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WHAT MATHEMATICAL ABILITIES ARE MOST NEEDED FOR
SUCCESS BEYOND SCHOOL IN A TECHNOLOGY BASED AGE

OF INFORMATION?1

Dr. Richard Lesh

R.B. Kane Distinguished Professor, Purdue University
<rlesh@purdue.edu>

In this paper, a central claim will be that one of the most important influences that
technology should have on mathematics education is that many of the most important
goals of mathematics instruction should consist of helping students develop powerful,
sharable, and re-usable conceptual technologies for constructing (and making sense) of
complex systems.2 A second claim will be that these new conceptual tools' don't
involve introducing completely new topics into the mathematics curriculum as much as
they involve dealing with old topics in new ways that emphasize mathematics-as-
communication (description, explanation) more than mathematics-as-rules-for-symbol-
manipulation. A third claim will be that, even though technology-based tools create the
need to teach these new levels and types of understandings and abilities, in many cases,
technology-based tools are not needed to teach them effectively. So, it is not necessary
to have lots of classrooms full of educational technologies in order to provide learning
experiences for students that are wise to the needs of a technology-base society.

How has technology influenced what's needed for success beyond
schools in a technology-based Age of Information?

When people speak about appropriate roles for calculators, computers, and other
technology-based tools in instruction, their comments often seem to be based on the
implicit assumptions that: (i) the world outside of schools has remained unchanged at
least since the industrial revolution, and (ii) the main thing that new technologies do is
provide "crutches" that allow students to avoid work (such as mental computation or
pencil-&-paper computations) that they should be able to do without these artificial
supports. But, technology-based tools do a great deal more than provide new ways to do
old tasks. For example, they also create new kinds of problems solving situations in
which mathematics is useful; and, they radically expand the kinds of mathematical
understandings and abilities that contribute to success in these situations. In fact, one of
the most essential characteristics of a technology-based age of information is that the
constructs (and conceptual tools) that humans develop to make sense of their

I References for most of my comments come from two recent books that I co-edited: Handbook of
Research Design in Mathematics & Science Education (Kelly & Lesh 2000) and Beyond Constructivism:
A Models & Modeling Perspective on Mathematics Problem Solving, Learning & Teaching (Doerr &
Lesh, in press). Each book contains chapters by more than thirty leading math/science educators. So,
even though the views expressed here are my own, they were informed by a great many others.
2 Here, I am using the term "complex system" is a somewhat more general sense than it is used in the
newly emerging field of "complexity theory" in mathematics. Nonetheless, later in this paper, readers
will see that the two uses of the term are closely related. Terms with fewer technical associations could
have been used. For example, instead of calling these systems "complex", I could have called them
"structurally interesting " or "mathematically significant". But, regardless what terminology is used, it
should be understood that a system that is "complex" (or "structurally interesting" or "mathematically
significant") is different for a child than for an adult.
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experiences also mold and shape the world in which these experiences occur.
Consequently, many of the most important mathematical "objects" that impact the
everyday lives of ordinary people are complex, dynamic, interacting systems that are
products of human constructions - and that range in size from large-scale
communication and economic systems, to small-scale systems for scheduling,
organizing, and accounting in everyday activities. Therefore, people who are able to
create (and make sense of) these complex systems tend to enjoy many opportunities;
whereas, those who don't risk being victimized by credit card plans or other systems
created by humans.

,...;
To see evidence of the kind of changes that are being introduced into our lives by

advanced technologies, look at a daily newspaper such as USA Today. In topic areas
ranging from editorials, to sports, to business, to entertainment, to advertisements, to
weather, the articles in these newspapers often look more like computer displays than
like traditional pages of printed prose. They are filled with tables, graphs, formulas, and
charts that are intended to describe, explain, or predict patterns or regularities associated
with complex and dynamically changing systems; and, the kinds of quantities that they
refer to go far beyond simple counts and measures to also involve sophisticated uses of
mathematical "objects" ranging from rates, to ratios, to percentages, to proportions, to
continuously changing quantities, to accumulating quantities, to vector valued
quantities, to lists, to sequences, to arrays, or to coordinates. Furthermore, the graphic
and dynamic displays of iteratively interacting functional relationships often cannot be
described adequately using simple algebraic, statistical, or logical formulas.3

For a simple example to illustrate some of the impacts of the preceding new-uses-
of-old-ideas on the everyday lives of ordinary people, consider the section of a local
newspaper that gives advertisements for automobiles. Then, think about how these
advertisements looked twenty years ago. They've changed dramatically! Today, it's
often difficult to determine the actual price of cars that are shown. What's given instead
of simple prices are mind boggling varieties of loans, leases, and buy-back plans that
may include many options about down payments, monthly payments, and billing
periods. Why have these changes occurred? One simple answer is: graphing
spreadsheets (like the one shown in Figure 1).

Spreadsheets with graphs, like the one shown in Figure 1, provide dynamic and
easily manipulable conceptual tools for describing and exploring relationships among
time, interest rates, monthly payments, and the amount of money remaining to be paid
(or that has been paid) at any given time. Therefore, such tools make it easy for car
dealers to develop sophisticated buying, leasing and loan plans based on a few "new
ideas" dealing with iteraction, recursion, trends, and matrix-based organizations of
information but mostly based on new ways of using old basic ideas from elementary
mathematics. Yet, these new ways of using old ideas emphasize mathematical under-

3 It is now well known that several iteration of simple algebraic function can lead to a system that is
essentially chaotic with many characteristics that are unpredictable, with emergent characteristics that
are not simply derived from characteristics of the interacting elements of the system, and often with
feedback loops in which second-order effects often overwhelm the impact of first-order effects. Yet, new
fields of mathematics, such as "complexity theory" or "discrete mathematics", don't call for new
"foundation-level ideas and abilities" as much as they require much less narrow and shallow treatments of
old topics in "elementary mathematics".



standings and abilities that are quite different than those that have been emphasized in

traditional schooling. For example, instead of operating on pieces of information,
operations often are carried out on whole lists of data. Instead of simple one-directional
"input-output" rules, the kind of functions that are involved often are iterative and

recursive (sometimes involving sophisticated feedback loops); and, the results that are

produced often involve multi-media displays that include a variety of written, spoken,

constructed, or drawn media.

Year Amount Owed Interest Rate Payment/Month Total Paid.

0 $10,000 7.0% $300 $0

1 $7,100 7.0% $300 $3,600

2 $3,997 7.0% $300 $7,200

3 $677 7.0% $300 $10,800

4 ($2,876) 7.0% $300 $14,400

($6,677) 7.0% $300 $18,000

20000
'
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_

15000

10000 i.

5000
,- ki i
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-10000

Figure 1. A Spreadsheet for Determining Interest Payments for Car Loans

Therefore, representational fluency is at the heart of what it means to "understand"

many of the most important underlying mathematical constructs; and, some of the most

important mathematical abilities that are needed emphasize: (i) mathematizing
(quantifying, dimensionalizing, coordinatizing, organizing) information in forms so that

"canned" routines and tools can be used, (ii) interpreting results that are produced by
"canned" tools, and (iii) analyzing the assumptions that alternative tools presuppose

so that wise decisions will be made about which tools to use in different circumstances.

Figure 2 emphasizes another point about the kind of problem solving situations

that occur with increasing frequency in everyday situations today. That is, unlike the

kind of word problems that have been emphasized in traditional textbooks and tests,
where the products that students produce are simply short answers to narrowly specified

questions about specific situations, in more realistic situations where mathematics is

useful, it's often the case that the construction of relevant conceptual tools is not simply

a process on the way to producing "an answer". Instead, the conceptual tools ARE the

products that are needed. --- For example, a textbook word problem might be about

determining how much money to leave as a tip for the waiter at a restaurant if the bill is

$23.52 and you want to give a 15% tip. Or, in a "real life" situation that's similar to the

situation involving spreadsheets and automobile sales, the student might be asked to

program a calculator so that, no matter what percent tip we want to give, and no matter
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how large the bill may be, the calculator will tell us how much money to give the waiter

as a tip. --- In such as situation, the calculator routine or the spreadsheet provide

conceptual tools that should be sharable, manipulable, modifiable and reuseable in a

variety of situations. Furthermore, students need to go beyond thinking with these tools

to also think about them - for example, by thinking about the assumptions that they

implicitly presuppose.

Explanation

Figure 2. In real life situations where mathematics is useful, it's often the case that the

process IS the product that's needed

An important fact to notice about the preceding kinds of conceptual tools is that,

even when they reduce the burden of computing results, they often radically increase

difficulties associated with describing situations in forms so that the conceptual tools can

be used; and, they also my increase difficulties associated with interpreting the results that

the tools produce. --- It's these facts that I've referred to when I say that "thinking

mathematically" is about constructing, describing, and explaining at least as much as it is

about computing.

Another example that will be given in the next section of this paper emphasizes the

fact that describing situations mathematically may involve processes that range from

quantifying qualitative information, to assigning "weights" to a variety of different kinds

of qualitative and quantitative information, to operationally defining constructs (such as

"productivity" for workers, or "cost-efficiency" for cars). For the purposes of this
section, the main point that I want to emphasize is that the preceding kinds of
mathematizing activities generally emphasize almost exactly the opposite kind of

processes than those that have been emphasized in traditional word problems in textbook

or tests. That is, in traditional word problems, what's problematic is (beyond the

computational skills that such problems are intended to emphasize) that students must try

to make meaning of symbolically described situations. But, in tasks that emphasize

mathematizing activities, what's problematic is to make a symbolic description of

meaningful situations.

Real World In mathematizing activities,
students make mathematical

descriptions of meaningful situations.

In traditional word problems,
students make meaning

of symbolically described situations.

Model World

Figure 3. Mathematizing versus Decoding
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What's an example of a mathematizing activity?
The Summer Reading Program Problem that follows is an example of a middle

school version of a "case study" that I first saw being used at Purdue University's
Krannert Graduate School of Management.

I

The Summer Reading Program

The St. John Public Library and Morgantown Middle School are sponsoring a summer
reading program. Students in grades 6-9 will read books to collect points and win
prizes. The winner in each class will be the student with the most reading points. A
collection ,of approved books already has been selected and put on reserve. The chart
below is a sample of the books in the collection.

Title Author Reading
Level

(By Grade)

Pages Student's
Scores on
Written
Reports

A Brief
Description
of the Book

Sarah, Plain and Tall Patricia
MacLachlan

4 58
Note:
On a "fold
out" page, two
or three
sentences were
given to

book.
each

-- Was it
a history book,
a sports book,
an adventure
book, etc.

Awesome Athletes
(Sports Illustrated for Kids)

Multiple
Authors

5 288

A Tale of Two Cities Charles
Dickens

9 384

Much Ado About Nothing William
Shakespeare

10 75

Get Real (Sweet Valley Jr.
High, No. 1)

Jamie
Suzanne &
Francine
Pascal

6 144

Students who enroll in the program often read between ten and twenty books over the
summer. The contest committee is trying to figure out a fair way to assign points to
each student. Margret Scott, the program director, said "Whatever procedure is used,
we want to take into account: (1) the number of books, (2) the variety of the books, (3)
the difficulty of the books, (4) the lengths of the books, and (5) the quality of the
written reports.

Note: The students are given grades of A+, A, A-, B+, B, B-, C+, C, C-, D, or F for the
quality of their written reports

YOUR TASK: Write a letter to Margaret Scott explaining how to assign points to each
student for all of the books that the students reads and writes about during the summer
reading program.

Notice that it's similar to many problems that occur when:

business managers develop ways to quantify constructs like: the "productivity" of
workers, or the "efficiency" of departments within a company, or the "cost-
effectiveness" of a possible initiatives,

teachers calculate grades for students by combining performance measures from
quizzes, tests, projects, and laboratory assignments or when they devise "scoring
rubrics" to assess students' work on complex tasks, or
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publications such as places rated almanacs or consumer guides assessments
(compare, rank) complex systems such as products, places, people, businesses, or

sports teams.

We might refer to problems like the the Summer Reading Problem as "construct
development problems" because, to produce the product that's needed, the basic
difficulty that problem solvers confront involves developing some sort of an "index of
reading productivity" for each participant in the reading program. This index needs to
combine qualitative and/or quantitative information about: (i) the number of books read,
(ii) the variety of books read, (iii) the difficulty of books read, (iv) the lengths of books
read, and (v) the quality of reports written as well as (possibly) other factors such as:
(vi) the "weights"(or "importance values") that could be assigned to each of the
preceding factors, or (vii) a "diversity rating" that could be assigned to the collection of
books that each participant reads.

note: In the Summer Reading Problem, it might make sense to multiply the number of
books by the difficulty level of each book. But, it might make sense to add scores
from reading and scores from written reports. --- In general, to combine other
types of information, students must ask themselves "Does it make sense to add, to
subtract, to multiply, to divide, or to use some other procedure such as vector
addition?" In other words, one of the main things that's problematic involves
deciding which operation to use.

One important point to emphasize about "construct development problems" is that,
even though such problems almost never occur in textbooks or tests, it's fairly obvious
they occur frequently in "real life" situations where mathematics is used; and, it's also
obvious that they represent just a small portion of the class ofproblems in which the
products students are challenged to produce go beyond being a simple numeric answers
(e.g., 1,000 dollars) to involve a the development of conceptual tools that can be:

used to generate answers to a whole class of questions,
modified to be useful in a variety of situations, and
shared with other people for other purposes.

Furthermore, in addition to providing routines for computations, the tool also may

involve:

descriptions (e.g., using texts, tables, or graphs to describe relationships among
variables),
explanations (e.g., about how, when, and why to do something),
justifications (e.g., concerning decisions that must be made about trade-offs
involving factors such as quality and quantity or diversity), and/or
constructions (e.g., of a "construct" such as "reading productivity").

Therefore, when mathematics instruction focuses on problem solving situations in
which the products that are needed include the preceding kinds of conceptual tools,
straightforward ways emerge for dealing with many of the most important components
of what it means to develop deeper and higher-order understandings of the constructs
that the tools embody.

8
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Another important point to emphasize solving situations is that, when we observe
students working on the preceding kinds of problems, the understandings and abilities
that contribute to success often are quite different than those that have been emphasized
in traditional textbooks and tests. For example, even though many of the same basic
mathematical ideas are important (such as those involving rational numbers,
proportional reasoning, and measurement), attention often shifts beyond asking What
computations can students do? toward asking What kind of situations can students
describe (in forms so that computational tools can be used)?

If we ask - What kind of mathematical understandings and abilities will be needed
for success beyond school in a technology-based age of information? the kind of
examples that I've given so far should make it clear that the kind of mathematical
conceptual tools that are needed often must be based on more than algebra from the
time of Descartes, geometry from the time of Euclid, calculus from the time of Newton,
and shopkeeper arithmetic from an industrial age. For example, mathematical topics
that are both useful and accessible to students may include basic ideas from discrete
mathematics, complexity theory, systems analysis, or the mathematics of motion
where the emphasis is on multi-media displays, representational fluency, iterative and
recursive functions, and dynamic systems. Nonetheless, in general, to provide powerful
foundations for success in a the new millennium, the kind understandings and abilities
that appear to be most needed are not about the introduction of new topics as much as
they are about broader, deeper, and higher-order treatments of traditional topics such as
rational numbers, proportions, and elementary functions that have been part of the
traditional elementary mathematics curriculum, but that have been treated in ways that
are far too narrow and shallow for the purposes that concern us here.

At Purdue's Center for Twenty-first Century Conceptual Tools (TCCT), where
I'm the Director, we enlist leaders from future-oriented fields ranging from aeronautical
engineering, to business management, to computer technologies, to agricultural sciences
to help us investigate:

What is the nature of the most important elementary-but-powerful understandings
and abilities that are likely to be needed as foundations for success in a
technology-based age of information?

What is the nature of typical problems solving situations in which students must
learn to function effectively when mathematics and science constructs are used
beyond school?

In these investigations conducted in the TCCT Center, it's noteworthy that
participants are consistently reaching a consensus about the following claims.

Some of the most important goals of instruction should be to help students
develop powerful models and conceptual tools for making (and making sense of)
complex systems.

Some of the most effective ways to help students develop productive conceptual
systems is to use "case studies" (or simulations of real life problem solving
situations) in which students develop, test, and refine sharable and re-usable
conceptual tools for dealing with classes of structurally similar problems.

9
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In problem-solving and decision-making situations beyond schools, the kind of

mathematical and scientific capabilities that are in highest demand are those that

involve: (i) the ability to work in diverse teams of specialists, (ii) the ability to

adapt to new tools and unfamiliar settings, (iii) the ability to unpack complex tasks

into manageable chunks that can be addressed by different specialists, (iv) the

ability to plan, monitor, and assess progress, (v) the ability to describe

intermediate and final results in forms that are meaningful and useful to others,

and (vi) the ability to produce results that are timely, sharable, transportable, and

re-useable. Consequently, mathematical communication capabilities tend to be

emphasized, and so do social or interpersonal abilities' that often go far beyond

traditional conceptions of content-related expertise.

Past conceptions of mathematics, science, reading, writing, and communication

often are far too narrow, shallow, and restricted to be used as a basis for identify-

ing students whose mathematical abilities should be recognized when decisions

are made about hiring for jobs - or admissions for educational programs. This is

because students who emerge as being especially productive and capable in

simulations of "real life" problem solving situations often are not those with

records of high scores on standardized tests. Therefore, new ways need to be

developed to recognize and reward these students; and, these new approaches

should focus on productivity, over prolonged periods of time, on the same kind of

complex tasks that are emphasize in "case study" approaches to instruction.

In what ways does modern cognitive science have important
implications for instruction focusing on the construction of powerful

constructs (or conceptual tools)?

As Figure 4 suggests, humans have tended to explain the mind (and other complex

systems) using their most recent advanced technologies as models. For example, during

the twentieth century, psychology gradually moved from machine-based metaphors and

factory-based models for the mind, beyond computer-based models, toward more

organic models based on biotechnologies from hardware, to software, to wetware.

From an
Industrial Age
using analogies

based on hardware
where systems are

considered to be no more
than the sum of their
parts, and where the
interactions that are

emphasized involve no
more than simple one-
way cause-and-effect

relationships.

Beyond an Age of
Electronic Technologies

using analogies based on
computer software

where silicone-based
electronic circuits may

involve layers of recursive
interactions which often

lead to emergent
phenomena at higher levels
which are not derived from

characteristics of
phenomena at lower levels

Toward an Age of
Biotechnologies

using analogies
based on wetware

where neurochemical
interactions may involve
"logics" that are fuzzy,
partly redundant, partly

inconsistent, and unstable
as well as living

systems that are complex,
dynamic, and continually

adapting.

Figure 4. Recent Transitions in Models for Making (or Making Sense of) Complex

Systems
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As a result, today, there is a growing recognition in mathematics education research
that: (i) students, teachers, classrooms, courses, instructional programs, curriculum
materials, learning tools and minds are all complex systems (taken singly, let alone in
combination), and (ii) many of these complex systems cannot be explained using
deterministic machine metaphors (even when they're embedded in silicone).

As cognitive psychology replaced behavioral psychology as the dominant way for
educators to think about the nature of mathematics, learning, problem solving and
teaching, many mathematics educators have adopted "constructivism" as an
instructional philosophy. Two of the most basic constructivist claims are that: (i)
constructs (cognitive structures, conceptual tools, and other complex systems developed
by humans) must be constructed, and (ii) they can't simply be transmitted into
children's minds in prefabricated forms (Steffe & Wood, 1990; Maher, Davis &
Noddings, 1990: von Glassersfeld, 1991).

Unfortunately, it's far too easy for an educator to pledge allegiance to both of the
preceding claims while continuing to cling to naïve software-based or machinerbased
metaphors for mind. For example, according to ways of thinking borrowed from the
industrial revolution, teachers have been led to believe that the construction of
mathematical knowledge in a child's mind is similar to the process of assembling a
machine, or programming a computer. --- These "constructivists" might better be
described as "assembly-ists" than "constructivists."

Assembly-ist constructivists tend to be easy to recognize. Their notion of the
construction process is that teachers should use carefully guided sequences of questions
that funnel students' thinking along pre-planned learning trajectory guided by the
teacher's preferred way of thinking. They seldom put students in situations where the
goal is for students to repeatedly express, test, and refine/revise/reject their own ways of
thinking. Yet, what research at the TCCT Center is showing is that, in cases where
ordinary students produce extraordinary results, the reason usually is because teachers
devoted unusual attention toward getting students to express their ways of thinking in
forms were testable and encouraging students to refine their conceptual tools through
multiple testing-and-revising cycles (Doerr & Lesh, in press).

Conclusions: Implications for productive uses of technology in
mathematics education

Above all, what modern cognitive psychology does is to urge educators to focus

on the developing conceptual schemes that humans use to make sense of structurally
interesting systems. That is, mathematics is about seeing at least as much as it is about
doing; it is about relationships among quantities at least as much as it is about
operations with "naked" numbers (that tell "how much" but not "of what"); and, it is
about making (and making sense of) patterns and regularities in complex systems at
least as much as it is about calculations with pieces of data. It involves interpreting
situations mathematically; it involves mathematizing (e.g., quantifying, visualizing,
dimensionalizing, or coordinatizing) structurally interesting systems; and, it involves
the using and interpreting an ever-expanding array of specialized languages, symbols,
graphs, graphics, concrete models, or other representational media for purposes that
range from construction, to description, or explanation. That is, representational fluency
is at the heart of what it means to "understand" most mathematical constructs.



Some of the most important things that technology has done, both in education
and in the world beyond schools, have been to radically increase the sophistication,
levels, and types of systems that humans create. Another important thing that
technology has done is create an explosion of representational media that can be used to
describe, explain, and construct complex systems. Furthermore, at the same time that
technology has decreased the computational demands on humans, it has radically
increased the interpretation and communication demands. For example, beyond
schools, wheri people work in teams using technology-based tools, and when their goals
involve making (and making sense of) complex systems: (i) new types of mathematical
quantities, relationships, and representation systems often become important (such as
those dealing with continuously changing quantities, accumulating quantities, and
iterative and recursive functions), (ii) new levels and types of understandings tend to be
emphasized (such as those that emphasize communication and representation), and (iii)
different stages of problem solving may be emphasized (such as those that involve
partitioning complex problems into modular pieces, and planning, communicating,
monitoring, and assessing intermediate results).

One of the most important consequences of the preceding trends is that, when
broader ranges of mathematical abilities are recognized as contributing to success,
broader ranges of people often emerge as being mathematically capable (Lesh & Doerr,
2000). In fact, in research in Purdue's Center for Twenty-first Century Conceptual
Tools (TCCT), we're seeing that, in graduate schools in future-oriented fields ranging
from aeronautical engineering, to business administration, to agricultural sciences, the
kind of mathematical abilities that are needed are poorly aligned with (and poorly
predicted by) abilities emphasized on traditional standardized tests.

Focusing on foundations for the future does not mean ignoring basics from the

past. Abandoning basic skills would be as foolish in mathematics and science (or
reading, writing, and communicating) as it would be in basketball, cooking, or
carpentry. But, it's not necessary to master the names and skills associated with every
item at Sears before students can begin to cook or to build things; and, New Zealand
didn't become the famous home of the "All Blacks" in rugby by never allowing it's
children to scrimmage until they'd completed twelve years consisting of nothing but
drills on skills. What's needed is a sensible mix of complexity and fundamentals; both
must evolve in parallel; and, one doesn't come before (or without) the other.
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