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Certification and licensure tests provide a means of credentialing individuals for

various occupations and professions. Federal, state, or local governments may

mandate licensure testing in various professions to verify that the person granted

the license has a sufficient degree of the required knowledge and skills to

effectively and safely perform their occupational responsibilities. Examples

include physicians, nurses, and airline pilots. Similarly, certification tests are

used by many non-government-regulated professions to credential individuals

as having attained some designated level of mastery on a set of competencies.

The competencies may represent broad levels of knowledge and skills or specific

skills (e.g., successfully using tax preparation software). Some certification

examinations assess the minimum competencies required by entry-level

professionals. Other examinations assess "accomplished" or "excellent"

sustained performance that [usually] may only be attained by the most

experienced and highly skilled professionals (e.g., master teachers). In the end, a

candidate either passes or fails at some prescribed level of competence.

Some argue that candidates ought to be satisfied just to know whether

they passed or failed the credentialing test. In fact, a recurring debate among

professional examination policy groups is whether or not scores should even be

reported. So, why do we need scores on credentialing examinations? Sometimes,

a picture is better than words. Figure 1 provides a whimsical view of a score

report without any scores. It takes only a small amount of imagination to notice
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the similarities to sweepstakes announcements printed inside candy wrappers or

under soda water bottle caps..."[Pay your money and] please try again! ".

[INSERT FIGURE 1 ABOUT HERE]

There are, of course, a number of positive reasons to report scores,

especially diagnostic scores. For example, failing candidates almost always want

to know how they did on particular parts of the test especially where they did

most poorly to help them study for a retest. In addition, faculty at colleges or

universities that have professional training programs sometimes use individual

or aggregate test results from their students to gauge the success of their

curricula and make necessary modificationsl.

At the same time, score reporting for certification and licensure tests can

be technically complicated and costly. For example, small candidate samples

encountered in some professions make it difficult to estimate stable item and

score statistics, especially for some of the "information hungry" IRT models used

to calibrate and equate these tests. Another complication is that many

professions are comprised of homogeneous, highly proficient examinee

populations that provide only limited "person information" for item calibration

purposes. Finally, organizations need to consider the costs of item development

to support score reporting. That is, there are incremental costs associated with

building and maintaining item banks that would otherwise be designed strictly

1Some testing organizations have arrangements with professional schools to report anonymous
aggregate results.
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to maximize score precision in the region of the pass/fail cut score. The latter

point is an especially germane issue for diagnostic score reporting. Item banks

that are optimally designed for making pass/fail decisions tend to be rather

homogeneous in terms of item difficulty and may lack adequate test information

for score reporting purposes away from the cut score. Adaptive strategies using

multistage tests can help (Luecht and Nungester, 1998), but the item banks,

themselves, can severely limit the degree of adaptation possible (Xing &

Hambleton, 2001; Luecht, 2003).

Is there an obligation to report diagnostic scores for credentialing

examinations? It depends. Unless required by state or local governmental

professional licensing authorities or mandated by the courts there is no legal

obligation for a testing organization to report diagnostic information on a

credentialing examination. In fact, the Standards for Educational and Psychological

Testing (AERA, APA, NCME, 1999) seem to avoid taking any strong position

about obligations of certification and licensure testing authorities to report

diagnostic scores2. Nonetheless, many organizations either in response to

pressure from influential constituents, or, out of a sense of ethical or moral

obligationprovide some level of diagnostic feedback information to candidates.

Given this general context for credentialing examinations, this paper

discusses two topics related to diagnostic score reporting for credentialing

2 If subscores are reported, the Standards do recommend reporting reliability and validity
evidence.



examinations. The first, rather technical topic deals with various ways to

compute subscores for credentialing examinations. The second topic addresses

some pertinent factors to consider when presenting diagnostic results. Both

topics are equally relevant.

The phrase "diagnostic" implies useful feedback information for detecting

and evaluating an examinee's strengths and weaknesses. However, there are

two important aspects of "information": (1) the presentation form of data for some

explicit informational purpose here to provide useful feedback to examinees

and (2) the nature of the data to be presented. In testing contexts, all information

provided to candidates is expected to be reliable and valid. We certainly do not

want examinees pursuing improper remedial actions based up faulty diagnostic

information.

What is sometimes overlooked is that both the data and its presentation

need to meet acceptable quality standards. For example, producing an elegant

line graphic to display a multivariate profile of some number of unreliable

subscores is clearly not a recommended psychometric practice. Conversely,

presenting highly reliable and valid subscores in a poorly designed graphic

display that distorts the meaning of the data is not recommended. Effective

presentation of data is a matter of displaying perceptible information that

accurately, clearly and efficiently conveys a particular meaning. Graphics, tables,

and verbal descriptions can all present the same data, but each may reveal

different information that conveys unique meanings (Tufte, 2001; Wainer &



Thissen, 1981 ). Ultimately, accurate and valid performance-based data becomes

diagnostic information when presented in a form that facilitates appropriate

understanding by the candidates (or other authorized users of the information).

A Data Source for Exploration and Discussion

It is helpful to have a sample data set of subscores to illustrate some issues

discussed further on in this paper. This example set of subscores was derived

from a certification test that provides pass/fail decisions on multiple sections;

although the data set is based on only one section that covers four broad

professional competency areas. These are simply called Competency Areas #1,

#2, #3, and #4.

Figure 2 shows the relative test information curves for each of the four

competency areas (the dashed curves). The vertical solid line is the approximate

cut score on this test. Each of the test information curves therefore peaks near to

that cut score. An assumed cumulative normal ability distribution is also

displayed (the solid curve). The test is obviously most informative for examinees

nearer to the cut score and rapidly becomes less informative toward the tails of

the proficiency distribution.

[INSERT FIGURE 2 ABOUT HERE]

This examination section had seventy-four items calibrated from a recent

large-scale administration of the test, using the three parameter logistic (3PL) IRT

model. The IRT item statistics are summarized in Table 1, by competency area.
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There are noticeable differences in the average discrimination parameters as well

as in the item difficulties. The differences in item counts are also relevant insofar

as affecting the reliability of the individual subscores.

[INSERT TABLE 1 ABOUT HERE]

The 3PL item statistics from the operational calibration were treated as

known parameters and integrated into a four-factor, oblique simple-structure

multidimensional IRT (MIRT) model. The MIRT model was to generate response

data for 2000 simulated examinees. Each item was forced to load on only one of

the four competency traits. A vector of four trait scores was sampled from

multivariate normal distribution for each of the simulated examinees. Pair-wise

correlations of 0.50 were induced between the four traits, producing the oblique

simple structure. Finally, using a well-known IRT-based response generating

mechanism involving uniform probabilities, a 2000 x 74 matrix of dichotomous

responses was produced. Each of the 2000 simulated examinees had responses

to all seventy-four items.

Computing Diagnostic Scores for Credentialing Examinations

As noted earlier, credentialing examinations are mastery tests; the

candidates either pass or fail. These types of tests are usually not meant to

measure a wide range of achievement or aptitudes. Nonetheless, most

credentialing examinations are constructed on the basis of an evidence-based

"competency model" that follows from a formal practice or job analysis.
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If we consider the competencies to be distinct traits then most

credentialing tests are, to some degree, multidimensional. That is, although a

single, total-test score may ultimately be used for making the pass/fail decisions,

there is an implicit assumption that the test is mixture of multidimensional traits.

Going a step further, it should be possible to define a structure that appropriately

represents the professional knowledge and skill competency traits (factors)

underlying each of the competency-based subscores to be reported (Luecht,

1996). By treating the diagnostic subscore space as multidimensional, we

acknowledge that each competency contributes some amount of unique variance

to the overall trait. Furthermore, by explicitly modeling the multidimensional

structure of the data, we can capitalize on shared information among the

appropriate item responses to ideally improve the reliability of the estimated

subscores. In a certification or licensure setting, where the statistical test

information available for score reporting is sparse in some regions of the scale(s),

collateral information, gleaned from the covariances among the response

variables, could help improve the reliability of otherwise marginally reliable

scores.

Still, dealing with multidimensional IRT models in operational settings is

not always straightforward, despite many recent advances in IRT modeling and

estimation algorithms. Some of the technical complications include making

subtle choices between multidimensional models, choosing among different

estimators (e.g., maximum likelihood, Bayes mean and mode estimators),
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confirming the number of dimensions and structural invariance of the trait space,

dealing with empirical factor identification issues, and rotational

indeterminacies. There are also issues related to the theoretical or substantive

specification and interpretation of the multidimensional space (e.g., simple

content-based factors versus cognitive scientific perspectives on task demands

and multidimensionality).

Methods of Computing Diagnostic Subscores

The challenge is to report reasonable diagnostic subscores for each of the

four competency areas. There are a number of ways to proceed. Here, I

considered four approaches: (i) using standardized number correct scores within

each of the competency areas, denoted ZX; (ii) computing Bayes mean or expected

a posteriori (EAP) scores3 based on a unidimensional total-test calibration of the

items, denoted UIRT(T), (iii) computing Bayes mode or maximum a posteriori

(MAP) scores based on separate unidimensional calibrations of items for the

separate competency area, denoted as UIRT(S); and (iv) MAP scores based on a

multidimensional calibration of the entire test, with one factor representing each

competency area (MIRT).

The UIRT(T) approach was implemented by calibrating all of the items on

the test using a unidimensional IRT model like the three-parameter logistic

model (normal ogive approximation):

3 As a processing convenience, a separate scoring program, SCORE3PL (Luecht, 1999), was used
to compute the EAP scores for the four competency areas, based on the total-test calibrations.
SCORE3PL does not compute MAP scores. All MAP scores were computed directly by the
calibration software packages, BILOGMG-3 and TESTFACT4.
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In Equation 1, ui is a binary item response; ai, and ci, are the usual item

parameters (see, for example, Hambleton and Swaminathan, 1985). Scoring was

performed as a separate step, using the subsets of item parameter estimates and

the corresponding examinee responses for each of the four competency areas.

This method was selected because it offers the advantage of requiring only a

single calibration of the items. On the downside, this UIRT(T) method loses

some of the unique variance associated with the individual factors and can

induce an upward correlation bias between the subscores.

In contrast, the UIRT(S) approach treats each competency area as a

separate subtest. Separate calibrations are needed for each subtest, again using a

unidimensional model like the 3PL model. This approach was selected because it

has two apparent advantages: (a) the independent calibrations allow the trait

composites for that the individual competency metrics to diverge from each

other, as necessary, and (b) those metrics can be independently equated or linked

to provide comparisons across time.

The fourth approach investigated was to use a multidimensional item

response theory (MIRT) model to calibrate all of the items on the test. The normal

ogive approximation to the three-parameter logistic model was used (Bock et al,

2003):
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1 + expP1.7(aT 0 + cliA ci +1+ exp[-1.7(a1101 + ai202 + +4 (2)

where a, = (ail, ai2,..., aim) is a vector of item coefficients (loadings), di, is the item

difficulty parameter, and ci is a pseudo-guessing parameter. For a single

examinee, the vector of proficiencies, 0, has the same order as ai. It is important

to realize that there are several variants of MIRT models, including the oblique

simple structure model (Thurstone, 1947), the common-factor model, and the bi-

factor model (Gibbons and Hedecker,i1992). Unfortunately, there is seems to be

a lack of solid operational research about these variants and only limited

available software for carrying out the calibrations. Furthermore, as

demonstrated below, the results of a MIRT analyses are not always easily

comparable with unidimensional methods, except in terms of model fit.

The 2000 x 74 matrix of dichotomous item responses was used to compute

four scores for each simulated examinee: ZX, UIRT(T), UIRT(S), and MIRT.

BILOG-MG 3.0 (Zimowski, Muraki, Mislevy and Bock, 2003) was used for all of

the unidimensional calibrations and for calculating the UIRT(S) maximum a

posteriori (MAP) scores. Expected a posteriori EAP scores were computed for the

competency areas under the UIRT(T) method (see Footnote 3). TESTFACT 4.0

(Bock, Gibbons, Schilling, Muraki, Wilson, and Wood, 2003) was used to calibrate

the items and produce subscores under the multidimensional (MIRT) model,

using the full-information, common factor solution with a varimax rotation.
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Comparative Results

The empirical accuracy of the subscores relative to the multivariate

normal deviates used to generate the data was not a primary focus, in this study.

Instead, this study focused on some practical comparisons of the subscores under

each the various computational methods.

Figure 3 shows a dot-density plot of the correlations between the

subscores for each competency area and computational method, using a multi-

trait, multi-method (MTMM) approach (Cambell and Fiske, 1959) to characterize

the correlations. This type of MTMM analysis provides some evidence related to

construct validity and trait invariance. Same-trait, different methods (STDM)

would be expected to correlate well. There are two clusters of the STDM

correlations in Figure 3. One cluster, as expected, is near to 1.0. The other

(smaller) cluster is located nearer to 0.50. That second anomalous cluster

represents the correlations between the ZX, UIRT(T), and UIRT(S) subscores and

the MIRT subscores for Area #3. The correlations between the ZX, UIRT(T), and

UIRT(S) subscores, alone, are near to 1.0. The anomaly was isolated for that one

cluster of subscores that included the MIRT subscore in Area #3. Nonetheless, it

highlights the complexity of comparing MIRT subscores4.

The different-trait, same-method (DTSM) correlations plotted in Figure 3

show one tight cluster in the range 0.35 to 0.45. This cluster represents the

4 The factor scores from TESTFACT had to be interpreted in terms of the STDM correlations to
properly align them with the appropriate competency areas. In practice, MIRT factors can be
misinterpreted if the items are not specifically constrained to load on particular factors.
Unfortunately, TESTFACT does not provide the capability to implement such constraints.
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attenuated correlations between observed subscores measuring the four different

competencies. If we were to dissattenuate those correlations, they would closely

approximate the 0.50 between-factor correlations used to generate the data.

There are also some isolated DTSM correlations nearer to zero. These largely

represent the anomaly noted above with respect to the MIRT subscores for Area

#3.

The last set of DTDM correlations represent the different-trait, different-

method associations. These correlations typically provide base line information

for interpreting the other correlations. That is, there is no reason to expect large

correlations between the subscores computed for different competency areas

using different methods. In this study, the DTDM were reasonable falling with

the range, 0.0 to 0.50.

Another criteria for evaluating the various scoring methods relates to the

measurement errors. Table 2 presents the average standard errors for the four

competency subscores under each of the four computational methods. The

UIRT(T) subscores have the largest standard errors, across the competencies.

The measurement errors associated with the standardized number-correct scores,

Z(X), are somewhat smaller than the average UIRT(T) errors, however, the are

still somewhat large relative to the other two methods. With the minor exception

of Area #1, the UIRT(S) scores appear to provide the most accurate estimates.

The MIRT results are likewise reasonable, but hardly seem to justify the added

complexity of using a multidimensional model.
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It was also informative to review diagnostic score profiles for select

candidates. Figure 4 provides multivariate score profiles for four simulated

candidates. Scores are plotted on the ordinate axis. The four competency areas

are represented along the abscissa. The two plots on the left side of the display

show two examinees with exactly the same total-test number-correct scores

(X=32). The two right-side plots show two other candidates with total-test scores

of 46. The upper plots indicate that those two examinees had more

homogeneous. The lower plots show far more heterogeneous subscore patterns.

Since the multidimensional generating parameters where known, it was

possible to actually compare the more heterogeneous profiles to "truth". In both

cases, the two unidimensional methods, UIRT(T) and UIRT(S), produced

diagnostic subscore profiles that were more consistent with the true profiles.

These profile plots make one thing quite clear the choice of scoring method can

make a rather substantial difference as to what remedial recommendations are

communicated to the examinees when performance is relatively heterogeneous

across the subscores.

Obviously, these comparisons from a single simulation study, using

model-generated data, are not conclusive. However, the results do serve to

highlight some of the complexities related to choosing a scoring model for

multidimensional subscore reporting. First, have a clear definition of the

competencies. "Content dimensions" are only relevant if scores are to be

reported strictly in terms of content-defined competencies. Also realize that the
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competency dimensions, themselves, can be composite traits. Second, a thorough

evaluation of the test information functions for the item banks, on each test form,

and for each competency area can help set practical constraints on whether or not

reliable subscores can even be computed for some competency areas. Third, it is

important to evaluate competing scoring model in terms of the underlying

competency structure that will be used to report scores. Fit is one criterion (e.g.,

conducting a confirmatory factor analysis), but a multi-trait, multi-method

analysis and a comparison of conditional standard errors [on a common scale]

may uncover anomalies with one or more scoring models. Fourth, simplicity is

good. Unidimensional models tend to be easier to manage than

multidimensional models and have far more software resources available to aid

in calibrating and equating. At the same time, basing all scores on a total-test

calibration is not necessarily the best way to go. Maintaining separate metrics for

each of the competency traits can have advantages, as demonstrated here.

Finally, it is important to evaluate as many individual score profiles as possible,

looking for consistency (or lack there of) in how the profiles would be interpreted

by examinees or other constituents. In addition to using real data, simulation

data created under one or more viable multidimensional generating functions

can provide interesting comparative results. A laudable goal is invariance of the

scoring model. Cronbach and Gleser (1953) provide an excellent discussion of

statistical techniques for evaluating the similarities between multivariate profiles.
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Ultimately, the decision to use a given method to compute diagnostic

score should blend technical sophistication with operational needs (e.g., software

availability). In some cases, where the reliability or validity of scores are

questionable, the best choice may be to not report scores.

Presenting Diagnostic Score Profiles for Credentialing Examinations

There is a surprising lack of empirical literature on graphical and tabular

presentation techniques (Wainer and Thissen, 1981;Wainer, 1997), despite the

proliferation of powerful statistical and graphics packages that offer a wide

range of methods for graphing multivariate data. In diagnostic score reporting

for credentialing examinations, the literature is almost nonexistent.

Producing graphics amounts to creating abstract meaning from

quantitative data using aesthetics and mathematics (Tufte, 1997). There are three

perceptual aspects involved when interpreting graphs. Detection deals with basic

information from the data that must be discernable in the graph. Facilitating

detection means maximizing the unique and important information, minimizing

noise or extraneous information, and eliminating redundancy. Assembly is the

process of discerning patterned regularities and relationships among the discrete

graphics elements. Graphics that facilitate assembly must convey the optimal

amount of variability to show the required patterns, avoid eliminating

meaningful variation (i.e., blips), avoid displaying extraneous variation or

patterns from nothing (e.g., inappropriate use of smoothers or fitting functions),
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and avoid information overload. Finally, perceptual estimation involves

comparing and contrasting the relative magnitudes of two or more elements

contained in a graph. Human perceptions can be biased and distort the

information. Scales are important!!! Common scales are needed for comparisons.

Geometric and aesthetic attributes also matter. Lines are usually more accurately

perceived than areas or volumes. Color and shading may confuse (e.g.

perceptions of red as "hot"). There are a number of excellent resources on

perceptual components of graphing and methods for producing good graphics,

including Cleveland, (1994), Jacoby (1997, 1998), Tufte (1990, 1997, 2001), Tukey,

(1977), Wainer, (1997), Wainer, Hambleton, and Meara, (1999), and Wainer and

Thissen (1981).

Summarizing across a number of sources, there are [at least] eight basic

rules for good graphics.

1. Show the data or legitimate patterns that represent the data.

2. Induce viewer to think about the substance of the information, not

technique or technology.

3. Avoid distortions

4. Codify and make coherent large data sets.

5. Encourage visual comparisons.

6. Reveal the data in multiple layers of detail.

7. Clearly serve a purpose to describe, explore, tabulate, or decorate.

8



8. Make sure that the graphic(s) is/are closely integrated with statistical and

verbal descriptions of results.

When reporting diagnostic subscores, it is essential to keep the purpose

and the population of viewers at the forefront during the report design. The

tendency in diagnostic score reporting is to underreport useful information. For

example, a score report may cover up useful variation or overly simplify a profile

of scores. Complicated graphs can be informative, if properly explained. At the

same time, perceptions can be altered , appropriately or not, through cuing and

mechanisms that direct attention to specific information. Ultimately, providing

diagnostic score feedback to candidates on a credentialing examination should

help them comprehend, in an unambiguous way, their strengths and weaknesses

in terms of the relevant competencies. Comprehension or lack of comprehension

by the candidates of the intended message(s) of a score is seldom tested and too

often, assumed.

There are three questions that seem relevant to examinees AFTER taking a

credentialing examination with moderate to high stakes. First, did I pass or fail?

Second, if I failed, how badly did I do? Third, what. do I need to study most or

practice the most in order to pass when I retake the examination? There is also

some subtle psychometric information that testing organizations need to convey

to the candidates about their scores (e.g., that there is uncertainty in every score).

Ultimately, the score report should prov' ide the relevant feedback in a concise
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and meaningful way to answer the examinee's anticipated questions. Some

general guidelines for profiling diagnostic information is as follows.

1. Standardize the individual scales and use a reasonable and metric for all

of the scores (e.g., a mean of 50 and standard deviation of 10). There are

strong arguments often made in favor of a "less is more" philosophy

about the number of possible score points. For example a scale of 0 to 20

may be better than a scale of 0 to 100, especially for short subtests.

2. Be careful showing the relationship of subscores to the cut score.

Candidates may wish to know how badly they did on particular sections,

relative to the cut score. That type of information may be misleading,

since the total-test metric is substantively and statistically different (except

in the case of the UIRT(T) scoring method) than the subscore metrics. If

the cut score is provided in conjunction with the diagnostic subscores,

thoroughly audit the profiles of candidates to ensure that some

individually aberrant profiles for failing examinees do not might convey

the faulty impression that the candidates had more "passing" subscores

than "failing" subscores.

3. Add measurement error bars that accurately portray the reliability of

every score. Use conditionally measurement errors, if possible.
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4. Consider using percentile ranks to report total scores. They can accurately

indicate performance relative to the examinee population. The cut score

can likewise be shown for the populations

5. Consider ordering the variables in terms of either "confidence" (error

variances) or magnitude of improvement needed. This approach can be

applied to graphics as well as tables.

Obviously, there are operational considerations in terms of systems and

software for generating diagnostic score reports. However, with current

statistical and graphics computing and printing technologies, there should not

serious limitations voiced by competent systems designers. That means that test

developers have a number of techniques from which to choose: score tables,

profile plots, and narrative text. Narrative test is not addressed heie.

Using Tables

Tables are generally good for rank order comparisons (best and worst).

As Wainer and Thissen (1981) noted, the rows should be ordered with respect to

some aspect of the data (e.g., the magnitude of scores or the magnitude of

measurement errors), numbers should be generously rounded, and row spacing

or other text manipulations used to "chunk" or highlight relevant sections of the

table. Table 3 shows two side-by-side tables displaying the scores for the

examinee plotted in the lower right corner of Figure 3. The scores and standard

5 There is no empirical evidence, that I am aware of, that suggests that providing percentile ranks,
in place of or in addition to total test scores, confounds the notion of a "content-based" or
"absolute" standard of competency. Percentile ranks have a long history as being useful
information to candidates. Their use in credentialing test settings seems appropriate.
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errors in the table were arbitrarily scaled to a population mean of 50 and

standard deviation of 10. The left-hand table presents the data in competency

area order. The right side table presents the same data, but sorted in descending

order by the values scale score. Strengths are therefore listed first, followed by

weaknesses. The first score is furthermore bold-faced to (possibly) indicate

performance that is statistically higher than then population mean.

Using Multivariate Profile Plots

Graphics that display profile plots of the diagnostic scores are very easy to

produce and generally interpretable by most examinees. Figure 4 illustrates a

simple multivariate score profile for a low performing examinee with number-

correct scores of 10, 9, 5, and 8, respectively, on the four competency areas. The

scores plotted are based on UIRT(S) scoring and have been further scaled to an

arbitrary population mean of 50 and standard deviation of 10. Error bands6 have

also been added about the subscores to reflect the measurement errors associated

with each score. Unfortunately, Figure 4 conveys no comparative information

about the distribution of scores in the examinee population.

Figure 5 provides enhanced score report information. The right side

portrays the same score profile as Figure 4, but uses a different style of bar to de-

emphasize the score and, instead, emphasize the possible range of scores within

the error band. Horizontal grid lines have been added, including a solid grid

6 Although sometimes complicating the production of tables and graphics, conditional errors of
measurement should be used where possible to appropriately reflect the error variance across the
subscore scales.



line demarcating the population means for each of the diagnostic scores. The

percentile table at the right shows the examinees approximate rank in the

population and the approximate location of the cut score. The primary intent is

to show how far the examinee is away from the population-based cut score.

Spacing enhancements and standard errors for the percentile could likewise be

added (see, for example, suggestions by Wainer and Thissen, 1981 and Wainer,

Hambleton, and Meara, 1999). Is this an "optimal" score report. Of course not.

However, it does convey multiple layers of information at appropriate degrees of

detail to answer most of the candidate questions raised earlier.

Concluding Comments

Technological innovations in statistical computing, graphics, and printing make

it almost impossible to seriously argue that producing high quality score reports

is not feasible, even for relatively small testing programs. Today, a notebook

computer, a good statistical graphics package, access to a fast inkjet or laser

printer, and a statistical report designer with reasonable database management

and programming skills can generate fairly high volume, publication quality

score reports.

I have tried to convey the message that "high quality" is not about flashy

images. High quality score reporting is a merger of sound computational

methods that produce reliable and valid data (the subscores) with appropriate

graphical design to generate tables and graphics that convey intentional
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information and avoid distortion and misinterpretation. Credentialing

examinations have some well-known limitations related to diagnostic reporting

score, such as item banks that are designed strictly to maximize the precision of

mastery decisions. Yet, despite the practical limitations in certification and

licensure testing, it should be possible to find an appropriate diagnostic scoring

models through experimentation and simulation. When combined with

informative graphics and tables, there is no reason to limit the information

provided to candidates to a cryptic message like, "Sorry, you fail!"
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Bureau of Tests and Metrics
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result of The Big Test that you
took on March 15, 2003

Name: Richard M. Luecht

Sorry, you FAILED!
Please try again.

Figure 1. A Credentialing Examination Score Report Without Scores
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Table 1. Descriptive Statistics for 74 Items, Four Competency Areas: #1 to #4

Areas Statistic a
1. N of cases 14 14 14

Minimum 0.18 -4.38 0.04

Maximum 1.04 0.49 0.28

Mean 0.55 -0.80 0.14

Standard Dev 0.27 1.44 0.08

2 N of cases 38 38 38

Minimum 0.23 -2.99 0.02

Maximum 1.37 1.07 0.41

Mean. 0.66 -0.23 0.15

Standard Dev 0.24 0.85 0.11

3 N of cases 7 7 7

Minimum 0.25 -3.01 0.05

Maximum 0.89 1.06 0.38

Mean 0.65 -0.50 0.21

Standard Dev 0.22 1.35 0.14

4 N of cases 15 15 15

Minimum 0.18 -0.65 0.02

Maximum 1.17 1.93 0.36

Mean 0.75 0.33 0.19

Standard Dev 0.27 0.64 0.11
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Table 2. Average Standard Errors (Adjustedl)

Competency Areas
Method 1 2 3 4
Z(X)2 0.67 0.42 0.78 0.54
UIRT(T) 1.06 0.43 1.61 0.76
UIRT(S) 0.39 0.15 0.57 0.28
MIRT 0.20 0.34 0.66 0.38
I Adjusted for scale differences. Values shown are based on unit normal distributions
2 Standard errors based on unconditional reliability (Cronbach's a)

Table 3. Comparison of Score Tables (Left Side in Competency Area Order,
Right Side in Score Order)

Competency Area Score Error Competency Area Score Error
Area 1

Area 2
Area 3
Area 4

55

65

53

36

7

4

8

5

Area 2
Area 1

Area 3
Area 4

65

55

53

36

4
7

8

5
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