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MATHEMATICAL EPISTEMOLOGIES AT WORK
Richard Noss
School of Mathematics, Science and Technology
Institute of Education, University of London

In this paper, I draw together a corpus of findings derived from two sources: studies
of students using computers to learn mathematics, and research into the use of
mathematics in professional practice. Using this as a basis, I map some elements of
a theoretical framework for understanding the nature of mathematical knowledge in
use, and how it is conceptualised by practitioners. I then draw some provisional
implications for a set of design principles for activity systems aimed at fostering
mathematical learning. I propose a central role for digital technologies, both in
assisting understanding of the genetic construction of knowledge, and in developing
learning environments that instantiate the design principles.

In mathematical terms, there is a celebrated tension between forms of discourse and
cognition that are delicately tuned to cultural practices, and those that are focused
explicitly on mathematics per se, recognisable by its symbolic forms and
epistemological structures. This tension parallels (and is perhaps derived from) the
epistemological duality of mathematical thought as both tool and object,
simultaneously as a component of pragmatic activity and theoretical endeavour.

The preparation of this paper has afforded an opportunity to reflect retrospectively
on this duality, and on a corpus of research in which I and my colleagues have been
involved, spanning a variety of sub-fields and a couple of decades. I hope it is not
too fanciful to impose upon this work a narrative that was not necessarily evident to
any of us while we were engaged upon it. Here is a first outline of that narrative.

I will begin with a pervasive finding that arises from investigations with (mainly
young) people expressing mathematical ideas with computers. These studies led to a
series of thoughts concerning the generation of mathematical meanings that nagged
away until the early nineteen nineties, when Celia Hoyles and myself began to
formulate a theoretical framework for describing the phenomena we encountered.
Shortly after this, we had the opportunity to work in a variety of settings with the
"broad common aim of elaborating the mathematics used in working practices. I will
illustrate how these studies began to throw light on some fundamental questions,
particularly concerning the nature of mathematical practices, and encouraged us to
investigate further the problem of mathematical meaning from both cognitive and
sociocultural perspectives. This effort has led to some general principles about the
design of mathematical activity systems for learning, and in particular, the rather
special role that digital technologies may play within them. Thus, perhaps fittingly
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but probably over-ambitiously, I will conclude where I began, with the assertion that
digital technologies can play an unusually powerful role in helping us to understand
and reshape the nature of mathematical sense-making.

Before I start, I would like to make two general observations. The first concerns my
wish to consider both cognitive and social dimensions. To steer a course between
these two approaches is not easy, not least because proponents of each often ignore
the work of the other, or denounce as mere eclecticism any attempt at synthesis
(there are important exceptions to this: see for example, Cobb and Bowers 1999;
Kieran, Foreman & Sfard, 2002). One organising idea for thinking about this
apparent dichotomy has been suggested by Andy diSessa (personal communication)
who distinguishes between phenomena that are distally and proximally social. Much
of what I have to say comes from a recognition that many phenomena concerned
with mathematical meaning are proximally social, in that they manifestly involve
social and cultural relations between people and within communities. But I also
recognise that many facets of human thought are only distally social; while it is true
that what I think, and the techniques I use for thinking and communicating are
shaped both socially and culturally, I think in ways that are structured by my
personal cognitive history at least as strongly as by the socio-cultural relationships in
which I find myself embedded. No attempt to understand how mathematics is learned
by human beings can afford to ignore this, essentially cognitive element, any more
than it can afford to ignore the social and cultural relations in which cognitive
activity is embedded. Thus, in what follows I hope to illustrate, not only that such a
perspective need not necessarily lapse into eclecticism, but rather that the
coordination of the two approaches provides a possible and even necessary
methodological stance.

The second observation concerns the title of this paper. I recognise that it is bad form
to tell a joke and then explain it. Forgive me then, if I explain the double entendre in
the title. I want to talk about mathematical epistemology as it is found in work, to
understand how mathematics is used, and how it is conceived by participants in their
cultural practices. But I also want to talk about mathematical epistemology as a
crucial element at work in learning situations; how we, as mathematics education
researchers can develop, not just new approaches to teaching, but new mathematical
epistemologies, that is more learnable and, at least for all but the few, more
expressive.

INSIGHTS FROM OBSERVATIONS OF ACTIVITIES WITH COMPUTERS

Over some two decades, Celia Hoyles and I have engaged in studies of children and
adults interacting with computational systems designed to afford mathematical
expression. Throughout this time, we have noticed an interesting phenomenon,
which we can simplistically characterise as follows: learners are often able to express
themselves in terms that might be considered abstract, yet which seem to be bound
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tightly into the tools and symbols of the computational world. Learners can, in other
words, say and do things with suitably-designed systems that they may be unable to
say or do without them, and they can often do so in ways that are interestingly
different from conventional means.

I would like to elaborate two points. The first centres on the ways that learners use
technology to shape ‘their mathematical expression, how some elements of the
invariant relationships between the given objects are identified and related within the .
symbolic discourse of the environment. In the sense that these invariant relationships
remain articulated only within activity and interaction using the notational system of
the virtual world, they might not be said to constitute a formal abstraction. But to the
extent that they become transformed into something coherent, reusable and general,
it does make sense to consider such activity as involving an abstraction of some kind. -
For further elaboration of this argument, in the context of stochastic thinking, see
Pratt, 1998; Pratt & Noss, in press: for a study in relation to students'
conceptualisations of non-euclidean geometry from a similar perspective, see
Stevenson, 1996; Stevenson & Noss, 1999: and for a recent study on 12 year-olds'
understandings of symmetry and reflection, see Healy, 2002.

The second aspect is related to the first, and concerns differential performance. Put
bluntly, children who may be apparently unable to express any relationships about
their figures with pencil and paper, are able to express them quite adequately (and
sometimes quite elegantly) with the computer.

Reports of differential performance depending on context are commonplace. There
are consistent and widely-reported findings concerning the differential performance
between adults carrying out tasks in everyday settings, and when given written
assessments. For example Scribner’s (1985) study of the dairy industry, Lave,
Murtaugh and de la Rocha’s (1988) investigation of weight-watchers, and the
seminal work of Saxe (1991), and Nunes, Schliemann and Carraher (1993) on street
vendors, have all shown convincingly that people who are error-prone in tests are
mostly error-free in familiar practical contexts, and that there is a major disjuncture
between the strategies used in the two settings. More generally, and especially since
the work of Jean Lave and Etienne Wenger (1991) and others in broader
anthropological contexts, we may more or less take for granted the situated view of
knowledge genesis. A key insight is that people construct solutions in the course of
.action, and that these solutions are structured by activity. In the supermarket, for
example, Lave illustrates how people avoid doing what might be classified as school
mathematics not because it is too hard, but because the practice of supermarket
shopping carries with it its own discourse, and its own mechanisms for meaning-
making. One point that is often missed, however, is that we cannot conclude that
there is nothing that passes for mathematical in shoppers’ activities. The point is that
when shoppers do use mathematics, it is supermarket mathematics, a mathematics
made possible through the resources of the setting.
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Since these studies, the situated cognition perspective has become ubiquitous. In its
extreme version, it states that 'every cognitive act must be viewed as a specific
response to a specific set of circumstances' (Resnick, 1991, p. 2). However, such
arguments — compelling as they are — face researchers of mathematical learning with
a number of seemingly intractable difficulties. If mathematics cannot be regarded as
a decontextualised resource to be learned and then mapped onto settings, if it can
only be defined in relation to specific situations, then we seem to have come close to
distilling the mathematical essence out of mathematical thought.

As a way out of this cul-de-sac, Hoyles and myself proposed, some ten or so years
ago, the idea of situated abstraction (a first attempt is in Hoyles & Noss, 1992) as a
tool to aid in understanding how learners construct mathematical ideas by drawing
on the material and discursive components of a particular setting (other attempts
have been made by Cheng and Holyoak, 1985; Cheng, Holyoak, Nesbitt and Oliver,
1986; Nunes et al., 1993). Situated abstraction seeks to describe metaphorically how
a conceptualisation of mathematical knowledge can be both situated and abstract. It
may be finely tuned to its constructive genesis — how it is learned, how it is discussed
and communicated — and to its use in a cultural practice, yet can simultaneously
retain mathematical invariants abstracted within that community of practice.

The idea of abstraction as a conceptualisation or a piece of knowledge lying in a
separate realm from action, tools, language or indeed from any external referential
sign system, is important from a perspective of mathematical discourse, since
mathematical discourse is normally conceived as self-contained: it forms part of a
system that has its own objects and its own rules for transforming them (see Piaget,
2000). This characteristic of formal mathematical abstraction is central to its utility:
situated abstraction does not seek to challenge that utility, but questions whether
mathematical abstractions can ever be fully separated from the context of their
construction or application (see also Wilensky, 1991). Our broader hope is that the
idea of situated abstraction will contribute to a theory of how mathematical
knowledge is used or ‘transferred’ across settings (for other contributions to this
emerging theory, see for example, Carraher & Schliemann, 2002; Sfard, 2002;
Nemirovsky, in press; Hershkowitz, Schwarz and Dreyfus, 2001).

At the point in which Hoyles and myself began to formulate these ideas, they were
essentially hypotheses, based only on data derived from children and adults engaged
in computationally expressive media. Fortunately, we were subsequently able to test
these ideas in studies of mathematics in work, affording the opportunity to focus on
the situativity of mathematical meanings by investigating their use rather than their
genesis.

INTO THE WORKPLACE

While it is clear that persdns studied in their communities yield rich and useful data
which describes what they do, it remains desirable to locate and elucidate the
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mathematical knowledge that they know. To achieve this aim, our group in London
has employed ethnographic and interview data to capture meanings created in situ
and the dialectical relationship of these meanings with mathematical expression on
the one hand and professional expertise on the other. This has involved Celia Hoyles,
Stefano Pozzi and myself in a series of studies with investment bank employees,
paediatric nurses and commercial pilots; more recently, Phillip Kent and myself have
been working with a group of structural engineers. The professional groups differ in
substantial ways, but there are similarities: in the explicitness of their mathematical
training, and in their intolerance — to a greater or lesser extent — of errors. We have
developed a map of mathematical workplace activities comprised of documentary
analysis, interviews with senior staff in each profession, general and task-based
interviews with practitioner volunteers, and ethnographic observation of these
subjects in the workplace.

I will now try to summarise some of the outcomes of this research. I will do so by
sketching five vignettes, chosen to illustrate the outline of the theoretical position I
wish to advance in the form of a set of provisional 'results’. The text of each vignette
is based on the relevant co-authored papers that are referenced within it.

Vignette 1: The epistemological fragmentation of the workplace. The first
vignette is drawn from a study conducted with a group of bank employees, part of
which attempted better to understand the bankers' ways of thinking about
quantitative data (see Noss and Hoyles, 1996a).

In responding to tasks involving the interpretation of functional relationships
represented as graphs, the responses of the bank employees were surprisingly
uniform. Most identified graphs as a visual display of numbers, as a pictorial
representation of underlying data rather than as a functional relationship, and as an
indication of a trend in data that allowed prediction. Where we saw graphs as a
medium for expressing relationships (e.g. between quantity and time) bankers saw a
display of data. ‘

The origins of this epistemological diversity are almost certainly to be found in the
tools of the system in which the bankers operate. On each employee’s desk were
several computers. Some, the traders and the operations staff, had three or four. On
all but a very few screens, there were columns of data, graphs, and more columns of
data: in every sense, graphs were pictures of numbers, rather than graphical
“representations of a functional relationship.

This epistemological standpoint with respect to graphical representations can, it
seems, be thought of as the graphical face of a fragmented knowledge structure that
characterises the practice of investment banking. We encountered departments
specialising in the finest detail on one financial instrument, sharing a common wall
but no common language with another — essentially similar — department. Of course,
similarity is in the eyes of the beholder: while we might view, say, Nominal
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Certificates of Deposit and Treasury Bills as flavours of similar financial instruments
sharing the same (or nearly the same) mathematical structure, the bankers saw finely-
tuned pragmatic knowledge and strategies, and a discourse that served to reinforce
the differences between them.

Result 1: There is an epistemological fragmentation of the knowledge
structure of the workplace that shapes, and is shaped by, the discourse of
the working practice. Strategies are finely tuned to the pragmatic demands
of work activities, with little tendency to strive for a theoretical orientation
involving generality or appreciation of unifying models.

Vignette 2: The role of artefacts and tools. The idea that people think and act
within sociocultural contexts which are mediated by cultural tools is now
commonplace. The work of Vygotsky, Luria and Leont'ev, indeed the entire corpus
of work on activity theory, offers compelling evidence that individual and social acts
of problem solving are contingent upon structuring resources, involving a range of
artefacts such as notational systems, physical and computational tools, and work
protocols (Gagliardi 1990).

Workplace settings are, naturally enough, littered with artefacts. These artefacts are,
for the most part, a simple expression of work protocols, so that in routine use — and
the overwhelming majority of time in working practices is spent on routine — the
structure of the artefact is hidden from view. For example, in one study on a hospital
ward (Pozzi, Noss & Hoyles, 1998), we found that a seemingly straightforward
artefact like a fluid balance chart, contained within it the crystallised activity
(Leont’ev, 1978; see also, Wertsch 1985) of the hospital community, shaping in
complex — but unnoticed — ways the actions and discourse of those using it. A central
part of this crystallised activity was a mathematical model of essential variables and
relationships embedded in the activity: evidence for both the complexity and the
invisibility of this mathematical model was gained by observing the ambiguity and
uncertainty felt by a newcomer to the paediatric ward, as well as the extreme
difficulty faced by the old-timers in communicating to her the structure that they had
come to take for granted.

The arrival of the newcomer on the ward served to trigger a 'breakdown' or decision
point within routine practice, a situation in which the models underpinning artefacts
and the representational infrastructures on which their use depends, rise to the
-surface, and become open for inspection and negotiation by participants (and
observation by researchers). That this model is normally hidden should cause no
surprise: we have already noted that the purpose of an artefact is to facilitate the
pragmatic activities of the workplace, not to learn mathematics or to gain insight into
underlying models. Nevertheless, when breakdowns do occur, invisible relationships
buried in artefacts do not suffice and there is a need for the community to understand
at least some of the workings of the models, to examine their strengths and
limitations, and to scrutinise the results of the mathematical labour'congealed within
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them (see Hall, 1998, for a similar finding). At least in breakdown situations, we are
abruptly made aware of circumstances that require more than mere procedural
routine and the learning of work protocols, but systemic interpretation — the
individual is required to make sense of what she does within the broader socio-
technical system.

Result 2: Tools and artefacts shape activities and thought in ways that only
become visible at times of breakdowns to routine. In disruptions to routine,
individuals need to develop a broader interpretative view of the model that
underpins their routine practice.

Vignette 3: The anchoring of mathematical meanings in practice. It will help to
focus on a specific knowledge domain: I will turn to one of the most widely-
researched topics in the field, ratio and proportion. Researchers on proportional
reasoning in school and the workplace have distinguished two ubiquitous classes of
strategies for making proportional calculations, functional (across measure) and
scalar (within measure): see Vergnaud (1983) for a thorough analysis. Nunes,
Schliemann and Carraher (1993), have suggested that scalar strategies offer a
mechanism for holding on to situational meaning by keeping only one measure in
view. By way of contrast, functional strategies tend to be seen as semantically sparse
manipulations of numerical quantities per se. It appears that this difference is the
reason why people tend to prefer scalar strategies, even when it results in a more
computationally awkward calculation, and is the crux of the counterposition in the
literature of scalar and functional approaches, in that the privileging of the former
has arisen from the apparent necessity in the latter to relinquish meaning in the form
of a situational referent. Nunes, Schleimman and Carraher concluded that scalar
approaches are drawn from experiences in everyday situations, are more flexible and
generalisable than easily forgotten algorithmic approaches, and, most relevant here,
allow people to preserve the meaning of the situation by keeping variables separate
and not calculating across measures.

Let us see how robust this finding is in the case of a group of paediatric nurses who
are similarly expert in their field, but who have had years of school mathematical
education as well as professional training. During ethnographic observations and
interviews, we noticed that while all the nurses' drug calculations were carried out
correctly (unsurprisingly, in written tests, nurses' responses were highly error-prone),
.the strategies adopted were varied and exhibited a far richer complexity than would
be suggested either from our interviews or from the existing nursing literature. Of 30
episodes related to drug administration (out of a total of 250) we collected during 80
hours of observation, 26 combinations of ratios were observed with a variety of
drugs, packaging and prescriptions. Of these, only four involved the nursing rule (in
which all were endlessly drilled during training), while equal numbers chose scalar
and functional strategies. Moreover, the nurses often opted for strategies that would,
in the literature, be described as lacking in meaning.
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Our interpretation of these findings is that the nurses’ knowledge of concentration,
that is their appreciation of the invariance of the relationship between mass and
volume as evidenced in their drug calculations, was anchored in an intimate
knowledge of the drug itself, as well as in the properties of familiar packaging
constraints of prescribed doses. The knowledge was mutually constituted and
expressed as both mathematical relation and culturally-shared situational noise — the
same kind of knowledge that we encountered earlier, in the context of computer
worlds and which we called situated abstraction.

Result 3: Knowledge is mutually constituted by a coordination produced in
activity of mathematical knowledge and situational noise to form situated
abstractions.

Vignette 4: The qualitative restructuring of mathematical knowledge in activity.
In a recent study, Phillip Kent and myself have been investigating the ways in which
mathematical knowledge is conceived and deployed with employees of a large
London-based -engineering firm (see Kent & Noss, 2001; Kent & Noss, 2002). We
have encountered, even with this mathematically educated group, a ubiquitous view
that the majority of structural engineers do not "use mathematics”" of any
sophistication in their professional careers. So, while all believed that it was
important for graduate engineers to have an appreciation for advanced mathematics,
it is something they would rarely be expected to use:

Once you’ve left university you don’t use the maths you learnt there, ‘squared’ or ‘cubed’
is the most complex thing you do. For the vast majority of the engineers in this firm, an
awful lot of the mathematics they were taught, I won’t say learnt, doesn’t surface again.

I think that this particular engineer's description of mathematics as not "surfacing" is
a fortuitous one. We have seen in the case of the nurses, that mathematical
knowledge becomes fused with professional knowledge, as situated abstraction, not
as abstraction in its pure form. But it is, particularly for mathematically sophisticated
groups such as engineers, this pure form that is readily recognisable as mathematics.
Our engineer is right that mathematics does not surface; or rather, that it seldom
surfaces in the form it was learned and taught. It has been transformed into
something else, something at once more usable, more embedded, more noisy. Only
the vestigial traces of the college mathematics taught to engineers remains in the
mathematics that they actually use in activity.

"The transformation in the character of mathematics appears to be not simply a
quantitative one, nor merely a replacement of mathematical activity by professional
expertise and experience. It represents a qualitative, epistemological and cognitive
restructuring of the mathematics as it becomes ‘embedded’ in engineering experti se'.
I claim that engineers' conceptualisations of this restructured mathematical
knowledge are legitimately considered as situated abstractions.
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1 will illustrate with an example. The type of qualitative thinking that characterises
the use of ‘feel’ in the engineering design process is exemplified by the concept of
load path, the notion that the loads acting on a structure have to “flow down into the
ground” like a kind of fluid. It is a powerful, very physical concept, and extremely
useful because it provides a way of thinking about a structure before any analysis is
done, allowing judgements to be made about the validity of quantitative analysis of
the structure.

Formal mathematical analysis, on the other hand, is based on the assumption of static
equilibrium, which assumes that nothing is moving in a stable structure, an
assumption that appears to conflict with the load path concept’. Nevertheless, load
path has become a situated abstraction of stability criteria: it allows predictions of
behaviour that emerge from fusing together the actual properties of the material (e.g.
steel beams) with the associated (mathematically-abstracted) forces.

The relevant point is this: engineering discourse employs, in at least one important
way, a kind of knowledge which is at once about mathematical relations and about
substance. The idea of flow makes no sense without something to flow through — the
beams and struts of everyday engineering practice. Mathematical knowledge has
been transformed to the extent that even those engaged in it do not necessarily
recognise its existence. This poses sharply two questions: how does the formally-
learned knowledge (e.g. the engineers' knowledge of Newton's laws, or the nurses'
knowledge of the nurses' rule) become transformed both cognitively and culturally,
into something new and more functional within professional practice and what
connection, if any, is maintained between them?

I have no data on these questions. For the moment, the key issue concerns the
transformation of knowledge, the creation of new epistemologies as a characteristic
part of professional expertise. Here, at least, is the explanation of the apparent
invisibility of mathematical activity. Here too is a broader, more culturally oriented
perspective on the hitherto individualistic notion of situated abstraction that
recognises the individual's embedding in an ambient social and cultural space.

Result 4: As mathematical knowledge is embedded in new settings and
activities, it undergoes an epistemological and cognitive transformation.
What is consciously thought of as mathematics by practitioners appears to
be only the visible component of a larger, transformed body of
mathematics in use that takes the form of situated abstractions.

Vignette 5: The situativity of abstraction. The final vignette will deal with the
most problematic (and so far, under-researched) issue. The challenge is to test the
situativity of knowledge, to assess the extent to which knowledge in the form of
situated abstraction 'transfers' to new situations (or better still, to find a convincing
alternative metaphor for the notion of transfer itself).
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In the study of nurses, we undertook a series of task-based interviews, in which the
nurses whom we had followed on the ward were faced with situations that were
progressively removed from the practices we had observed, yet which retained
elements of familiar situations for them (see Noss, Hoyles & Pozzi, in press). We
found that when the nurses were faced by a close simulation of their practice, they
displayed similar strategies to those identified in the ethnographic studies, together
with a strong sense of the invariant relationship of mass and volume — an abstraction.
In these cases, the nurses’ reasoning was supported by a synergy of their existing
(school) mathematical knowledge and their practical experience. By contrast, an
analysis of the nurses' responses to a less familiar scenario, derived from a
breakdown observed on the ward, showed that when the texture of nursing practice
became unavailable for any reason, the mutually constitutive elements of
professional and mathematical knowledge became disconnected and the situatedness
of their conceptualisation was apparent.

Result 5 (conjecture): The noise of a situation forms a core part of a
situated abstraction. When it can be called upon in a new situation (and
only then?) the mathematical knowledge can be ‘transferred’.

DESIGNING FOR CHANGE

I promised at the outset to draw the implications of the work studies, and to draw
some general principles about the design of mathematical practices for learning. The
hypothesis is that the ways in which people reconstruct knowledge for use in work is
spontaneous, in the sense of deriving from participation in the practices of the
community, and, for the most part, not formally taught within the practice. That
being so, we might further hypothesise that — given the effectiveness of this kind of
knowledge — we might attempt to design and construct activity systems for learning -
that harness the features of the workplace, at least those that we perceive as
constitutive of learning. For reasons of space, I can only schematically summarise
the findings and outline some challenges for the design of learning (and learnable)
environments that flow from them: see Table 1.
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If... we should design to...

1 | knowledge is fragmented and demonstrate the power of
strategies pragmatic invariants

2a | knowledge is pervasively supply lots of Really Useful

' structured by artefacts and their | Things

underlying models

2b | people need to understand the make things that people can see
models inside

3 | situated abstractions are maximise situational noise in
mutually constituted by culturally-relevant ways
mathematical knowledge &
situational noise

4 | mathematical knowledge is respect the mathematical
transformed when it structures epistemologies of new
new activities representational forms

5 | situated abstractions depend on | afford construction of new
noise for 'transfer’ situations from old ones

Table 1: some schematic challenges of the mathematics in work findings for
the design of learnable environments

In our book Windows on Mathematical Meanings: Learning, Cultures and
Computers (Noss & Hoyles, 1996b), Celia Hoyles and myself argue generally that
constructing runnable models in the form of computer programs’, affords a
compelling example of a learnable mathematics, opening unique opportunities for
students to interact with a formal system. In modifying or constructing a model of a
system, a student must articulate rigorously its salient relationships, describing
mathematical structures in a language that can be communicated, extended, and
become the subject of reflection.

There are many advocates of a similar perspective (see Hoyles & Noss, in press, for a
review). In a recent study, for example, Sherin (2001) proposes that programming-
based representations might be easier for students to understand physics than
equation-based representations, and that programming-based representations might
privilege a somewhat different “intuitive vocabulary”, i.e. might tap into different
things that people ‘just know'. I would add a third point: that programming affords a
rich set of situated abstractions of physical relationships that I think correspond to
what he calls a physics of processes and causation (as opposed to algebra-physics
.which he characterises as a physics of balance and equilibrium).

It is not important whether we accept Sherin's conjecture or not: in' Windows we refer
to LogoMathematics or Programming Mathematics to emphasise that it is a different
kind of mathematics that is at issue (this is an instance of the fifth design challenge).
What is important is that we recognise that the switch from one representational form
to another, carries with it the possibility of a switch simultaneously in epistemology
and learnability.
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I would like to add one more crucial element to the consideration of design
principles for learning environments: the importance of mathematical models, a
proximally social issue that I briefly touched on in Vignette 2. I believe the
knowledge economy has massively broadened the number of people who need to
understand the system they are using: elsewhere (Noss, 1998; 2002) I elaborate a
case that competence in constructing, interpreting and critiquing models has become
a core part of social and professional life in the twenty-first century. Sharing,
critiquing and representing models is massively under-represented in mathematics
curricula, still wedded to the epistemological and pedagogical requisites of the
nineteenth century rather than transforming both in the face of the demands, and
computational possibilities, of the twenty-first (see Kaput, Hoyles & Noss, 2002).

I contend that manipulating, modifying, constructing and sharing computationally
instantiated models of mathematical systems affords the best chance we have for
designing a more learnable mathematics, and of realising the five challenges outlined
in the previous section. We have recently completed a study aimed at instantiating
this approach in the Playground Project’, which has involved a group of researchers
based in four European countries who have developed a system with which young
children, aged less than 8 years old, can play, share, construct and rebuild computer
games. Our goal has been to put children in the role of game designers and game
programmers, rather than merely consumers of games programmed by adults.

I can, for limitations of space, only sketch an example (see Noss, 2002 for a full
description). Mitchell is an eight year-old boy in an inner-city school who has been
helping to design and debug the Playground system for about a year. He is playing a
game where he controls a character called ‘dusty’, who shoots out flowers every time
the force joystick trigger is pressed. Mitchell collects points by hitting an animated
target moving vertically up the lefi-hand edge of the screen. He finds it very easy to
play and achieve high scores since he can move his character as close to the target as
- he pleases.

Mitchell decides that the game would be more fun if it was competitive, so at his
request, Miki, the researcher, adds another player character, this one controlled by
the mouse. It is at this point that Mitchell plays a trick: demanding that she avert her
eyes, he removes a piece of Miki's program, effectively disabling her mouse by
restricting it only to vertical movements, while he has two-dimensional control and
_can get as close as he likes to the target! Mitchell made use of a surprising and
difficult fact: that two-dimensional motion can be instantiated as the vector sum of
horizontal and vertical components.

Think for a moment of the knowledge congealed in the innocent phrase "vector
sum". Concealed in this phrase, is a taken-for-granted representational infrastructure
that includes the definition of a vector, the algebraic system for combining two or
more vectors, and a range of properties (e.g. scalar and vector product) that give
meaning to the very idea of what a vector is and why it is a conceptually powerful
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generalisation of a real number. This structure is relatively complex, and is
postponed with good reason until the latter stages of compulsory education, if it is
taught at all. Yet the complexity is in the infrastructure, not the idea: the latter is, as
Mitchell showed, rather intuitive. The point is that what is intuitive is hugely
contingent on the representational infrastructure with which the intuition is
expressed. In Mitchell's world, the addition of vectors is instantiated not as an
algebraic relation but as a natural property of the representational system. The
(object-oriented) structures of the system translated, more or less directly, into what
kinds of things Mitchell could take for granted as "just so", what meanings he could
derive from them, and most importantly, the ways in which he could make the ideas
work for him in achieving his goal. In short, the change in representational
infrastructure transformed not only the learnability of the mathematical knowledge,
but the mathematical epistemology af work in the activity system.

CONCLUDING REMARKS

This last point brings me to the intention I flagged at the outset, to conclude with the
notion of epistemology at rather than in work. What is the connection between the
two? A key link is that the analysis of mathematics in work concerns the
transformation of knowledge as it is recontextualized across settings. We have seen
how a person's mathematical knowledge is not invariant across time and space; it is
transformed into different guises, different epistemologies, more or less visible as
mathematics. This transformation seems much more powerful than the traditional
notion of "application" or "use" that is often employed as a metaphor to describe this
process. If formally-taught mathematical knowledge is transformed in this way, it is
at least possible that reciprocal transformations may, in the future, take place for
Mitchell, and that he may come to recontextualise his piece of knowledge about
vector addition in (for him) novel ways.

More generally, the sketch I have provided offers a further point of connection
between cognitive and cultural perspectives. In imagining how mathematical
structures can be externalised and manipulated within an appropriate symbolic or
linguistic framework, it suggests how abstractions constructed within concrete
situations may compensate for their lack of universality by their gain in
expressiveness. When general relationships can be expressed, they can be explored
and become familiar. In the process, the links with knowledge of lived-in-cultures
can be maintained, rather than severed in the quest for ultimate pinnacles of
abstraction.

Mitchell was immersed in a world that was, I think, every bit as concrete and real to
him as the load path on the components of a bridge are to an engineer. And, like his
professional counterparts, Mitchell was engaged in an activity that researchers in the
field of mathematical learning may recognise as having a mathematical component,
but which were to him part of the ecological system — the totality of relationships
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between himself and the environment, and the ways in which these were expressed
and communicated.

That the Playground and mathematical epistemologies run side-by-side should not be
a matter of surprise: there is, after all, no single way in which humans can
conceptualise (mathematically or otherwise) their environment, even though some
are socially and historically privileged within a given culture. Official, symbolic
mathematics is privileged in just this way; and there are good reasons for this. But
the compactness and elegance of mathematical expression does not necessarily make
it equally functional for learning, and if learning is our prior goal, we would do well
to think about new epistemological frameworks in which to embed the mathematics
we wish our students to understand. New epistemologies mean new intuitions, new
things to be built with them, and new means for combining and reconstructing them.
They involve new sets of situated abstractions that are both functional and powerful.
I think this is the major challenge for the design of didactical environments, to create
new systems which might, I think, be justifiably described as new mathematical .
epistemologies at work.
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NOTES

! Michele Artigue (in press) has made a related point deriving from the work of Yves Chevallard.

2 diSessa (1980) makes a compelling case that a view of force as momentum flow may more easily
engage and refine (rather than deny) students' existing intuitions, and therefore present a more
learnable physics than that represented by the familiar F = maq.

3 Constructing a computer program no longer necessarily involves writing lines of text.

4 The Playground project was a consortium across four countries, directed by myself and Celia
Hoyles. The London team also comprised (at various times) Ross Adamson, Miki Grahame, Sarah
Lowe and Dave Pratt. Ken Kahn, the author of ToonTalk, was a consultant to the project.
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