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Mathematics is playing an increasingly important role in business and industry. In this
paper we present two case studies to illustrate the power and impact of mathematics in two
important practical applications in New Zealand. The first case study describes the
development of a mathematical optimisation model to maximise the value of aluminium

00 produced at New Zealand Aluminium Smelters Ltd. The second case study describes the
development and implementation of state of the art optimisation models and solution
methods to solve all aspects of the crew scheduling problems for Air New Zealand Ltd.

Introduction
g-T-4

During the past fifty years the power and relevance of mathematics in business
and industry have grown in both the variety of applications and the importance of its
impact. Besides the development of the underlying mathematical techniques, an
obvious reason for this exciting trend has been the development of computer technology
and the associated computational techniques. In particular methods of mathematical
optimisation including linear and integer programming have become widely used to
model and solve many important practical problems. Scheduling and resource allocation
decision problems occur in many business and industrial organisations. Often these
problems involve valuable or scarce resources such as time or materials or people
finding optimal or near optimal solutions of these problems can provide millions of
dollars of savings and provide a significant competitive business advantage.

The general linear programming (LP) model with m constraints and n variables
has the form

LP: minimise Z =c Txx
subject to Ax = b
and x >_0

where A is an mxn real matrix and b and c are given real vectors of dimension m and n
respectively. The mathematics of linear programming and the associated solution
methods are interesting in their own right and in fact students taking Mathematics with
Statistics at secondary school study linear programmes in two variables. Even beyond
the beauty of the mathematics of LP, the relevance of the LP model in many practical
applications makes linear programming one of the most important mathematical
developments in the 20th century.

As a very special case of the general LP model, the set partitioning model
provides an underlying mathematical model for many scheduling applications. The set
partitioning problem (SPP) is a specially structured zero-one integer linear programme
with the form

SPP: minimise Z = cTx
subject to Ax = e
and x e {0,1} 11
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where e = (1,1,1,...,1)T and A is a matrix of zeros and ones and the solution vector x
must take values of zero or one. Because of the computational difficulties in solving
very large and practical instances of the set partitioning problem, many early attempts to
use optimisation solution methods to solve scheduling problems were unsuccessful and
researchers resorted to a variety of heuristic solution methods. While most heuristic
methods are relatively easy to implement and may have reasonably inexpensive
computer resource requirements, they suffer from two major disadvantages. Firstly they
can provide no bound on the quality of any feasible solution that they produce, and
secondly they are unable to guarantee a feasible solution will be found even if one
exists. The heuristic methods may fail to find a feasible solution either because the
heuristic method is inadequate or because the problem is truly infeasible. In contrast, an
optimisation method can reliably detect infeasibility. During the past two decades, the
development of optimisation methods and techniques for the solution of set partitioning
problems, and the increase in computer power has meant that we are now able to solve
realistic-sized models that arise in many practical scheduling problems.

In this paper, we present two case studies to illustrate the power and impact of
mathematics in two important practical applications in New Zealand.

Case 1: Optimised Cell Batching at New Zealand Aluminium Smelters Ltd

New Zealand Aluminium Smelters Ltd operates a smelting facility at Tiwai Point
near Invercargill. The smelter produces aluminium by the electrolytic reduction of
alumina according to the reduction equation 2A1203 + 3C > 4A1 + 3CO2. This
reaction which is called the Heroult-Hall process, is carried out as a continuous process
in reduction cells constructed of an outer steel shell and a lining of refractory bricks. A
carbon cathode is placed in the floor of the cell and carbon anodes are suspended above
the cell on cast iron yokes. A very high direct current of approximately 190,000 amps
is passed between the anode and cathode through a bath of molten cryolite at 960"C
which provides the electrical conductivity. The alumina is feed into the cryolite bath at
regular intervals from a hopper that is located above the cell. The carbon required in the
reduction reaction is provided by the carbon anode blocks which gradually reduce in
size over a period of approximately twenty-seven days. When a block becomes too
small, it is replaced by a new block. As the aluminium is produced it sinks to the
bottom of the cell. Each day approximately 1260kgs of molten aluminium are tapped
from the cell into a crucible by a vacuum siphoning system. A crucible is a large steel
bucket lined with refractory bricks. Each crucible can tap the aluminium from three
cells.

The cells are laid out in four lines. Three of the lines are each approximately 600
metres long and consist of 204 cells grouped into four tapping bays each made up of 51
cells. The fourth line 300 metres long was installed more recently and is made up of 48
cells of a newer technology in one tapping bay. All the cells in a tapping bay are tapped
once each day and produce seventeen (or sixteen in the case of line 4) crucibles. Each
bay is tapped either during the day shift or during the night shift. Once each crucible is
filled with aluminium from three cells (always from the same tapping bay), it is
transported from the reduction lines to furnaces in the Metal Products Division from
where it is cast into finished products in the form of ingot or billet.

The purity of the aluminium varies from cell to cell depending on a number of
factors including the age of the cell, the purity of the alumina feed and the manner in
which the cell has been operated during its production life. The purity of the aluminium
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declines gradually as contaminants in the form of iron, silicon, gallium and other
chemicals increase until at some stage a decision is made to cease production in the cell.
The cell is then taken off-line and rebuilt before being brought back into production
some days later. Each cell is assayed regularly to determine the percentage of
aluminium, iron, silicon, gallium and other chemicals. Because high purity aluminum
commands a premium price on the metals market, it is important that aluminium tapped
into a crucible from high purity cells is not contaminated by tapping from low purity
cells into the same crucible.

This Case Study describes the development of a set partitioning optimisation
model to batch or group triples of cells so that the total value of metal produced is
maximised. The main aim is to minimise the dilution of high purity (high value) metal
by low purity (low value) metal. The optimised batches tend to group high purity cells
together and leave the lower purity cells to be batched with other lower purity cells.
Numerical results show that significant improvements in excess of 15% can be achieved
in the value of metal by carefully batching cells.

In the following section of this paper, we will describe an optimisation model for
cell batching and discuss the formulation of a natural objective to measure the solution
quality. We will then discuss aspects of the solution process and in particular outline
how integer solutions can be derived from continuous LP relaxation solutions. Some
numerical results will be then be presented to show the benefits that mathematics can
bring.

An Optimisation Model for Cell Batching

- The cell batching optimisation can be formulated naturally as a set partitioning
problem (SPP) which can be written as

minimise z = cTx,, Ax = e, xi= 0 or 1

where A is a 0-1 matrix and eT= (1,1,...,1). Because cells in different tapping bays can
never be tapped into the same crucible, the cell batching optimisation problem for each
tapping bay can be considered independently of the other bays. For each tapping bay,
the 51 constraints or rows of A correspond to cells in the tapping bay and ensure that
each cell appears in exactly one batch or crucible. The columns of A represent all
possible triples of cells (i.e. batches) which could be tapped into the same crucible.
Each column then has exactly three nonzero unit values. For example, a batch made up
of cells 1, 3 and 6 would be represented in the model by a column with zeros
everywhere except for unit values in rows 1, 3 and 6. In general then the elements ay
are defined as

ay = 1 if cell i is included in batch j and
= 0 otherwise.

In this basic unrestricted form of the model there are 51C3 or 20825 columns or variables
which can be easily enumerated. A solution of this SPP will be made up of exactly
seventeen variables at unit value (representing the chosen batches) and all other
variables will have zero value.

Spread Limitations on Cell Batches

Because each tapping bay is approximately 300 metres long, it is not practical to tap
cells that are far apart into the same crucible. The actual tapping process involves the



use of a gantry crane to carry the crucible and the human operator walks along the line
from cell to cell. To avoid requiring the operator to walk large distances to fill each
crucible, the usual practice is to tap cells that are within some specified maximum
distance apart on the line. This is referred to as the spread of the batch. Spread can be
defined simply as the difference between the maximum and minimum cell number in
the batch. So three adjacent cells have a minimal spread of two. A batch made up of
cells 1, 3 and 6 would have a spread of 5. In the enumeration of the columns or batches
in the SPP model, the spread for each batch can be calculated. If the spread exceeds a
specified limit, the batch can be rejected and not included in the model. Alternatively,
the batch could be included in the model but marked as having a spread exceeding the
maximum spread. During the optimisation process, these batches would be ignored
unless the maximum spread was increased sufficiently. Such an increase could easily
be included in a post-optimal investigation. In Section 3 we comment further on such
investigations.

Batches exceeding the maximum spread can also be considered in a more useful
manner. By adding an additional generalised SPP constraint to the basic SPP model, we
could permit a limited number of batches with excessive spread to be included in the
solution. This reflects the management view that a small number of batches (e.g. one or
two of the seventeen batches) with excessive spread can be tapped provided they
generate a sufficiently improved optimal solution when compared to the optimal
solution using only batches that are within the maximum spread limit. Typical spread
limits might be a maximum spread of 5 but up to two batches with a maximum spread
of 10. In the enumeration of columns in the SPP model, all batches with a spread up to
10 would be generated but all those batches with spread between 6 and 10 would
contribute to the additional constraint with a right-hand-side of 2. These spread
restrictions which are included either implicitly (i.e. no spread exceeding 10) or
explicitly (i.e. limited spread exceeding 6) significantly reduce the total number of
variables in the SPP to something less than about 3000.

Alloy Codes and a Cell Batching Objective Function

A natural objective for the cell batching optimisation can be based on some
estimate of the market value of the aluminium. This will obviously reflect the purity of
each batch. Batch purity can be calculated as a simple weighted average of the known
cell purities which make up the batch where the weights reflect the weight of metal
tapped from each cell. Although in practice the actual cell tapping weights do vary a
little, it is reasonable to assume before the tapping takes place that the tapping weights
will be constant at 1260kgs for lines 1, 2 and 3 and 1480kgs for line 4. Given constant
tapping weights and the cell assay values for aluminium, iron, silicon and gallium, the
batch values are calculated as simple averages.

Table 1 defines eighteen aluminium alloy codes with their corresponding
minimum aluminium percentage and maximum percentages for silicon, iron and
gallium and an estimate of the corresponding alloy premium value. Generally speaking
as the aluminium percentage increases (with corresponding decreases in the silicon, iron
and gallium percentages) the alloy premium value increases rapidly. While this Table
refers more particularly to finished product values cast in the particular alloy codes, we
can classify the batch purity using the alloy specifications and then use the premium
value as an objective coefficient for the batch. The negative premium values for the
first three alloy codes reflect the fact that these grades of aluminium usually require
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purification by mixing with a higher grade metal and thus result in an actual loss of
premium.

Table 1
Alloy Code Specifications and Premiums

Code Min Al% Max Si% Max Fe% Max Ga% Premium
AA???? 0.000 1.000 1.000 1.000 -50.00
AA150 99.500 0.100 0.300 0.100 -40.00
AA160 99.600 0.100 0.300 0.100 -25.00

AA1709 99.700 0.100 0.200 0.100 0.00
AA601E 99.700 0.100 0.080 0.100" 40.00
AA601G 99.700 0.100 0.080 0.100 40.00
AA185G 99.850 0.054 0.094 0.014 15.00
AA190A 99.900 0.054 0.074 0.014 45.00
AA190B . 99.900 0.050 0.050 0.014 50.00
AA190C 99.900 0.035 0.037 0.012 110.00
AA190K 99.900 0.045 0.055 0.034 100.00

AA191P 99.910 0.030 0.045 0.010 120.00
AA191B 99.910 0.030 0.027 0.012 139.00

AA192A 99.920 0.030 0.040 0.012 140.00
AA194A 99.940 0.020 0.040 0.007 150.00
AA194B 99.940 0.034 0.034 0.010 180.00
AA194C 99.940 0.022 0.027 0.009 200.00
AA196A .99.960 0.020 0.015 0.010 260.00

Off-line Cells

When cells are taken off-line to be rebuilt, they will not be tapped. This implies
that one or more of the seventeen batches from the tapping bay will include fewer than
three cells. It is important that the optimised solution determine which batches should
be composed of fewer cells. One approach would be to generate all possible batches
involving one and two cells and include them in the SPP model when the tapping bay
has off-line cells. This results in a very large increase in the number of variables and
causes further computational problems during the solution process. A much more
attractive approach is to simply treat off-line cells as having a zero tapping weight. The
off-line cells are then permitted to appear anywhere in the cell order during the
enumeration of batches. In other words, the off-line cell can appear in any triple of cells
without affecting either the spread calculation or the batch chemical composition. For
example, if cell 50 is off-line, then a batch made up of cells 1, 2 and 50 would have a
spread of 1 and the chemical composition would be determined entirely by cells 1 and
2. If this batch were included in the optimal solution, it would be interpreted as a batch
involving just cells 1 and 2. However the SPP constraint for cell 50 would have been
satisfied by this variable. The advantage of thiS approach is that all batches remain
triples of cells including all triples involving off-line cells and the SPP model (at least
for lines 1 to 3) is always made up with 51 cell constraints.

The Solution Process

The SPP model is solved by first solving the LP relaxation problem in which the
integer restrictions are relaxed. The LP solution is trivial. With little extra effort it is
possible to report on a sequence of LP solutions which gradually include variables with
wider and wider spreads. During this initial optimisation phase, batches with spreads
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exceeding. the maximum permitted spread are ignored or equivalently, the right-hand-
side for the additional constraint described in Section 2.1 is set to zero thus preventing
batches with excessive spread from contributing to the solution.

Handling Excessive Spread Batches

It is also simple to quantify the benefits of permitting a small number of batches
with spreads exceeding the specified maximum spread as discussed in Section 2.1.
After completing the initial LP solution, the right-hand-side for the additional constraint
can be increased slowly to identify the potential benefits of using a limited number of
batches with wider spread. All of these calculations are performed using the LP
relaxation. While the LP solutions do exhibit some evidence of natural integer
structure, most solutions involve fractional variables that must be forced to integer,
values using a branch and bound algorithm.

Constraint Branching in the Cell Batching Optimisation Model

The natural constraint branch (see Ryan and Foster, 1981) for this SPP is 4f-tried
by any pair of cells that are not always included together in batches in the fractional
solution. It is easy to show using balanced matrix theory (see Ryan and Falkner, 1988)
that such a pair of cells must always exist in any fractional solution. The binary
constraint branch can then be imposed by requiring on the one-side of the branch that
the two cells always appear together in a batch and on the zero-side of the branch that
the two cells always appear in different batches. The implementation of the branch
involves removing sets of variables from the descendant LPs. On the one-side, batches
in which the cells do not appear together are removed (effectively by setting their
corresponding variable upper bounds to zero) and on the zero-side batches in which the
cells appear together are removed.

While this constraint branching strategy is particularly effective, it is true that
after imposing a sequence of constraint branches, the LP can become infeasible because
a cell becomes isolated from its neighbours in such a way that no feasible set of batches
can include the cell. When this happens it usually results in a long sequence of
fathoming infeasible nodes and the branch and bound process can take a long time to
find a feasible integer solution. For this reason we have implemented a heuristic integer
allocation process at each node in the branch and bound tree in order to find integer
solutions more quickly.

Integer Allocation Heuristics

Because of the special structure of the underlying SPP model in this application, it
is easy to create infeasible LPs at nodes in the branch and bound tree. To avoid the
computational problems that this causes, we have implemented an integer allocation
process which is applied at each fractional node in the branch and bound tree including
the root node. The process is heuristic in that it attempts to force an integer solution
from the fractional solution by making a sequence of greedy decisions. First, all
variables (batches) at value one in the fractional solution are fixed at that value. We
then find the first cell which is not yet included in a batch and search amongst all
variables (including those which are nonbasic) for the least cost batch including that cell
and two other cells which are also yet to be covered. If no such variable can be found,
the search is abandoned and the integer allocation fails. The allocation process can be
applied using any order of the cells. In our implementation we apply the allocation
process considering the cells in increasing and also in decreasing order.



Table 2
Optimised and Default Solutions for Tapping Bay 2AW

Optimised solution for tapping bay 2AW: [Cells 352 to 402] [Dataset d271197]
Cell 15(-366) is off-line

1

1

r----
1

Cell 41(-392) is off-line
1

A total of 51, cells found for bay 2AW; 2 cells off-line 1 I

Generating with MINSPREAD 4; MAXSPREAD 10; MAXSPREADRHS 2
Model size: 52 constraints; 2237 variables

Bay # Weight %AL %SI %FE %GA Code SpreadPrem Cells

2AW 1 3840 99.800 0.044 0.095 0.016 AA1709 2 0 352 353 354
2AW 2 3840 99.810 0.040 0.105 0.016 AA1709 2 ' 0 355 356 357
2AW 3 3840 99.737 0.041 0.167 0.015 AA1709 4 0 358 360 362
2AW 4 3840 99.847 0.042 0.080 0.014 AA601E 4 40 3591 361 363
2AW 5 3840 99.760 0.041 0.132 0.016 AA1709 3 0 3641 365 367
2AW 6 2560 99.835 0.034 0.079 0.015 AA601E 3 40 -3661 399 402
2AW 7 3840 99.813 0.036

6038
0.101
0.096

0.016
0.015

AA1709
AA1709

2 0
3 0

3681 369
371: 372

370
3742AW 8 3840 99.823

2AW 9 2560 99.840 0.034 0.080 0.015 AA601E 2 40 3731 375 -392
2AW 10 3840 99.820 0.038 0.095 0.016 AA1709 2 0 3761 377 378
2AW 11 3840 99.833 0.035 0.087 0.016 AA1709 2 0 379: 380 381
2AW 12 3840 99.837 0.037 0.079 0.015 AA601E 5 40 3821 384 387
2AW 13 3840 99.817 0.037 0.093 0.016 AA1709 3 0 3831 385 386
2AW 14 3840 99.837 0.033 0.080 0.016 AA601E 7 40 388: 389 395
2AW 15 3840 99.753 0.075 0.126 0.015 AA1709 3 0 3901 391 393
2AW 16 3840 99.843 0.037 0.080 0.015 AA601E 3 40 394: 396 397
2AW 17 3840 99.827 0.036 0.092 0016 AA1709 3 0 3981 400 401

Integer objective: 240 (Branch and Bound time of 12.82 seconds) I :

Default 2 spread solution for tapping bay 2AW: [Cells 352 to 402]
2AW 1 3840 99.800 0.044 0.095 0.016 AA1709 2 0 3521 353 354
2AW 2 3840 99.810 0.040 0.105 0.016 AA1709 2 0 3551 356 357
2AW 3 3840 99.770 0.041 0.153 0.013 AA1709 2 0 3581 359 360
2AW 4 3840 99.813 0.041 0.094 0.016 AA1709 2 0 361: 362 363
2AW 5 2560 99.760 0.040 0.121 0.016 AA1709 1 0 3641 365 -366
2AW 6 3840 99.793 0.038 0.119 0.016 AA1709 2 0 3671 368 369
2AW 7 3840 99.827 0.035 0.093 0.015 AA1709 2 0 3701 371 372
2AW 8 3840 99.830 0.038 0.090 0.015 AA1709 2 0 3731 374 375
2AW 9 3840 99.820 0.038 0.095 0.016 AA1709 2 0 3761 377 378
2AW 10 3840 99.833 0.035 0.087 0.016 AA1709 2 0 379: 380 381
2AW 11 3840 99.820 0.040 0.090 0.016 AA1709 2 0 3821 383 384
2AW 12 3840 99.833 0.034 0.083 0.016 AA1709 2 0 385: 386 387
2AW 13 3840 99.820 0.035 0.087 0.016 AA1709 2 0 3881 389 390
2AW 14 2560 99.715 0.093 0.144 0.015 AA1709 2 0 3911 -392 393
2AW 15 3840 99.847 0.037 0.077 0.015 AA601E 2 40 3941 395 396
2AW 16 3840 99.837 0.035 0.083 0.015 AA1709 2 0 3971 398 399
2AW 17 3840 99.837 0.035 0.088 0.016 AA1709 2 0 400; 401 402

Default 2-spread objective: 40
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The process is remarkably effective in that it often produces integer solutions with
objective values very close to the LP upper bound value. Such an integer solution often
becomes the best bound that fathoms the remaining live nodes in the branch and bound
tree and the solution process terminates.

Some Numerical Results

We report here (see Table 2) some results that illustrate the performance of the
cell batching optimisation and compare the results with a so-called default order
solution.

Table 3
Solution Summary by Alloy Codes for all Tapping Bays

Optimised solution Default solution
Code Premium # crucibles premium # crucibles premium

AA160 -25 3.00 -75.00 3.00 -75.00
AA1709 0 27.67 0.00 73.67 0.00
AA190K 100 1.00 100.00 5.33 533.33
AA192A 140 31.67 4433.33 40.00 5600.00
AA194B 180 22.00 3960.00 16.00 2880.00
AA194C 200 1.67 333.33 1.00 200.00
AA196A 260 9.00 2340.00 3.00 780.00
Totals: 219.00 16011.67 219.00 12998.33

Percentage increase in total defaut premiums 23.18%

The default order solutions, based on batching cells in the natural sequence such
as (1,2,3), (4,5,6), (7,8,9) etc, actually form the basis of the manual solution method in
which obvious poor value batches are modified locally by changing the allocations of
cells to nearby batches to improve the solution. This is a difficult process for human
decision making and even experienced operators are unlikely to produce optimal
decisions. Table 2 includes cost values based on the alloy code premium for each batch.
It can be seen that in tapping bay 2AW, the optimised solution produces 6 batches with
premium value of 40.0 (alloy code AA601E) while the default solution produces just
one batch with this premium value. Notice also that batches 12 and 14 in the optimised
solution involve spreads of 5 and 7 respectively. All other batches have spreads not
exceeding 4. The two off-line cells (366 and 392) appear in batches 6 and 9 respectively
as negative cell numbers. The weights, spreads and chemical compositions of these two
batches ignore the off-line cells.

In Table 3 we give a comparison of the overall results of the optimised cell
batching applied to all tapping bays. The optimised results can be compared with the
corresponding overall results of the default solution. The results are reported in terms
of the number of batches (i.e. crucibles) produced in each alloy code and the total
premiums generated by those batches. The optimised solutions show an improvement
of approximately 23% over the default solutions.

Conclusions

While the cell batching optimisation has produced significant improvements in
the value of metal produced from the reduction lines, this problem really forms part of a



larger production scheduling problem at the smelter. The full problem involves first a
decision about which products from the order book to produce during the day. This
production must then be scheduled on the furnaces and casting machines in the Metal
Products Division. A furnace production schedule is made up of periods during which
the furnace is filled with suitable batches from the reduction lines followed by periods
during which the chemical composition of the furnace metal is adjusted and stabilised
before the required product is cast. Given a production, schedule for each furnace, the
allocation of batches from the cell batching optimisation to furnace fills must be
decided. This particular problem is not trivial since it implies a time sequencing for the
actual production of the batches. There are particularly important constraints on the
production of batches that result from the limited capacities ofIthe gantry cranes used
during the tapping process. In the cell batching optimisation, these constraints were
ignored as was the time sequencing of production of the batches. We are currently
investigating this further scheduling problem to determine a feasible production
sequence for the optimal batches to match a given furnace schedule.

Case 2: Optimised Crew Scheduling for Air New Zealand Ltd

In the mid 1980s, the scientific literature contained relatively few papers
documenting the successful application of optimisation methods in the solution of
airline crew scheduling problems although some heuristic methods were being applied.
In fact, stories circulating in the airline industry at that time suggested that a number of
larger airlines had tried and failed to implement optimisation based crewing systems. In
fact, when I first approached Air New Zealand in the early 1980s to ask if I could obtain
information about their crew scheduling problems, I was informed by a senior manager
that he was aware of the failures of other airlines and he asked me what made me think I
could solve crewing problems for Air New Zealand. I remember responding that I
didn't know if I could solve the problems but I simply wanted to find out about the
problems and obtain some data to try solving them. In 1984, Air New Zealand agreed
to provide information about their planning or Tour of Duty (Pairings) problem for us to
use in an Honours project for a student in Engineering Science at the University of
Auckland. This initial project, involving a small part of the domestic (or internal)
problem, was undertaken by Michelle Kunath. The results we presented to Air New
Zealand at the completion of the six-month project provided the basis of a most
productive and successful collaboration between the University of Auckland and Air
New Zealand. Over the intervening period of more that 16 years, optimisation methods
have been developed and implemented to solve all aspects of Air New Zealand's crew
planning and rostering problems.

In 1984, all crewing decisions were made manually and the airline used no
Operations Research (OR) techniques. Today the airline is totally dependent on state of
the art optimisation based computer systems in the areas of crew planning and rostering.
The airline now employs eight staff with backgrounds in OR. In this Case Study, we
document the transition from dependence on manual methods to dependence on
mathematical optimisation methods in New Zealand's national airline.

The Crew Scheduling Problems

Airline crew scheduling involves two distinct processes of Planning and
Rostering. The Planning process (also referred to as the Pairings problem) involves the
construction of a minimum cost set of generic Tours of Duty (ToDs) or pairings which
cover all relevant flights (sectors) in an airline flight schedule. Each Tour of Duty



begins and ends at a crew base and consists of an alternating sequence of duty periods
and rest periods with duty periods including one or more sectors. At Air New Zealand,
domestic (or National) To Ds (on B737 aircraft) are between one and three days in
duration while for International airline operations (on B767 and B747 aircraft), To Ds
can be up to fourteen days in duration. New To Ds are constructed for each new flight
schedule and for day to day variations in an underlying schedule. It should be noted
that the construction of To Ds does not involve any consideration of the crewmembers
who will actually perform the To Ds.

The Rostering process involves the allocation of To Ds to each crew member of a
rank so that all flights are crewed with the correctly qualified crew complements and
each crew member has a legal feasible line of work over a given roster period. At Air
New Zealand, domestic rosters are built over a fourteen-day roster period while
international rosters cover a twenty-eight day period. Roster construction must take into
account activities rostered in the previous roster period, which carry over into the
current period. From a crew point of view, it is also important to provide high quality
rosters that satisfy crew requests and preferences as much as possible.

During the past two or three decades airlines have invested heavily in the
development of techniques to solve their crew scheduling problems. The main reasons
for this focus on crew scheduling can be identified in the following major factors.

Reducing Aircrew costs
Aircrew costs are one of the largest operating costs faced by an airline (second only
to fuel). However, the crewing problems of Planning and Rostering are very large
and hard to solve. Manual and heuristic-based solution methods will almost never
find minimum cost solutions due to the very large number of alternative solutions
and the complex nature of the crew scheduling rules. Because small improvements
in solution quality return large dollar savings, the use of optimisation techniques to
solve the Planning problem has been the primary focus of much research within the
Airline Industry for many years.

Reducing solution time
The time taken to create solutions manually meant that only one solution could be
developed, and alternative proposals could not be evaluated quickly or accurately.
A shorter planning cycle means that the airline can respond quickly to changes in
the market and capitalise on opportunities. The flight schedule can be changed
much more frequently and solutions must be continually updated. The challenge is
to maintain crew productivity and the quality of the crewing solution while the
flight schedule is changed from day to day.

Compliance
Crew scheduling is constrained by many complex and conflicting rules, further
exacerbated by time-zone changes, daylight savings, and foreign currencies.
Solutions must comply with legislative, contractural and operational rules. Airlines
are required to have systems in place to ensure that rules are not violated. The
complexity of the rules is also a factor in the time taken to solve these problems and
manually produced solutions are not able to guarantee compliance.

Reducing costs to construct and maintain the crew scheduling process.
The complex nature of the rules and the experience required to achieve consistently
high-quality manual solutions mean that staff changes could result in increased
crewing costs.



Over the past sixteen years considerable research and development of underlying
optimisation methods for crew scheduling has been undertaken at the University of
Auckland in collaboration with Air New Zealand. This research has resulted in the
development of seven optimisation-based computer systems to solve all aspects of both
the Planning and the Rostering processes for both the National and the International
Airlines. It should be noted that each business problem is characterised by quite unique
aspects that prpvent the development of a single common optimisation solver. The
following Table shows the implementation dates of each system. The term "Technical
Crew" refers to pilots (Captains and First Officers).

Flight Attendants Technical Crew

Planning Rosterinl Planning Rostering

National 1986

revised 1997

1993 1986

revised 1997

1998

International 1998 1989

revised 1996

1996 1994

These systems incorporate state-of-the-art mathematical optimisation technology
and provide Air New Zealand with sophisticated crewing solvers. In 1989 when the
International flight attendant rostering system was implemented, Air New Zealand knewof no other airline worldwide with an implemented rostering systems based on
optimisation and even today, few airlines use optimisation based rostering techniques.
The optimisation solvers are fully integrated into other information systems at Air New
Zealand. Further details of each of these systems and their integration are given below.

R.

Many scheduling problems can be formulated mathematically using a Set
Partitioning model. From a technical point of view, this specially structured zero-oneinteger linear programme which has relatively few constraints but a very large number
of variables model is a. Both the Planning and the Rostering problems of airline crewscheduling can be formulated as set partitioning problems with special structure.Research conducted at the University of Auckland, in collaboration with Air New
Zealand, has resulted in major breakthroughs in the solution of very large instances of
set partitioning models which occur in practical applications. By recognising thespecial model structure and incorporating it in the solution methods, it is possible to
solve optimisation problems that just ten years ago were considered far too difficult tosolve. In particular, practical instances of the Rostering problem can be very large but itis still possible to produce high quality solutions. These important technical
developments involving

limited subsequence matrix generation

constraint branching strategies for integer programming

resource constrained shortest path column generation and

anti-degeneracy and steepest edge pricing strategies
have been described by Ryan and Falkner (1988), Ryan and Osborne (1988), Ryan
(1992).
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must be covered. The variables of the problem can also be partitioned to correspond to
the feasible LoWs for each individual crew member. The A matrix of the rostering set
partitioning model is a 0-1 matrix partitioned as

A =
CZ

[LI L2

C3

L3

C

Lp

and C1= eieT is a (p x ni) matrix with ei the ith unit vector and eT= (1,1,...,1). The ni

LoWs for crew member. i form the columns of the (t x. n1) matrix Li with elements ljk

defined as /jk = 1 if the kth LoW for crew member i covers the jth ToD and /jk = 0

otherwise. The A matrix has total dimensions of m x I n; where in =p + t. The right-

hand-side vector b is given by bi = 1, i = 1,...,p and bp+i = ri, i = t where r1 is the

number of crew members required to cover the ith ToD. We refer to the first p
constraints as the "crew constraints", and the next t constraints as the "ToD constraints".

The cost vector c is chosen to reflect the relative "cost" of each LoW. Since most
airlines do not use optimisation systems for rostering, there is no obvious or traditional
measure which can be used to discriminate among feasible solutions in an optimisation.

We define particular rostering objectives in the discussion of each of the specific
rostering systems developed at Air New Zealand. Typically the rostering objective
reflects either the "preferential bidding by seniority" (PBS) or the "equitable" rostering

philosophy.

The rostering model has a special structure which deviates from pure set
partitioning in that the right-hand-side vector is not unit valued and some constraints
need not be equalities. The crew constraints of the A matrix also exhibit a generalised
upper bounded structure which is not commonly found in set partitioning.

Crewing Systems at Air New Zealand

National (Domestic) Planning

The original Planning system for the National Airline covering both Flight
Attendants and Technical crew was developed in 1984 and 1985 and implemented as a
mainframe computer system in 1986. The system remained in production essentially in
its original form until 1997 when it was replaced by improved optimisation
methodology implemented on a Unix workstation. The current system generates
optimised ToDs for all crew ranks and for three crew bases in Auckland, Wellington
and Christchurch. It is also able to produce "fully-dated" solutions.

National (Domestic) Rostering

While involving relatively small crew ranks (at least compared to the International

Airline), these problems are probably the most difficult of all the Air New Zealand
optimisation problems to solve because of their combinatorial complexity. Two
previous attempts to solve the problems in the late 1980s were unsuccessful but the
problem for Flight Attendants was finally solved in 1993 by Dr Paul Day in his PhD
research sponsored by Air New Zealand (see Day, 1996 and Day and Ryan, 1997). In
1998, the same solution methodology was adapted to produce Technical crew rosters
under quite different operating rules. These two unique systems are now fully



integrated into the Air New Zealand Genesis Rostering System and produce rosters of
excellent quality for all crew ranks and all crew bases in less than four person days.
Previous manual rostering methods involved 6 roster builders and took two weeks to
complete the roster build. The actual optimisation runs themselves take less than one
hour in total.

International Flight Attendant Rostering

This problem, involving 1500 flight attendants in four crew ranks, is the largest
problem solved at Air New Zealand. The original system was implemented in 1989 and
was revised to incorporate column generation methods in 1996. At the time of its
implementation in 1989, the optimised solution demonstrated that it was possible to
construct rosters with a 5% reduction in the number of flight attendants and at the same
time, significantly improve the quality of the rosters from a crew point of view. The
development and implementation involved representatives of the Flight Attendant
Union who defined the issues of roster quality which are incorporated in the
optimisation. The current system also incorporates a language assignment optimisation
step (Waite, 1995) which ensures that flight attendants with relevant language
qualifications are assigned To Ds requiring those language skills. This aspect of Flight
Attendant rostering has important commercial benefits to Air New Zealand in that many
of its passengers, particularly from Asia and Europe, are non-English speaking.
International Technical Crew Rostering

International technical crews in most airlines world-wide are rostered by systems
based on preferential bidding by seniority (PBS). The algorithms are generally based
on greedy sequential heuristic roster construction methods. PBS involves crew
members bidding for work or days off and rosters are then constructed by satisfying as
many bids as possible but considering crew members strictly in seniority order within
the crew rank. During 1992 and 1993, a new optimisation model and solution method
for PBS was developed (see Thornley, 1993). The solution method incorporates a
unique "squeeze procedure" which violates the bids of more junior crew members in
order to satisfy the bids of more senior crew members. This guarantees that the
maximum number of bids can be satisfied in seniority order. Heuristic methods used by
other airlines are unable to provide such a guarantee. The PBS system was
implemented in 1994 and is now fully integrated into the Genesis Rostering System at
Air New Zealand.

International Technical Crew Planning

Following the completion of his Masters research on the topic, Andrew Goldie
(see Goldie, 1995) implemented the Technical Crew Planning system for Air New
Zealand International in 1996. The system automatically generates "third pilot" ToDs
which allow duty periods to be extended by including a third pilot on some relevant
sectors. This feature is believed to be unique since we understand that Planning systems
used by other airlines construct such ToDs in a subsequent step.

International Flight Attendant Planning

The International Flight Attendant Planning problem is a particularly difficult
problem in that flight attendants are qualified to operate on all aircraft types. The added
complexity arises because each aircraft type requires different numbers of crew. For
example, a full B747 crew may split after a B747 sector and part of the crew may fly a
B767 sector in their next duty period. The remaining part of the B747 crew could fly as



passengers or could be combined with other crew members to make up a crew for some
other sector. This crew splitting complication does not occur for Technical crew who
are qualified to fly just one aircraft type. An optimisation solver for International Flight
Attendant Planning has been developed by Chris Wallace in his PhD research. This
system is again unique in that it automatically permits crew splitting. No other known
Planning system incorporates this feature.

Implementation and Integration Issues

On-site development by a small team of developers, working closely with the
users, has been central to the successful implementation of these systems. The complex
rules-bound nature of the industry requires detailed understanding, and the optimisation
solvers must be developed with constant reference to the plarmers,and rosterers.

The optimisation solvers are able to find many solutions of similar dollar value,
some of which are preferred by the users, and much effort has been spent developing
control mechanisms for the users to interact with the solutions and so "shape" the
solutions produced. For example, users may wish to fix a particular subset of a
solution, or prevent particular undesirable characteristics from being included in a
solution. Similar mechanisms have been developed to handle changes to inputs to the
problem. For example, if a flight is re-timed in the flight schedule, the optimiser will
minimise the changes required from the previous solution to the new solution.

The ToD optimisers are integrated into a purpose-built PC-based user interface,
also developed as part of the project. The system receives flight schedule data for both
proposed and published, flight schedules in industry-standard formats from Airflight, the
Schedules Management tool supplied by The Sabre Group. The solutions produced by
the ToD optimisers can be viewed graphically, using a tool specifically developed for
the purpose. Solutions may be electronically uploaded into the Air New Zealand
Genesis Rostering System.

The Genesis Rostering System, which has been developed independently of this
project, is used by all Rostering Staff to manage the construction of rosters for aircrew.
It has replaced existing mainframe and PC-based systems and manual methods,
previously used for roster construction. It provides a common user interface for
managing ToDs, crew pre-assignments, training and crew requests. Genesis passes data
to the Rostering optimisers where the roster is constructed, before it uploads and
displays the optimised rosters in the graphical interface.

There are two important aspects associated with the implementation of
sophisticated crewing systems: the first is concerned with the effects ofnew technology
and the second is concerned with issues of technology transfer.

The introduction of high-technology mathematical optimisers has changed the
nature of the jobs and the key competencies of staff in the Planning and Rostering areas.
Staff now manage data and processes associated with the construction of ToDs and
rosters rather than simply constructing ToDs or rosters. The optimisers allow staff to
concentrate on meeting specific business requirements which might include provision of
training or leave, or meeting special requirements of management or crew, or
incorporating last-minute changes.

Because of the sophisticated nature of the mathematical optimisation models and
methods, it is important that management, the crew and the planning and rostering staff



develop trust and confidence in the solution methods and the quality of the solutions.
This can only be achieved through close collaboration with these affected groups. The
development of trust and confidence has been a major objective of this project since it is
an essential requirement of successful technology transfer from a research and
development environment to a production environment. We believe that this objective
has been fully achieved in this project.

Economic and Other Benefits

The crew scheduling optimisers provide real dollar benefits to Air New Zealand,
by directly reducing the cost of crewing in areas such as the total number of crew
required and the number of hotel bed-nights, meals, and other expenses which must be
paid to crew away overseas. Each optimisation application has reduced the costs of
constructing and maintaining the crewing solution for the flight schedule. Over the past
ten years, Air New Zealand's aircraft fleet and route structure has increased
significantly in size yet the number of staff required to solve the crew scheduling
problem has reduced significantly from a total of 27 in 1987 to 15 today.

A conservative estimate of the dollar savings (in New Zealand dollars) from the
crew scheduling optimisers has been calculated as NZ$15,655,000 per annum. It is
interesting to contrast the estimated total savings of NZ$15.6 million per annum with
the estimated total development costs over 15 years of approximately NZ$2 million. It
is also interesting to contrast the estimated total savings of NZ$15.6 million per annum
with the 1999 net operating profit for the Air New Zealand group of NZ$133.2 million
(excluding one-off adjustments).

In addition to the direct dollar savings, many intangible benefits are also provided
by these optimisation systems.

1. Using the crewing optimisers, high quality solutions can be produced in a matter of
minutes, compared with two or more days to create a manual solution. For
example, a B767 pilot ToD problem can be optimally solved in approximately 60
minutes, while the B747-400 pilot ToD problem can be solved in less than 5
minutes on a Unix workstation. The international flight attendant rostering
problem involving 550 crew in one rank is solved in less than six hours.

2. Crew schedulers can now focus on data preparation and validation, and the
interpretation and evaluation of solutions. Their role has changed from the
mechanical process of ToD and roster construction to one of an analyst.

3. There is a reduced dependence on highly skilled staff with an intimate knowledge
of the employment contracts and scheduling rules. These contracts and rules are
now embedded in the crewing optimisers.

4. The crewing optimisers can be used to investigate strategic decisions for crewing
such as the evaluation of proposed rule changes and their cost impacts, and basing
studies to determine ideal crew numbers at crew bases.

5. The relatively short build times for ToDs and rosters enables solutions to be
produced much closer to the day of operation and with reduced lead times. This
enables the company to accommodate late schedule changes and reduces rework.

6. The ToD optimisers make it possible to provide accurate and reliable feedback to
the schedules planning group about proposed schedules and the impact on profit
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from a crewing point of view. This information was very difficult to provide
manually because of the time taken to produce manual ToD solutions.

7. Before the implementation of the national ToD optimiser in 1986, Air New Zealand
operated a fixed six monthly winter and summer schedule. Now Air New Zealand
is able to operate a much more flexible schedule that varies from week to week and
allows the company to respond quickly to market opportunities.

8. The ToD optimisers also make it possible to repair solutions quickly when small
changes are made to the schedule. The cost to maintain solutions is kept to a
minimum.

9. The rostering optimisers reflect crew defined roster quality.measures and crew are
encouraged to identify "soft rules" to further improve roster quality. The
involvement of the crew in the development of systems that affect their lifestyle is a
very important benefit that cannot be provided adequately by manual systems.

10. The rostering optimisers have delivered significantly improved levels of crew
request and bid satisfaction. Over 80 percent of all legal international flight
attendant requests for To Ds and days off are consistently achieved, with even
higher achievement of requests for the national pilot and flight attendant rostering
systems.

11. The rostering optimisers can accurately identify roster infeasibility and can
minimise the level of infeasibility. They can also identify any days on which there
are insufficient crew.

12. Improved passenger service has been achieved directly though the use of the
international flight attendant languages optimisation. Air New Zealand's high
levels of customer service have been recognised through recent awards including
the "Globe Award for the Best Airline to the Pacific" awarded by top British travel
industry newspaper Travel Weekly in January 2000. Air New Zealand has received
this award in four of the last five years. Air New Zealand was also ranked first for
inflight service by the AB Road Airline Survey, in August 1999.

13. The crewing optimisers provide a guarantee that important legislative and
contractual rules are satisfied. In many of these situations, Air New Zealand is
required to demonstrate compliance through an audit procedure. Manual systems
are unable to guarantee compliance without time consuming checking.
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