factor 1 (population proportions) were 0.5:0.5, 0.25:0.75, and 0.1:0.9.
Factor 2 (the equality of covariance matrices) had three levels: (a) the equal condition in which
the two populations had equal covariance matrices, (b) the first unequal condition in which
Population #1 had smaller covariances (one-fourth of the size of Population #2’s covariances),
and (c) the second unequal condition in which Population #1 had larger covariances (four times
of the size of Population#2’s covariances). The larger covariance matrix was set to be four times
the smaller covariance matrix, following the studies of Fan and Wang (1999) and Lei and Koehly
(2000). The ratio of 4 to 1 (or 1 to 4) reflected a moderate degree of variance heterogeneity,
according to Hess, Olejnik, and Huberty (2001). The group separation factor (Factor 3) was
quantified in terms of the Mahalanobis distance (dz) between the two population means. It had

three levels: 6.709, 2.236, and 0.745 for Data Pattern I, or 6.785, 2.262, and 0.754 for Data
Pattern II. The first two levels were considered a large separation (Stevens, 1996; Meshbane &
Morris, 1996) while the third level was considered a moderate separation, according to Huberty,
Wisenbaker, and Smith (1987).

Factor 4 (sample representativeness) had three levels: (i) the modeled group was 20%
over-sampled, (ii) sample proportions equaled to the population proportions, and (iii) the
modeled group was 20% under-sampled. These levels were chosen so as to investigate the effect
of sample representativeness and prior probabilities on prediction. For example, if the two
population proportions wére 0.1 and 0.9, the two sample proportions would be 0.12 (=
0.1+0.1x0.2) and 0.88 (=1-0.12), respectively, under the “20% over-sampled” condition.

Two sample sizes (200 or 400) were two levels of the fifth factor manipulated in this

study. Samples of either size were randomly drawn from the two underlying populations. For



example, if the population proportions were 0.1 and 0.9, a sample of 200 would consist of 24
randomly selected observations from Population #1 and 176 from Population #2 under the “20%
over-sampled” condition (i.e., sample proportions of 0.12 to 0.88). These two sample sizes were
considered moderately large by Fan and Wang (1999).

A fully crossed factorial design with 3x3x3x3x2 =162 combinations was adopted for the
present study. For each combination, 200 samples were simulated from multivariate normal
distributions according to both data patterns. Thus, a total of 64,800 [=(3%x3x3x3x2x200)*2]
samples were simulated with overlapping observations between the two groups. Each sample
was analyzed by four statistical methods and error rates in prediction were noted.

2. Method
Multivariate Normal Populations
For each data pattern, multivariate normal distributions were simulated by the matrix
decomposition method with an appropriate linear transformation (Mooney, 1997). 'fhe data
simulation procedure was as follows:
1. Generate a (n x k) data matrix of values from normal distribution with mean and
standard deviation of 0 and 1, respectively, where # is the number of observations and
k is the number of variables.

2. Compute the Choleski decomposition, which is equivalent to the square root of the
(k x k) correlation matrix specified by Data Pattern I or II (Tables 1 and 2).

3. Multiply the data matrix from (1) above with the Choleski decomposition from (2) to

ensure that the correlation structure from Data Pattern I or II is built into the data

matrix from (1).



4. Multiply the data matrix from (3) with the (n x k) standard deviation matrix of Data
Pattern I or II cellwise.

5. Add the (n x k) mean matrix of Data Pattern I or I to the data matrix derived in (4).
The SAS® macro program for completing steps (1) to (5) may be obtained from the first author.
The pseudo random number generator, the IML procedure, and the RANNOR function of SAS®
Version 8.2, installed on an IBM RS/6000 SP machine with AIX 4.3 operating system, were
employed in the execution of the SAS® macro program to simulate data matrices for Populations
#1 and #2.
Population Size

The combined population size is set at 50,000 observations in order to control for the
exact population proportions for the two groups. For example, under the 0.1:0.9 population
proportions cpndition, 5,000 observations c_:onstituted Population #1 and 45,000 observations
constituted Population #2. The ratio of population to sample was higher than 20 times, the
criterion used in Fan and Wang (1999), or 15,000 observations used in Lei and Koehly (2000), to
ensure that the populations simulated were sufficiently stable in terms of correlations among
variables included in Data Pattern I or II.

3. Model Fitting

Once the two populations were simulated, a training sample was drawn first. The training
sample was fitted with K-means clustering (KM), logistic regression model (LR), linear
discriminant function (LDF), and linear probability model (LPM). For LR, LDF, and LPM, the
probability of being from Population #1 was modeled.

Each training sample was first fitted with LR by the SAS® LOGISTIC procedure to

determine the overlapping configuration of the training sample. When a complete separation or



quasi-complete separation configuration was detected, a new training sample was drawn from
the 50,000 observations simulated. The new training sample was once again examined for data
separation configuration. This process continued until a training sample with overlapping
configuration was obtained. At this point, the training sample was considered suitable for fitting
all four statistical methods. A test sample, with size equal to that of the training sample, was
subsequently drawn randomly from the remaining observations in the populations in order to
compute the error rate.

Four SAS® procedures, FASTCLUS, REG, DISCRIM, and LOGISTIC were employed
to carry out KM, LPM, LDF, and LR on the training sample. Statistical models derived from the
training sample were subsequently cross-validated on the test sample. Error rates incurred in
cross validations in predicting membership in Group 1, Group 2, and both groups (i.e., the
overall) were tracked and used in further analyses.

4. Data Analysis

The performance of KM, LPM, LDF, and LR in predicting two-group membership under
various data conditions was examined in a split-plot factorial (i.e., SPF3333,4) ANOVA design. In
order to contrast these four statistical methods on common grounds, error rates derived from the
KM model were compared to those from the LPM model with a 0.5 probability cut-off, from the
LDF model with prior probabilities equal to sample proportions and a 0.5 probability cut-off, and
from the LR model with a 0.5 probability cut-off. These four methods were considered levels of
a “within-subjects” factor in the SPF design. The five factors,. namely, (1) population proportion,
(2) equality of covariance matrices, (3) group separation, (4) sample representativeness, and (5)
sample size, were treated as “between-subjects” factors. The outcome variables were three error

rates incurred in cross-validations. The Group 1 error rate was the proportion of observations in



the test sample originated from Population #1 that were misclassified as belonging to Population
#2. Similarly, the Group 2 error rate was the proportion of observations from Population #2 that
were misclassified as belonging to Population #1. The Total error rate was the overall proportion
of observations in the test sample that were misclassiﬁed..

A full SPF333304 ANOVA should have contained 63 main effects and interactions (i.e., 31
between-subjects effects and 32 within-subjects effects). In order to keep the results manageable
and interpretable, a reduced ANOVA design was employed. This reduced ANOVA contained
only 15 between-subjects effects (i.e., 5 main effects and 10 two-way interactions) and 16
within-subjects effects (i.e., 1 main effect, 5 two-way, and 10 three-way interactions). As a result,
for each data pattern, three separate reduced ANOVAs were executed, one for each error rate. A
total of six (i.e., three error rates by two data patterns) split-plot factorial ANOVAs were carried
out.

The ANOV As were performed by the SAS®lGLM procedure. All the effects examined
were considered as fixed effects. Because a large number of F tests (i.e., 31) were performed for
each ANOVA, an alpha level of .0016 was employed in asses_sing the statistical significance of
each effect. The overall alpha for each ANOVA was kept at a .05 level.

In addition to the ANOVA results, the eta squared and the partial omega squared
(Maxwell, Camp, & Arvey, 1981) for each effect were computed. The eta squared (77°)
represents the proportion of sample total variance of the dependent measure explained by a

particular effect. This index is defined as

SS

2 _ effect

SS

total
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where SS,;,, is the effect sum of squares and SS,,,, is the total sum of squares. The partial

omega squared (a)f,a,,,.,,, ) is an index of strength of association between a factor (i.e., main or

interaction effect) and the dependent measure with the effects of other factors removed. This

index is suitable for a factorial design (Kirk, 1995). It was calculated according to the formula:

2 _ d.feﬂect (F;ﬁéct - 1)
a)parlial -
dfeﬁ”ecr (F effect — l) +‘N

where df ;. is the degrees of freedom for the effect, F 4, is the F ratio for the effect, and N

equals 200x3x3x3x3x2x4 (= 129,600) in the ANOVA design. Unlike the significance test of an

F ratio, a)f,am.,,, is not affected by sample size. According to Cohen (1988), a a);ama, value

between .06 and .14 indicates a moderate association, while a value of .14 or greater is a large
association. In this study, effects that had at least a moderate association with the dependent

measure were operationally defined as practically significant. Main effects were

comprehensively examined regardless of their a)f,a,,,.,,, values. Because of the large degrees of

freedom associated with the two error terms in the SPF ANOVA, only interaction effects with a

2

ariat Value greater than .06 were examined in greater details in later sections.

()

5. Results of Group 1 Error Rates
As defined previously, Group 1 (G1) error rate was the proportion of observations in test
sample originated from Population #1 that were misclassified as belonging to Population #2. The
means and standard deviations of this error rates based on 200 replications for each combination
of levels of the five factors for Data Pattern I are summarized in Table G1-1. Similarly, the
means and standard deviations for Data Pattern II are presented in Table G1-2. The ANOVA

results of G1 error rates for Data Pattern I are shown in Table G1-3. Out of the 31 main and

11
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interaction effects, 23 effects were statistically significant at the .0016 level. The ANOVA results
of G1 error rates for Data Pattern II are presented in Table G1-4. Twenty-nine effects were
statistically significant at the .0016 level for Data Pattern II.
Data Property Main Effects
Main effects of the five “between-subjects” factors on G1 error rates were statistically

significant at the .0016 level for both data patterns. For Data Pattern I, four out of five factors

had a a)f,am.a, value larger than .06 (see Table G1-3). These four factors were Factor 1

(population proportion), Factor 2 (equality of covariance matrices), Factor 3 (group separation),

and Factor 4 (sample representativeness). By the operational definition previously established for

2

qarial » these four factors were considered practically significant.

@

For Data Pattern II, only three of the five factors had a a)f,am.a, value larger than .06 (see

Table G1-4). These three factors were Factor 1 (population proportion), Factor 3 (group
separation), and Factor 4 (sample representativeness).
Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 23.15% (7> = .2315) of the

sample variance of G1 error rates. This factor had a strong association (a)f,am.a, =.614) with G1

error rates. The mean error rates for the three levels of population proportions were .593, .426,
and .215. The Newman-Keuls procedure was performéd to compare pairs of mean error rat.es.
The Newman-Keuls procedure was selected on the basis of its excellent power and its capability
of maintaining the nominal familywise type I error when the factor has only three levels. Results

of the pairwise comparisons indicated that the three mean error rates were statistically
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significantly different from each other. When the population proportions were 0.1:0.9, the mean
G1 error rate (.593) was the highest, while 0.5:0.5 split had the lowest mean error rate (.215).

For Data Pattern I, similar results were obtained. This factor explained 32.86%

(7%= .3286) of the sample variance of G1 error rates. The a)fmm.a, (.634) signified a strong

association between this factor and the G1 error rate. Results from the Newman-Keuls procedure
indicated that the mean error rate (.671) for the 0.1:0.9 population proportions was statistically
significantly higher than that (.489) for the 0.25:0.75 condition. The mean error rate (.275) for
the 0.5:0.5 split was the lowest and it was statistically significantly lower than the mean error
rates for the other two conditions. Based on the results from both data patterns, it was concluded
that the G1 error rate increased as the proportions of Population #1 and Population #2 further
deviated from the 0.5:0.5 split.
FEquality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices,
(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 1.04% (7%= .0104) of the sample

variance of G1 error rates. This factor exhibited a moderate association (a)f,am.a, = .067) with the

G1 error rate. Results from the Newman-Keuls procedure indicated that the mean error rates for
the three levels of this factor were statistically significantly different from each other. When
Population #1 had smaller covariances, the mean error rate (.369) was the lowest; it was .416 for
the equal covariance matrices condition and the highest (.449) when Population #1 had larger

covariances.

13
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For Data Pattern 11, the equality of covariance matrices factor explained 0.51%

(n7*=.0051) of the sample variance of G1 error rates. This factor had a weak association

2

aiat = -026) with the error rate. Results from the Newman-Keuls procedure indicated that the

(@
mean error rates for the three levels were statistically significantly different from each other.
When Population #1 had smaller covariances, the mean error rate (.450) was the lowest; it

was .490 for the equal covariance matrices condition and the highest (.495) when Population #1
had larger covariances. Results from both data patterns showed that, in general, sample
observations from Population #1 were less likely to be misclassified when the covariances of
Population #1 were smaller than that of Population #2.

Group Separation

Factor 3 (group separation) explained 24.87% (7*= .2487) of the samplé variance of G1

error rates for Data Pattern I. A strong association (a)f,am.a, =.631) between this factor and G1

error r;':lte was detected. Results from the Newman-Keuls procedure indicated that three mean
error rates of group separation statistically significantly differed from each other. When the
Mahalanobis distance (&%) between the two populations’ means was 6.709, the mean error rate
was the lowest (.204). As & decreased, the mean error rate increased. Under the condition of d”

= 2.236, the mean error rate was .436; it was the highest (.594) when & was 0.745.

For Data Pattern II, this factor accounted for 28.28% (7° = .2828) of the sample variance
of G1 error rates. The association between group separation and the error rate was strong (a)f,am.a,

=.599). Similar to results obtained from Data Pattern I, as & decreased, the mean error rate
increased for Data Pattern II. The mean error rate increased from .281 (when & = 6.785) to .509

(when & = 2.262) and further increased to .645 (when d* = 0.754).

14



14

Results from both data patterns led to the conclusion that the further the two populations
separated, the lower was G1 error rate. These findings were expected because the less
overlapping of the populations, the less likely that sample observations were misclassified.
Sample Representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised
of observations from Population #1) was 20% over-sampled, (b) sample proportions equal to
population proportions, and (c) Group 1 was 20% under-sampled. For Data Pattern I, 1.46%

(n7*= .0146) of the sample variance of Group 1 error rates was explained by this factor. A

2

moderate association (@,,,,;,, = .091) was found between this factor and G1 error rates. Results

from the Newman-Keuls procedure indicated that the three mean error rates sample
representativeness differed statistically significantly from each other. The mean G1 error rate for -
the “20% over-sampled” condition was .365. It was slightly lower than the mean error rate (.409)
under the “equal” condition and noticeably lower than the error rate (.460) under the “20%

under-sampled” condition.

Similarly, for Data Pattern II, this factor explained 2.03% (7> = .0203) of the sample

variance of G1 error rates. A a)f,a,,,.a, value of .0967 indicated a moderate association between this

factor and the error rate. Results from the Newman-Keuls procedure indicated that the mean
error rate for the “20% over-sampled” condition (.431) was statistically significantly lower than
that under the “equal” condition (.475). The mean error rate of “20% under-sampled” condition
(.529) was statistically significantly higher than those of the other two conditions. In general,
results from both data patterns indicated that G1 error rate was low if Population #1 was over-

sampled. When Population #1 was under-sampled, the error rate for G1 increased.

15
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Sample size

Factor 5 (sample size) had two levels: 200 and 400. For Data Pattern I, this factor was not
significant at a = .0016. Less than 0.01% (7% < .0001) of the sample variance of G1 error rates

was explained by this factor. The two levels of sample size were weakly associated with the error

2

variiar < -0001). The mean G1 error rates for sample sizes of 200 and 400 were .412

rate (@

and .411, respectively.

For Data Pattern II, the sample size factor was significant at o = .0016. It accounted for

less than 0.01% (7* <.0001) of the sample variance of the G1 error rate. The @}, value

of .0001 indicated a virtually non-existent association. The mean error rates for sample sizes of
200 and 400 were .477 and .480, respectively.
By examining Tables G1-1 and G1-2, one notices that the standard deviations of G1 error
rates for sample size of 400 are smaller than those for sample size of 200. In other words, with a
larger sample size, one obtains a more efficient estimate of G1 error rates.
Two-way Interaction among Data Property Factors
For Data Pattern I, only 1 two-way interaction (i.e., population proportion by group

separation) was judged to be practically significant, using a)f,a,,,.a, > .06 as the criterion. For Data

Pattern II, 2 two-way interactions among the five data property factors were considered
practically significant. These two interactions were (a) population proportion by group separation
interaction, and (b) equality of covariance matrices by group separation interaction. These are the
only two-way interaction effects discussed here.

Population Proportion by Group Separation Interaction

This two-way interaction was statistically significant at a =.0016 for both data patterns.

For Data Pattern I, it accounted for 2.44% (7% = .0244) of the sample variance of G1 error rates

18
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and showed a large association (a),z,a,,,.a, = .144) with the error rate. For Data Pattern II, this

interaction explained 2.86% (7” = .0286) of the sample variance of G1 error rates and also

exhibited a large association (a);a,,,.a, =.131). This interaction is graphically presented in Figure

Gl1-1.

As shown in Figure G1-1, the mean G1 error rates for Data Pattern II were slightly higher
than those for Data Pattern I. However, the interaction profiles for the two data patterns were
similar. Regardless of the degree of group separation, the mean G1 error rate increased as the
proportions of Population #1 and Population #2 deviated from the 0.5:0.5 split. The population
proportion factor had a relatively small impact on the G1 error rate when the separation of the
two populations was large (i.e., & = 6.7). When the separation was smaller (i.e., #=220r0.7),
the impact of population proportions on the error rate increased. The differences in mean G1
error rates among the three levels of group separation under the condition of 0.5:0.5 population
proportions were relatively small, compared with the corresponding differences undér the 0.1:0.9
condition.

Equality of Covariance Matrices by Group Separation Interaction

This two-way interaction explained 0.40% (7” = .0040) of variance in G1 error rates for
Data Pattern I, and 1.43% (77° =.0143) for Data Pattern II. The @, value (.027) for Data
Pattern I indicated a weak association between the interaction effect and the error rate. However,
partial

for Data Pattern II, the interaction exhibited a moderate association (@2, = .070). This

interaction is graphically presented in Figure G1-2.
As shown in Figure G1-2, the interaction profiles for the two data patterns were slightly

different. For Data Pattern I, the association between the interaction and the error rate was weak.

17
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The lines connecting the means of the three levels of equality of covariance matrices at each
level of group separations are almost parallel to each other. Unequal covariance matrices had
slightly stronger impact on.Gl error rate when the group separation &* = 6.7 than when &® = 2.2
or 0.7. The differences among the mean error rates for the three levels of equality of covariance
matrices under the condition of & = 2.2 or 0.7 were minimal. The differences increased slightly
whend®=6.7.

For Data Pattern I, the impact of equality of covariance matrices on G1 error rate
depended on the degree of group separation. When the group separation was large (i.e., &#=6.7),
the mean error rate for the condition in which Population #1 had smaller covariances was
substantially lower than those for the other two conditions. However, when the group separation
became smaller (i.e., & = 0.7), the mean error rate for the condition in which Population #1 had
smaller covariances was slightly higher than those found under the other two conditions.

Results from both data patterns indicated that the effect of equality of covariance
matrices was the strongest when the two populations were well separated. When & =6.7, sample
observations from Population #1 were less likely to be misclassified if the covariance matrices of
Population #1 was smaller than that of Population #2.

Effects Concerning Statistical Methods

Did the use of different statistical methods result in significantly differences in the
accuracy of predicting the membership of observations from Population #1? And did the five
“between-subjects™ factors related to data property have any joint impact with different statistical
methods on G1 error rate? To answer these questions, the results of the “w_ithin-subjects” effects

(i.e., the four statistical methods) were examined.

18



18

Main Effect of the Method Factor
The models from the four statistical methods (i.e., LPM, LDF, LR, and KM) were

treated as levels of the “method” factor. This factor was statistically significant at

o =.0016. It accounted for 19.08% (7?=.1908) and 1.67% (7* = .0167) of the sample variance
of G1 error rates for Data Patterns I and II, respectively. a);am.a, values of .866 and .205 for Data

Patterns I and II, respectively, indicated a strong association between statistical methods and G1
error rates.

The mean 'G1 error rate for LPM was .545 for Data Pattern I, and .541 for Data Pattern II.
The mean error rates for LDF were .464 and .462 for Data Patterns I and II, respectively. The
mean error rate for LR was .462 for Data Pattern I and .458 for Data Pattern II. The mean error
rates for KM were .175 and .453 for Data Patterns I and II, fespectively. The Dunn-Sidak
procedure was performed for pairwise comparisons among the four mean error rates. The
selection of the Dunn-Sidak procedure was based on its excellent power and capability of exactly
maintaining a small familywise type I error rate, such as .0016.(Kirk, 1995). Results from the
Dunn-Sidak procedure indicated that the mean G1 error rates from the four methods were
statistically significantly different from each other for both data patterns. LPM yielded the
highest mean G1 error rate. The mean error rates for LDF were only slightly higher than those
for LR even though the differences were statistically significant. The mean error rates for KM
were the lowest.

Results indicated that LDF and LR performed similarly and both methods outperformed
LPM. The performances of KM were not consistent for the two data patterns. KM either

outperformed or performed as well as the other three methods.
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Two-way Method by Data Property Interactions
For both data patterns, the method factor was found to be statistically significantly

interacting with all five data property factors at o = .0016. According to the criterion of

a)f,am.a, > .06, the method by sample size interaction was the only interaction effect not considered

practically significant. The other four interaction effects, considered practically significant, are
discussed below.

Method by population proportion interaction. This two-way interaction accounted for

12.05% (77°=.1205) and 10.48% (77° = .1048) of the sample variance of G1 error rates for Data
Patterns I and II, respectively. The cof,am.a, values of .803 for Data Pattern I, and .618 for Data

Pattern II represented a strong association between this interaction and the error rate. The
interaction is presented graphically in Figure G1-3. The means and standard deviations are
summarized in Table G1-5.

As shown iﬁ Figure G1-3 and Table G1-5, KM’s performance was independent of the
three conditions of population proportions. However, the mean error rates of KM for Data
Pattern I were lower than those for Data Pattern II. For Data Pattern I, KM outperformed the
other three methods. When the population proportions were 0.5:0.5, the mean G1 error rate for
KM was slightly lower than those for LPM, LDF, or LR. When the population proportions
approached the extreme condition (i.e., 0.1:0.9), the mean error rate for KM was substantially
lower than those for the other three methods. For Data Pattern II, KM outperformed the other
three methods only when the population proportions were 0.25:0.75 or 0.1:0.9. When the

population proportions were 0.5:0.5, KM performed poorly, compared with the other three

2
partial

methods. The discrepancies between 77° and @>,_ ., values for the two data patterns were caused

mainly by the inconsistent performance of KM for the two data patterns.

20



20

Results led to the following conclusions: when the population proportions were extreme
(i.e., 0.1:0.9), KM was the best method; LPM was not the method of choice when the population
proportions were extreme. When the population proportions were 0.25:0.75, KM remained to be
a viable alternative method. When the population proportions were 0.5:0.5, the performances of
LPM, LDF, and LR were identical; KM could perform as well as the other three methods.

Method by equality of covariance matrices interaction. This two-way interaction
accounted for 2.17% (7= .0217) and 0.44% (7” = .0044) of the sample variance of G1 error

rates for Data Patterns I and II, respectively. A strong association was found between this

interaction and the error rate (a)f,am.a, = 424) for Data Pattern I. However, for Data Pattern II, the
a)f,am.a, value (.063) signified a moderate association. The means and standard deviations are

summarized in Table G1-6. The interaction is presented graphically in Figure G1-4.

As shown in Figure G1-4, unequal covariance matrices conditions had relatively small
impact on the differential performances of LPM, LDF, and LR. Yet, the mean G1 error rates of
KM depended on the degree of equality of covariance matrices. The performances of LPM, LDF,
and LR were similar for each data pattern. However, KM performed quite differently for both
data patterns.

In Table G1-6, for Data Pattern I, KM outperformed the other three methods at all levels
of the equality of covariance matrices. The performance of KM was exceptionall_y good when the
covariances of Population #1 were one-fourth of those of Population #2. For Data Pattern II, KM
outperformed LPM regardless of the condition of covariance matrices. However, it performed

slightly better than LDF or LR when Population #1 had smaller covariances. The discrepancies

2

variar Values for the two data patterns were caused mainly by the inconsistent

between 7° and @

performance of KM for the two data patterns.
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Results led to the following conclusions: all four methods performed better when the
covariances of Population #1 were smaller than those of Population #2. KM was the best method
under this condition. LPM was not the method of choice regardless of the equality of covariance
matrices.

Method by group separation interaction. This two-way interaction accounted for 3.16%

(n7*=.0316) and 5.29% (7*= .0529) of the sample variance of G1 error rates for Data Patterns I
and II, respectively. The a)f,a,,,.a, index equaled .517 for Data Pattern I and .450 for Data Pattern II

A strong association between this interaction and the error rate was detected. This two-way
interaction is graphically presented in Figure G1-5. The means and standard deviations of G1
error rate are summarized in Table G1-7.

As shown in Figure G1-5, the performances of the four methods in predicting the
membership of Population #1 depended on the degree of separation between the two
populations’ means. The further the two population means separated, the lower was G1 error rate
regardless which method was used. The performances of LPM, LDF, and LR were simiiar for
each data pattern. However, KM performed differently for the two data patterns and also from
LPM, LDF, and LR.

In Table G1-7, for Data Patten I, KM outperformed the other three methods regardless of
the degree of group separation. The performance of KM was exceptionally good when the group
separation was small (i.e., & = 2.2 or 0.7). For Data Pattern II, when &#=0.7,KM perfbrmed
better than the other three methods. When & = 2.2, the mean G1 error rate for KM was only

slightly lower than those of the other three methods. When & = 6.7, the performance of KM was

the worst among the four methods. The discrepancies between 7> and wfma, values for the two
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data patterns were caused mainly by the inconsistent performance of KM for the two data
patterns.

Results led to the following conclusions: LPM or KM was a viable alternative only when
the two populations were not well-separated (i.e., & = 2.2 or 0.7); group separation had little
impact on the relative efficiency of LR over LDF.

Method by sample representativeness interaction. This two-way interaction accounted
for only 0.69% (7%= .0069) and 0.66% (7> = .0066) of the sample variance of G1 error rates for

Data Patterns I and II, respectively. However, for Data Pattern I, this interaction exhibited a

2 —

variat = -189) With the error rate. For Data Pattern II, a moderate association

strong association (@

2 =

oaris = -092) Was detected. The interaction is graphically presented in Figure G1-6. The means

(w
and standard deviations of G1 error rate are summarized in Table G1-8.

As shown in Figure G1-6, the performance of the four methods depended on sample
representativeness. The performances of LPM, LDF, and LR are similar for either data pattern
but different from KM. The mean G1 error rates were the highest when Group 1 was “20%
under-sampled;” the mean error rates were the lowest when Group 1 was “20% over-sampled.”
Although the performance of KM was different for the two data patterns, the mean error rates of
KM were similar under the three conditions of sample representativeness. |

In Table G1-8, the mean G1 error rates for LPM were slightly higher than those for LDF
and LR regardless of the condition of sample representativeness. Meanwhile, LR performed
slightly better than LDF in all three conditions of sample representativeness. -

For Data Pattern I, KM outperformed the other three methods. When Group 1 was “20%
over-sampled,” the mean error rate was the highest. The mean error rate was the lowest when

Group 1 was “20% under-sampled.” However, the differences between the “equal” condition and
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the other two conditions were less than .01. For Data Pattern 11, KM performed similarly
regardless of the condition of sample representativeness. It outperformed the other three methods
when Group 1 was either “equal” or “20% under-sampled.” When Group 1 was “20% over-

sampled,” KM was not as good as LDF or LR, but better than LPM. The discrepancies between

n* and a)ﬁa,,,.a, values for the two data patterns were caused mainly by the inconsistent

performance of KM for the two data patterns.

Results led to the following conclusions: KM was the method of choice especially when
the sample representativeness was questionable. LPM was not a method of choice regardless of
sample representativeness.

Three-way Method by Data Property Interactions
For Data Pattern I, 2 three-way interactions concerning statistical methods were

considered practically significant (i.e., effects with a)f,a,,,.a, > .06): (a) method by population

proportion by group separation interaction, and (b) method by equality of covariance matrices by
group separation interaction. However, for Data Pattern II, only the method by population
proportion by group separation interaction was considered practically significant. In addition to
the 2 three-way interactions, the method by population by equality of covariance matricés
interaction is also includgd in this section. They are the only results discussed below.

Method by population proportion by group separation interaction. This three-way
interaction explained 1.87% (7> =.0187) and 2.18% (7* = .0218) of the sample variance of G1
error rates for. Data Patterns I and II, respectively. This interaction exhibited a strong association
(a);a,,,.a, =388 and .252 for Data Patterns I and II, respectively) with the error rate. The
interaction is graphically presented in Figure G1-7. Separate plots of mean G1 error rates due to

~ the population proportion by group separation interaction are presented in (a), (b), (c), and (d) for
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the four methods. The means and standard deviations for the interaction are summarized in Table
G1-9.

As shown in Figure G1-7, the interaction profiles for LPM, LDF, and LR are similar for
the two data patterns. The mean G1 error rates were the highest when the population proportions
were 0.1:0.9 while those for the 0.5:0.5 condition were the lowest regardless of the degree of
group separation. However, the impact of group separation on G1 error rate was intensified when
the population proportion deviated from the 0.5:0.5 split.

Figure G1-7(d) illustrates the population proportion by group separation interaction under
KM. The interaction profiles were different for the two data patterns. For Data Pattern I, the
mean G1 error rates increased as the separation between the two populations decreased
regardless of population proportions. The impact of population proportions on G1 error rate was
consistent fbr the three levels of group separation. Unlike the other three methods, the mean error
rates for KM were the lowest when the population proportions were 0.1:0.9 and the highest for
the 0.5:0.5 condition. Compared with the other three methods, KM outperformed the others
under all conditions except when the population propo;'tions were 0.5:0.5 aﬂd & = 6.7. For Data
Pattern II, the mean G1 error rates increased as the separation between the two populations
decreased regardless of population proportions. KM performed similarly regardless of population
proportions when ¢ = 2.2 or 0.7. However, when &# =67, KM performed the best under the |
0.5:0.5 population proportions. Compared with the other three methods, KM outperformed the
others under all conditions of population proportions when #=220r0.7. When & = 6.7, KM

performed poorly especially under the population proportions of 0.50:0.5 or 0.25:0.75. The

discrepancies between 7’ and (of,m.a, values for the two data patterns were caused mainly by the

inconsistent performance of KM for the two data patterns.
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Results indicated that (a) LPM was not the method of choice in predicting the
membership of Population #1 especially when the population proportions were extreme and the
two populations were well-separated, (b) KM was a viable alternative when population
proportions deviated from the 0.5:0.5 split, regardless of the degree of group separation.

Method by equality of covariance matrices by group separation interaction. This three-
way interaction explained 0.63% (77* = .0063) and 0.18% (7’ =.0018) of the sample variance of

G1 error rates for Data Patterns I and II, respectively. For Data Pattern I, although this

interaction accounted for less than 1% of the sample variance of the error rate, a stron
p g

2 =.175) between the interaction and the error rate was detected. For Data

association ( @,y =

2

carial — -027) was found. The means and standard deviations of

Pattern II, a weak association (@

G1 error rate for the three-way interaction are summarized in Table G1-10. The interaction is
graphically presented in Figure G1-8. Separate plots of mean G1 error rates due to the equality of
covariance matrices by group separation interaction are presented in (a), (b), (c), and (d) for the

~ four methods.

As shown in Figure G1-8, the interaction profiles for LPM, LDF, and LR are similar for
the two data patterns. The plots illustrate that the impact of equality of covariance matrices on
G1 error rate depended on the degree of group separation. When the group separation was large
(i.e., & = 6.7), the mean error rate for the condition in which Population #1 had smaller |
covariances was substantially lower than those for the other two conditions. However, when the
group separation became small (i.e., & =2.2 or 0.7), the mean error rate for the condition in
which Population #1 had smaller covariances was slightly higher than those for the other two

conditions.
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In Figure G1-8(d), the mean G1 error rates are plotted for the equality of covariance
matrices by group separation interaction under KM. The interaction profiles were different for
the two data patterns. For Data Pattern I, the mean error rates increased as the degree of group
separation decreased regardless of the condition of equality of covariance matrices. In Table G1-
10, the mean error rates for the condition in which Population #1 had smaller covariances were
consistentl&r the lowest at each level of the group separation. For Data Pattern I, a similar

conclusion was reached. However, the impact of the equality of covariance matrices factor on the

error rate was small when & = 0.7 or 2.2. The discrepancies between 7° and @, values for

the two data patterns were caused mainly by the inconsistent performance of KM for the two
data patterns.

Results indicated that (a) for LPM, LDF, and LR, a strong impact of heterogeneity of
covariance matrices on predicting the membership of Population #1 was found only when the
two populations were well-separated, and (b) KM was a viable alternative when the separation
between the two populations’ means were small (i.e., & = 2.2 or 0.7) regardless of the equality of
covariance matrices.

Method by population proportion by equality of covariance matrices interaction. This

three-way interaction explained 0.15% (7%= .0015) of the sample variance of G1 error rates for

both data patterns. This interaction exhibited a weak association (a)f,am.a, = .048 and .022 for Data

Patterns I and II, respectively) with the error rate. This interaction is included here in order to
conﬁast the results of this study with the findings from Fan and Wang (1999). The means and
standard deviations of G1 error rate for the three-way interaction are summarized in

Table G1-11.
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In Table G1-11, the G1 error rates of LPM were higher than those of the other three
methods when the population proportions deviated from the 0.5:0.5 split. LPM and LDF
performed similarly when the population proportions were 0.5:0.5, regardless of the condition of
equality of covariance matrices. The difference in performance of LDF and LR depended on the
combinations of population proportions and equality of covariance matrices.

The performance of KM was different for the two data patterns. For Data Pattern I, KM
outperformed the other three methods in all joint conditions except when population proportions
were 0.5:0.5 and Population #1 had larger covariances. For Data Pattern II, KM performed better
than the other three methods under four joint conditions: population proportions were either
0.1:0.9 or 0.25:0.75 and the two populations either had equal covariance matrices or Population
#1 had smaller covariances. The direction of impact of heterogeneity of covariance matrices on
the performances of KM was consistent for both data patterns regardless of population
proportions. The condition in which Population #1 had smaller covariances exhibited a small but
positive effect on G1 error rates, while the condition in which Population #1 had larger
covariances had a small but negative effect.

Results indicated that (a) LPM was not the method of choice when population
proportions deviated from 0.5:0.5 split, (b) the direction of impact of heterogeneity of covariance
matrices on the performance of LPM, LDF, and LR depended on population proportions, (c) the
direction of impact of heterogeneity of covariance matrices on the performance of KM was
consistent regardless of population proportions, (d) selection of LDF or LR required the
consideration of both population proportions and the heterogeneity of covariance mat_rices, and
(e) if the G1 error rate was the main concern, KM was a viable method especially when

population proportions deviated from 0.5:0.5 and Population #1 had smaller covariances.
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6. Results of Group 2 Error Rates

G;oup 2 (G2) error rate was the proportion of observations in test sample originated from
Population #2 that were misclassified as belonging to Population #1. The means and standard
deviations of the error rates of 200 replications for each combination of levels of the five factors
for Data Pattern I are summarized in Table G2-1. Similarly, the means and standard deviations
for Data Pattern II are presented in Table G2-2. The results of ANOVA on G2 error rates for
Data Pattern I are summarized in Table G2-3. Out of 31 main and interaction effects, 23 effects
were statistically significant at the .0016 alpha level. The ANOVA results for G2 error rate for
Data Pattern II are presented in Table G2-4. Twenty-eight effects were statistically significant at
the .0016 level for Data Pattern II.

Data Property Main Effects
For Data Pattern I, four of the five “between-subjects” (i.e., data property) main effects

on G2 error rate were statistically significant at the .0016 level. These four factors also had a

a);,,,,a, value larger than .06 (see Table G2-3). For Data Pattern I, all five main effects were

statistically significant at a = .0016. However, only the same four factors had a a);m,a, value

larger than .06 (see Table G2-4). These four factors were Factor 1 (population proportion),
Factor 2 (equality of covariance matrices), Factor 3 (group separation), and Factor 4 (sample
representatives). Thus, these four factors were considered practically significant.

Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 12.52% (7> = .1252) of the
sample variance of G2 error rates. This factor demonstrated a strong association (@, = 421)

with the error rate. The mean error rates for the three levels of population proportions

were .096, .101, and .216. Results from the Newman-Keuls pairwise procedure indicated that the
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three mean error rates were statistically significantly different from each other. When population
proportions were 0.1 :0.9, the mean G2 error rate (.096) was the lowest, while the 0.5:0.5

condition had the highest mean error rate (.216).

Similarly, for Data Pattern I1, this factor explained 9.76% (77° = .0976) of the sample
variance of G2 error rates. The a);am.a, index (.483) signified a strong association. Results from

the Newman-Keuls procédure indicated that the mean error rate (.275) for the 0.5:0.5 population
proportion condition was statistically significantly higher than that (.158) for the 0.25:0.75
condition. The mean error rate (.131) for the 0.1:0.9 condition was the lowest and it was
statistically significantly lower than the means for the other two conditions. Based on the results
from both data patterns, we concluded that G2 error rate decreased, in general, as the proportions
of Population #1 and Population #2 deviated from the 0.5:0.5 split.
Equality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices, |
(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 5.75% (7”=.0575) of sample variance of
G2 error rates. This factor exhibited a large association (a)fm.a, = .250) with the error rate.

Results from the Newman-Keuls procedure indicated that the mean error rates were statistically
significantly different from each other. Under the unequal condition in which Population #2 had
larger covariances, the mean G2 error rate (.179) was the highest. The mean error rate was .147
for the equal covariance matrices condition. Under the unequal covariance condition in which
Population #2 had smaller covariances, the mean error rate (.088) was the lowest.

Similar results were obtained for Factor 2 from Data Pattern II. This factor explained
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1.86% (17* = .0186) of the sample variance of G2 error rates. This factor had a large association

(a)f,am.,,, =.151) with the error rate. Results from the Newman-Keuls procedure indicated that the

mean error rates for the three levels were statistically significantly different from each other.
Under the unequal condition that Population #2 had larger covariances, the mean error rate was
the highest (.217). The mean error rate was .196 for the condition of equal covariance matrices.
The mean error rate was the lowest (.151) for the unequal condition in which Population #2 had
smaller covariances. Results from both data patterns showed that observations from Population
#2 were less likely to be misclassified when Population #2 had smaller covariances than those of
Population #1.

Group Separation

Factor 3 (group separation) explained 9.27% (77°=.0927) of the sample variance of G2

error rates for Data Pattern I. A strong association (a)f,a,,,.,,, =.350) between this factor and G2
error rates was detected. Results from the Newman-Keuls procedure indicated that the mean
error rates of the three levels of group separation differed from each other. When the
Mahalanobis distance (%) between the two populations’ means was 6.709, the mean error rate
was .075. As & decreased, the mean error rate also increased. Under the condition of & = 2.236,
the mean error rate was .147. The mean error rate was .191 when & = 0.745.

For Data Pattern I, this factor accounted for 2.69% (7° = .0269) of the sample variance

of G2 error rates. The association between this factor and the error rate was strong (a);am.,,,

=.205). Similar to the results obtained from Data Pattern I, as & decreased, the mean G2 error
rate increased for Data Pattern II. The mean error rate increased from .144 (when & = 6.785)

to .197 (when & = 2.262) and further increased to .223 (when @ = 0.754). Results from both
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data patterns led to the conclusion that the further the two populations separated, the lower was
G2 error rate. These findings were expected because the less overlapping between the two
populations, the less likely that sample observations would be misclaésiﬁed.
Sample Representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised
of observations from Population #1) was 20% over-saxﬂpled, (b) sample proportions equal to the
population proportions, and (c) Group 1 was 20% under-sampled. When Group 1 was over-
sampled, Group 2 was under-sampled. Similarly, when Group 1 was under-sampled, Group 2
was over-sampled. When the population proportions were 0.1:0.9, Group 2 was either 2.2%
under-sampled or over-sampled. When the population proportioris were 0.25:0.75, Group 2 was
either 6.7% under-sampled or over-sampled. When the population proportions were 0.5:0.5, the
sample representativeness condition of Group 2 was either 20% under-sampled or over-sampled.

This factor was statistically significant at o« =.0016 for both data patterns. For Data
Pattern I, only 1.82% (7*= .0182) of the sample variance of G2 error rate was explained by this

2

arial = -096) was found between this factor and the error rate.

factor. A moderate association (@

Results from the Newman-Keuls procedure indicated that the mean error rates of the three levels
differed statistically significantly from each other. The mean G2 error rate for the “20% over-
sampled” condition was .165 for Data Pattern I. It was slightly higher than the mean error rate
under the “equal” condition (.135). The “20% under-sampled” condition had the lowest mean

error rate (.114).

| Similarly, for Data Pattern II, this factor explained only 1.27% (7%= .0127) of the sample
variance of G2 error rate. The a)ia,,,.a, value (.108) indicated a moderate association between this

factor and the error rate. Results from the Newman-Keuls procedure indicated that the mean
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error rate for the “20% over-sampled” condition (.217) was statistically significantly higher than
that under the “equal” condition (.186). The mean error rate of “20% under-sampled” condition
(.162) was the lowest which was statistically significantly smaller than those of the other two
conditions. |

Results from both data patterns indicated that, in general, there was a tendency for G2
error rate to increase if Group 1 was over-sampled, hence, Group 2 was under-sampled. When
Group 1 was under-sampled, therefore, Group 2 was over-sampled, the G2 error fate decreased.
Sample size

Factor 5 (sample size) had two levels: 200 and 400. For Data Pattern I, less than 0.01%

(7% <.0001) of the sample variance of G2 error rate was explained by this factor. This factor was

2

variat < -0001). The mean error rates for both sample

weakly associated with the error rate (@

sizes were .138. Similar results were obtained from Data Pattern II. The sample size factor

accounted for less than 0.01% (7% < .0001) of the sample variance of G2 error rate. cof,am.a, (.0002)

indicated a virtually non-existent association. The mean error rates for sample sizes of 200 and
400 were .189 and .187, respectively.

By examining Tables G2-1 and G2-2, one notices that standard deviations of G2 error
rates for sample size of 400 were smaller than those for sample size of 200. In other words, with
a larger sample size, one obtains a more efficient estimate of G2 error rate.

Two-way Interaction Among Data Property Factors

Using the wf,am.a, > .06 as the criterion for practical significance, 3 two-way interactions

among the five factors were considered practically significant for both data patterns. These three
interactions were (a) population proportion by equality of covariance matrices, (b) population

proportion by group separation, and (c) population proportion by sample representativeness.
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They are the only results discussed below.
Population Proportion by Equality of Covariance Matrices
This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern I, it accounted for 9.27% (7> = .0927) of the sample variance of G2 error rate

2

varial — -300) With the error rate. However, for Data Pattern II, this

and had a large association (@

interaction explained 0.74% (77> = .0074) of the sample variance of the error rate and also

2

exhibited a moderate association (@, = -066). This interaction is graphically presented in

Figure G2-1.

As shown in Figure G2-1, similar interaction profiles were found for the two data
patterns. When the population proportions were 0.1:0.9 or 0.25:0.75, the effect of equality of
covariance matrices on the error rate was relatively small. However, when the population
proportions were 0.5:0.5, the mean G2 error rate under the condition in which Population #2 had
smaller covariances was considerably lower than those of the other two covariance matrix
conditions.

Population Proportion by Group Separation Interaction

" This two-way interaction was statistically significant at a = .0016 for both data patterns.

For Data Pattern 1, it accounted for 4.01% (77> = .0401) of the sample variance of G2 error rates

and had a large association (a);a,,,.a, = .277) with the error rate. For Data Pattern II, this factor

explained 4.74% (77° = .0474) of the sample variance of G2 error rate and also exhibited a large

2 =
partial

association (@ .216). This interaction is graphically presented in Figure G2-2.

As shown in Figure G2-2, the interaction profiles for the two data patterns were similar.

- The population proportion factor had a relatively small effect on G2 error rate when the
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separation of the two populations was large (i.e., & = 6.7). However, when the separation was
smaller (i.e., & = 2.2 or 0.7), the impact of population proportion on G2 error rate increased. The
differences of mean error rates among the three levels of group separation under 0.5:0.5
population proportions were large, compared with corresponding differences under either the
0.1:0.9 or the 0.25:0.75 condition.
Population Proportion by Sample Representativeness Interaction

This two-way interaction was statistically significant at o = .0016 for both data patterns.

For Data Pattern 1, it accounted for 2.44% (n* = .0244) of the sample variance of G2 error rate

2

ot = -124) with the error rate. For Data Pattern II, this factor

and had a moderate association (@

explained 1.33% (7” = .0133) of the sample variance of the error rate and also exhibited a

2

moderate association ( @,,,,, = -0113). This interaction is graphically presented in Figure G2-3.

As shown in Figure G2-3, similar interaction profiles were found for the two data
patterns. G2 error rate increased if Group 1 was over-sampled, hence, Group 2 was under-
sampled. When Group 1 was under-sampled, therefore, Group 2 was over-sampled, the G2 error
rate decreased. The samplé representativeness factor had a small impact on G2 error rates when
the population proportions were 0.1:0.9. The impact of sample representativeness on the error
rate increased as population proportions approached 0.5:0.5.

Effects Concerning Statistical Methods

The results of the “within-subjects” effects (i.e., four statistical methods) were examined
in order to investigate: (a) the effect of using different statistical methods 6n G2 error rates, and
(b) the joint effect of the five data property factors with statistical methods on G2 error rate.
Main Effect of Method Factor

The models from the four statistical methods (i.e., LPM, LDF, LR, and KM) were
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treated as levels of the “method” factor. This factor was statistically significant at

o = .0016. It accounted for 26.69% (7> =.2669) and 64.35% (7> = .6435) of the sample variance
of G2 error rate for Data Patterns I and II, respectively. a)f,a,,,a, values (.883 and .944 for Data

Patterns I and II, respectively) indicated a strong association between statistical methods and G2
error rate.

The mean G2 error rate for LPM was .086 for Data Pattern I, and .089 for Data Pattern II.
The mean error rates for LDF were .093 and .097 for Data Patterns I and II, respectively. The
mean error rate for LR was .095 for Data Pattern I and .100 for Data Pattern II. The mean error
rates for KM were .278 and .467 for Data Patterns I and II, respectively. Results from the Dunn-
Sidak comparison procedure indicated that the mean G2 error rates from the four methods were
statistically significantly different from each other for both data patterns. LPM yielded the lowest
mean G2 error rate while KM the highest. The mean error rates for LDF were only slightly lower
than those for LR even though the differences were statistically significant.

Results indicated that, in general, KM did not perform as well as the other three methods
in predicting the membership of Population #2 for both data patterns. LPM outperformed LDF‘
and LR whereas LDF and LR performed similarly. |
Two-way Method by Data Property Interactions

The method factor was found statistically significantly interacting with all five data
property factors at o. =.0016 for both data patterns. For Data Pattern I, the method by sample size

interaction was the only interaction effect considered not to be practically significant according

2

to the criterion of @,,,,, > .06. For Data Pattern II, only two data property factors (i.e.,

population proportions and sample representativeness) were found practically significantly

interacting with the method factor. The interactions between the method factor and four data
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property factors (i.e., population proportion, equality of covariance matrices, group separation,
and sample representativeness) are discussed in this section.

Method by population proportion interaction. This two-way interaction effect accounted

for 16.64% (77°=.1664) and 5.84% (7* = .0584) of the sample variance of G2 error rates for
Data Patterns I and II, respectively. The cof,a,,,.a, values (.824 for Data Pattern I and .603 for Data

Pattern IT) indicated a strong association between this interaction and the error rate. The
interaction is presented graphically in Figure G2-4. The means and standard deviations are
summarized in Table G2-5.

As shown in Figure G2-4, the performance of the four methods depended on sample
representativeness. The performance of KM was inconsistent across the two data patterns. In
Table G2-5, for Data Pattern I, KM slightly outperformed the other three methods in predicting
the membership of Population #2 only when the population proportions were 0.5:0.5. When
population propdrtions were 0.25:0.75 or 0.1:0.9, G2 error rates of KM were substantially higher
than those for the other three methods. For Data Pattern II, KM performed poorly, compared to
the other three methods in all three population proportion conditions. The discrepancies between
n* and a)f,a,,,.a, values for the two data patterns were caused mainly by the inconsistent
performance of KM for the two data patterns.

Results led to the following conclusions: when the population proportions deviated from
0.5:0.5, LPM was the best method. KM was not the method of choice when the population
proportions were extreme. When the population proportions were 0.5:0.5, the performances of
LPM, LDF, and LR were identical; KM could perform as well as the other three methods for
Data Pattern I, but not for Data Pattern II.

Method by equality of covariance matrices interaction. This two-way interaction effect
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accounted for 3.31% (77*=.0331) and 0.18% (7* = .0018) of the sample variance of G2 error

rate for Data Patterns I and II, respectively. cofm.a, (.482) indicated a strong association between

this interaction and the error rate for Data Pattern 1. However, for Data Pattern II, cof,am.a, (.045)

signified a weak association. The interaction is presented graphically in Figure G2-5. The means
and standard deviations are summarized in Table G2-6.

As shown in Figure G2-5, unequal covariance matrices conditions had small impacts on
the differential performances of LPM, LDF, and LR. Yet, the mean G2 error rates of KM
depended on the degree of equality of covariance matrices. The performances of LPM, LDF, and
LR were similar for either data pattern. However, KM .performed quite differently for the two
data patterns, also from LPM, LDF, and LR. All four methods performed better when the
covariances of Population #2 were four times of those of Population #1.

In Table G2-6, for both data patterns, KM performed poorly compared to the other three
methods regardless of the equality of covariance matrices. The G2 error rates of KM for Data

Pattern I were lower than those of Data Pattern II. The discrepancies between 7° and

2

o partial

values for the two data patterns were caused mainly by the inconsistent performance of

KM for the two data patterns.

Results led to the following conclusions: all four methods performed better when the
covariances of Population #1 were larger than those of Population #2. LPM was uniformly the
best method. KM was not the method of choice regardless of the condition of equality of
covariance matrices.

Method by group separation interaction. This two-way interaction effect accounted for

2.56% (n*= ‘.0256) and 0.06% (77> = .0006) of the sample variance of G2 error rate for Data

38



38

Patterns I and II, respectively. a);,,,.a, (.419) indicated a strong association between this

interaction and the error rate for Data Pattern I. For Data Pattern II, a)f,a,,,.a, value (.014) signified

a weak association. The interaction is presented graphically in Figure G2-6. The means and
standard deviations are summarized in Table G2-7.

As shown in Figure G2-6, the performances of the four methods depended on the degree
of separation between the two populations’ means. The further the two populations separated, the
lower was G2 error rate regardless which method was used. The performances of LPM, LDF,
and LR were similar for either data pattern. However, KM performed differently for the two data -
patterns, also differently from LPM, LDF, and LR.

In Table G2-7, the mean G2 error rates for LPM were slightly lower than those for LDF
and LR regardless the degree of group separation. LDF and LR performed similarly for three
group separation levels. For both data patterns, KM performed poorly compared to the other

three methods. The impact of group separation on the performance of KM was larger for Data

Pattern I than for Data Pattern II. The discrepancies between 7° and a)f,a,,,.a, values for the two

data patterns were caused mainly by the inconsistent performance of KM for the two data
patterns.

Results led to the following conclusions: LPM was a viable alternative regardless of the
degree of group separation whereas KM was not the method of choice. Group separation had
little impact on the relative efficiency of LR over LDF.

Method by sample representativeness interaction. This two-way interaction effect

accounted for 1.27% (7%= .0127) and 0.49% (77?= .0049) of the sample variance of G2 error

2 ot (:264) for Data Pattern I indicated a strong

rate for Data Patterns I and II, respectively. @,
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association between this interaction and the error rate. However, for Data Pattern II, cof,a,,,.a, value

of .113 signified a moderate association. The interaction is presented graphically in Figure G2-7.
The means and standard deviations are summarized in Table G2-8.

As shown in Figure G2-7, the performances of the four methods depended on sample
representativeness. The performances of LPM, LDF, and LR were similar for each data pattern
but different from KM. The mean G2 error rates were the highest when Group 1 was 20% over-
sampled; the mean error rates were the lowest when Group 1 was 20% under-sampled. Although
the performance of KM was different for the two data patterns, the mean error rates of KM under
the three conditions of sample representativeness were similar.

In Table G2-8, for both data patterns, the mean G2 error rates of KM were higher than
those of the other three methods regardless of sample representativeness. KM was not as good as
the other three methods. However, unlike the other three methods, KM performed similarly at all
levels of sample representativeness. The mean error rates were lower under the condition of 20%
Group 1 over-sampled than those of the equal condition. Meanwhile, the mean error rates of the

20% under-sampled condition were slightly higher than those of the equal condition. The

discrepancies between 77° and a)f,a,,,.a, values for the two data patterns were caused mainly by the

inconsistent performance of KM for the two data patterns.

Results led to the following conclusions: LPM was the best method. The impact of
sample representativeness on predictive performances was similar for LPM, LDF, and LR, but
different from KM. Although KM did not perform as well as the other three methods, its
performance was least influenced by sample representativeness.

Three-way Method by Data Property Interactions

Five three-way interactions regarding the method factor are discussed in this section.
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They were (a) method by population proportion by equality of covariance matrices interaction, (b)
method by population proportion by group separation interaction, (c) method by population
proportion by sample representativeness interaction, (d) method by equality of covariance
matrices by group separation interaction, and (e) method by group separation by sample

representativeness interaction. For Data Pattern 1, interactions (a), (b), (c) and (¢) from the list

2

ariat > -06. However,

above were considered practically significant based on the criterion of @

for Data Pattern II, only three interactions [i.e., (b), (c) and (d) from the list above] were
considered practically significant.

Method by populatioﬁ proportion by equality of covariance matrices interaction. This

three-way interaction effect accounted for 0.34% (7= .0034) and 0.08% (7> = .0008) of the
sample variance of G2 error rate for Data Patterns I and I, respectively. a)fm.a, value (.087) for

Data Pattern I indicated a moderate association between this interaction and the error rate.

However, for Data Pattern I, a)f,am.a, (.019) signified a weak association. The interaction is

presented graphically in Figure G2-8. The means and standard deviations are summarized in
Table G2-9.

As shown in Figure G2-8, the interaction profiles for LPM, LDF, and LR were similar for
the two data Patterns. The mean G2 error rates decreased as the population proportions deviated
from the 0.5:0.5 split, regardless of the equality of cbvariance matrices. For all levels of
population proportions, the mean error rate was the highest (i.e., a negative effect) if Population
#1 had smaller covariances and the lowest (i.e., a positive effect) if Population #1 had larger
covariances. The impact of inequality of covariance matrices on G2 error rate was small when
the population proportions were 0.1:0.9. The impaci increased as the population proportions

approached the 0.5:0.5 split.
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Figure G2-8(d) illustrates the population proportion by equality of covariance matrices
interaction under KM. The interaction profiles were different for the two data patterns. In Table
G2-9, the mean G2 error rates of KM increased as the population proportions deviated from the
0.5:0.5 split, regardless of equality of covariance matrices. For all levels of population
proportions, the mean error rate was the highest if Population #1 had smaller covariances and the
lowest if Population #1 had larger covariances. The impact of inequality of covariance matrices
on G2 error rate was small when the population proportions were 0.1:0.9. The impact increased
as the population proportions approached the 0.5:0.5 split. The mean error rates of KM for Data
Pattern I were lower than those for Data Pattern II. Yet the impact of equality of covariance
matrices on error rates was greater in Data Pattern I than in Data Pattern II. The mean G2 error
rates of KM were higher than those of LPM, LDF, or LR in most conditions for Data Pattern I.
When the population proportions were 0.5:0.5 and either both covariances were equal or
Population #1 had larger covariances, KM performed better than the other three methods. For
Data Pattern II, KM performed poorly compared to the other three methods in all combinations
of population proportion by equality of covariance matrices. KM performed as well as the other
three methods when the population proportions were 0.5:0.5 and covariances were either equal
or Population #1 had larger covariances.

Method by population proportion by group separation interaction. This three-way

interaction effect accounted for 2.26% (7= .0226) and 0.41% (7* = .0041) of the sample

variance of G2 error rate for Data Patterns I and II, respectively. a)f,ama, (.389) for Data Pattern I

indicated a strong association between this interaction and the error rate. However, for Data

2

Pattern I, the @, value (.097) signified a moderate association. The interaction is presented

graphically in Figure G2-9. Separate plots of mean G2 error rates due to the population
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proportion by group separation interaction are presented in (a), (b), (c), and (d) for the four
methods. The means and standard deviations are summarized in Te;ble G2-10.

As shown in Figure G2-9, performances of the four methods in predicting the
membership of Population #2 depended on the joint conditions of population proportions and
group separation. The interaction profiles for LPM, LDF, and LR were similar for the two data
Patterns. Yet they were different from KM’s.

In Figures G2-9(a), (b), and (c), the mean error rates were the highest when the
population proportions were 0.5:0.5 and the lowest under the 0.1:0.9 condition, regardless of
degrees of group separation. The impact of group separation on G2 error rate was inconsistent
under different population proportions. The inconsistency was not only in magnitude, but also in
direcfion. When population proportions were 0.1:0.9, the mean G2 error rates were extremely
low regardless of degrees of group separation. The mean error rate decreased as the group
separation decreased. When population proportions equaled 0.25:0.75, the meé.n erTor rates were
slightly higher than when they were 0.1:0.9. The mean error rate increased slightly as the group
separatién decreased from 6.7 to 2.2; it decreased only slightly when the group separation
decreased from 2.2 to 0.7. The mean error rate increased as the group separation decreased, when
the population proportions were 0.5:0.5. The performances of LPM, LDF and LR were
comparable when the population proportions were 0.5:0.5.

Figure G2-9(d) presents the population proportion by group separation interaction under
KM. KM performed as well as the other three methods when the population proportions were
0.5:0.5, especially when the two populations were not well separated (Table G2-10). For Data
Pattern I, the mean error rates of KM were substantially higher than those of the other three

methods. Different conditions of population proportions had little impact on the performance of
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KM when group separation (d?) was 2.2 0r0.7. When d* = 6.7, the mean G2 error rate increased
as the population proportions deviated from 0.5:0.5.

| Results indicated that LPM was the best method especially when the population
proportions deviated from 0.5:0.5. The impact of group separation on performances of LPM,
LDF, and LR depended on population proportions. Group separation had little impact on the
relative efficiency of LR over LDF. KM performed as well as the other three methods when the
two populations were not well separated and the population proportions were 0.5:0.5.

Method by population proportion by sample representativeness interaction. This three-

way interaction effect accounted for 0.70% (7> =.007) and 0.41% (7* = .0041) of the sample
variance of G2 error rate for Data Patterns I and II, respectively. a)fm.a, (.165) for Data Pattern I

indicated a strong association between this interaction and the error rate. For Data Pattern II,

however, the d)f,aﬂia, value (.097) signified a moderate association. The interaction is presented

graphically in Figure G2-10. The means and standard deviations are summarized in Table G2-11.

As shown in Figure G2-10, the performances of the four methods depended on the
combination of population proportions and sample representativeness. The interaction profiles
for LPM, LDF, and LR were similar for the two data patterns. Yet they were different from those
of KM.

In Figures G2-10(a)-(c), the mean G2 error rates decreased as the population proportions
deviated from 0.5:0.5 regardless of sample representativeness. The mean G2 error rates were the
lowest when Group 1 was 20% under-sampled while the mean error rates were the highest when
Group 1 was 20% over-sampled regardless of population proportions. The performances of LPM,
LDF and LR were comparable when the population proportions were 0.5:0.5. The performances

of LDF and LR were similar in all combinations of population proportions and sample
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representativeness.

Figure G2-10(d) presents the population proportion by sample representativeness
interaction under KM. The interaction profiles were different for the two data patterns. In Table
G2-11, for Data Pattern I, the mean G2 error rates increased as the population proportions
deviated from 0.5:0.5 regardless of sample representativeness. Unlike the results of the other |
three methods, the mean G2 error rates of KM were the highest when Group 1 was 20% under-
sampled and the lowest when Group 1 was 20% over-sampled, regardless of population
proportions. KM performed as well as the other three methods only when the population
proportions were 0.5:0.5 and Group 1 was either 20% over-sampled or “equally” sampled. For
Data Pattern II, the mean G2 error rates increased as the population proportions deviated from
0.5:0.5 regardless of sample representativeness. However, sample representativeness had little
impact on KM’s performance.

Results indicated that, for LPM, LDF, and LR, the impact of sample representativeness
on G2 error rates depended on population proportions. For KM, the impact was consistent for
each level of populatidn proportions. LPM performed the best when the population proportions
deviated from 0.5:0.5. The performances of LDF and LR were similar. Depending on the data
pattern, KM could be a viable alternative when population proportions were 0.5:0.50 and sample
representativeness was either “equal” or Group 1 was over-sampled.

Method by equality of covariance matrices by group separation interaction. This three-

way interaction effect accounted for 0.06% (7°=.0006) and 0.27% (7> = .0027) of the sample
variance of G2 error rates for Data Patterns I and II, respectively. a)f,a,,m, (.016) for Data Pattern I

indicated a weak association between this interaction and the error rate. However, for Data

2

Pattern II, the @, value (.066) signified a moderate association. The interaction is presented
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graphically in Figure G2-11. The means and standard deviations are summarized in Table G2-12.

As shown in Figure G2-11, the performances of the four methods depended on the
combination of equality of covariance matrices and group separation. The interaction profiles for
LPM, LDF, and LR were similar for the two data patterns. Yet they were different from those of
KM.

In Figures G2-11(a)-(c), these interaction profiles for the three methods were similar. The
mean G2 error rates increased as the separation between the two populations decreased
regardless of the equality of covariance matrices. For each level of group separation, the
performances of the three methods were the best, when Population #2’°s covariances were
smaller than those of Population #1.

Figure G2-11(d) presents the equality of covariance matrices by group separation
interaction under KM. The interaction profiles were different for the two data patterns. The mean
G2 error rates of KM increased as the separation between the two populations decreased
regardless of the equality of covariance matrices (also Table G2-12). At each level of group
separation, the performance of KM was the best when the covariances of Population #2 were
smaller than those of Population #1. The mean G2 error rates of KM for Data Pattern I were
lower than those for Data Pattern II. Impacts of this interaction on G2 error rates of KM’s were
stronger for Data Pattern I than for Daté Pattern II. KM performed poorly compared to the other
three methods in all combinations of equality of covariance matrices and group separation.

Results indicated that the further the two populations separated, the lower was the G2
error rate,_regardless which statistical method was used. The mean error rate was lower if
Population #2 had smaller covariances than the other two conditions, regardless of the degree of

group separation. LPM was the best method in all combinations of equality of covariance
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matrices and group sepafation. KM'’s performance was the worst. LDF and LR performed
differently under unequal covariance matrices. LR performed better than LDF when Population
#2 had larger covariances. However, LDF performed better than LR when Population #2 had
smaller covariances.

Method by group separation by sample representativeness interaction. This three-way

interaction effect accounted for 0.25% (7> = .0025).and 0.13% (7°=.0013) of the sample
variance of G2 error rate for Data Patterns I and II, respectively. a)f,ama, (.067) for Data Pattern 1

indicated a moderate association between this interaction and the error rate. However, for Data

Pattern 11, the a)f,ama, value (.032) signified a weak association. The interaction is presented

graphically in Figure G2-12. The means and standard deviations are summarized in Table G2-13.

As shown in Figure G2-12, the performances of the four methods depended on the
combination of group separation and sample representativeness. The interaction profiles for LPM,
LDF, and LR were similar for the two data patterns. Yet they were different from those of KM.

In Figures G2-12(a)-(c), the interaction profiles for LPM, LDF, and LR were similar. The
mean G2 error rates increased as the group separation decreased regardless of sample
representativeness. For each level of group separation, the mean error rate was the highest when
Group 1 was 20% over-sampled and the lowest when Group 1 was 20% under-sampled. The
impact of sample representativeness on the error rate increased as the group separation decreased.
The differences between the equal sample represenativeness and the other two conditions
increased as the degree of group separation decreased.

Figure G2-12(d) presents the group separation by sample representativeness interaction
under KM. The interaction profiles were different for the two data paftems. For both data

patterns, the mean G2 error rates of KM increased as the group separation decreased regardless -

47



47

of sample representativeness. Unlike the other three methods, the mean error rate of KM was the
lowest when Group 1 was 20% over-sampled and highest when Group 1 was 20% under-
sampled, regardless of group separation. The impact of sample representativeness on the error
rates of KM was consistent across the three levels of group separation. The mean G2 error rates
of KM for Data Pattern II were higher than those for Data Pattern I. Yet the impact of group
separation on G2 error rates was larger for Data Pattern I than for Data Pattern II. For both data
patterns, KM performed poorly, compared to the other three methods.

Results indicated that the group separation by sample representativeness interaction for
LPM, LDF, and LR were similar. Yet they were different from those of KM. For LPM, LDF, and
LR, the impact of sample representativeness on G2 error rate increased as the separation between
the two populations decreased. For KM, the impact was consistent for each level of the group
separation. LPM yielded the lowest mean G2 error rates in all combinations of group separation
and sample representativeness. The performances of LDF and LR were comparable. Although
KM performed poorly compared to the other three methods, KM was least affected by sample
representativeness.

7. Results of Total Error Rates

Total error rate was the proportion of observations in the test sample that were
misclassified. The means and standard deviations of the error rates of 200 replications for each
combination of levels of the five factors for Data Pattern I are summarized in Table T-1.
Similarly, the means and standard deviations for Data Pattern II are presented in Table T-2. The
results of ANOVA on Total error rates for Data Pattern I are summarized in Table T-3. Out of 31
main and interaction effects, 23 effects were stafistically significant at the .0016 level. The

ANOV A results for Total error rate for Data Pattern II are presented in Table T-4. Twenty-seven
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effects were statistically significant at the .0016 level for Data Pattern II.
Data Property Main Effects
The effects of the five “between-subjects” main factors on Total error rate were
statistically significant at the .0016 level for both data patterns. However, only three of the five
factors were found to be practically significant using the criterion of a)f,m,.a, > .06 for Data
Pattern I (see Table T-3). These three factors were Factor 1 (population proportion), Factor 2

(equality of covariance matrices), and Factor 3 (group separation). For Data Pattern II, only two

factors (i.e., Factor 1 and Factor 3) had a a)fm.a, value greater than .06 (see Table T-4).

Population Proportion

For Data Pattern I, Factor 1 (population proportion) explained 6.68% (> = .0668) of the
sample variance of Total error rates. This factor signified a strong association (a)f,ma, =.277)

with Total error rates. The mean error rates for the three levels of population proportions

were .146, .182, and .216. Results from the Newman-Keuls procedure indicated that the three
mean error rates were statistically significantly different from each other. The mean Total error
rate (.146) was the lowest under 0.1:0.9 population proportions and the highest (.216) under the

0.5:0.5 condition.
Similarly, for Data Pattern II, this factor explained 5.37% (7*= .0537) of the sample
variance of Total error rates. The a)fmm.a, value (.385) signified a strong association between

population proportions and Total error rates. Results from the Newman-Keuls procedure
indicated that the mean error rate (.275) for the 0.5:0.5 population proportion condition was
statistically significantly higher than that (.241) for the 0.25:0.75 condition. The mean error rate

(.185) was the lowest for the 0.1:0.9 condition; it was statistically significantly lower than the
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means for the other two conditions. Based on the results from both data patterns, Total error rate
decreased as the proportions of Population #1 and Population #2 deviated from the 0.5:0.5 split.
Equality of Covariance Matrices

Factor 2 (equality of covariance matrices) had three levels: (a) equal covariance matrices,
(b) Population #1 had smaller covariances that were one-fourth of the covariances of Population

#2, and (c) Population #1 had larger covariances that were four times of the covariances of

Population #2. For Data Pattern I, this factor explained 1.23% (7° = .0123) of the sample

variance of Total error rates. The factor exhibited a moderate association (wf,ama, =.0657) with

the Total error rate. Results from the Newman-Keuls procedure indicated that the mean Total
error rates for the three levels were statistically significantly different from each other. When
Population #1 had larger covariances, the mean error rate was the lowest (.164). The meé.n error
rate was .173 under the equal covariance matrices condition. The mean error rate was the highest
(.191) when Population #1 had smaller covariances.

For Data Pattern II, the equality of covariance matrices factor explained 0.36%

(17* = .0036) of sample variance of Total error rates. This factor had a weak association (@},

=.040) with Total error rates. Results from the Newman-Keuls procedure indicated that the
mean Total error rates for the three levels were statistically significantly different from each
other. When Population #1 had larger covariances, the mean error fate (.220) was the lowest. The
mean error rate (.242) was the highest for the equal coVariancé matrices condition. When
| Population #1 had smaller covariances, the mean error rate was .238.

This factor was statistically significant at a = .0016 for both data patterns; the absence of
strong associations implied that the differences in mean Total error rates for the three levels of

equality of covariance matrices were practically insignificant. In other words, a ratio of 1:4 (or
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4:1) for heterogeneity of covariance matrices exhibited only a small impact on Total error rates.
Group Separation

Factor 3 (group separation) explained 37.97% (7*=.3797) of the sample variance of

Total error rates for Data Pattern I. A strong association (@2, = .685) between this factor and

partial

Total error rates was detected. Results from the Newman-Keuls procedure indicated that three
mean error rates of this factor differed from each other. When the Mahalanobis distance ()
between the two populations’ means was 6.709, the mean error rate was .093 (the lowest). As &
decreased, the mean error rate increased. Under the (;ondition ofd = 2.236, the mean error rate
was .192. The mean error rate was .259 (the highest) when &* was 0.745.

For Data Pattern II, similar results were obtained. This factor accounted for 11.19%

(772 = .1119) of the sample variance of the Total error rate. The association between this factor

and the error rate was strong (@?,_., = .567). Similar to the results obtained from Data Pattern I,

partial
as & decreased, the mean Total error rate increased. The mean error rate increased from .163
(when & = 6.785) to .245 (when &® = 2.262) and further increased to .293 (when &* = 0.754).

Results from both data patterns led to the conclusion that the further the two populations
separated, the lower was Total error rate. These findings were expected because the less
overlapping of the populations, the less likely that sample observations would be misclassified.
Sample representativeness

Factor 4 (sample representativeness) had three levels: (a) Group 1 (i.e., sample comprised
of observations from Population #1) was 20% over-sampled, (b) sample proportions equal to the
population proportions, and (c) Group 1 was 20% under-sampled. This factor was statistically

significant at a = .0016 for both data patterns. However, for Data Pattern I, only 0.06%

(n7*= .0006) of the sample variance of Total error rates was explained by this factor. A negligible
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association (a);ama, =.004) was found between this factor and the Total error rate. Results from

the Newman-Keuls procedure indicated that the mean error rate (.180) of the “20% over-
sampled” condition was statistically significantly smaller than that (.185) obtained under the
“20% under-sampled” condition. These two mean error rates were statistically significantly

higher than that (.179) of the “equal” condition.

Similarly, for Data Pattern II, this factor explained 0.02% (7%= .0002) of the sample
variance of Total error rates. a)f,a,,m, (.002) indicated a negligible association between group

representativeness and Total error rates. Results from the Newman-Keuls procedure showed that
the mean error rate (.233) of the “20% over-sampled” condition was statistically significantly
smaller than that (.236) of the “20% under-sampled” condition. Both mean error rates were
statistically significantly higher than that (.231) of the “equal” condition.

Although this factor was statistically significant at a =.0016 for both data patterns, an
absence of strong associations implied that the differences in mean Total error rates were not
likely to be attributable to the three levels of sample representativeness.

Sample size
Two levels of sample size (i.e., 200 and 400) were considered in this study. For Data

Pattern I, less than 0.01% (7? <.0001) of the sample variance of Total error rate was explained
by this factor. This factor was virtually not associated with the error rate (a)ima, <.0001). The

mean error rates for sample sizes of 200 and 400 were .182 and .181, respectively. Similar results

were obtained from Data Pattern II. This factor accounted for 0.01% (772 =.0001) of the sample
variance of Total error rate. The a)ﬁama, value (.0008) indicated a virtually non-existent

association between this factor and Total error rate. The mean error rates for sample sizes of 200
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and 400 were .234 and .233, respectively.

Although this factor was statistically significant at o =.0016 for both daté patterns,
evidence of a non-existent association implied that the differences in mean error rates were not
likely to be attributable to the two levels of sample size. By examining Tables T-1 and T-2, one
notices that the standard deviations of Total error rates for sample size of 400 were smaller than
those for sample size of 200. In other words, with a larger sample size, one obtains a more
efficient estimate of Total error rates.

Two-way Interaction among Data Property Factors

2

et > -00 criterion, the sole two-way interaction considered

Judged against the @

practically significant was the population proportion by group separation interaction. This
interaction is the only result discussed here.
Population Proportion by Group Separation Interaction

This interaction was statistically significant at o = .0016 for both data patterns. For Data

Pattern I, it accounted for 5.31% (7*=.0531) of the sample variance of the Total error rate and

had a large association (wf,a,,,.a, = .233) with the error rate. For Data Pattern II, this factor

explained 3.57% (7%= .0357) of the sample variance of the error rate and also exhibited a large

2

arial — -294). This interaction is graphically presented in Figure T-1.

association (@

As shown in Figure T-1, the interaction profiles for‘the two data patterns were similar.
The Total error rates were slightly lower for Data Pattern I than for Data Pattern II. When the
separation of the two populations was large (i.e., & = 6.7), the population proportion factor had a
smaller impact on the Total error rate. However, when the separation was smaller (i.e., F=22
or 0.7), the impact of population proportion on the error rate increased. The differences in the

mean Total error rates between 0.50:05 and 0.1:0.9 population proportion conditions increased
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from .001 (when & = 6.7) to .18 (when & = 0.7).
Results from both data patterns indicated that the impact of population proportions on
Total error rates was the strongest when the two populations were not well separated (i.e., &=
0.7). When the two populations were well separated (i.e., & = 6.7), differences in population
proportions had little impact-on Total error rates.
Effects Concerning Statistical Methods

For Data Pattern I, four effects concerning the method (i.e., the “within-subjects”) factor

were considered practically significant according to the criterion of a),z,am.a, > .06. These five

effects were: (a) the main effect of methods, (b) mefhod by population proportion interaction, (c)
method by equality of covariance matrices interaction, (d) method by group separation
interaction, and (¢) method by population proportion by group separation interaction. For Data
Pattern II, four of the five effects listed above were considered practically significant except for
the method by equality of covariance matrices interaction.
Main Effect of the Method Factor

The four statistical methods (i.e., LPM, LDF, LR, and KM) were treated as levels of the

“method” factor. This factor was statistically significant at o = .0016 and accounted for 18.49%

(n7*=.1849) and 68.48% (7> = .6848) of the sample variance of Total error rates for Data

Patterns I and II, respectively. a),z,ama, equaled .829 and .947 for Data Patterns I and II,

respectively indicating a strong association.

. Thf: mean Total error rate for LPM was .157 for Data Pattern I, and .158 for Data Pattern
II. The mean error rates for LDF were .152 and .155 for Data Patterns I and II, respectively. The
mean error rate for LR was .153 for Data Pattern I and .157 for Data Pattern II. The mean error

rates for KM were .264 and .464 for Data Patterns I and 11, respectively. The Dunn-Sidék
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procedure was applied to further examine pairwise mean differences among the four methods. -
Results from the Dunn-Sidék procedure indicated that the means Total error rates were
statistically significantly different from each other for both data patterns.

In general, KM yielded the highest mean Total error rate and LDF the lowest. The mean
error rates for LPM were only slightly‘higher than those for LR, even though the differences
were statistically significant.

Two-way Method by Data Property Interaction
For both data patterns, the method factor was found statistically significantly interacting

with all five data property factors at a = .0016. For Data Pattern I, only 3 two-way interactions

were considered practically significant according to the criterion of a);am.a, > .06. These three

interactions were (a) method by population proportions interaction, (b) method by equality of
covariance matriceslinteraction, and (c) method by group separation interaction. For Data Pattern
I1, only the method by population proportions interaction and the method by group separation
interaction were considered practically significant. These three interactions are discussed in
greater details below.

Method by population proportion interaction. This two-way interaction accounted for

18.27% (7* = .1827) and 4.34% (77> = .0434) of the sample variance of Total error rates for Data
Patterns I and II, respectively. a)f,am.a, values (.827 for Data Pattern I and .533 for Data Pattern II)

indicated a strong association between this interaction and the error rate. The interaction is
graphically presented in Figure T-2. Similar interaction profiles were found for both data patterns.
The means and standard deviations for the interaction are summarized in Table T-5.

As shown in Figure T-2, the interaction profiles for the two data patterns were similar to

the profiles shown in Figure G2-4. The performances of the four methods depended on sample
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representativeness. For each data patter, the performances of LPM, LDF, and LR were similar
but different from KM. The mean Total error rates of these three methods were the lowest when
the population proportions were 0.1:0.9 and the highest under the 0.5:0.5 split.

Although the performance of KM was different for the two data patterns, the mean error
rates were the lowest under the 0.5:0.5 condition and the highest under the 0.1:0.9 condition.
According to Table T-5, for ISata Pattern I, KM slightly outperformed the other three methods
only when the population proportions were 0.5:0.5. When population proportions were 0.25:0.75
and 0.1:0.9, Total error rates of KM were substantially higher than those for the other three

methods. For Data Pattern II, KM performed poorly in all three population proportion conditions,

2

compared to the other three methods. The discrepancies between 7° and @),

, values were

caused mainly by the inconsistent performance of KM for the two data patterns.

Results led to the following conclusions: when the population proportions were extreme
(i.e., 0.1:0.9 or even 0.25:0.75), LDF was the best method in predicting group memberships. KM
was not a method of choice when population proportions were extreme. When population
proportions were 0.5:0.5, the performances of LPM, LDF, and LR were almost identical; KM
performed as well as the other three methods only for Data Pattern 1.

Method by equality of covariance matrices interaction. This two-way interaction

accounted for 0.46% (77> = .0046) and 0.04% (77* = .0004) of the sample variance of Total error
rates for Data Patterns I and II, respectively. The a);mm, value (.107 for Data Pattern I) indicated

a moderate association between this interaction and the error rate. However, for Data Pattern II,

the a);ma, value (.011) signified a weak association. The interaction is graphically presented in

Figure T-3. A similar interaction profile was found for both data patterns. The means and

standard deviations for the interaction are summarized in Table T-6.
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As shown in Figure T-3, unequal covariance matrices cbnditions had a small impact on
the differential performances of LPM, LDF, and LR. Yet, the mean Total error rates of KM
depended on the condition of equality of covariance matrices. The performances of LPM, LDF,
and LR were similar for each data pattern. However, KM performed differently for the two data
patterns and also from LPM, LDF, and LR.

All four methods performed slightly better when the covariances of Population #1 were
four times of those of Population #2. KM performed poorly compared to the other three methods

regardless of the conditions of equality of covariance matrices (see Table T-6). Total error rates
of KM for Data Pattern I were lower than those of Data Pattern II. The discrepancies between 7’
and co;mm, values were caused mainly by the inconsistent performance of KM for the two data
paftems.

Results led to the following conclusions: all four methods performed better when
Population #1’°s covariances were larger than Population #2’s. LDF was the best method
regardless of the condition of equality of covariance matrices whereas KM was the poorest.

Method by group separation interaction. This two-way interaction accounted for 0.93%
(n7” = .0093) of the Total error rate variance for Data Pattern I, and 0.79% (7’ = .0079) for Data

Pattern II. A strong association between this interaction and the error rate was detected

2 -

(@, =.195 and .173 for Data Patterns I and II, respectively). The interaction is graphically
partial

presented in Figure T-4 and the means and standard deviations of Total error rate are
summarized in Table T-7.

As shown in Figure T-4, the performances of the four methods depended on the degree of
separation between the two populations’ means. The further the two populationé separated, the

lower was the Total error rate regardless which method was used. The performances of LPM,
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LDF, and LR were similar for each data pattern. However, KM performed differently for the two
data patterns, also from LPM, LDF, and LR.

In Table T-7, for both data patterns, KM performed poorly compared to the other three
methods regardless of the degree of group separation. The mean Total error rates of KM were
lower for Data Pattern I than for Data Pattern II. The impact of group separation on Total error
rates was larger for Data Pattern I than for Data Pattern II. The differences among the mean Total
error rates of the three levels of group separation were larger for Data Pattern I than for Data
Pattern II.

Results led to the following conclusions: LPM performed as well as LDF or LR when the
two populations were not well separated. KM did not perform as well as the other three methods.
Three-way Method by Data Property Interaction

The method by population proportion by group separation interaction was the only three-

way interaction considered practically significant according to the criterion of cof,a,,,.a, >.06. In

addition to this three-way interaction, the method by population proportion by equality of
covariance matrices interaction is also included to contrast the results of this study with the
findings from Fan and Wang (1999). They are the only results discussed here.

Method by population proportion by group separation interaction. This interaction
explained 1.85% (7= .0185) and 0.26% (77> = .0026) of the sample variance of Total error rates

for Data Patterns I and 11, respectively. A strong association between this interaction and the

2

variar = -326) for Data Pattern 1. However, for Data Pattern II, only a

error rate was detected (@

2

rariat = -065) was found. The means and standard deviations of the error

moderate association (@

rate for the three-way interaction are summarized in Table T-8. The interaction is graphically

presented in Figure T-5.
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As shown in Figure T-5, the berformances of the four methods in predicting the group
me_:mbership depended on the combinations of population proportions and group separation. The
interaction profiles for LPM, LDF, and LR were similar for the two data Patterns. Yet they were
different from those of KM. |

As shown in Figures T-5(a)-(c), the mean Total error rates increased as the group
separation decreased regardless of population proportions. The mean Total error rates were the
highest when population proportions were 0.5:0.5 and the lowest when proportions were 0.1:0.9,
regardless of the degree of group separation. However, the differences among the mean error
rates, at the three levels of population proportions, became larger as the separation between the
| two populations decreased.

Figure T-5(d) illustrates the population proportion by group separation interaction under
KM. The interaction profiles were different for the two data patterns. For Data Pattern I, the
mean Total error rates increased as the separation between thé two populations decreased,
regardless of population proportions. Meanwhile, the mean error rates increased as the
population proportions deviated from the 0.5:0.5 split, regardless of group separation. KM
performed as well as the other three methods when the population proportions were 0.5:0.5 and,
especially, when the two populations were not well separated (see Table T-8). For Data Pattern II,
the mean error rates of KM were substantially higher than those of the other three methods.
Different population proportions had little impact on KM’s performances, when group
separations (dz) were 2.2 and 0.7. When & = 6.7, the mean Total error rates increased as the
population proportions deviated from 0.5:0.5.

Results indicated that LPM performed as well as LDF and LR when either the population

proportions were within the range (i.e., 0.25:0.75 — 0.5:0.5) or the two populations were not well
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separated (i.e., @ = 2.2 or 0.7). LR did not outperform LDF when the population proportions
were 0.1:0.9. KM performed as well as the other three methods when the population proportions
were 0.5:0.5 and the two populations were not well separated.

Method by population proportion by equality of covariance matrices interaction. This
three-way interaction explained 0.23% (7”=.0023) and 0.01% (" = .0001) of the sample
variance of Total error rates for Data Patterns I and II, respectively. This interaction exhibited a

*amia = -058 and .003 for Data Patterns I and II) with the Total error rate.

weak association (@
This interaction is included here in order to contrast the results of this study with the findings
from Fan and Wang (1999). The means and standard deviations of Total error rate for the three-
way interaction are summarized in Table T-9.

In Table T-9, Total error rates of LPM, LDF, and LR were comparable. The performance
of LPM was not as good as the other two methods when population proportions deviated from
0.5:0.5. The performance of KM was different for the two data patterns. For Data Pattern I, KM
performed slightly better than the other three methods when population proportions were 0.5:0.5.
For Data Pattern II, KM did not perform as well as the other three methods in all combinations of
population proportion and equality of covariance matrices. When population proportions were
either 0.1:0.9 or 0.25:0:75, smaller covariances in Population #1 had a negative impact on the
Total error rates whereas larger covariance in Population #1 had a positive impact. However,
when population proportions were 0.5:0.5, both conditions of covariance matrices had a positive
impact on the error rates.

Results indicated that (a) when population proportions were 0.5:0.5, violation of

homogeneity of covariance matrices did improve the accuracy in predicting group membership;

(b) if the Total error rate was theAmain concern, any of LPM, LDF, or LR methods performed as
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well as the others; and (c) KM was a viable alternative when population proportions were 0.5:0.5
and the Total error rate was the objective of the research.
8. Implications for Educational Researchers

Classification enables men aﬁd women to makeé sense of the information they encounter.
Aldenderfer and Blashfield (1984) state,

[c]lassification is also a fundamental process of the practice of science since

classification systems contain the concepts necessary for the development of theories

within a science. (p. 7)

Classification is closely related to another important human activity—prediction. In this study,
the accuracies of predicting two-group membership by K-means clustering were compared with
those derived from linear probability modeling, linear discriminant function, and logistic
regression under various data properties. Three predictive error rates (Group 1, Group 2, and
Total) provided the basis for comparisons.

Findings in this study echoed Gilbert’s (1969) conclusion that moderate violation of
homogeneity of covariance matrices assumption had only a mild impact on error rates. The use
of a ratio of 4 in the two conditions of heterogeneity of covariance matrices exhibited only a
small impact on the three error rates. The direction of impact of heterogeneity of covariance
matrices on the performances of LPM, LDF, LR and KM depended on population proportions
and the type of error rates.

In the field of education, the targeted population proportions are mostly extreme. The
accuracy of predicting membership of the smaller population (i.e., Population #1 in this study) is
frequently the main focus. The selection of LPM, LDF, or LR in this situation depended on the

conditions of heterogeneity of covariance matrices. When population proportions were 0.1:0.9,
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the condition in which Population #1 had smaller covariances exhibited a negative impact while
the cqndition in which Population #1 had larger covariances had a positive impact on the error
rates of LPM and LDF. However, both conditions of heterogeneity of covariance matrices had a
positive impact on the performance of LR. LPM was not the method of choice when the
accuracy of predicting membership in the smaller population (i.e., Population #1) was the main
objective. LR should be selected when Population #1 had smaller covariances; LDF should be
selected when Population #1 had larger covariances.

For KM, when unequal covariance matrices of the two populations existed, observations
from the population with smaller covariances were less likely to be misclassified than members
of the population with larger covariances. When population proportions deviated from 0.5:0.5,
the condition in which Population #1 had larger covariances minimized the Group 2 error rate.
Consequently, this condition had the lowest Total error rate. When population proportions were
0.5:0.5, both conditions of heterogeneity of covariance matrices minimized the Total error rate,
compared to the Total error rate obtained when the two populations had equal covariance
matrices. Depending on the data pattern, KM could be an alternative method especially when the
population proportions were extreme.

Without the knowledge of population proportions, samples representative of population
proportions are hard to obtain in some situations. Kao and McCabe (1991) suggested that equal
sample sizes for the two populations should be used in these situations. Findings of this study
elaborated on the appropriateness of this suggestion. If the proportions of the two populations
were similar, maintaining equal sample sizes would have little impact on individual group’s as
well as the total error rates. However, if the population proportions were extreme, equal sample

sizes implied that Population #1 was over-sampled while Population #2 was under-sampled.
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Consequently, for LPM, LDF, and LR, there would be a reduction in Group 1 error rate while an
increment in Group 2 error rate, compared to the error rates obtained from a representative
sample. lSampling equal number of observations from the underlying populations woul& favor
the prediction of membership for the smaller population, but, had little impact on the Total error
rates.

For KM, when I;opulation #1 was over-sampled, there would be an increment in Group 1
error rate while a reduction in Group 2 error rate, compared to the error rate obtained from a
representative sample. In other words, sampling equal number of observations from the
underlying populations would favor the prediction of membership for the larger population.
Consequently, higher Group 1 and lower Total error rates would be obtained in this case,
compared to the error rates obtained from a representative sample.

Findings in this study partially supported the proposition that the further the two
populations separated, the lower was the error rate. For KM, this proposition correctly described
the impact of group separation on Total as well as separate group error rates. For LPM, LDF, and
LR, this proposition describes the impact of group separation on only Group 1 and Total error
rates. However, the impact of group separation on Group 2 error rate was not fully consistent
with the above proposition. When population proportions were 0.5:0.5, the further the two
populations separated, th;: lower was Group 2 error rate. However, when population proportions
were 0.25:0.75, the mean error rate was the lowest when & = 6.7 and the highest when &£=22.
The irregular impact of group separation on Group 2 error rate was unexpected. Additional
studies are needed in order to fully investigate this phenomenon. Findings of this study did not
support the notion that increasing group separation should have a negative impact on the

superiority of LR over LDF. Increasing group separation may lower the efficiency of LR relative
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to LDF in parameter estimations (Efron, 1975). However, the inefficiency in parameter
estimations did not seem to have a strong impact on the accuracies of prediction withip the range
of Mahalanobis distance from 0.7 to 6.7.

The present study found similar performances by LPM, LDF, and LR for the two data
patterns. This imp_lies that the data property factors had consistent and uniform impacts on the
error rates regardless of the data pattern. However, for KM, the performances were different for
the two data patterns. This implies that some factor(s) other than those manipulated and
investigated in this study had an influence on the performance of KM in predicting two group
memberships. One of the possible factors is the mean structures of the two data patterns. For
Data Pattern I, all three means of Population #2 were higher than those of Population #1.
However, for Data Pattern II, five out of eight means (i.e., X1, X3, X3, X4, and X8) were higher
in Population #1 than Population #2; Population #2 had higher means in the remaining three
covariates. The differences in mean structure indicated that the two populations overlapped
differently for the two data patterns. The pattern of how the two populations overlapped affected

the performances of KM, but had little effect on the performances of the other three methods.
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Table 1

Data Pattern

Common correlation matrix (R)
X1 X2 X3

X1 1.00

X2 30 1.00

X3 .50 40 1.00
Mean structure

[TH 5.00 5.00 5.00

M2 9.00 9.00 9.00
&#=6.709

Equal variance condition:

XI X2 X3
=070 Ppooey 400 4.00  4.00

Unequal variance conditions [where Population #1 has smaller variances]:

Population Population Population
proportions: .50:.50 proportions: .25:.75 proportions: .10:.90
oy 1.60 160 160 |o%qy 123 123 123 |d%y 1.08 108  1.08
o’ 640 640 640 |’ 492 492 492 |dfn 432 432 432

Unequal variance conditions [where Population #1 has larger variances]:

Population Population Population
proportions: .50:.50 proportions: .25:.75 proportions: .10:.90
o’y 640 640 640 |c’qy 9.16 9.16 9.16 |o%y 1232 1232 1232
o’y 160 160 160 [o?z 229 229 229 |6’z 3.08 308 3.08

d*=2.236
Equal variance condition:

XI X2 X3
P=F o= Py 12.00 12.00  12.00
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Unequal variance conditions [where Population #1 has smaller variances]:

Population | Population Population proportions:
proportions: .50:.50 proportions: .25:.75 .10:.90
o?qy 4.80 480 4.80|c%yy 3.69 3.69 369 |’ 324 324 324

e 192 192 192|c%y 1476 14.76 14.76 |6’y 1296 - 12.96  12.96
Unequal variance conditions [where Population #1 has larger variances]:

Population Population Population proportions:
proportions: .50:.50 proportions: .25:.75 .10:.90
oy 192 192 192 |d%y) 2744 27.44 2744 | %) 3692 3692 3692
o’ 480 480 4.80|c*; 686 686 686 |c*p 923 923 9.23

d#=0.745
Equal variance condition:

X1 X2 X3
o (1)=<52 = o (pooled) 36.00 36.00 36.00

Unequal variance conditions [where Population #1 has smaller variances]:

Population Population Population proportions:
proportions: .50:.50 proportions: .25:.75 .10:.90
oqy 144 144 144 6% 1108 1108 11.08 |c’yy 973 9.73 9.73

ey 576 576 576 |c’e 4432 4432 4432 |c%y 3892 3892 3892
Unequal variance conditions [where Population #1 has larger variances]:

Population "Population Population proportions:
proportions: .50:.50 proportions: .25:.75 .10:.90
o’qy 576 57.6 57.6|c%, 8228 8228 8228 |c%;, 110.76 110.76 110.76
o 144 144 144 |c%n 2057 2057 2057 |c%n 2769 27.69  27.69

Note. & is group separation measured in Mahalanobis distance: (u - n, )’2;,',0,8,, (-1,

where X =0 pootea X RX O and o

pooled

pooled is a diagonal matrix with pooled standard

pooled

deviations of the variables in the diagonal.
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Table 2

Data Pattern 11

Common correlation matrix (R)
X1 X2 X3 X4 X5 X6 X7 X8
X1 1.00
X2 45 1.00
X3 .05 25 1.00
X4 35 .05 25 1.00
X5 35 .10 35 .55 1.00
X6 .05 25 .50 15 40 1.00
X7 -.35 .05 40 15 30 41 1.00
X8 30 30 .50 35 .60 .50 45 1.00

Mean structure
79 1250 15.00 1595 1265 12.15 14.15 1820 15.20
M2 1140 1425 15.00 1130 1290 1500 1920 14.50

d*=6.785
Equal variance condition:

Xt X2 X3 X4 X5 X6 X7 X8
C(1=0° =0 ookedy  1.00  2.00 200 150 120 2.00 250 2.00

Unequal variance condition [where Population #1 has smaller variances]:

Population Population Population
proportions: .50:.50 proportlons 25:.75 proportions: .10:.90
o’y = 02(poo|ed)/ 2.5 o’ m=0 2 pooled)/ 3.25 02(1) = Og (pooled)/ 3.7
()'2 = 0‘ (pooled) % 4/2.5 0‘ o= ()'2 (pooled) % 4/3.25 0‘ = 0‘2 (pooled) % 4/3.7

Unequal variance condition [where Population #1 has larger variances]:

Population Population Population
proportlons .50:.50 proportlons 25:.75 proportlons .10:.90
0‘ m= 0‘ (pooled) % 4/2.5 0'2(1) = 0‘ (pooled) x 4/1.75 0‘ (1) = 0‘ (pooled) % 4/1.3
0%2) = 6° (pooled) / 2.5 6%2) = 6% (pootedy/ 1.75 6%2) = 6 (pooled)/ 1.3
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=2.262
Equal variance condition:

. XI X2 X3 X4 X5 X6 X7 X8
Z1=0° =0 pooled)  3.00 600 6.00 450 360 6.00 750 6.00

Unequal variance condition [where Population #1 has smaller variances]:

Population ‘ Population Population
proportions: .50:.50 proportlons 25:.75 proportions: .10:.90
0’2(1) = Gz(pooled)/ 2.5 0’2(1) =0 (pooled)/ 3.25 0 (1) Gz(pooled)/ 3.7
0’2 = 02 (pooled) X 4/2.5 0’2 = 0’2 (pooled) % 4/3.25 0 o= 02 (pooled) X 4/3.7

Unequal variance condition [where Population #1 has larger variances]:

Population Population Population
proportions: .50:.50 proportions: .25:.75 proportlons .10:.90
0’2(1) = Gz(pooled) x 4/2.5 0’2(1) = Gz(pooled) x 4/1.75 02(1) 0 (pooled) % 4/1.3
62 2) = 6 (pooledy/ 2.5 6°2) = & (pootedy/ 1.75 6’2y = & (pooteay/ 1.3
#=0.754

Equal variance condition:

XI X2 X3 X4 X5 X6 X7 X8
(1y=0° 20" (ootesy  9-00  18.00 18.00 13.50 10.8 18.00 22.5 18.00

Unequal variance condition [where Population #1 has smaller variances]:

Population Population Population
proportlons .50:.50 proportlons 25:75 proportions: .10:.90
&2y = 07 pootedy / 2.5 o’ =0 (pooled)/ 3.25 02(1) = 6 (pooled) / 3.7
o = =g* (pooled) X 4/2.5 o2 @= =g? (pooled) X 4/3.25 c? @= =g? (pooled) X 4/3.7

Unequal variance condition [where Populatién #1 has larger variances]:

Population Population Population
proportions: .50:.50 proportlons .25:.75 proportlons .10:.90
02(1) =’ (pooled) x 4/2.5 0’2(1) = 02 (pooled) X 4/1.75 0’2(1) = 02 (pooled) X 4/1.3
6%2) = 6 (pooled) / 2.5 6%2) = 6 ooteay/ 1.75 6°2) = 6 (pooledy/ 1.3
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Note. d* is group separation measured in Mahalanobis distance: (x4, — 4,)'

where prled = O pooled X Rx O.pggled H and apooled

deviations of the variables in the diagonal.
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-1
pooled

(-1,

is a diagonal matrix with pooled standard
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Table G1-1

Means and Standard Deviations of Group 1 Error Rates of 200 Replications for Data Pattern I

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

g 2
% 2 g Over Equal Under
§- § § Sample size Sample size Sample size
et
- & 200 400 200 400 200 400
LPM Mean 536 521 652 660 .800 817
Std 131 091 136 082 119 082
LDF Mean 298 302 337 340 379 369
°'_1° Std 114 077 118 076 131 .080
0 '90 LR Mean 292 299 332 337 371 363
Std 121 . .078 118 077 128 082
KM Mean 031 029 027 022 022 022
Std 0041 026 .040 022 033 026
LPM Mean .183 174 222 218 283 293
Std 061 039 069 048 076 052
LDF Mean 174 .165 200 .193 229 233
025 Std 059 038 066 045 067 049
0 '75 LR Mean 171 .165 201 .194 229 232
Std 061 .037 068 046 .068 050
KM Mean .069 .068 069 064 064 059
Std 038 028 036 026 039 024
LPM Mean 0074 070 101 .100 129 098
Std 029 019 032 023 035 022
LDF Mean 074 071 101 .100 129 .098
0'_50 Std .029 019 032 023 035 022
0 '50 " LR Mean 074 072 102 .100 129 .098
Std 029 019 035 025 .037 023
KM Mean .103 .101 .100 099 .093 099
Std 035 027 033 025 .030 023
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Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

g 2
'% -% g Over Equal Under
é- §- < Sample size Sample size Sample size
& oA 200 400 200 400 200 400
LPM Mean 930 945 979 983 996 998
Std 070 049 039 025 017 .008
LDF Mean 726 721 a7 773 820 .803
0.10 Std 116 083 115 o072 115 080
0 '90 LR Mean 712 714 760 767 812 798
Std 120 088 121 077 119 082
KM Mean 094 111 117 .106 110 094
Std 076 . .054 070 046 070 050
LPM Mean 463 454 553 545 692 698
Std 093 058 091 053 091 057
LDF Mean 438 426 495 485 573 582
0.25 Std 091 056 085 051 087 060
0 7 s LR Mean 436 425 493 484 570 579
Std 092 057 084 052 087 061
KM Mean 170 .166 151 161 154 146
Std 060 041 051 044 054 039
LPM Mean 154 159 229 228 320 319
Std 037 031 049 035 055 038
LDF Mean 155 161 229 228 319 317
030 std 038 031 049 035 055 038
0 '50 LR Mean 156 161 230 228 318 317
Std 039 031 049 036 054 038
KM Mean 245 248 226 226 212 217
Std 051 037 050 036 052 033
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" Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

g 2
S S :S Over Equal Under
§- % s Sample size Sample size Sample size
ol 200 400 200 400 200 400
LPM Mean 999 999 1.00 1.00 1.00 1.00
Std 008 005 .000 002 000 000
LDF Mean 958 960 974 973 981 983
°'_1° Std 054 040 043 034 034 027
0 '90 LR Mean 953 958 097 971 979 982
Std 057 043 048 035 038 027
KM Mean 238 223 234 239 221 223
Std 098 063 108 069 099 068
LPM Mean 738 751 861 853 950 950
Std 084 056 075 057 048 034
LDF Mean 702 713 808 787 879 872
0.25 Std 086 054 081 063 . .073 056
075 LR Mean 701 712 803 787 877 870
Std 084 054 083 063 073 057
KM Mean 288 280 2718 272 269 263
Std 064 046 064 051 069 051
LPM Mean 188 185 339 334 522 525
Std 050 033 053 042 069 046
LDF Mean 190 189 339 334 518 521
050 sd 050 034 053 042 069 046
0 '50 LR Mean 191 .189 339 334 518 .520
Std 050 034 053 042 070 046
KM Mean 350 355 337 332 318 318
Std 064 044 055 041 062 040
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Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

g g
é -% :é Over Equal Under
§. = ﬁ Sample size Sample size Sample size
E=d
e 200 400 200 400 200 400
LPM - Mean 520 559 172 782 934 954
Std 171 120 137 .100 080 046
LDF Mean 145 154 206 201 282 255
0.10 std 092 068 115 073 125 085
0 '90 LR Mean 170 177 215 209 264 240
Std 093 072 116 074 128 079
KM Mean .000 .000 .000 .000 .000 .000
Std 000 001 .000 002 .000 .000
LPM Mean 047 042 076 079 175 160
Std 035 023 043 031 073 049
LDF Mean 042 037 058 059 101 .088
025 Std 034 021 035 026 049 036
0'75 LR Mean 092 085 017 107 151 136
Std 051 033 050 039 057 044
KM Mean .001 002 .001 002 001 .001
Std .006 004 004 004 .003 003
LPM Mean 012 012 022 020 040 040
Std 013 007 017 010 022 017
LDF Mean 013 012 022 020 .040 039
°'§° Std 013 007 017 010 022 016
0_'50 LR Mean 043 .039 064 060 092 088
Std 023 015 028 020 036 027
KM Mean 007 006 .006 .005 006 .006
Std .009 .006 .009 .005 007 .006
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

g 2
§ -% ;é Over Equal Under
;:g:- g é’ Sample size Sample size Sample size
a 200 400 200 400 200 400
LPM Mean 996 999 1.00 1.00 1.00 1.00
Std 016 004 .006 .002 .000 .000
LDF Mean 851 850 905 911 949 956
0.10 Std 102 073 089 057 064 042
0 '90 LR Mean 759 773 825 838 889 902
Std 129 093 125 086 102 068
KM Mean .008 006 007 .006 004 .006
Std 021 . 013 .020 012 014 012
LPM Mean 380 403 610 597 816 836
Std .101 076 126 089 .100 070
LDF Mean 340 357 502 487 637 653
0.25 Std 093 071 123 082 115 088
0 '75 LR Mean 351 370 476 464 585 .594
Std 088 065 112 076 .108 086
KM Mean 020 017 016 015 015 015
Std .020 013 018 012 018 013
LPM Mean 061 059 126 117 241 242
Std 028 017 039 026 059 .044
LDF Mean 061 060 126 17 239 238
030 sd 029 017 039 026 058 044
o.éo LR Mean 091 088 167 157 275 273
Std 035 021 044 030 059 .040
KM Mean 046 044 .040 038 037 036
Std 030 017 024 017 022 016
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

_g -g ;85 Over Equal Under
gz. g*- ﬁ Sample size Sample size Sample size
~ & 200 400 200 400 200 400
LPM Mean 1.00 1.00 1.00 1.00 1.00 1.00
Std .000 .000 .000 .000 .000 .000
LDF Mean 999 999 1.00 1.00 1.00 1.00
O'}O Std .007 005 005 002 003 000
0_'90 LR Mean 996 997 999 999 999 1.00
Std 015 009 007 005 010 002
KM Mean 063 -~ 059 065 061 .060 .055
Std 054 036 060 041 056 .040
LPM Mean 849 859 963 970 998 998
Std .095 061 043 029 007 .008
LDF Mean 807 812 920 929 978 983
025 std 101 070 067 048 033 021
0.75 LR Mean 777 783 892 905 961 971
Std 105 073 079 058 047 029
KM Mean 084 081 083 .080 077 077
Std 045 034 049 032 047 032
LPM Mean 093 089 246 250 553 560
Std 035 024 056 039 094 074
LDF Mean 095 092 246 250 548 552
°'f° Std 035 025 056 039 093 073
0_'50 LR Mean .109 104 265 268 544 549
Std .038 027 056 040 088 .069
KM Mean 153 142 133 126 119 116
Std 056 041 054 .038 047 034
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

g 2
§ § ;té Over Equal Under
:é- 5 § Sample size Sample size Sample size
St
ol 200 400 200 400 200 400
LPM Mean 545 543 598 593 674 678
Std 117 090 115 084 126 .090
LDF Mean 412 401 404 405 430 426
0.10 Std A1l 085 17 080 .23 082
0.90 LR Mean 397 396 401 407 429 447
Std 115 091 122 085 129 092
KM Mean 218 205 193 .184 170 163
Std .100 072 105 071 103 .068
LPM Mean 279 276 308 296 344 335
Std 068 051 070 048 072 050
LDF Mean 271 266 285 276 302 297
0235 sd 067 050 069 047 068 047
0.75 LR Mean 218 211 238 228 259 252
Std 063 046 065 044 067 046
KM Mean 250 250 252 243 243 243
Std 065 048 069 046 067 045
LPM Mean 123 125 160 151 187 .180
Std 036 026 039 027 040 .030
LDF Mean 124 126 160 151 187 179
°'_5° Std 037 027 039 027 040 030
0.50 LR Mean 086 087 111 101 128 123
Std 031 021 034 022 036 026
KM Mean 227 229 224 215 219 210
Std 047 035 046 034 043 034
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Covariance matrices = 4:1 and Group separation = 2.2

Sample representativeness

@
:g -g é Over Equal Under

g- g § Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .827 .844 .877 .887 926 936

Std .109 076 101 .069 077 .056

LDF Mean 641 .664 .672 672 700 .678

0.10 std 121 085 025 082 .26 .093

0..90 LR Mean 674 .704 710 721 736 731

Std 127 .085 127 .085 129 .090

KM Mean 278 276 262 272 266 255

Std .101 075 105 .063 .104 .065

LPM Mean 480 489 .546 541 .600 .607

Std 078 .053 079 .060 .087 .060

LDF Mean 463 470 .507 .503 533 .530

0.'25 Std 077 051 077 .056 .083 .059

0.'7 5 LR Mean 443 449 497 492 .536 .533

Std 078 052 .082 .055 .089 .062

KM Mean 358 368 .348 348 327 322

Std 073 .056 .076 .053 075 .055

LPM Mean 211 .209 .286 281 348 347

Std .050 030 .048 .034 .053 .041

LDF Mean 212 210 286 281 347 345

0"50 Std .050 030 .048 034 .053 .041

0.'50 LR Mean 195 195 254 250 310 309

Std .045 027 .044 032 052 .040

KM Mean 395 396 387 .389 369 376

Std .059 037 .058 .038 .055 .041

G
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

s & ,
% -E. é Over Equal Under
§~ % § Sample size Sample size Sample size
-8 200 400 200 400 200 400
LPM Mean .962 976 975 .986 984 .995
Std 055 .034 .048 025 .035 .014
LDF Mean .852 .857 .858 872 .864 .890
O..IO Std 112 .087 112 .082 .109 .077
0.90 LR Mean 875 882 879 902 890 918
Std .106 077 107 .072 .098 .066
KM Mean 364 352 .346 367 361 347
Std 112 077 102 .080 122 .079
LPM Mean .698 .695 753 767 .838 .843
Std .097 .059 089 .068 .089 .064
LDF Mean .669 .667 .704 712 157 755
025 std 095 056 089 066 099 066
0 :75 LR Mean .668 .667 11 720 172 774
Std .098 .058 .091 .068 .098 066
KM Mean 400 411 391 391 .380 379
Std 071 .054 071 .053 071 052
LPM Mean 235 227 376 371 501 .501
Std .051 .040 .048 .038 .060 .038
LDF Mean 237 230 376 371 499 498
O"SO Std 051 .040 .048 .038 .060 .038
O..SO LR Mean 238 232 364 360 484 483
Std .050 .039 .048 .038 .060 037
KM Mean 464 474 458 459 444 445
Std .058 .040 .059 .043 .063 .045
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Table G1-2 Means and Standard Deviations of Group 1 Error Rates of 200 Replications for

Data Pattern I1

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

“
g é g Over Equal Under
=g’- % S Sample size Sample size Sample size
ol 200 400 200 400 200 400
LPM Mean 526 530 647 652 791 801
Std 135 101 135 091 116 076
LDF Mean 308 299 340 336 376 362
°'_1° Std 114 075 114 083 124 082
0_'90 LR Mean 309 300 337 330 361 355
Std 119 080 122 085 134 083
KM Mean 475 465 442 475 476 463
Std 143 11 136 107 139 106
LPM Mean 185 179 226 210 291 282
Std 062 040 061 046 074 056
LDF Mean 176 170 203 186 236 223
0'?'5 Std 060 040 057 045 067 050
0.75 LR Mean 179 172 206 187 240 222
Std 064 041 061 046 068 050
KM Mean 429 441 422 455 445 443
Std 122 092 112 086 110 093
LPM Mean 080 076 107 098 137 132
Std 027 021 034 026 040 026
LDF Mean 081 076 107 098 136 132
°'_5° Std 027 021 034 026 040 026
0.50 LR . Mean 082 078 110 099 139 131
Std 030 022 036 026 043 028
KM Mean 402 423 392 406 401 414
Std 105 085 117 104 109 096
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Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

g 2
'«% -g E Over Equal Under
§- % ﬁ Sample size Sample size Sample size
- A 200 400 200 400 200 400
LPM Mean 926 942 969 972 990 995
Std 066 047 047 031 027 012
LDF Mean 722 719 749 756 .807 807
°'}° _ Std 117 085 117 088 108 076
0 '90 LR Mean 706 708 726 746 789 793
Std 117 092 123 087 111 085
KM Mean 496 489 497 485 487 499
Std 121 .101 129 087 124 090
LPM Mean 459 450 552 556 679 674
Std .079 056 .081 065 .097 062
LDF Mean 435 426 501 497 573 561
0'?'5 Std .079 055 081 .059 .093 .064
0 7 5 LR Mean 428 425 494 495 .565 .556
Std .079 056 082 .059 .096 065
KM Mean 476 493 482 485 494 482
Std 083  .063 .084 065 .088 057
LPM Mean 157 161 243 234 327 331
Std .042 .030 043 032 057 037
LDF Mean 158 .163 243 234 325 329
O'fo Std .042 030 043 032 057 036
0_'50 LR Mean 161 163 242 233 326 329
Std .043 031 045 .032 057 037
KM Mean 486 492 490 490 488 490
Std 062 049 062 .046 067 052
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Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

_% -g g Over . Equal. Under.
& & s Sample size Sample size Sample size
=~ & 200 400 200 400 200 400
LPM  Mean 995 998 999 1.00 999 1.00
std 017 006 008 003 005 000
LDF  Mean 937 945 955 966 965 983
0.10 sd 069 042 056 036 046 024
0.9 LR Mean 929 943 948 963 955 979
Std 073 042 061 038 056 026
KM Mean 512 499 493 501 484 503
std 113 078 133 080 108 086
LPM  Mean 722 735 831 843 926 940
std 083 064 072 053 050 038
LDF  Mean 688 700 778 779 849 859
023 Std 085 066 081 058 066 057
075 LR Mean 684 698 774 776 842 855
std 086 068 081 060 069 058
KM Mean 501 496 505 495 489 498
std 083 056 074 055 078 054
LPM  Mean 197 191 346 341 516 512
std 046 033 057 037 063 047
LDF  Mean 200 194 346 341 513 509
030 std 046 033 057 037 063 047
0_'50 LR Mean 201 194 348 341 513 507
std 046 034 057 038 063 047
KM Mean 498 500 495 498 493 495
std 062 042 062 043 059 044
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Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

;Z -é é Over Equal Under
§- §~ § Sample size Sample size Sample size
- e 200 400 200 400 200 400
LPM Mean 497 537 741 754 932 941
Std 146 119 .148 101 080 053
LDF Mean 149 150 195 186 266 255
0.10 Std 088 065 099 077 126 089
0_;)0 LR Mean 179 182 218 195 255 244
Std 103 077 .109 077 130 082
KM Mean 318 369 359 364 393 378
Std 166 129 171 127 187 126
LPM Mean .049 043 074 079 156 161
Std 032 021 047 032 .064 050
LDF Mean 044 036 056 058 089 .094
025 std 030 019 040 025 047 036
0.'75 LR Mean .100 089 111 112 .143 .143
Std 051 035 058 037 .056 041
KM Mean 192 225 215 235 253 315
Std 141 125 124 .108 157 134
LPM Mean 014 011 022 022 .040 041
Std 013 .008 017 011 020 016
LDF Mean 014 011 022 022 .040 040
°'_5° Std 013 .008 017 011 020 016
0_'50 LR Mean 046 041 .069 061 092 091
Std 026 016 028 020 036 025
KM Mean 150 176 165 181 192 214
Std 132 121 127 119 128 123
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

g -g é Over Equal Under
= . . .
E g § Sample size Sample size Sample size
200 400 200 400 200 400
LPM Mean 992 997 1.00 1.00 1.00 1.00
Std 026 011 .004 .000 .000 .000
LDF Mean 820 843 881 900 930 945
0.10 std 14 079 09 067 076 045
0_;)0 LR Mean 723 749 794 813 840 .880
Std 131 096 124 .098 129 076
KM Mean 453 428 453 454 457 455
Std 160 107 146 121 151 118
LPM Mean 385 393 560 570 .805 821
Std .098 071 111 .086 .095 067
LDF Mean 348 349 467 465 626 639
0'?'5 Std 095 065 102 .080 111 .080
o..7 s LR Mean 361 361 446 450 564 575
Std .089 061 .093 073 107 078
KM Mean 398 416 413 426 416 422
Std 126 .093 123 105 127 .094
LPM Mean 063 060 120 116 250 242
Std 029 019 .038 027 062 041
LDF Mean .064 061 120 116 247 239
050 std 029 019 038 027 062 .04
0_'50 LR Mean 097 092 165 158 285 271
Std 034 024 045 030 .060 040
KM Mean 384 424 391 412 398 422
Std 120 .084 120 .090 .109 .080
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

g &
g -% E Over Equal Under
E- g § Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean 1.00 1.00 1.00 1.00 1.00 1.00
Std .000 .000 .000 .000 .000 .000
LDF Mean 998 .999 1.00 .999 1.00 1.00
0"10 Std .013 .004 002 005 004 .000
0 '90 LR Mean 991 .998 999 .998 999 1.00
Std .028 .008 .006 .008 .009 .003
KM Mean 468 473 446 476 486 .449
Std 143 .100 139 .097 .149 111
LPM Mean 815 836 943 961 994 997
Std .096 .065 051 .033 014 .006
LDF Mean 773 787 .891 915 961 974
0.25 Std .102 073 073 051 .042 .026
0_:75 LR Mean 146 157 .856 .886 936 958
: Std .102 077 .082 .062 .060 .036
KM Mean .439 462 447 460 451 470
Std .110 077 .108 .084 112 .083
LPM Mean .101 094 245 248 .529 .551
Std .038 022 058 .037 .090 072
LDF Mean .103 096 245 248 .524 .543
030 std 038 02 058 037 0% . 072
0_'50 LR Mean 122 .110 267 267 523 .541
Std .041 024 .057 .037 .087 .068
KM Mean 444 448 444 445 443 459
Std .078 .062 .086 .066 .095 .067
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

'_«g -1—:5- é Over Equal Under

:é;- % § Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean 538 .541 .607 .599 .708 .676
Std 123 .081 112 .093 .109 .085
LDF Mean 421 411 438 419 483 434
0.10 Sd 15 08 103 085 123 083
0.;)0 LR Mean 402 .401 436 426 480 442
Std 113 085 .114 .092 127 .087
KM Mean 502 488 485 .501 500 493
Std 126 .091 119 .083 126 .090
LPM Mean .286 279 308 310 350 .347
Std 071 046 .072 .051 077 .050
LDF Mean 278 269 291 293 315 309
023 sd 072 045 068 050 073 049
0.'75 LR Mean 226 215 241 239 272 .268
Std .069 .044 .068 .046 .072 - .046
KM Mean 490 492 467 481 .467 484
Std .094 .068 .092 .069 .095 .064
LPM Mean 133 127 .160 159 .188 .187
Std 035 025 041 .028 .042 .032
LDF Mean 133 128 .160 159 .188 .186
0'_50 Std .035 025 .041 .028 .042 .032
050 LR Mean  .096 090 116 109 132 128
Std .032 021 .037 .023 .037 .027
KM Mean 484 490 480 483 450 451
Std .079 057 .080 .063 078 .074
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Covariance matrices = 4:1 and Group separation = 2.2

Sample representativeness

g &
:—ag -§ ;? Over Equal Under
nt:io::- g § Sample size Sample size Sample size
& 200 400 200 400 200 400
LPM Mean 821 841 856 871 907 922
Std 105 .069 104 067 082 055
LDF Mean 670 668 674 673 .698 686
0.10 std 121 076 19 088 .15 092
0 ;)0 LR Mean 685 696 .696 707 713 726
Std 126 .080 127 088 122 096
KM Mean 501 510 513 509 509 497
Std 110 081 117 090 113 076
LPM Mean 498 495 539 539 602 .605
Std 072 .050 078 052 082 056
LDF Mean 479 478 505 504 540 535
023 sd 072 051 0% 050 081 .05
0 '75 LR Mean 475 457 488 490 530 535
Std 072 050 .080 051 084 057
KM Mean 514 .508 515 510 519 S11
Std .080 050 079 053 075 051
LPM Mean 215 211 298 287 357 355
Std .046 033 047 034 056 035
LDF Mean 216 212 298 287 356 353
030 sd 046 033 047 034 056 035
0 '50 LR Mean 201 .196 265 256 315 315
Std 044 030 .046 033 054 .035
KM Mean 519 518 519 516 514 .504
Std 061 042 .059 043 059 045
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

:g -g g Over' Equal' Under'
§ g p Sample size Sample size Sample size
200 400 200 400 200 400
LPM Mean 929 953 .954 974 971 .990
Std 067 .050 058 .032 .045 .020
LDF Mean .809 .837 815 .842 .825 .865
O..IO Std .101 .078 .102 072 .101 076
0.90 LR Mean 826 861 831 870 841 891
Std .106 .073 .101 .069 094 071
KM Mean 499 .509 512 .505 S15 .503
Std 129 .079 112 .079 114 .084
LPM Mean .668 .686 741 751 .798 .823
Std .079 .060 .078 066 .087 .063
LDF Mean .646 .658 696 .700 726 741
025 sd 080 060 079 066 08  .068
0.75 LR Mean 642 656 698 708 735 758
Std .082 .063 .082 .068 .092 .067
KM Mean S19 .508 .520 .506 512 .508
Std .075 .054 076 .047 .075 .049
LPM . Mean 254 243 390 382 S11 .505
Std .050 .040 .053 .035 057 .037
LDF Mean 256 246 390 382 .509 502
O'.SO Std .050 .040 .053 035 .057 .037
O..SO LR Mean 255 247 379 369 491 488
Std .049 .039 051 034 059 .038
KM Mean 522 S16 525 515 520 S12
Std 057 .037 .055 .040 054 .040
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Table G1-3
ANOVA Results, Eta-squared, and Partial-Omega squared of Group 1 Error Rate for Data

Pattern I on Comparing Four Methods

Eta- Partial
Source of Variation df SS MS F p Squared Omega-
q Squared

Between-subject effects:

Population proportion (PP) 2 310429 1552.15 103075.0 <.0001 2315 .6140
Equality of covariance (COV) 2 139.17 69.59  4621.06 <.0001 .0104 0666
Group separation (GS) 2 333582 166791 110763.0 <.0001 2487 .6309
Sample representativeness (SR) 2 19625 98.13  6516.39 <.0001 .0146 .0914
Sample size (SS) 1 0.0035 0.0035 023 .6289 <.0001 <.0001

PP*COV 4 55.37 13.84 919.30 <.0001 .0041 0276

PP*GS 4 32765 81.91 543972 <.0001 .0244 .1437

PP*SR 4 23.48 5.87 389.84 <.0001 .0018 0119

PP*SS 2 0.12 0.058 3.85 .0213 <.0001 <.0001

COV*GS 4 54.26 13.56 90.80 <.0001 .0040 .0270

COV*SR 4 13.43 3.36 22298 <.0001 .0010 .0068

COV*SS 2 0.051 0.026 1.70  .1819  <.0001 <.0001

GS*SR 4 16.02 4.00 265.93 <.0001 .0012 .0081

GS*SS 2 0.14 0.071 472 0090 <0001 .0001

SR*SS 2 0.049 0.025 1.63 .1956 <.0001 <.0001

Error (between) 32358  487.26 0.015

Within-subject effects:

Method (4M) 3 255871 852.90 279409.0 <.0001 .1908 .8661
4M*PP 6 1616.77 269.46 88274.90 <.0001 .1205 .8034
4M*COV 6 291.08 48.51 15892.80 <.0001 .0217 4239
4M*GS 6 424.10 7.68 23155.50 <.0001 .0316 5174
4M*SR 6 91.93 15.32  5019.11 <.0001 .0069 .1885
4M*SS 3 0.052 0.017 569 .0007 <.0001 .0001

4AM*PP*COV 12 2.08 1.67 548.27 <.0001 0015 .0482
4M*PP*GS 12 25.92 291 685.15 <.0001 .0187 .3881
4M*PP*SR 12 11.64 0.97 317.75 <.0001 .0009 .0285

4M*PP*SS 6 0.12 0.021 6.77 <.0001 <.0001 .0003
4M*COV*GS 12 83.92 699 2291.08 <.0001 .0063 1749
4M*COV*SR 12 2.58 0.22 7.45 <.0001 .0002 .0064
4M*COV*SS 6 0.022  0,0037 1.20 3047 <.0001 <.0001

4M*GS*SR 12 1.64 0.89 29.48 <.0001 .0008 .0261

4M*GS*SS 6 0.045  0.0075 244 0230 <.0001 .0001

4M*SR*SS 6 0.016  0.0027 0.88 .5095 <.0001 <.0001

1
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) Eta- Partial
Source of Variation df SS MS F p S Omega-
quared
Squared
Error (within) 97074  296.32  0.0031
2. 2 SS effect .
Note. Eta square (77°) is defined as: 7° = ——=— , where SS,, is the effect sum of squares, and SS,,,, is the
total :
d; F_.. -1
total sum of squares. Partial omega squared was calculated from the formula: a),z,ama, = feﬁw( i ) s
: : df;ﬁ"ea (I?eﬂ'ecl - 1) +N

where dfeﬁw is the degrees of freedom for the effect, F, efect 15 the F ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.
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Table G1-4
ANOVA Results, Eta-squared, and Partial-Omega squared of Group 1 Error Rate for Data

Pattern II on Comparing Four Methods

Eta- Partial
Source of Variation df SS MS F p Squared Omega-
q Squared

Between-subject effects:

Population proportion (PP) 2 340268 1701.34 112308.0 <.0001 .3286 .6341
Equality of covariance (COV) 2 53.01 26.51 1749.78 <.0001 0051 0263
Group separation (GS) 2 2928.04 1464.02 96642.30 <.0001 2828 .5986
Sample representativeness (SR) 2 21.15 105.08 6936.18 <.0001 .0203 .0967
Sample size (SS) 1 0.25 0.25 16.72 <0001 <.0001 .0001
PP*COV 4 67.36 16.84 1111.67 <.0001 .0065 0331
PP*GS 4 296.40 74.10 4891.46 <.0001 .0286 1311
PP*SR 4 22.13 5.53 36523 <.0001 .0021 0111
PP*SS 2 0.22 0.11 739 .0006 <.0001 .0001
COV*GS 4 14857 37.14 2451.86 <.0001 .0143 .0703
COV*SR 4 14.86 3.72 24524 <.0001 .0014 .0075
COV*SS 2 0.32 0.16 145 <0001 <.0001 .0001
GS*SR 4 13.71 3.43 226.30 <.0001 .0013 .0069
GS*SS 2 0.34 0.17 11.07 <0001 <.0001 .0002
SR*SS 2 0.004 0.002 0.13 .8769 <.0001 <.0001
Error (between) 32358 49.19 015
Within-subject effects:
Method (4M) 3 17336 57.79 11165.10 <.0001 0167 2054
4M*PP 6 108550 18.92 34955.60 <.0001 .1048 .6181
4M*COV 6 45.41 7.57 146222 <.0001 .0044 .0634
4M*GS 6 547.84 91.31 17641.70 <.0001 .0529 .4496
4M*SR 6 68.16 11.36 219491 <.0001 .0066 .0922
4M*SS 3 0.16 0.052 1.01 <0001 <.0001 .0002

4AM*PP*COV 12 15.13 1.26 243.58 <.0001 .0015 .0220
4M*PP*GS 12 225.40 18.78 3629.16 <.0001 .0218 2515
4M*PP*SR 12 11.34 0.94 182.52 <.0001 0011 0165
4M*PP*SS 6 0.28 0.046 8.87 <0001 <.0001 .0004

4M*COV*GS 12 18.43 1.54 296.70 <.0001 0018 .0266

4M*COV*SR 12 1.51 0.13 2428 <.0001 .0001 0022

4M*COV*SS 6 0.28 0.046 8.95 <0001 <.0001 .0004
4M*GS*SR 12 1.34 0.86 166.41 <.0001 .0010 0151
4M*GS*SS 6 0.77 0.13 2490 <.0001 .0001 .0011
4M*SR*SS 6 0.025  0.0041 0.79 .5784 <.0001 <.0001

33



93

Eta- Partial
Source of Variation df SS MS - F P Squared Omega-
q Squared

Error (within) 97074  502.42  0.0052

SS
Note. Eta square (77° ) is defined as: 77> = —2

, where SS,z,,, is the effect sum of squares, and SS,,, is the

total

2 = d-feﬂect (Eﬂ%ct - 1)
partel d-feﬂect (Eﬂect - 1) +N ’

total sum of squares. Partial omega squared was calculated from the formula: @

where dfeﬂm is the degrees of freedom for the effect, F, g, , is the F ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.



Table G1-5

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportion

Interaction
Method
;‘;‘;‘;ﬁg’;‘s LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern 1
0.10:0.90 .873 .180 682 292 .680 289 138 138
0.25:0.75 .545 291 495 278 489 27 176 145
0.50:0.50 216 153 216 152 216 .145 212 154

Data Pattern 11
0.10:0.90 .866 .180 .676 285 670 281 473 127
0.25:0.75 537 284 488 270 482 260 448 123
0.50:0.50 221 152 220 151 221 .143 437 128
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Table G1-6
Means and Standard Deviations of Group 1 Error Rate for Method by Equality of Covariance

Matrices Interaction

Method

Equality of
covariance LPM LDF LR KM
matrices

Mean SD Mean SD Mean SD Mean SD

Data Pattern]
1:4 .540 .402 449 .384 451 357 .038 051
Equal 551 337 472 .303 470 301 .169 | A1
4:1 .543 285 472 238 464 262 318 110
Data Pattern 11
1:4 533 399 442 379 444 .348 .381 155
Equal 549 331 470 294 466 291 A75 .096
4:1 .542 276 474 227 463 248 502 .081




Table G1-7

Means and Standard Deviations of Group 1 Error Rate for Method by Group Separation

Interaction
Method
seg;:’a‘g’on LPM LDF LR KM
Mean SD Mean SD Mean SD Mean SD
Data Pattern |
6.7 326 281 .198 141 197 132 .095 .103
22 581 319 .500 258 492 247 173 144
0.7 728 305 .695 288 .696 .287 258 .148
Data Pattern 11
6.7 325 276 201 144 202 134 394 157
22 578 314 498 253 486 237 A75 102
0.7 721 299 .685 280 .684 271 490 .089




Table G1-8
Means and Standard Deviations of Group 1 Error Rate for Method by Sample

Representativeness Interaction

Method
represseir:la;t,il:eness LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I
20% over 468 347 406 316 404 309 182 152
Equal ‘.542 340 462 311 459 .306 .176 .149
20% under 625 328 .525 .303 522 301 .168 .145

Data Pattern 11
20% over 465 341 " 405 .308 402 .300 451 131
Equal .537 335 458 304 455 296 451 127
20% under 622 323 522 .296 516 291 456 122
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Table G1-9

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportions

by Group Separation Interaction

Method
(o P T ipw i x =
Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
6.7 0.10:0.90 675 175 319 135 319 134 072 .100
0.25:0.75 211 111 182 .106 182 077 .104 111
0.50:0.50 .091 .062 .091 .062 .089 .038 .109 .092
22 0.10:0.90 951 .078 .781 138 .768 122 126 125
0.25:0.75 573 147 499 113 488 .104 174 .143
0.50:0.50 219 097 219 .097 221 .083 218 147
0.7 0.10:0.90 993 025 .945 .084 953 074 215 .145
0.25:0.75 .852 118 .803 123 797 119 249 .140
0.50:0.50 .339 .162 .338 .160 .338 154 308 .144
Data Pattern 11
6.7 0.10:0.90 668 172 324 141 325 .139 441 .142
0.25:0.75 212 113 .185 .109 187 .079 .386 152
0.50:0.50 096 .065 .096 .065 .095 .041 353 .163
22 0.10:0.90 .945 .080 775 133 .749 120 483 118
0.25:0.75 .566 .140 496 .108 482 .099 471 .096
0.50:0.50 224 .100 223 .099 226 .084 470 .088
0.7 0.10:0.90 .987 035 .930 .093 935 .086 493 111
0.25:0.75 .834 120 .785 121 776 117 488 .082
0.50:0.50 342 157 341 154 342 .148 487 .067
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Table G1-10
Means and Standard Deviations of Group 1 Error Rate for Method by Equality of Covariance

Matrices by Group Separation Interaction

Ecualitv of Method
seg:;fon chl:r;_;yn:e LPM LDF LR KM
matrices
Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
6.7 1:4 292 352 099 .103 130 .092 .002 .006
Equal 329 264 211 123 209 122 .063 .043
4:1 .355 204 283 127 251 .146 219 .070
22 1.4 582 373 513 332 493 291 .021 .023
Equal 591 314 .501 237 498 235 .164 .073
4:1 .569 260 484 181 486 207 333 .085
0.7 1:4 746 341 734 336 729 327 .091 .055
Equal 733 297 .705 282 .703 281 280 .081
4:1 704 269 648 231 657 242 402 .085
Data Pattern I1
6.7 1:4 284 343 .096 .099 132 .092 261 .160
Equal 331 .258 214 120 213 119 437 114
4:1 361 205 295 134 262 151 483 .089
22 1:4 .576 371 503 325 479 277 424 119
Equal .590 309 .500 231 494 226 489 .083
4:1 .568 252 491 .180 485 201 S11 .075
0.7 1:4 740 339 725 333 720 323 459 102
Equal 727 293 694 274 692 272 498 077
4:1 .696 256 636 212 641 222 513 075
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Table G1-11

100

Means and Standard Deviations of Group 1 Error Rate for Method by Population Proportion by

Equality of Covariance Matrices Interaction

Method
Population ~ Equality of
covariance LPM LDF LR
Proportion matrices
Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
0.10:0.90 1:4 918 165 .704 362 .681 349 022 .040
Equal .879 179 693 279 .687 281 120 .106
4:1 .822 .182 650 212 672 223 271 114
0.25:0.75 1:4 .548 371 488 360 489 330 .033 .043
Equal .549 274 498 258 496 257 167 .098
4:1 539 .206 498 .190 482 213 328 .087
0.50:0.50 1:4 155 170 154 .168 .182 157 .059 .061
Equal 226 °  .143 226 .142 226 .141 221 .106
4:1 268 121 268 121 240 129 354 .110
Data Pattern 11
0.10:0.90 1:4 911 173 .695 .362 .670 .346 429 147
Equal .874 .180 .685 275 677 274 486 113
4:1 814 174 648 191 663 202 .503 .103
0.25:0.75 1:4 .536 .365 476 351 478 318 370 150
Equal .541 266 491 250 489 248 474 .087
4:1 .535 .194 498 179 479 .201 .502 073
0.50:0.50 1:4 154 .165 .153 .163 .184 153 344 157
Equal 233 139 232 138 233 137 464 .085
4:1 276 123 276 122 .247 130 .502 .063
101
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Table G2-1

Means and Standard Deviations of Group 2 Error Rates of 200 Replications for Data Pattern I

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

g &
'% -g g Over Equal Under
nt:g:- % § Sample size Sample size Sample size
& 200 400 200 400 200 400
LPM Mean .005 .004 .002 .002 .000 .000
Std .005 .003 .004 .002 .001 .001
LDF Mean .022 020 017 017 .014 .014
0.10 sd . 013 008 011 008 010 007
0 .90 LR Mean .024 020 .020 017 016 015
Std 014 .009 012 .008 012 .008
KM Mean 257 255 270 278 298 315
Std . .060 041 057 .043 .058 .044
LPM Mean .049 .050 .037 035 .025 .023
Std .020 .013 016 .012 .013 010
LDF Mean .053 054 .046 .042 .036 .035
0'.25 Std .021 014 018 .013 015 012
0 :75 LR Mean .054 055 .047 .043 .038 035
Std .022 014 019 .014 017 012
KM Mean 135 .139 .146 145 .160 .160
Std 041 .028 .039 .029 .046 .030
LPM Mean 129 129 .101 .100 .073 .099
Std 035 025 .034 .023 .028 .023
LDF Mean 129 129 .101 .100 074 .099
O"SO Std 035 025 .034 .023 .028 .023
O..SO LR Mean 131 .128 .104 .102 075 .099
Std .038 027 .034 025 .028 .025
KM Mean .092 .093 .100 101 .106 .099
Std .029 021 .036 .027 035 026
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Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

:g -.g % Over' Equal' Under'

a g s Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean .002 .001 .000 .000 .000 .000
Std .004 .002 .001 .001 .000 .000
LDF Mean .020 .020 .016 015 011 010
0'.10 Std 014 .009 011 .008 .011 .007
0"90 LR Mean 022 021 .018 016 .012 010
Std .015 011 .013 .009 013 .008
KM Mean 389 405 .403 408 415 416
Std  .052 .040 .054 .041 .048 039
LPM Mean .085 .086 052 .054 . .026 .023
Std 029 019 023 .016 .016 .011
LDF Mean .095 097 .070 .073 050 .048
O..25 Std .030 020 025 .018 .023 015
0.'75 LR Mean .097 .098 071 .073 052 .048
Std 031 .020 .025 .018 .023 .015
KM Mean .300 303 310 314 332 329
Std .051 .034 .052 039 051 .039
LPM Mean 324 320 232 232 154 154
Std .056 .040 .046 .034 .041 .028
LDF Mean 322 318 232 232 .155 156
0'.50 Std .055 .039 .046 .034 .041 .028
0.'50 ‘ LR Mean 322 317 232 233 155 .156
Std .057 .040 .047 034 .043 .028
. KM Mean 217 216 232 233 243 242
Std 054 .035 .051 036 051 .038
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Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

g g
g -§ ;é Over Equal Under
E- g § Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean .000 .000 .000 .000 .000 .000
Std 001 . .000 .000 .000 .000 .000
LDF Mean 007 .005 .004 .003 003 .002
°'_1° Std 010 .006 007 .004 .005 .003
0 '90 LR Mean .008 .005 .005 .004 .004 .002
Std 011 .007 .008 .005 .006 .003
KM Mean 443 447 454 455 458 459
Std 053 039 050 033 051 036
LPM Mean 071 066 033 030 .008 007
Std 033 024 024 016 010 006
LDF Mean 086 081 054 049 .025 026
°'_25 Std 036 026 030 021 020 014
0 '75 LR Mean 088 082 056 050 027 026
Std 036 026 031 021 021 014
KM Mean 390 393 407 394 406 414
Std 052 035 051 .036 054 036
LPM Mean 529 522 335 337 .189 182
Std 064 046 055 041 048 037
LDF Mean 527 517 335 337 .191 .184
050 sd 064 045 0S5 041 048 037
0_'50 LR Mean 526 516 335 337 193 185
Std 064 045 055 .042 048 037
KM Mean 321 319 330 337 352 350
Std - .058 038 054 042 057 038
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Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

g -g g Over Equal Under

§- §- § Sample size Sample size Sample size
~ & 200 400 200 400 200 400
LPM Mean .007 .006 .003 .003 .001 .000
Std .007 .004 .004 003 .002 .001
LDF Mean .026 .024 .021 021 017 .016
O.'IO Std .014 .009 .012 .008 010 .007
O.§O LR Mean .025 .023 .022 .020 .020 017
Std .013 .009 .013 .008 011 .008
KM Mean 275 .284 .296 .301 325 329
Std .052 .035 .052 .038 055 .040
LPM Mean 072 .069 .055 .053 .033 034
Std .023 016 .021 015 .016 011
LDF Mean 076 073 .064 062 .048 .050
O'_25 Std .023 017 .023 016 .020 014
O..7 5 LR Mean .052 .050 .046 .045 .039 .039
Std .019 .014 021 012 .019 012
KM Mean .204 202 213 210 228 230
Std .041 .028 .044 031 .040 031
LPM Mean .189 178 159 152 128 122
Std .041 .029 .040 .026 .036 .026
LDF Mean .188 177 159 152 128 123
O'_SO Std .041 .029 .040 .026 .036 .026
O.'SO LR Mean 132 121 .108 .102 091 .087
Std 037 .025 .034 023 031 .022
KM Mean 216 211 220 215 222 225
. Std .042 .033 042 031 .045 .037
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

g &
_% -F-Q) :_:é Over Equal Under
c% g § Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean .003 .002 .001 .000 .000 .000
Std .005 003 .002 .001 .001 .000
LDF Mean .027 .027 .020 .018 .012 .011
0'.10 Std .018 .011 014 .009 .011 .007
0 ;)0 LR Mean .040 .038 .033 .027 .021 019
Std 022 . .014 .019 013 .017 010
KM Mean .434 427 437 434 434 441
Std .049 .033 .050 .037 .048 .035
LPM Mean 118 11 .071 .073 .037 .035
Std .033 .023 .026 .021 .022 014
LDF Mean 128 123 .091 .093 .067 .065
0'.25 Std .033 .024 .029 .023 .026 .018
0 :75 LR Mean 125 012 .096 .098 .076 .075
Std .031 .022 .028 .022 .026 .018
KM Mean .387 387 397 398 - 398 404
Std .048 .037 .049 .034 .050 .031
LPM Mean 355 353 .286 .285 208 .206
Std .054 .038 .051 .037 .044 .033
LDF Mean 354 351 .286 .285 209 208
0'.50 Std .053 .038 .051 .037 .044 .033
0 '50 LR Mean 320 314 .256 254 195 .193
Std .053 .034 .048 .036 .043 .031
KM Mean .380 379 392 388 393 .395
Std .052 .042 .054 .040 .055 .041
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

g g
'% -E. é Over Equal Under
§- §- ﬁ Sample size Sample size Sample size
o, bt
e 200 400 200 400 200 400
LPM Mean .000 .000 .000 .000 .000 .000
Std .000 .000 .000 .000 .000 .000
LDF Mean .009 .006 .005 .004 .003 .001
0'.10 Std 011 .006 .007 .005 .006 .002
0 '90 LR Mean 014 .009 .008 .006 .005 .002
Std 015 .008 011 .007 010 .003
KM Mean 483 480 480 487 483 491
Std .047 034 .048 034 .050 .033
LPM Mean .099 095 047 .039 012 .010
Std .036 026 .028 018 014 .009
LDF Mean 116 113 .069 .063 035 .033
025 Std 038 027 036 021 025 018
0 7 5 LR Mean 127 123 .082 074 .045 .042
Std .039 .028 .038 024 .029 .022
KM Mean 471 477 473 473 475 478
Std .048 034 .049 036 .048 037
LPM Mean 501 502 373 372 230 228
Std .061 .035 .057 038 054 037
LDF Mean 498 499 373 372 232 231
0'.50 Std .061 035 057 .038 .054 .037
0.50 LR Mean 483 485 361 361 234 233
Std .061 .037 056 .037 .052 .036
KM Mean 433 446 460 461 471 473
Std .060 .044 .065 .044 .060 .043
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

0
_«g -g g Over' Equal' Under‘

ng:- g b Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .001 .001 .001 .000 .000 000

Std .003 .002 .002 .001 .001 .000

LDF Mean .010 .009 .008 .008 .006 .007

010 sd 009 005 008 006  .006  .005

0.'90 LR Mean .012 010 .011 .008 .007 .006

Std .01 .006 .010 .006 .008 .005

KM Mean .109 107 134 129 A71 .190

Std 072 .050 .082 071 .095 .081

LPM Mean 016 .013 .010 .008 .005 .006

Std o011 .007 .009 .006 .006 .005

LDF Mean 018 .015 .013 .011 .009 010

025 std 012 008 010 007 009 006

0..7 5 LR Mean .038 .035 .027 .026 019 019

Std 019 .012 .016 .012 013 .009

KM Mean 022 .019 020 .019 022 .021

.Std .016 .010 014 .012 017 o011

LPM Mean .038 .041 022 .022 012 014

Std .020 .015 .016 .012 012 .009

LDF Mean .038 .040 .022 .022 .012 .014

0'_50 Std .020 .015 .016 .012 012 .009

0.50 LR Mean 090 091 .063 062 .043 042

Std .031 .024 .027 .020 .027 .016

KM Mean .005 .005 .005 .006 . .007 .007

Std .007 .005 .008 .006 .009 .006
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Covariance matrices = 4:1 and Group separation = 2.2

Sample representativeness

g -g é Over Equal Under
§- E- § Sample size Sample size Sample size
s 200 400 200 400 200 400
LPM Mean 001 .000 .000 .000 .000 .000
Std 002 .001 .001 .001 .000 .000
LDF Mean 010 .008 .007 .007 .006 .006
0.10 sd 00 007 007 006 008 .00
0_'90 LR Mean .008 .005 .005 .004 .004 .003
Std .009 .005 .007 .005 .007 .003
KM Mean 302 317 327 333 .349 355
Std .074 .058 074 .054 075 .050
LPM Mean 032 .031 018 .017 .009 .006
Std .017 012 .013 .009 .009 .005
LDF Mean .038 .038 .028 027 .020 .018
023 std 019 o013 016 o1l 015 009
O..7 5 LR Mean .049 .048 .031 .031 .020 .017
Std 021 016 018 012 015 .009
KM Mean .110 .106 127 125 145 .143
Std 051 .037 054 .039 .060 .042
LPM Mean .246 243 119 123 .061 .061
Std .063 .041 .039 031 .025 021
LDF Mean 243 239 119 123 062 062
O'_SO Std .062 .041 .039 .031 .026 021
0.50 LR Mean 278 275 159 166 090 091
Std .062 .042 .045 .034 .032 025
KM Mean .038 .035 .038 .040 .046 - 045
Std .022 .017 .026 018 025 .018
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

o
g -é é Over Equal Under
§- % § Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean .000 .000 .000 .000 .000 .000
Std 001 .000 000 .000 .000 .000
LDF Mean .004 002 .003 .002 .003 .001
0.10 Std 006 004 007 003 005 003
O..90 LR Mean .002 .001 .002 .001 .002 .001
Std .005 .003 - .006 .002 004 .002
KM Mean 400 405 410 411 413 427
Std .067 .046 .060 .046 .065 .044
LPM Mean 021 .019 .009 .007 .003 .001
Std 017 .012 011 .007 007 003
LDF Mean .029 .027 .019 016 012 .009
O'.ZS Std .020 .014 016 .012 .013 .008
O..7 5 LR Mean .031 027 018 014 .009 .006
Std 022 .015 .016 012 011 .007
KM Mean 253 249 272 .268 296 302
Std .069 .053 .067 .046 072 051
LPM Mean .548 572 250 247 . .092 091
Std .080 .063 054 .039 .036 027
LDF Mean .542 564 250 247 .094 .094
030 sd 088 063 054 039 036 027
O..SO LR Mean 538 559 270 267 107 .106
Std .084 .060 .052 040 .042 .030
KM Mean 116 121 132 124 .141 141
Std .049 .035 .051 .038 057 .043
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Table G2-2

Means and Standard Deviations of Group 2 Error Rates of 200 Replications for Data Pattern 11

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

5§ &
'% -g é Over Equal Under
§- é- § Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean .006 .005 002 .002 .001 .000
Std .006 .004 .004 .002 .002 .001
LDF Mean .024 .021 .020 018 015 .014
010 Std 013 008 o1 008 Ol 007
0 ;)O LR Mean .029 .023 .026 .020 .022 .016
Std .014 .009 014 .009 .014 .008
KM Mean 484 490 488 492 497 490
Std .056 .037 .050 .037 .051 .035
LPM Mean .053 051 .038 .038 .027 .023
Std .020 014 019 011 .016 .009
LDF Mean 056 055 .045 045 .038 .035
O'_25 Std 021 .014 .020 012 - .019 .011
0 7 5 LR Mean 059 .056 .050 .047 .043 .037
Std 024 .014 .024 .013 .021 011
KM Mean 453 468 457 480 471 476
Std .080 .058 074 -~ .050 .066 .050
LPM Mean 136 131 105 .101 0717 .076
Std .040 .026 .033 .024 .027 .021
LDF Mean 135 131 105 .101 .0717 076
O'_SO Std .040 .026 .033 .024 .028 .021
0 '50 LR Mean .138 132 .107 103 .080 .077
Std .040 .028 035 .025 .029 .021
KM Mean 391 414 399 407 410 433
Std 112 .095 126 .104 111 .088
Qo i1




Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

@
g -?__. E Over Equal Under
§- % ﬁ Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean .003 .002 .001 .000 .000 .000
Std .005 .002 .003 001 001 .000
LDF Mean .028 .023 .021 017 015 .012
0'.10 Std 018 .010 015 .008 012 .007
0"90 LR Mean .032 .025 .026 019 018 014
Std .020 .011 .016 010 014 .008
KM Mean .501 498 498 496 494 497
Std .052 033 .048 .036 055 .033
LPM Mean .090 .090 .062 056 032 027
Std .028 019 .023 017 018 013
LDF Mean 099 .100 .080 074 .058 .053
025 std 029 020 026 019 020 018
0';/ 5 LR Mean .103 102 .083 .075 .061 .055
Std .029 .020 .026 .019 022 019
KM Mean 493 489 .492 490 494 495
Std .055 .038 .053 .039 .052 .040
LPM Mean 329 321 238 233 .163 156
Std .048 .043 .046 .033 .044 .029
LDF Mean 328 319 238 233 165 .158
0'.50 Std .048 .043 .046 .033 044 .029
0"50 LR Mean 325 318 239 235 .166 158
Std .049 .043 .048 .033 .046 .030
KM Mean 492 487 492 489 487 .490
Std .065 .048 .065 .048 067 .045
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Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

g -é é Over Equal Under
§- é- s Sample size Sample size Sample size
8 200 400 200 400 200 400
LPM Mean .000 .000 .000 .000 .000 .000
Std .002 .000 .001 .000 -.000 .000
LDF Mean .013 .008 .009 .005 .007 .003
O..IO Std .012 .007 011 .005 .008 .004
0..90 LR Mean .015 .00? .012 .005 .009 .004
Std .014 .008 .013 .006 011 .005
KM Mean .497 .499 .494 504 499 502
Std .051 .037 .049 .035 .046 .038
LPM Mean .088 .074 .048 .034 .014 .009
Std .033 .025 .026 .015 .014 .007
LDF Mean .104 .091 .071 .055 .039 .030
O'.ZS Std .035 .027 .032 019 .024 .014
0.;/5 LR Mean .106 .092 072 056 .041 .032
Std .036 .027 .032 019 .025 .015
KM Mean 497 499 489 .494 .508 .498
Std .054 .036 .056 .038 .048 .039
LPM Mean 525 516 346 343 .209 .194
Std .069 .050 .054 .041 .050 .031
LDF Mean 522 Sl11 346 343 211 .197
O'.SO Std .068 .049 .054 041 .050 .031
O..SO LR Mean 520 Sl11 347 343 212 .198
Std .067 .050 .054 .041 .050 .031
KM Mean 500 .494 491 .493 492 .494
Std 057 .048 .063 .043 .057 .046
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Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

g 2
:§ -§ é Over Equal _ Under
,-_% 3 S Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean .007 .006 .003 .003 .001 .001
Std .007 .004 .004 .003 .002 .001
LDF Mean .027 .026 .023 021 .019 .017
O.'IO : Std .014 .009 .012 .009 .012 .007
0 .90 LR Mean .029 .025 .029 .023 027 .020
Std .014 .009 .014 .009 016 .009
KM Mean Sl S10 Sl11 .506 505 505
Std .049 .034 .050 .033 .049 .035
LPM Mean 076 072 . .059 .055 041 .035
Std .025 .018 021 .015 .017 .013
LDF Mean .080 077 069 . .064 .056 .050
O'-ZS Std .025 019 021 .017 .019 015
0.:75 LR Mean .059 .053 .054 048 .050 .040
Std 022 .015 .019 015 .019 .014
KM Mean 491 504 504 S14 .504 513
Std .069 .054 .064 .044 .063 .042
LPM Mean .197 .189 165 159 .134 127
Std .045 .029 .041 .027 .037 .026
LDF Mean .196 .188 .165 .159 134 127
O'-SO Std .045 .029 .041 .027 .037 .027
0..50 LR Mean 139 131 116 .109 .096 .090
Std .041 .025 .036 .023 .032 .022
KM Mean 456 463 480 475 .489 490
Std .085 .070 .084 .071 .078 .064
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

g &
_*_% -{:Z ;é Over Equal Under
:g:- g- § Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean .003 .002 .001 .000 .000 .000
Std .005 .003 .002 .001 .001 .000
LDF Mean .033 .029 .024 .020 017 014
0'-10 Std .017 .012 .014 .010 014 .008
0 '90 LR Mean .049 .042 .039 .033 .031 .024
Std 022 016 019 013 019 012
KM Mean 513 .506 .509 505 .508 .503
Std .051 .036 .051 036 .048 .037
LPM Mean 121 120 .086 .080 .043 .036
Std .032 022 .028 .022 .021 .013
LDF Mean 132 131 107 102 073 065
0'-25 . Std .034 .022 .030 .024 .026 018
0 '75 LR Mean 130 128 113 .106 .086 077
Std .032 .021 .029 .025 .028 .018
KM Mean 517 .509 514 S12 522 517
Std .055 .038 .049 .036 052 .036
LPM Mean 363 353 296 287 215 208 .
Std .055 040 051 .035 .045 032 -
LDF Mean 362 352 296 287 216 209
050 std 0ss 040 051 035 045 033
O..SO LR Mean 324 314 262 257 .199 .093
Std .054 .038 .049 .033 .042 .031
KM Mean 516 514 527 522 .526 517
Std .059 .041 .060 .045 .061 .043
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

:»% -é E Over Equal Under
§- é- g Sample size Sample size Sample size
ol 200 400 200 400 200 400
LPM Mean .000 .000 .000 .000 .000 .000
Std .002 .000 .000 .000 .000 .000
LDF Mean 013 .008 .007 .005 .004 .002
0..10 Std 012 .007 .008 .006 .006 .003
0.'90 - LR Mean 021 012 .013 .009 .009 .004
Std 017 011 012 .008 011 .005
KM Mean 507 .509 .506 .506 510 505
Std .047 .035 .050 .035 051 .036
LPM Mean 120 .106 065 .050 .020 013
Std .038 028 030 021 016 010
LDF Mean 138 124 .093 075 .048 .038
O'_25 Std .040 .029 .036 .025 .026 017
0.'7 5 LR Mean .149 134 107 .087 062 .048
Std 041 .030 036 .028 032 021
KM Mean S19 515 519 511 522 511
Std .052 .036 .054 039 .046 .036
LPM Mean 505 .503 391 375 259 237
Std .052 .039 052 .042 .053 .040
LDF Mean 503 .501 391 375 261 .240
050 std 051 039 052 042 053 040
0.'50 LR Mean 485 485 379 364 261 240
Std 051 .039 .052 .041 051 .039
KM Mean 524 518 517 518 528 515
Std 057 .041 .056 .044 061 .042
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

o @
'é -g g Over. Equal. Under.
§ g b Sample size Sample size Sample size
200 400 200 400 200 400
LPM Mean .002 .001 .001 .000 .000 .000
' Std .004 .002 .002 .001 .001 .001
LDF Mean .011 .009 010 .008 .008 .007
0.10 std 009 006 008 005 008 005
0..90 LR Mean .018 012 016 .010 014 009
Std .013 .007 013 .007 012 .006
KM Mean 437 468 453 469 459 476
Std .096 .046 .071 .052 075 .039
LPM Mean 016 014 .012 .010 .007 .006
Std - 012 .008 .011 .006 .007 .005
LDF Mean 017 .016 015 .013 012 .011
0'.25 Std 013 .008 012 .007 .010 .007
0':75 LR Mean .041 .037 .035 .030 .027 022
Std .020 013 018 012 015 .011
KM Mean .268 369 304 359 325 402
Std .142 .106 150 126 .148 116
LPM Mean .040 .039 .023 .022 .014 013
Std .020 .016 .016 .012 .013 .008
LDF Mean .039 .039 .023 022 014 013
0'_50 Std .020 016 .016 .012 013 .008
0.50 LR Mean .093 089 066 065 048 044
Std .034 .023 027 .020 .024 .015
KM Mean .186 236 .169 .190 .145 .163
Std 129 116 120 120 121 117
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Covariance matrices = 4:1 and Group separation =2.2

Sample representativeness

2
g -§ g Over' Equal' Under'

n% 58:- p~ Sample size Sample size Sample size

200 400 200 400 200 400

LPM - Mean 002 001 001 .000 .000 .000

Std .003 -.001 002 .001 001 .000

LDF Mean 016 010 012 .009 .009 008

0.10 std 012 006 010 007 009 006

0_'90 LR Mean 015 007 013 .006 010 .005

Std 012 006 012 .006 011 .005

KM Mean 466 476 469 A74 468 A79

Std 061 039 058 044 057 043

LPM Mean 039 031 024 019 012 .009

Std 019 013 016 010 010 .006

LDF Mean 046 038 034 029 025 022

0'?5 Std 021 014 019 012 015 010

o..75 LR Mean 060 048 043 034 029 023

Std 023 016 023 014 017 012

KM Mean 431 454 435 457 447 463

Std 087 069 073 056 074 .054

LPM Mean 242 244 121 121 065 .062

Std 059 043 038 025 028 019

LDF Mean 239 241 121 121 066 063

°'.5° Std 058 042 038 025 028 019

o.So LR Mean 279 278 165 165 101 .093

Std 059 044 044 028 033 .024

KM Mean 406 413 397 422 412 423

Std 114 .089 113 085 104 .088
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

@
g % ;g Over | Equal. Under.

§ g s Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean 000 000 .000 000 000 . .000

Std 002 000 001 000 .000 .000

LDF Mean 010 005 008 004 .008 .003

0.10 sd 011 005 009 005 008  .005

0.9 LR Mean 008 .003 007 002 .008 002

Std 011 005 009 .004 011 003

KM Mean 469 479 477 480 470 488

Std 057 039 057 043 057 040

LPM Mean 037 023 018 009 007 003

Std 023 013 016 007 007 005

LDF Mean 046 032 031 019 020 013

025 Std 024 014 022 012 016 010

0.75 LR Mean 049 033 032 018 018 010

Std 027 016 022 012 014 .009

KM Mean 448 466 457 473 449 476

Std 075 057 072 056 067 049

LPM Mean 525 537 248 245 106 093

Std 088 076 057 038 035 025

LDF Mean 521 531 248 245 107 096

050 std 087 075 057 038 036 025

o.So LR Mean 520 529 270 266 125 11

Std 083 071 060 038 039 028

KM Mean 444 456 434 460 435 457

Std 096 068 095 069 088 060
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Table G2-3
ANOVA Results, Eta-squared, and Partial-Omega squared of Group 2 Error Rate for Data

Pattern I on Comparing Four Methods

Eta- Partial
Source of Variation df SS MS F p Squared Omega-
4 Squared

Between-subject effects: .
398.99 199.50 4705940 <.0001 1252 4207

Population proportion (PP) 2
Equality of covariance (COV) 2 18322 91.61 21609.60 <.0001 .0575 2401
Group separation (GS) 2 29545 147.72 34846.50 <.0001 0927 3497
Sample representativeness (SR) 2 58.11 29.05 6853.52 <.0001 .0182 .0956
Sample size (SS) 1 0.0043 0.0043 1.02 3125 <0001 <0001
PP*COV 4 44 .43 11.11  2620.28 <.0001 0139 .0748
PP*GS 4 151.09 37.77  8909.89 <.0001 0474 2157
PP*SR 4 77.90 19.48 4594.08 <.0001 .0244 1242
PP*SS 2  0.0197 0.0099 2.33 0977 <.0001 <.0001
COV*GS 4 3.68 0.92 216.78 <.0001 .0012 .0066
COV*SR 4 0.53 0.13 31.04 <0001 .0002 .0009
COV*SS 2 0.018  0.0088 209 1241 <0001 <.0001
GS*SR 4 27.50 6.88 1621.77 <.0001 .0086 .0476
GS*SS 2 0.0005 0.0003 0.06 9390 <.0001 <.0001
SR*SS 2 0.014 0.007 1.66 .1910 <0001 <.0001

Error (between) 32358 137.17  0.0042

Within-subject effects:

Method (4M) 3 85091 283.64 324376.0 <.0001 2669 .8825
4M*PP 6 530.42 88.40 101101.0 <.0001 .1664 .8240
4M*COV 6 105.41 17.57 20092.10 <.0001 0331 4819
4M*GS 6 81.75 13.63 15582.80 <.0001 0256 4191
4M*SR 6 40.55 6.76  7729.08 <.0001 0127 .2635
4M*SS 3 0.0493 0.0164 18.80 <.0001 <.0001 .0004

4M*PP*COV 12 10.81 090 102997 <.0001 .0034 .0870
4M*PP*GS 12 72.15 6.01 6876.40 <.0001 .0226 .3890
4M*PP*SR 12 22.38 1.87 2133.14 <.0001 .0070 .1649
4M*PP*SS 6 0.040  0.0066 7.57 <0001 <.0001 .0003

4M*COV*GS 12 1.84 0.15 175.71 <.0001 .0006 0159

4M*COV*SR 12 0.46 0.039 4426 <.0001 .0001 .0040

4M*COV*SS 6 0.0071 0.0012 1.36 2274  <.0001 <.0001
4M*GS*SR 12 8.10 0.67 771.85 <.0001 .0025 .0666
4M*GS*SS 6 0.0028 0.0005 0.54 7812 <.0001 <.0001

4M*SR*SS 6 0.0076  0.0013 1.44  .1940 <.0001 <.0001

Q 120
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Eta- Partial
Source of Variation df SS MS F - P Sauared Omega-
q Squared

Error (within) 97074 84.88  0.0009

SS effect . .
——— »where SS g, , is the effect sum of squares, and SS,,,, is the

otai

Note. Eta square (77° ) is defined as: 7° =

total

2 — d.feﬂecl (F effect — 1)
parte! d.feﬁ’ecl (F effect — 1) +N ,

total sum of squares. Partial omega squared was calculated from the formula: @

where df ;... is the degrees of freedom for the effect, F,g

el

o is the F ratio for the effect,and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.

121




121

Table G2-4
ANOVA Results, Eta-squared, and Partial-Omega squared of Group 2 Error Rate for Data

Pattern Il on Comparing Four Methods

Eta- Partial
Source of Variation df SS MS F p Squared Omega-

Squared

Between-subject effects:

Population proportion (PP) 2 51026 255.13 6041490 <.0001 0976 4825
Equality of covariance (COV) 2 97.39 48.70 11531.40 -<.0001 .0186 1511
Group separation (GS) 2 140.77 70.38 16667.00 <.0001 .0269 .2046
Sample representativeness (SR) 2 66.17 33.08 7834.55 <.0001 .0127 .1079
Sample size (SS) 1 0.11 0.11 25.19 <0001 <.0001 .0002

PP*COV 4 38.92 9.73  2303.83 <.0001 .0074 .0664

PP*GS 4  209.60 5240 12408.50 <.0001 .0401 2769

PP*SR 4 69.40 17.35 4108.51 <.0001 .0133 1125

PP*SS 2 00070 0.0035 0.82 4385 <.0001 <.0001

COV*GS 4 422 1.06 249.88 <.0001 .0008 .0076

COV*SR 4 0.55 0.14 32.59 <.0001 .0001 .0010

COV*SS 2 0.47 0.23 55.25 <.0001 .0001 .0008

GS*SR 4 2443 6.11  1446.17 <0001 .0047 .0427

GS*SS 2 02807 0.1404 33.24 <0001 .0001 .0005

SR*SS 2 0.015  0.0077 1.82 .1619  <.0001 <.0001

Error (between) 32358  136.65  0.0042

Within-subject effects:
Method (4M) 3 336346 1121.15 723635.0 <.0001 6435 .9437
4M*PP 6 305.18 50.86 32829.20 <.0001 .0584 6031
4M*COV 6 9.45 1.57 1016.03 <.0001 .0018 .0449
4M*GS 6 2.92 0.49 314.06 <.0001 .0006 .0143
4M*SR 6 25.70 428 276423 <.0001 .0049 1134
4M*SS 3 1.21 0.40 26027 <.0001 .0002 .0060
4M*PP*COV 12 3.98 0.33 213.86 <.0001 .0008 .0193
4M*PP*GS 12 21.66 1.80 1164.87 <.0001 .0041 .0973
4M*PP*SR 12 21.46 1.79 1154.08 <.0001 0041 .0965
4M*PP*SS 6 0.21 0.035 22.78 <.0001 <.0001 .0010
4M*COV*GS 12 1422 1.19 764.87 <.0001 .0027 .0661
4M*COV*SR 12 0.26 0.022 13.88 <.0001 <.0001 .0012

4M*COV*SS 6 0.66 0.11 70.73  <.0001 0001 .0032
4M*GS*SR 12 6.70 0.56 360.24 <.0001 0013 0322
4M*GS*SS 6 0.24 0.039 2529 <0001 <0001 0011
4M*SR*SS 6 0.0067 0.0011 072 6328 <.0001 <.0001
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Eta- Partial
Source of Variation df SS MS F p S Omega-
quared
Squared
Error (within) 97074 15040  0.0015
2 2 SS effect
Note. Eta square (77" ) is defined as: 77° = ———— , where SS,, , is the effect sum of squares, and SS,,,, is the
total
2 _ df;ﬁ?:ct (F effect 1)

total sum of squares. Partial omega squared was calculated from the formula: @

b

partial —
a df effect (F‘eﬁ”ect - 1) + N
where dj;ﬁm is the degrees of freedom for the effect, F, effect 15 the F  ratio for the effect, and N equals

200x3x3x3x3x2x4 (=129600) in this ANOVA model.
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Table G2-5

Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportion

Interaction
Method
;‘;‘I’)‘;ﬁi‘;‘; LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I
0.10;0.90 .00086 .0026 o1 011 .013 .014 .360 116
0.25:0.75 .038 034 051 .037 .053 .037 263 147
0.50:0.50 218 153 218 152 218 145 211 154

Data Pattern 11
0.10:0.90 .0011 .0029 014 .012 .017 .016 491 051
0.25:0.75 - .04 .037 .057 .040 .061 .040 471 .088
0.50:0.50 221 151 221 150 222 .142 439 .129
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Table G2-6
Means and Standard Deviations of Group 2 Error Rate for Method by Equality of Covariance

Matrices Interaction

Method
Equality of
covariance LPM LDF LR KM
matrices
Mean SD Mean SD Mean SD Mean SD
Data Pattern
1:4 .109 136 .119 131 112 123 374 .109
Equal .091 129 .099 125 .100 125 .296 122
4:1 .056 121 .060 .118 .071 121 .164 .145
Data Pattern 1]
1:4 115 .138 .126 132 .119 123 .508 .053
Equal .094 130 .104 125 .106 124 482 .065
4:1 .057 116 .062 113 .075 117 411 .126
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Table G2-7

Means and Standard Deviations of Group 2 Error Rate for Method by Group Separation

Interaction
Method
Seg;fa‘:fon LPM LDF LR KM
Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
6.7 .043 055 .050 .052 050 .041 158 .108
22 090 112 .099 107 .103 .103 296 137
0.7 124 181 130 177 132 174 379 121
Data Pattern 11
6.7 .045 057 .052 .054 .053 042 426 133
22 .093 113 104 107 .108 102 484 .068
0.7 128 178 136 173 138 171 491 059
126
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Table G2-8

Means and Standard Deviations of Group 2 Error Rate for Method by Sample

Representativeness Interaction

Method
represst;lr:la‘:ilseness LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern 1
20% over 127 174 133 .169 134 165 267 152
Equal .082 114 .089 .110 .091 .108 277 153
20% under .048 .072 057 070 .059 .068 290 152

Data Pattern 11
20% over 129 A71 136 165 137 .161 465 .096
Equal .085 116 .094 112 .097 .108 466 .098
20% under 051 .076 .061 .073 065 .070 .469 097
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Table G2-9
Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Equality of Covariance Matrices Interaction

o Method
I};‘(’)‘I’)‘(‘)‘;‘ii:n“s fﬁ?ﬂfﬁi’e LPM LDF LR KM
matrices
Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
0.10:0.90 1:4 .0014 .0034 015 013 .019 016 407 .089
Equal =~ .0009 .0026 012 011 013 .012 379 .088
4:1 .0003 .0012 .006 .007 .005 .007 294 133
0.25:0.75 1:4 .059 .038 076 .037 .075 .040 361 116
Equal .042 .029 .057 .030 .058 .031 287 .114
4:1 .013 .013 .020 .015 .026 .019 140 114
0.50:0.50 1:4 .268 122 268 121 241 129 354 11
Equal 230 .140 229 .139 230 139 221 .106
4:1 .156 170 155 .168 .183 .158 .058 .060
Data Pattern 11
0.10:0.90 1:4 0015 .0035 .017 .014 .024 018 .507 .043
Equal .0013 .0031 015 012 .018 014 496 .044
4:1 .0005 .0017 .009 .008 .009 010 470 .057
0.25:0.75 1:4 .067 .040 .084 039 - 085 .043 512 .050
Equal .047 .031 .063 .032 .065 .033 .486 .055
4:1 .017 016 024 .018 .033 021 416 112
0.50:0.50 1:4 276 121 276 121 247 129 .505 .065
Equal 233 .140 233 139 234 .138 464 .086
4:1 153 162 .1S3 160 184 150 347  .157
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Table G2-10
Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Group Separation Interaction

Method

Group Population

separation proportions LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern 1
6.7 0.10:0.90 .002 .004 .015 011 .016 .011 240 .096
0.25:0.75 .033 .023 .040 .026 .039 .019 128 .086

0.50:0.50 .095 .063 .095 .063 .093 .039 .108 .092
2.2 0.10:0.90 .0006 .002 014 012 017 017 .390 .069
0.25:0.75 .049 .038 .065 .039 .068 .039 279 122
0.50:0.50 220 .099 220 .098 223 .085 220 .148
0.7 0.10:0.90 .00003 .0004 .004 .006 .005 .008 449 .056
0.25:0.75 032 .036 .048 .040 .051 .044 .383 .098

0.50:0.50 339 .163 338 161 339 154 307 145
Data Pattern I1
6.7 0.10:0.90 .002 .004 .016 011 .020 .013 486 .056

0.25:0.75 .035 .026 .042 .028 .044 .020 437 119
0.50:0.50 097 .066 097 .066 096 .040 355 .164
2.2 0.10:0.90 .0009 .002 018 013 023 .019 492 049
0.25:0.75 .054 .039 070 .041 .075 .040 485 .062
0.50:0.50 2232 .099 2229 .099 226 .084 474 .086

0.7 0.10:0.90 .00009  .0008 .007 .008 .008 011 494 047
0.25:0.75 041 041 .059 .044 .064 .047 492 .057
0.50:0.50 342 155 342 153 342 .146 487 .070

‘ i29
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Means and Standard Deviations of Group 2 Error Rate for Method by Population Proportions

by Sample Representativeness Interaction

, Method
r;igz:t- ;‘;‘;‘;ﬁ:’&‘; LPM LDF LR KM
ativeness
Mean SD Mean SD Mean SD Mean SD
Data Pattern I
20% over  0.10:0.90 .002 .004 014 013 016 .016 346 123
0.25:0.75 .061 .040 .070 043 072 042 253 147
0.50:0.50 318 181 315 179 313 172 202 149
Equal 0.10:0.90 .0006 .002 011 011 013 013 358 117
0.25:0.75 036 . .027 .049 .032 051 .033 262 147
0.50:0.50 208 116 208 116 209 .108 212 155
20%under  0.10:0.90 .0001 .0008 .008 .009 .009 011 376 105
0.25:0.75 017 .017 .033 .024 .035 026 275 .146
0.50:0.50 128 .076 129 .076 132 .069 220 157
Data Pattern I1

20% over  0.10:0.90 .002 .004 017 014 021 .018 490 .054
0.25:0.75 .068 .042 077 .046 .080 044 466 092
0.50:0.50 316 176 314 174 312 167 439 122
Equal 0.10:0.90 .0008 .002 013 012 017 .015 491 .050
0.25:0.75 .042 .030 .057 .036 061 .036 470 .088
0.50:0.50 212 119 212 119 214 110 438 130
20%under  0.10:0.90 .0002 .0009 010 .010 .014 014 492 .049
0.25:0.75 .020 .018 .038 .025 .042 .027 478 .082
0.50:0.50 134 .081 135 .081 138 .073 439 133
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Table G2-12
Means and Standard Deviations of Group 2 Error Rate for Method by Equality of Covariance

Matrices by Group Separation Interaction

litv of Method
ses;:’;fon Ec:):i%ili%yxége LPM LDF LR KM
' Mean SD Mean SD  Mean SD Mean  SD
Data Pattern 1
6.7 1:4 .070 .069 .079 .062 .058 .043 245 .059
Equal .048 .048 .056 .043 .057 .044 175 .087
4:1 012 015 .015 .014 .034 .031 .055 .077
2.2 1:4 119 129 132 120 128 .104 406  .049
Equal .097 112 .108 .106 .109 105 317 .085
4:1 .054 .081 .059 077 071 .091 .165 132
0.7 1:4 139 179 .148 174 .150 167 472 .048
Equal 128 179 135 175 136 174 396 .067
4:1 .103 .182 .106 178 .109 179 271 128
Data Pattern 11
6.7 1:4 .074 .072 .083 .065 .063 .044 .496 062
Equal .048 .049 .056 .043 .059 .043 456 .084
4:1 .012 .015 016 .014 .037 .031 326 | .162
2.2 1:4 123 130 137 121 134 102 514 . .047
Equal .100 113 112 .105 114 104 493 .049
4:1 .055 .080 .062 .075 076 .090 444 .080
0.7 1:4 .147 .181 157 175 159 .167 514 .047
Equal 133 179 142 173 143 172 497 047
4:1 .103 173 .108 .169 112 171 462 067
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Table G2-13
Means and Standard Deviations of Group 2 Error Rate for Method by Group Separation by

Sample Representativeness Interaction

Method
Group resggfat- LPM LDF LR KM
separation .
rveness Mean SD Mean SD Mean SD Mean SD
Data Pattern 1

6.7 20% over .055 .063 061 059 .061 .047 .146 .100
Equal .043 .053 .049 .050 .049 .039 .156 .106

20% under  .032 .045 .040 .042 .039 .034 173 .116

22 20% over 128 .138 137 131 139 127 .285 .138
Equal .087 .103 .097 .098 .100 .094 296 138

20% under  .055 .074 .065 071 069 .068 .307 .136

0.7 20% over 197 240 202 235 201 231 .369 123
Equal 115 .151 Ad22 147 125 .146 .379 121

20% under . .059 .088 065 .086 .068 .087 390 117

Data Pattern 11

6.7 20% over .058 .066 .064 062  .0646 .049 422 127
Equal .044 .055 .051 .052 .053 .039 425 134

20% under  .032 .045 .040 .042 .042 .032 431 136

22 20% over 131 138 .140 130 .143 125 482 .070
Equal .090 .105 .101 .099 .106 .093 483 .068

20% under  .057 .076 .069 .071 .075 .068 486 .066

0.7 20% over .198 233 204 227 204 223 491 .060

Equal 121 152 130 .148 133 .147 490 .059
20% under  .065 .095 074 .092 077 .092 492 .058

(WY
W
&
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Table T-1

Means and Standard Deviations of Total Error Rates of 200 Replications for Data Pattern |

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

g &
'% -2 g Over ~ Equal Under
§- % § Sample size Sample size Sample size
&8 200 400 200 400 200 400
LPM Mean 057 055 066 067 079 081
Std 017 012 019 013 020 014
LDF Mean .050 048 049 .049 050 049
°'.1° Std 015 . 011 015 011 017 010
0 '90 LR Mean 051 048 051 049 051 049
Std 016 011 015 010 017 011
KM Mean 235 233 246 253 27 286
Std 054 038 051 .039 053 040
LPM Mean 082 082 083 081 090 091
Std 018 013 019 014 021 015
LDF Mean .083 082 084 .080 085 084
023 sd 018 013 019 015 020 014
0 '75 LR Mean 083 083 085 081 086 085
Std 020 013 019 . .015 020 014
KM Mean 119 121 127 124 136 135
Std 030 021 030 021 034 022
LPM Mean 102 .100 101 .100 101 .098
Std 019 015 022 013 021 016
LDF Mean 101 .100 101 .100 101 .098
030 Std 019 015 022 013 021 016
0'50 LR Mean 103 .100 103 101 102 099
Std 020 015 023 014 021 015
KM Mean 098 097 .100 .100 .100 099
Std 020 014 022 014 022 016
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Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

0
g -g % Over. Equal. Under.
a g- b Sample size Sample size Sample size
i 200 400 200 400 200 400
LPM Mean .095 .095 .097 .099 .101 .100
Std 022 .015 022 .015 019 014
LDF Mean .092 .090 091 .091 092 .089
O..IO Std 021 .014 021 014 .020 .014
O..90 LR Mean 092 .090 092 - .091 .093 .089
Std 021 014 022 014 .020 013
KM Mean .360 376 375 377 .385 384
Std .047 .036 .049 037 044 .035
LPM Mean 179 178 179 " 176 192 191
Std .031 .018 .030 .020 032 .020
LDF Mean . .180 179 177 175 181 181
O'_25 Std 031 018 .030 .020 029 .020
O.:75 LR Mean 181 179 178 175 .181 .180
Std 031 .018 .029 019 .028 .020
KM Mean 268 .269 272 276 .289 284
Std .039 .025 037 .029 .040 029
LPM Mean 239 .240 230 230 238 237
Std 032 022 .029 .022 .032 021
LDF Mean 239 .240 230 230 237 237
O'_SO Std 032 .022 .029 022 032 021
O..SO LR Mean 239 .239 230 230 237 236
Std 032 022 .029 022 .032 .021
KM Mean 231 232 229 230 228 229
Std .032 022 .030 022 .030 .021
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Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

@
;3 -g % Over . Equal. Under.

E g s Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean 102 .099 .100 ~.101 .100 101

Std 022 016 .020 016 .021 014

LDF Mean .103 .100 101 102 .101 .100

0"10 Std 022 016 .021 016 .020 .014

0.'90 LR Mean .104 .100 .101 102 o102 .100

Std .022 .017 .021 017 .020 014

KM Mean 422 425 432 433 434 436

Std .048 .035 .046 .030 .045 .032

LPM Mean 237 237 240 239 234 242

Std .030 .022 .028 022 .032 .020

LDF Mean 240 239 .243 .236 .239 237

025 std 031 022 028 021 031 020

0.'75 LR Mean 241 .240 .243 237 239 236

Std .031 .022 .028 .020 .032 .020

KM Mean .365 .365 375 363 372 377

Std .037 .026 .038 027 .041 .027

LPM Mean 359 355 337 335 354 353

Std .039 .025 .034 .026 .037 025

LDF Mean .358 354 337 335 353 353

030 std 039 024 034 026 036 025

0.'50 LR Mean .358 354 337 335 354 352

Std .039 .024 .034 .027 .037 025

KM Mean 336 337 334 334 335 334

Std .033 024 .032 .024 .033 .025

135




135

Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

g g
'% -g E Over Equal Under
§- §- § Sample size Sample size Sample size
1
e 200 400 200 400 200 400
LPM Mean 057 .061 .080 .079 .095 .095
Std .018 .015 022 .016 .022 .015
LDF Mean 037 .037 .039 .038 .043 .039
O..IO Std 014 .010 .015 .010 .015 .010
0 '90 LR Mean .039 .038 .041 .039 .044 .039
Std .013 .010 016 .010 .015 .010
KM Mean 248 256 266 272 292 296
Std .049 .032 .049 .036 .051 .037
LPM Mean 066 .062 .060 .059 .068 .065
Std 017 .013 017 011 .019 013
LDF Mean .067 .064 .062 .061 .061 .059
O'.25 Std 017 .013 017 .012 .017 .012
0 '75 LR Mean .062 .058 .062 .060 .066 .063
Std .016 012 .017 011 .018 .013
KM Mean .153 .152 159 158 172 173
Std .032 .022 .034 .024 .031 .025
LPM Mean .100 .095 .090 .086 .085 .081
Std .022 .015 .022 .014 020 .013
LDF Mean .100 .095 .090 .086 .084 .081
O'_SO Std .022 .015 .022 014 .020 014
0.50 LR Mean 087 .080 086 081 092 087
Std .020 .014 .021 .015 .022 .014
KM Mean d11 .109 112 111 .114 .116
Std .023 .017 .023 .017 .025 .019
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

0
':g -g é Over Equal Under

§- é- s Sample size Sample size Sample size
& a 200 400 200 400 200 400
LPM Mean 101 .102 .100 .100 .102 101
Std 022 .014 .022 015 .022 015
LDF Mean .109 110 .108 .106 .108 .106
0'.10 Std .022 .015 .023 .015 .021 015
0_'90 LR Mean 112 112 112 .108 110 .108
Std .023 016 .024 .016 .022 014
KM Mean 392 .384 .394 392 .390 397
Std .046 .030 .046 .034 .044 .033
LPM Mean .183 .184 205 204 229 236
Std .030 019 .031 020 .63 1 .023
: LDF Mean 181 181 194 192 208 212
0'.25 Std 028 .019 030 .019 028" .023
O.:75 LR Mean 182 182 191 .189 202 205
Std .029 .019 .029 018 027 023
KM Mean 297 294 303 ©.302 304 306
Std .038 ~.030 .039 027 .039 .024
LPM Mean 209 206 206 201 225 224
Std .028 .021 .030 .020 .033 .023
LDF Mean 209 206 206 201 224 223
0'.50 Std 028 .021 .030 .020 .032 .023
0_.50 LR Mean 206 202 212 206 235 233
Std .028 019 030 .020 033 .023
KM Mean 214 212 215 214 214 216
Std 027 .023 030 .021 .029 .024
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

g 2
'% -g é Over Equal Under
§- §- < Sample size Sample size Sample size
n-' L3
e 200 400 200 400 200 400
LPM Mean .099 .099 .099 .100 .100 .100
Std .021 015 .022 016 .020 016
LDF Mean 107 105 .103 .103 .102 .101
O'_l,o Std .024 016 .023 .016 .021 016
0.90 LR Mean 112 .108 106 105 104 102
Std .026 .017 .024 .017 .022 016
KM Mean 441 438 438 444 441 447
Std .042 .031 .042 .031 .044 .029
LPM Mean 287 285 276 273 258 257
Std .030 .022 .033 021 .030 .022
LDF Meap 290 287 282 281 269 271
O'.ZS Std .030 .022 .034 .021 .031 .024
O.:75 LR Mean 291 288 285 283 273 275
Std .030 .022 .034 .022 .031 .024
KM Mean 374 378 376 374 376 377
Std .037 .025 .037 .027 .036 .028
LPM Mean 298 297 .309 311 392 393
Std .033 .023 .033 .026 .042 .033
LDF Mean 298 297 .309 311 390 391
O'_SO Std .033 .023 .033 026 .042 .032
0 '50 LR Mean 297 296 313 314 389 390
Std .033 .023 ..034 026 041 .031
KM - Mean 294 295 295 294 295 295
Std .033 .023 .030 .024 .031 .024
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

0
%_g -§ E Over Equal - Under

§- g ﬁ Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .055 .054 .061 .059 .068 .068

Std .017 .012 .017 .013 .020 .014

LDF Mean .049 .047 .048 .047 .049 .049

O..IO Std .015 010 .016 011 017 .012

O..90 LR Mean .050 048 .050 .048 .050 .051

Std .016 011 016 011 017 .012

KM Mean 120 117 .140 135 171 .187

Std .061 .042 .070 .060 .082 .070

LPM Mean .081 .079 .084 .081 .089 © .088

Std .020 014 .020 .012 .021 .014

LDF Mean .081 .078 .081 .078 .082 .081

O'.25 Std 019 014 019 012 .020 .013

O..7 5 LR Mean .083 .079 .079 0717 .079 0717

Std .020 013 .019 .013 .020 .013

KM Mean .079 077 077 .076 .077 .076

Std .019 013 019 .013 .019 .013

LPM Mean .080 .083 .091 .086 .100 .097

Std .020 .014 .021 .014 .020 .015

LDF Mean .081 .083 .091 .086 .100 .097

O'_SO Std .020 .015 021 014 .020 .015

O..50 LR Mean .088 .089 .087 .082 .086 .083

Std .021 .014 .021 .014 .020 .014

KM Mean .116 117 114 110 114 .109

Std .024 .018 .023 .017 .023 .017
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Covariance matrices = 4:1 and Group separation = 2.2

Sample representativeness

O
:§ -§ ;% Over ' Equal' ' Under.

ng: ;:g- b Sample size Sample size Sample size

200 400 200 400 200 - 400

LPM Mean .086 .085 .088 .088 .093 .093

Std .022 014 .022 .016 .020 015

LDF Mean 075 073 .074 .073 .076 .073

0.10 std o19 013 020 013 019 014

0..90 LR Mean .076 075 .076 075 .078 075

Std .020 013 .020 013 019 .014

KM Mean .300 313 320 - 327 340 345

Std .067 051 .067 .049 .066 045

LPM Mean 143 147 151 .149 158 .156

Std 025 .019 .027 019 027 .019

LDF Mean .143 © 147 .148 147 .149 .146

025 std 026 019 026 018 026 019

0.:75 LR Mean .146 .149 .148 147 150 .146

Std .026 .019 .026 018 .027 .018

KM Mean 171 172 .183 181 .191 .188

Std .036 .024 .034 .028 041 .029

LPM Mean 229 226 .203 202 204 204

Std .031 .020 .027 021 .028 .022

: LDF Mean 228 225 .203 202 204 204

O'.SO Std .032 021 . .027 021 .028 .022

0.'50 LR Mean 237 235 207 208 200 200

Std .032 021 .028 .020 .029 .022

KM Mean 217 216 213 214 207 211

Std .032 022 .030 .020 .030 .022
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

g -{:E E Over Equal Under

:gj- g ﬁ Sample size Sample size Sample size
200 400 200 400 200 400
LPM Mean .095 095 .098 .099 .099 .100
Std 021 014 .023 015 .020 .014
LDF Mean .088 .086 .089 .089 .090 .091
O..IO Std .021 015 .022 .015 .020 015
O.§O LR Mean .089 .087 .091 .091 091 .093
Std .022 015 .023 015 .020 014
KM Mean 397 - 400 404 407 408 419
Std 062 .043 054 .043 .060 .040
LPM Mean .191 .187 196 .197 213 .209
Std 029 021 .033 021 .033 025
LDF Mean .190 .186 191 .189 200 .193
O'.ZS Std .028 .020 031 .020 032 022
0.75 LR Mean 191 186 192 190 201 196
Std .028 .020 .032 .020 .033 .023
KM Mean 291 290 302 298 317 321
Std .049 .035 .049 034 052 .036
LPM Mean 393 400 312 309 297 298
Std .041 027 .034 .024 .033 .024
LDF Mean 391 .398 312 309 297 297
O'.SO Std .041 027 .034 024 034 .024
O..SO LR Mean 390 396 317 314 296 .296
Std 041 .026 034 .024 .034 .023
KM Mean .289 296 294 292 292 294
Std .030 022 .030 .023 .035 .023
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Table T-2

Means and Standard Deviations of Total Error Rates of 200 Replications for Data Pattern Il

Covariance matrices = Equal and Group separation = 6.7

Sample representativeness

" _
g -g g Over . Equal. Under.
2 ? s Sample size Sample size Sample size
& a 200 400 200 400 200 400
LPM Mean 058 057 067 066 081 080
Std 018 012 020 013 . .020 015
LDF Mean 052 048 052 049 052 049
°'.1° Std 016 011 015 011 015 011
0.90 LR Mean 057 051 058 051 056 050
Std 016 011 017 011 017 011
KM Mean 483 488 483 491 495 488
Std 055 036 045 035 046 033
LPM Mean 086 083 085 081 094 087
Std 021 013 018 013 022 016
LDF Mean .086 084 084 080 - .088 081
O'?S Std 022 013 018 013 021 015
0.'75 LR Mean 089 085 089 082 093 083
Std 023 014 020 014 .020 015
KM Mean 447 462 448 474 469 468
Std 079 .059 072 047 .064 052
LPM Mean 108 .104 .106 .100 107 104
Std 022 016 023 016 023 016
LDF Mean 108 103 .106 100 107 104
050 std 022 016 023 016 023 016
0.50 LR Mean 110 105 108 101 109 .104
Std 023 017 024 016 024 016
KM Mean 396 418 396 407 406 423
Std 098 083 112 099 101 085
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Covariance matrices = Equal and Group separation = 2.2

Sample representativeness

:g -g é Over Equal Under
=g’- % ﬁ Sample size Sample size Sample size
e 200 400 200 400 200 400
LPM Mean 094 094 094 096 098 100
Std 021 015 021 015 023 016
LDF Mean 096 091 091 090 093 092
0.10 Std 024 014 022 015 022 015
0.9 LR Mean 099 092 094 091 094 093
Std 024 014 021 015 023 015
KM Mean 501 498 498 495 494 497
Std 045 031 044 032 - 049 030
LPM Mean 181 179 184 180 192 191
Std 028 018 028 022 027 021
LDF Mean 182 181 185 179 185 182
023 Std 028 018 028 021 025 021
0.75 LR Mean 184 182 185 180 186 181
Std 029 018 028 021 026 021
KM Mean 488 490 490 489 494 AR
Std 041 031 046 034 042 033
LPM Mean 244 241 240 234 245 243
Std 029 023 030 020 034 023
LDF Mean 244 241 240 234 245 243
°'_5° Std 029 023 030 020 034 022
0.50 LR Mean 245 241 240 234 246 243
Std 029 023 031 019 033 022
KM Mean 489 490 491 489 488 490
Std 043 031 041 032 046 033
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Covariance matrices = Equal and Group separation = 0.7

Sample representativeness

@
g é é Over Equal Under
§- é § Sample size Sample size Sample size
& e 200 400 200 400 200 400
LPM Mean .100 .098 .098 .100 .100 .100
Std .020 015 021 - 015 .020 .014
LDF . Mean .105 .100 102 .101 .103 .101
O..IO Std 021 .015 021 015 .020 .014
O.'90 LR Mean .106 .100 .104 102 .104 .101
Std .022 015 021 015 .021 .014
KM Mean 498 499 494 503 497 .502
Std .046 .032 045 031 .042 .034
LPM Mean 245 .240 243 237 .243 245
Std .029 021 031 021 .031 .022
LDF Mean 248 243 .247 237 241 240
O'_25 Std .030 022 .030 021 .030 022
O.:75 LR Mean 249 .244 248 237 242 .240
Std 031 .022 .030 021 .030 .022
KM Mean 498 498 492 495 .504 498
Std .040 027 042 .028 037 .029
LPM Mean 362 353 347 342 361 354
Std .034 .026 034 026 .035 .024
LDF Mean 362 352 347 342 361 353
O'.SO Std .034 .026 034 026 .035 .024
O.'SO LR Mean 361 352 347 342 361 353
Std .034 .026 035 .026 .036 .025
KM Mean 499 497 493 496 492 495
Std .037 .028 .036 027 .038 .030
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Covariance matrices = 1:4 and Group separation = 6.7

Sample representativeness

g -é é Over Equal Under
§- % ﬁ Sample size Sample size Sample size
ol 200 400 200 400 200 400
LPM Mean .056 .059 077 077 095 .096
Std .018 014 .020 014 021 .015
LDF Mean .039 .038 .040 .038 .044 .041
O..IO Std 014 010 .013 .010 016 .010
O.§O LR Mean .044 .041 .047 .040 .050 .043
Std 015 010 .015 .010 017 .011
KM Mean 491 496 .496 492 493 492
Std .047 .033 .048 .032 .048 .032
LPM Mean .069 065 063 .061 070 .066
Std 019 014 018 012 - 018 .014
LDF Mean 071 .067 .065 062 .065 061
O'.ZS Std 019 .014 .017 .012 017 .013
O.:75 LR Mean .069 062 .068 .064 073 .066
Std 019 013 .019 .013 019 .013
KM Mean 415 434 432 445 441 462
Std .071 .059 .065 .048 .070 .046
LPM Mean .105 .101 .094 .091 .086 .083
Std .024 016 .021 .015 .020 014
LDF Mean .105 .100 .094 .091 .086 .084
O'_SO Std .024 .016 .021 .015 .020 .014
O.-SO LR Mean .092 .087 .092 .085 .094 .090
Std .022 014 .022 .015 .020 016
KM Mean 303 321 .323 328 338 352
Std 092 .083 .091 .083 .090 .081
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Covariance matrices = 1:4 and Group separation = 2.2

Sample representativeness

g &
é -% é Over Equal Under
:g:. g' § Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean .102 .103 .104 .100 .100 .099
Std 022 014 021 .015 021 - .015
LDF Mean 11 d11 112 107 .108 .106
0'.10 Std 022 016 022 015 022 015
0.90 LR Mean 116 114 117 110 112 109
Std .023 016 022 015 023 016
KM Mean .507 498 .503 .500 502 498
Std .044 .030 .043 031 .040 .033
LPM Mean .187 188 205 204 232 233
Std .028 020 .029 022 .030 .024
v LDF Mean 185 .186 197 .193 211 209
0.25 Std .029 020 027 022 030 .024
0 '75 LR Mean .187 .186 197 193 205 202
Std .028 020 027 021 .029 023
KM Mean .486 486 488 490 496 493
Std 044 - 034 .044 032 041 031
LPM Mean 213 206 209 0202 232 225
Std .032 022 .029 021 .034 .023
LDF Mean 213 206 209 202 231 224
0"50 Std .032 022 .029 021 034 .023
0..50 LR Mean 210 203 214 208 234 235
Std .032 020 .029 021 .033 022
KM Mean 451 468 459 467 463 470
Std .062 .048 .063 051 052 .039
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Covariance matrices = 1:4 and Group separation = 0.7

Sample representativeness

n
g -g _g Over' Equal' Under.

§ g b Sample size Sample size Sample size

200 400 200 400 200 400

LPM Mean .099 .101 .101 .101 .096 101

Std .021 .015 .021 .015 .021 .015

LDF Mean .110 .107 .107 .106 .100 .103

O.'IO Std .023 016 .022 .015 .022 - .016

o.§o LR Mean 117 112 112 108 104 105

Std .024 .018 .024 .017 .023 .016

KM Mean 503 505 500 503 507 .504

Std 041 030 .041 .030 .043 .030

LPM Mean 290 288 .283 275 .264 261

Std .032 .024 .030 025 .030 .022

LDF Mean 293 290 291 283 277 274

O'.ZS Std .031 .024 .029 .024 ..030 .022

O..7 5 LR Mean 295 290 293 285 281 278

Std 031 .023 .028 .024 .033 .021

KM Mean 500 .502 501 498 504 501

Std .037 .027 .037 .028 .036 .026

LPM Mean 301 299 318 311 395 394

Std .030 .023 .034 .024 .042 .030

LDF Mean 301 299 318 311 394 392

O'_SO Std .030 .023 .034 .024 .042 .030

0.50 LR Mean 301 298 323 316 393 391

Std .029 .023 .034 .024 .041 .029

KM Mean 484 483 481 481 485 487

Std .040 .032 .044 .035 .047 .032
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Covariance matrices = 4:1 and Group separation = 6.7

Sample representativeness

g -é é Over Equal Under
§. §- § Sample size Sample size Sample size
= & 200 400 200 400 200 400
LPM Mean 056 055 062 .060 072 070
Std 016 012 017 013 020 014
LDF Mean 052 049 053 050 057 051
010 sd 015 o1l .06 011 018 0l
0_’90 LR Mean 056 051 058 052 061 053
Std 016 011 017 012 019 012
KM Mean 444 470 456 AT2 463 A77
Std 088 044 067 049 069 037
LPM Mean 083 .080 085 084 092 092
Std 020 014 019 015 022 016
LDF Mean 082 079 .084 .083 087 .086
°'_25 Std .020 014 018 015 022 015
0_115 LR Mean 087 081 .086 082 088 084
Std 022 014 020 015 021 014
KM Mean 324 400 345 389 360 423
Std 117 087 124 104 123 .096
LPM Mean 086 .083 092 091 101 .100
Std .020 015 022 016 022 016
LDF Mean 086 083 092 091 101 099
050 std 019 o015 02 016 02 016
0_’50 LR Mean 095 089 091 .087 .090 .086
Std 021 015 022 015 020 014
KM Mean 334 363 325 337 297 307
Std .087 072 086 .080 088 086
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Covariance matrices = 4:1 and Group separation = 2.2

Sample representativeness

:% -g é ~ Over Equal Under
& & § Sample size Sample size Sample size
ol 200 400 200 400 200 400
LPM Mean .082 .085 .087 .086 092 .093
Std .018 015 .021 013 . 021 014
LDF Mean .080 .076 .079 .075 079 076
0'-10 Std .018 .014 019 013 .019 .014
O.'90 LR Mean .081 .076 .082 .075 .081 .078
Std .018 013 .020 .013 019 .014
KM Mean 470 479 473 477 472 .481
Std .056 .036 .052 .041 .053 .040
LPM Mean 154 .148 153 151 157 158
Std 025 016 027 .019 026 .020
LDF Mean 155 .149 152 149 151 150
0'?5 Std .025 016 .026 .018 .025 .019
O.:75 LR Mean .160 151 154 150 152 151
Std .026 .016 .026 .018 .026 .019
KM Mean 452 467 455 470 465 475
Std .066 .051 .059 .045 056 .042
LPM Mean 229 227 .209 204 212 .209
Std .030 .023 .029 018 031 .021
LDF Mean 228 227 209 204 211 208
0'.50 Std .030 .023 .029 .018 031 .021
O..S 0 LR Mean .240 237 214 211 208 204
) Std .031 023 .030 019 .030 .021
KM Mean 462 .465 458 469 463 463
Std .059 .046 .062 .044 053 .047
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Covariance matrices = 4:1 and Group separation = 0.7

Sample representativeness

g &
'_% -é g Over Equal Under
E- g ﬁ Sample size Sample size Sample size
= 200 400 200 400 200 400
LPM Mean 094 093 095 099 098 .099
Std 023 014 019 015 022 016
LDF Mean 090 .086 .088 090 .090 090
°'_1° Std 022 014 019 015 020 015
0.90 LR Mean 091 087 089 091 092 091
Std 022 014 019 015 022 015
KM Mean 472 482 480 482 475 489
Std 052 036 052 039 052 037
LPM Mean 193 190 199 194 204 207
Std 026 020 028 021 031 024
LDF Mean 194 189 198 189 196 194
025 Cosd 026 020 029 020 029 023
0'75 LR Mean 196 .190 198 190 196 196
Std 027 020 029 020 030 023
KM Mean 466 477 473 181 465 484
Std 054 042 054 042 .050 038
LPM Mean 389 391 319 313 309 299
Std 041 032 035 022 033 022
LDF Mean 388 © 389 319 313 309 299
030 sd 041 032 035 02 034 .02
0_'50 LR Mean 387 388 324 318 309 299
Std 040 031 - 037 022 033 023
KM Mean 483 486 479 487 478 484
Std 045 036 047 031 044 033

150
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Table T-3
ANOVA Results, Eta-squared, and Partial-Omega squared of Total Error Rate for Data Pattern

I on Comparing Four Methods

Eta- Partial
Source of Variation df SS MS F p Squared Omega-
q Squared

Between-subject effects:

Population proportion (PP) 2 105.67 52.84 2478280 <.0001 .0668 2766
Equality of covariance (COV) 2 19.44 9.72 456038 <.0001 .0123 .0657
Group separation (GS) 2 600.81 30041 140908.0 <.0001 3797 .6850
Sample representativeness (SR) 2 1.00 0.50 235.03 <.0001 .0006 _.0036
Sample size (SS) 1 0.014 0.014 6.66 .0099 <0001 <.0001

PP*COV 4 10.11 2.53 118534 <.0001 .0064 .0353

PP*GS 4 84.08 21.02 9859.56 <.0001 0531 2333

PP*SR 4 0.96 0.24 112.89 <0001 .0006 .0034

PP*SS 2 0.016 0.008 3.82 .0220 <0001 <.0001

COV*GS 4 2.18 0.54 25543 <0001 .0014 .0078

COV*SR 4 0.95 0.24 111.58 <.0001 .0006 .0034

COV*SS 2 0.0009 0.0004 020 8165 <0001 <.0001

GS*SR 4 0.36 0.09 42.38 <.0001 .0002 .0013

GS*SS 2 0.0052 0.0026 1.22 2960 <0001 <.0001

SR*SS 2 0.008 0.004 1.87 .1538 <0001 <.0001

Error (between) 32358 68.99  0.0021

Within-subject effects:

Method (4M) 3 29253 97.51 208717.0 <0001 .1849 .8285
4M*PP 6 289.03 48.17 103109.0 <.0001 .1827 8268
4M*COV 6 722 120  2576.55 <0001 .0046 .1065
4M*GS 6 14.66 244 523026 <.0001 .0093 1949
4M*SR 6 0.68 0.11 241.15 <0001 .0004 .0110
4M*SS 3 0.043 0.014 30.47 <.0001 <.0001 .0007

4AM*PP*COV 12 3.7 0.31 661.45 <.0001 .0023 .0576
4M*PP*GS 12 29.25 244 5217.19 <.0001 .0185 3257
4M*PP*SR 12 0.64 0.05 114.92 <.0001 .0004 .0104
4M*PP*SS 6 0.022  0.0036 7.66 <0001 <.0001 .0003

4M*COV*GS 12 3.78 0.32 675.07 <.0001 .0024 .0587

4M*COV*SR 12 0.63 0.052 111.73 <0001 .0004 .0101

4M*COV*SS 6 0.0007 0.0001 027 9522 <.0001 <.0001
4M*GS*SR 12 0.22 0.018 39.12 <0001 .0001 .0035
4M*GS*SS 6 0.0007 0.0001 024 9622 <.0001 <.0001
4M*SR*SS 6 0.0064 0.0011 228 0337 <.0001 .0001
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Eta- Partial
Source of Variation df SS MS F p S Omega-
quared
Squared
Error (within) 97074 45.35  0.0005
) 2SS
Note. Eta square (77 ) is defined as: 7° = , where SS,g, is the effect sum of squares, and SS,,, is the
total
df,. (F.. -1)
total sum of squares. Partial omega squared was calculated from the formula: a),z,a,,,-a, = feﬂm( L s
d.feﬂecl (Feﬂecl - 1) +N

where dfeﬂea is the degrees of freedom for the effect, Fg, , is the F' ratio for the effect, and N equals

200%3x3x3x3x2x4 (=129600) in this ANOVA model.

Y
&
a0
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Table T-4
ANOVA Results, Eta-squared, and Partial-Omega squared of Total Error Rate for Data Pattern

1I on Comparing Four Methods

A Eta- Partial
Source of Variation df SS MS F p Squared Omega-
q Squared

Between-subject effects:

Population proportion (PP) 2 180.04 90.02 40628.50 <.0001 0537 3854
Equality of covariance (COV) 2 12.02 6.01 2713.00 <0001 .0036 .0402
Group separation (GS) 2 37538 187.69 84709.80 <.0001 1119 .5666
Sample representativeness (SR) 2 0.57 0.29 128.63 <.0001 .0002 .0020
Sample size (SS) 1 0.011 0.011 491 0268 <.0001 <.0001

PP*COV 4 7.48 1.87 843.86 <.0001 .0022 0254

PP*GS 4 11979 29.95 13516.10 <.0001 .0357 2943

PP*SR 4 0.52 0.13 58.85 <.0001 .0002 .0018

PP*SS 2 0.02 0.01 442 0121 <0001 .0001

COV*GS 4 3.30 0.83 372.63 <.0001 .0010 .0113

COV*SR 4 1.16 0.29 131.13 <0001 .0003 .0040

COV*SS 2 0.10 0.05 22.59 <.0001 <.0001 .0003

GS*SR 4 0.23 0.06 25.87 <.0001 .0001 .0008

GS*SS 2 0.077 0.039 17.40 <.0001 <.0001 .0003

SR*SS 2 0.011 0.006 249 0831 <0001 <.0001

Error (between) 32358 71.69  0.0022

Within-subject effects:

Method (4M) 3 2297.18 765.73 778723.0 <.0001 .6848 9474
4M*PP 6 14559 2427 24677.50 <.0001 .0434 5332
4AM*COV 6 1.45 0.24 244.97 <.0001 .0004 0112
4M*GS 6 26.65 444 451630 <.0001 .0079 1729
4M*SR 6 0.22 0.037 37.17 <.0001 .0001 .0017

- 4M*SS 3 0.86 0.29 292.84 <.0001 .0003 .0067

4M*PP*COV 12 0.41 0.034 34.57 <.0001 .0001 .0031
4M*PP*GS 12 8.84 0.74 749.28 <.0001 .0026 .0648
4M*PP*SR 12 0.31 0.026 26.19 <.0001 .0001 .0023
4M*PP*8S 6 0.12 0.02 20.35 <.0001 <.0001 .0009

AM*COV*GS 12 4.12 0.34 349.54 <.0001 .0012 0313

4M*COV*SR 12 0.19 0.016 16.07 <.0001 .0001 - .0014

4M*COV*SS 6 0.20 0.033 33.98 <.0001 .0001 .0015
4M*GS*SR 12 0.11  0.0089 9.02 <.0001 <.0001 .0007
4M*GS*SS 6 0.28 0.047 48.11 <.0001 .0001 .0022
4M*SR*SS 6 0.016 0.0026 263 .0151 <.0001 .0001
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Eta- Partial
Source of Variation df SS MS F p Squared Omega-
q Squared

Error (within) 97074 9545  0.0010

S S effect

Note. Eta square (777 ) is defined as: 77° = , where SS,5, , is the effect sum of squares, and SS,,,, is the

total

2 dfeﬁ’ect (Feﬁ'ect - 1)

total sum of squares. Partial omega squared was calculated from the formula: @ =

portal d.f;_ﬁ’ecl(F effect 1) +N

2

where df g, is the degrees of freedom for the effect, F, is the F ratio for the effect, and N equals

200%3x3x3x3x2x4 (=129600) in this ANOV A model.
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Table T-5

Means and Standard Deviations of Total Error Rate for Method by Population Proportioﬁ

Interaction
Method
;‘(’)‘r’)‘(’)ﬁtiio‘;"s LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern 1
0.10:0.90 .088 .024 .078 .030 .079 .031 338 .105
0.25:0.75 .165 074 .162 .075 162 075 241 107
0.50:0.50 217 .106 217 .106 217 107 212 .086

Data Pattern 11
0.10:0.90 .088 .023 .080 .030 .082 .030 489 .046
0.25:0.75 . 167> 074 .165 .075 .166 075 466 .070
0.50:0.50 221 .106 221 .106 221 .106 438 .090

b
g
it
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Table T-6
Means and Standard Deviations of Total Error Rate for Method by Equality of Covariance

Matrices Interaction

Method

Equality of
covariance LPM LDF LR KM
matrices

Mean SD Mean SD Mean SD Mean SD

Data Pattern ]
1:4 .162 .096 158 .100 159 .100 285 -108
Equal 162 .093 .158 .096 159 .095 277 112
4:1 .146 .088 .140 .090 141 .091 228 112
Data Pattern 11
1:4 .164 .097 .161 .100 162 .100 467 073
Equal .164 .095 .161 .097 .163 .096 481 .058
4:1 .148 .088 143 .090 .145 .090 445 .083
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Table T-7

Means and Standard Deviations of Total Error Rate for Method by Group Separation

Interaction
Method
Seg;f;fon LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD

Data Pattern I
6.7 .080 022 .071 .026 .070 025 151 .074
22 .165 .059 .161 .060 162 060 279 .080
0.7 225 .105 224 .106 225 .106 361 .066

Data Pattern I
6.7 .082 .023 .074 .027 .075 .026 420 .098
22 167 061 .164 .061 .166 .061 482 .047
0.7 226 107 227 107 228 .106 491 .040

157



157

Table T-8
Means and Standard Deviations of Total Error Rate for Method by Population Proportions by

Group Separation Interaction

Method
oo Topsion ™ Ly Lx o
' Mean SD Mean SD Mean SD Mean SD
Data Pattern I
6.7 0.10:0.90 .069 .021 .045 014 .046 014 224 .080
0.25:0.75 077 019 .075 .019 075 .019 122 .043
0.50:0.50 .093 .019 .093 .019 .091 .019 .108 021
22 0.10:0.90 .096 .019 .091 .023 .092 .023 364 .056
0.25:0.75 .180 .036 173 032 173 031 253 .062
0.50:0.50 219 .030 219 .030 222 .030 219 .027
0.7 0.10:0.90 .099 019 .098 .020 .099 .020 426 .046
0.25:0.75 237 .041 237 045 238 045 .349 .050
0.50:0.50 339 .048 .338 .048 339 .047 .308 .034
Data Pattern 11
6.7 0.10:0.90 .069 .021 .047 .014 .051 .015 482 .651
0.25:0.75 079 .020 .078 .019 079 .020 424 .092
0.50:0.50 097 .021 .097 .021 .095 021 354 .098
22 0.10:0.90 .095 .019 .093 .022 .095 .023 491 .043
0.25:0.75 182 .035 177 .031 177 .030 482 046
0.50:0.50 224 .031 223 .031 227 031 472 .050
0.7 0.10:0.90 .099 .018 .099 .020 .100 021 494 .042
0.25:0.75 239 .042 240 .046 241 .046 491 .040
0.50:0.50 .342 .046 342 .045 342 .045 487 .038
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Table T-9
Means and Standard Deviations of Total Error Rate for Method by Population Proportion by

Equality of Covariance Matrices Interaction

Method
Population ~ Equality of ‘

Proportion c::trrlii:;:e LPM LDF LR KM

Mean SD Mean SD Mean SD Mean SD
Data Pattern 1
0.10:0.90 1:4 .093 .023 .083 .036 .085 037 .368 .082
Equal | .089 .024 .080 .028 .081 .028 354 .086
4:1 .083 024 .070 .023 .072 .024 292 125
0.25:0.75 1:4 181 091 179 .093 179 .093 279 .094
Equal 169 .068 167 .068 167 .068 257 .105
4:1 .144 .053 139 .051 140 .052 187 .098
0.50:0.50 1:4 212 .106 211 .106 211 107 207 079
Equal 228 .105 228 .105 228 .105 221 .100
4:1 212 107 212 .106 212 .108 206 .078
Data Pattern 11

0.10:0.90 1:4 .093 023 .085 .036 .089 .037 499 .038
Equal .088 .023 .082 .028 .083 .028 495 .040
4:1 .082 .023 .073 .022 .075 .022 473 .053
0.25:0.75 1:4 .184 .092 .182 .093 .183 .093 476 054
Equal 171 .069 .170 .069 171 .069 483 .050
4:1 .146 .051 .143 .050 .144 .050 437 .090
0.50:0.50 1:4 215 .106 214 .105 215 .107 425 .094
Equal 233 105233 .105 234 .104 464 075
4:1 215 .106 214 .105 215 107 424 .093




Figure G1-1. Population proportion by group separation interaction on Group 1 error rate.
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Figure G1-2. Equality of covariance matrices by group separation interaction on Group 1 error

rate.
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Figure G1-3. Method by population proportion interaction on Group 1 error rate.
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Figure G1-4. Method by equality of covariance matrices interaction on Group 1 error rate.
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Figure G1-5. Method by group separation interaction on Group 1 error rate.
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Figure G1-6. Method by sample representativeness interaction on Group 1 error rate.
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Figure G1-7. Method by population proportion by group separation interaction on Group 1 error

rate.
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Figure G1-8. Method by equality of covariance matrices by group separation interaction on

Group 1 error rate.
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Figure G2-1. Population proportion by equality of covariance matrices interaction on Group 2

erTor rate.

Mean error rate

Mean error rate

Data Pattern |

—+— 14
-- & --Equal
— -k —4:1
—o— 14
--l--EQUaI
— & —4:1

04
0.3 .
// b ]
0.2 - A
P .
T A
0.1 | CEEERRE R - -
A .. L.
~--K
0 T T . T T
0.90 0.75 0.50
Population proportion
Data Pattern Il
0.4 -
®
0.3 _-'m
7 .
Pt A
0.2 1 ol .
_,_f_’.-—-:z’ - -
0.1 £ ol
0 T . T T .
0.90 0.75 0.50

Population proportion

i70



170

Figure G2-2. Population proportion by group separation interaction on Group 2 error rate.
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Figure G2-3. Population proportion by sample representativeness interaction on Group 2 error

rate.
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Figure G2-4. Method by population proportion interaction on Group 2 error rate.
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Figure G2-5. Method by equality of covariance matrices interaction on Group 2 error rate.
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Figure G2-6. Method by group separation interaction on Group 2 error rate.
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Figure G2-7. Method by sample representativeness interaction on Group 2 error rate.
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Figure G2-8. Method by population proportion by equality of covariance matrices interaction on

Group 2 error rate.
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Figure G2-9. Method by population proportion by group separation interaction on Group 2 error

rate.
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Figure G2-10. Method by population proportion by sample representativeness interaction on

Group 2 error rate.
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Figure G2-11. Method by equality of covariance matrices by group separation interaction on

Group 2 error rate.
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Figure G2-12. Method by group separation by sample representativeness interaction on Group 2

error rate.
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Figure T-1. Population proportion by group separation interaction on Total error rate. |
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Figure T-2. Method by population proportion interaction on Total error rate.
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Figure T-3. Method by equality of covariance matrices interaction on Total error rate.
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Figure T-4. Method by group separation interaction on Total error rate.
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Figure T-5. Method by population proportion by group separation interaction on Total error rate.
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