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Abstract

Traditionally, error in equating observed scores on two versions of a test is defined as

the difference between the transformations that equate the quantiles of their distributions

in the sample and in the population of examinees. This definition underlies, for example,

the well-known approximation to the standard error of equating by Lord (1982) .

However, it is argued that if the goal of equating is to adjust the scores of examinees on

one version of the test to make them indistinguishable from those on another, equating

error should be defined as the degree to which the equated scores realize this goal.

'IWo equivalent definitions of equating error based on this criterion are formulated.

These definitions can be used to evaluate existing equating methods and derive new

methods if the response data fit an item-response theory model. An evaluation of the

traditional equipercentile equating method and two new conditional methods for tests

from a previous item .pool of the Law School Admission Test (LSAT) showed that, under

a variety of conditions, the equipercentile method tends to result in a serious bias in the

equated scores, whereas the new methods are practically free of any bias.

Key words: classical test theory (CTT); computerized adaptive testing; conditional

equating; equating error; item response theory (1K1'); marginal equating; observed-score

equating.



Estimating Equating Error - 3

Estimating Equating Error in Observed-Score Equating

The goal of observed-score equating is to adjust the observed number-correct

scores on a new version of a test to make them indistinguishable from the scores

the examinees would have had if they had taken an old version. Key questions in

observed-score equating are thus: When are scores of examinees on two versions of a

test indistinguishable from each other? And what score transformation does realize this

goal best?

In the practice of observed-score equating, the benchmark among the methods of

observed-score equating is generally considered to be equipercentile equating with a

random-groups design. This method requires the distribution functions of the equated

scores and the scores on the old version of the test to be identical for the population of

examinees. To estimate the transformation, the two versions are administered to different

random samples from the population and the transformation is inferred from the sample

distributions.

More formally, equipercentile equating can be defined as follows. Let Y be the

observed score on the new version of a test for a random examinee from a population

that has to be equated to the observed score X on an old version. These variables take

possible values y and x, respectively. For convenience, we will also use Y and X to denote

the versions of the tests themselves. The distribution functions for the two variables are

denoted as Fy (y) and Fx(x). For simplicity, throughout this paper we will assume that

both functions are continuous and monotone. The transformation to be estimated equates

the quantiles in the two distributions. If the distribution functions are monotonically

increasing, the transformation is

x = co(Y) = (Fy(y)), (1)

where co(y) is the y score equated to the scale of X (Braun & Holland, 1982). The

transformation in (1), which is monotonically increasing, maps the yth quantile in a
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distribution with distribution function FY(.) to the same quantile in a distribution with

distribution function Fx(.).

Note for future reference that the transformation in (1) is from scale y to scale x.

However, if it is applied to y, the random variable Y is transformed into a random variable

co(Y) with a population distribution identical to the distribution of X.

Because the distribution functions of X and Y have to be estimated, the actual

transformation used to equate the scores of X and Y is

x =P(y) = PnPy(y)), (2)

where FY (y) and Px (x) are estimates of the two population distribution functions.

One option to estimate the population distribution functions in (1) is to use their

sample equivalents. However, for a typical test length, this method involves the estimation

of a large number of parameters. (To be precise, n parameters for the distribution function

of a test of n items, namely the population proportions for each of the number-correct

scores 0,1,...,n minus one because their sum is constrained to be equal to one.) Thus, to

get stable sample distributions functions, large samples are required, particularly if the

tails of the distributions, where the proportions of examinees in the population tend to be

smaller, matter. The sample size can be reduced somewhat by using a sensible smoothing

technique, but the danger of exchanging inaccurate for biased estimator is inherent in

any such technique. An alternative option is to assume that the population distribution

functions belong to a parametric family of functions and use the sample to estimate their

parameter values. If statistical techniques are available to test the assumption against

response data, this option becomes efficient. This option is used in the empirical examples

later in this paper.

The estimator in (2) implies the following definition of equating error:

E(y) = P(y) (PM = Pil(PY(Y)) Fil(FY(Y)), (3)
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that is, all equating error is due to sampling fluctuations in the estimators FF(y) and

Fx (x). If these estimators converge to their population equivalents, which they do if the

sample distribution function is used as the estimator of the population function, equating

error vanishes and the equating becomes perfect. Observe that in (3) error is random

across sampling of examinees from the population. Also, error is a function of y; for

different values of y equating error takes different values.

The definition in (3) is indeed the definition underlying the literature on observed-

score equating error, which was put on statistical footing in Lord's (1982) seminal paper,

in which he presented a large-sample approximation to the standard error of equating.

The approximation is given by:

where

Fr(01 FY(Y)] ( 1
+V arCco(Y))

fx(x') Nx NY

x = 1 (Fy(y))

(4)

and Nx and NY are the sizes of the samples from the distributions of X and Y. Lord's

derivation of (4), which assumes that the distribution functions in (2) are estimated by their

sample equivalents, is based on a variance decomposition for the left-hand side of (4) to

deal with the fact that (2) is a composite function with random error in each component.

The result in (4) is for continuous test scores; for an approximation for discrete scores,

see Lord (1982).

Basically the same definition of equating error is found in Kolen and Brennan (1995,

p. 212), albeit these authors arrive at the definition from the opposite direction. Given

any transformation cp(.), they define its application to a sample of examinees on test Y

as the equated score co(y). They then go on and, in a step reminiscent of the definition

of an examinee's true score in classical test theory, define the true equated score as the

expected value of the equated score across sampling, E[co(y)]. It follows that the equating

7
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error associated with y is equal to

E(y) = rgY) EPY)] (5)

for all values of y. This definition is identical to the one in (3), provided rgy) = ep(y), that

is i;3(y) is an unbiased estimate of co(y) for all values of y, which holds if the distribution

functions in (1) are estimated by their sample equivalents. To estimate the small-sample

standard error associated with (5), Kolen and Brennan recommend using a (parametric)

bootstrap estimator.

Formulation of Problem

The above definitions of equating error are puzzling for the following reasons. First,

if the goal of observed-score equating is to yield equated scores on the new version of

the test that, for all examinees, are indistinguishable from the scores on the old version,

the definition of error should be based on this goal. That is, error should be defined as

a measure of the differences between the scores of examinees on the two version of the

test.

Second, the definitions of equating error in (3) and (5) are based on a necessary

condition but not on a necessary and sufficient condition for successful equating. If there

are no equating errors in the sense that the equated scores on the new version of the

test and observed scores on the old version are indistinguishable for each examinee in a

population, the population distributions of these two scores are identical. However, the

reverse does not hold: If for a population the two distributions are identical, it is not

necessary that the equated scores are indistinguishable from the scores on the old version

of the test for each examinee.

Third, the approach underlying (5) seems even to be circular. It accepts any function

of y as an equating transformation and defines its expectation across sampling as the true

equated score against which the sample result should be evaluated. This approach works

fine in classical test theory where, for lack of an external criterion, we replace the observed

score of an examinee by its expectation as the parameter of interest, but not in observed-

8
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score equating, where we do have an external criterion in the form of the observed score

on the old version of the test. Also, (5) implies that equated scores can never be biased,

even if they result from an obviously wrong transformation, such as yo(y) = c, where c

is the same arbitrary number for all values of y. In fact, for co(y) = c (5) even implies

error-free equating for all values of y!

The problem addressed in this research is how to define equating error if the criterion

of successful equating is that one should not be able to distinguish between the equated

scores on the new version of the test and the scores on the old version. Two equivalent

definitions of equating error based on this criterion are formulated. Also, it is shown

that if these definitions are embedded in the framework of item response theory (MT),

it becomes possible to evaluate equating error for any type of equating transformation.

The procedure is illustrated for the transformation in (2) and two alternative equating

transformations that are introduced below using tests that were systematically varied in

some of their properties.

Definition of Equating Error

It is now made more precise what is meant by observed scores on two versions

of a test being "indistinguishable". Let P be the population of examinees from which

we sample and p an arbitrary examinee in this population. A basic assumption in test

theory is that for each examinee p the observed scores Xp and irp are random variables,

that is, outcomes of test administrations that show random variation over (hypothetical)

replications. These random variables are denoted as Xp and Yp. The transformation cp(y)

thus yields a new random variable, w(177,), which is the equated score for examinee p.

Observe that these random variables are different from the variables used to define the

equipercentile transformation in (1).

The following definition of "indistinguishable" follows immediately the assumption

that Xp and lip are random: Equated scores on the new version of the test and scores on
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the old version are indistinguishable from each other for a population of examinees P if

(p(1') and Xp are identically distributed for all p E P. (6)

This definition was documented earlier as a criterion of equating by Lord (1980), who

called it the equity criterion and claimed that no transformation satisfying this criterion

exists, unless the two test versions are parallel and equating is not needed. However, as

will be explained later in this paper, this claim was based on an unnecessary assumption

about the nature of the transformation.

The following two sections present definitions of equating error that follow directly

from (6).

Error in Equated Scores

The requirement in (6) implies that the distribution functions of co(Yp) and X, be

identical. A natural definition of error in an equated score is the difference between these

functions, Egyp)((p(y)) FXp (X), where, for each value of y, the distribution function

Fxp(x) is evaluated at the value of x to which y is equated. More compactly, the definition

of error in equated score is thus

epi(Y) = Egy)(W(Y)) Fxp(50(0) (7)

Note that, contrary to what might be expected intuitively, this definition of error does

not lead to a not to a single number but to function of y for each examinee. The reason

is the random nature of the scores Xp and Yp . Any attempt to further reduce this error

function may lead to loss of important information. For example, if we focused only on

the maximum value of the 62,1 (y) over y or replaced it by a measure of the area between

the two distribution functions in (7), we would never know for what part of scale y the

equating transformation has the potential to distort the equated scores.

10
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Error in Equating Transformations

If the condition epi(y) = 0 is imposed on (7) for all y, and the equality is solved

for so(y), the solution is an equating transformation from Y to X which, according to the

definition in (7), is free of error.

The condition epi (y) = 0 gives

or

Because

it thus holds that

Exyp)(40(Y)) = Fx,(x)

x = Fijp (F92(YP) ((PM)

Fc0(YP) (co(Y)) = FYP (Y)'

X = (P;(Y) = G:(Fl; (0) (8)

Observe that this transformation has the same shape as the equipercentile

transformation in (1). This fact should not come as a surprise. The equipercentile

transformation, which more appropriately should be called the quantile or the Q-Q

transformation (Wilks & Gnanadesikan, 1968), can be used to transform any (continuous

and monotone) distribution function into any other. However, the fundamental difference

between (1) and (8) is that the former is applied to the score distributions of a population of

examinees and the latter to the distributions of the observed scores of a single examinee.

The equating transformation (pp*(y) in (8), which for obvious reasons is referred to

as the true equating transformation in the remainder of this paper, can be used to evaluate

the error in any other transformation. Let (p(y) be a proposed equating transformation.

I I
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As an alternative to (7), error in co(y) can be defined as

6p2(Y) = (P(Y) FxP (NY)). (9)

The two definitions of error in (7) and (9) are equivalent: ep2 (y) shows for which

part of the scale equating transformation (p(y) goes wrong, for instance, overstretches

the scale of Y, where Epi (y) shows the mismatch in the distribution of the equated score

(Y,,) that is the result. Observe that, like (7), the definition in (9) entails a function of y

for each examinee. However, both functions have a different range: epi(y) takes values

in [0,1], whereas ep2(y) takes values on the scale of X. In the empirical examples later

in this paper, because of the possibility to interpret equating errors directly on the scale

of Y, Ep2(y) was used to evaluate different equating transformations under a variety of

conditions.

Discussion

It is important to realize that this definition of indistinguishable scores in (6) requires

only that co(Yp) and Xp be identically distributed. As an alternative, one might feel

inclined to impose the stronger requirement that co (1fp) and Xp be identical, that is,

(p(Yp) = Xp for all p E P. (10)

If this requirement were to hold, equating error would have to be defined as

ep = (P(Yp) -)Cp.

However, yo("Yp) and Xp are never identical. The well-known property of conditional (or

local) independence of test scores even implies that they are independent. Because of this

property, the definition in (11) leads to a standard error of equating equal to

[V ar(yo(Yp) + V ar(Xp)]-112 , for all p E P. (12)

12
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This expression is minimal for the transformation (p(y) = c, with a minimum equal to

[Var(Xp)]-1/2, which is the standard error of measurement for Xp. This implication

shows that (11) can not be used as a meaningful definition of equating error.

Another alternative to the error definitions in (7) and (9) might seem to define

equating error as the difference between the equated score associated with the examinee's

realized score Yp = y on test Y and his/her score on X. This choice would amount to the

conception of equating error as a conditional random variable given Yp = y,

ep = (PM Xp. (13)

However, as co(y) is now a constant, (13) implies the same distribution of equating

error for each possible value y, no matter the equating transformation. In this

case, the minimum standard error of equating for the previous alternative definition,

[Var(Xp)]-1/2, would thus hold for any transformation. This implication shows that (13)

can not be used as a meaningful definition of equating error either.

Estimating Equating Error

So far, the results have only been theoretical. In practice, the distributions of the

observed scores Xp and Yp are unknown, and the only datum available for each examinee

in a random-groups design is one realization of the scores Xp = x or Yp = y. Without

any further assumptions, it is thus impossible to estimate equating error. We will now look

into assumptions that do allow us to do so.

Classical Observed-Score Equating

A natural approach to getting more data about the distributions of observed scores

of examinees is to pool scores across examinees. In the framework of classical test

theory (CTT), it might seem attractive to pool the data of examinees with the same true

score on test X and Y. Let Tx,, and T yp be the true scores of examinee p on X and Y,

respectively. In CTT, these true scores are defined as the expected observed scores of the

13
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examinee on these tests. Pooling examinees with the same true scores amounts to forming

subpopulations in P with examinees p E P for which Tx, = Tx or Ty, = Ty for some

values for TX and Typ. Technically, the approach means that the distribution functions

in (7) and (9) are no longer indexed by p but are replaced by the conditional distribution

functions Fxh- and Fyiry

However, an implementation of this approach would have to deal with several

obstacles. For example, it is not known how to test the assumption of identical conditional

observed score distributions for all examinees with the same true score on which the

approach rests. In addition, given the fact that only one observed score is available for

each examinee, it seems impossible to find reasonable estimators for the true scores of the

examinees on the two test versions. Finally, to calculate the errors in (7) or (9) it must be

known how to pair the true score on Y to the one on X, but it seems impossible to infer

this relation from the available data.

IRT Observed-Score Equating

A more practical alternative to implementing the idea of pooling scores is offered

by item response theory (IRT). The models in IRT are based on stronger assumptions

about the response to the items in X and Y than CM', but powerful statistical tests exists

to check them. In the section with the empirical examples below, the 3-parameter IRT

model is assumed to hold for both versions of the test simultaneously:

pi(0) = Pr(Ui = 1 I 0) = ci + (1 ci){1 + exp[ai(60 MD-1, (14)

where Ui is a binary variable for the response of the examinee to item i, 0 E

(oo, oo) represent the examinee's ability level, and ai E [0, oo), bi E ( oo, oo), and

ci E [0,1] are the discriminating power, difficulty, and guessing parameter for item i

(Lord, 1980).

Under the model in (14), the distribution functions in (7) and (9) are replaced by

the functions of Y and X given 0, which will be denoted as Fro(y) and Fx10(x),

respectively. Because the model is assumed to hold for X and Y simultaneously, the
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conditioning variable 0 is common. As a result, unlike CTT, there is no need to infer

a functional relation between the examinee parameters for both test versions; given 0, it

is automatically clear what distribution of X is associated with what distribution of Y.

For IRT models for dichotomously scored responses on the items, such as the one in

(14), the distributions of Y and X given 0 belong to the generalized binomial family (also

known as the compound binomial family; e.g., Lord, 1980). This family does not have

distribution functions that can be expressed in closed form, but its members can easily be

calculated using a recursive procedure in Lord and Wingersky (1984). The procedure is

based on the fact that the probabilities at X = x are given by coefficient of factor e in

the generating function

H{qi(0) tPi(e)],
i=1

(15)

with 09) = 1 (0).

If this procedure has been used to calculate Filo (y) and Fxio(x) for a given value of

0, equating error in (7) and (9) can be calculated as

and

Ei(y; 0) = Fcpoole((P(Y)) Fxio(c(Y)) (16)

62(Y; 0) = (PM F;i1e(FY10(Y)), (17)

respectively. Observe that (16)-(17) are now functions of y as well as 0.

Conditional Equating Methods

The error definition in (17) is based on the following set of true equating

transformations

co*(y; 0) = F.Tc110(Fylo(y)), 0 E R. (18)
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This set was proposed directly for IRT observed-score equating in van der Linden (2000,

Proposition 1), who proved that it meets all known criteria of perfect equating, namely

(1) equity of equating for each examinee, (2) symmetry in X and Y, (3) population

invariance, and (4) identical order of examinees on X and co(Y) (for the first three criteria,

see Harris & Crouse, 1993, and Kolen & Brennan, 1995). This paper also presents

graphical examples of the transformation for different tests as well as generalizations to

tests that fit only multidimensional IRT models.

The fact that (18) meets the criterion of equity seems to contradict Lord's (1980)

theorem, which claims that, except for the trivial case of two parallel test versions, such

transformations do not exist. However, implicit in Lord's theorem is the assumption that

the transformation should be the same function for all examinees, whereas (18) allows for

different transformations for different examinees.

The critical feature of (18) relative to the equipercentile transformation in (8) is the

conditioning on the examinee's ability 9. Equating methods with this feature will be called

conditional equating methods, whereas the traditional equipercentile method in (1)-(2)

will be referred to as a marginal equating method. The idea to condition an equating

procedure on other variables than the observed test scores was already presented in Wright

and Dorans (1993). A formal framework for doing so is presented in Liou, Cheng, and

Li (2001). These authors motivated their approach by the wish to improve equating by

accounting for relevant differences between examinees. Statistically, their idea amounts

to the use of equating transformations conditional on values for background variables that

describe relevant difference between examinees. In fact, the set of transformations in (18)

takes this logic one important step further. Its transformations are conditional on the most

relevant variable available: the ability of the examinees measured by the two versions of

the test.

The error functions in (16)-(17) can be calculated for any given equating

transformation as soon as the items in the two versions of the test have been calibrated

using a sufficiently large sample of examinees. These functions are thus easily available

16
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to evaluate a new equating procedure or to choose the best procedure for an equating study

from an available set of candidates.

Although the set of true transformations in (18) is known as soon as the items

have been calibrated, it is impossible in an actual equating study to pick the correct

transformation from the set for a given examinee because his/her true value of 9 is not

known. Nevertheless, (18) is useful because it could suggest transformations that have

smaller equating error than the estimated marginal equipercentile transformation in (2).

In the next sections two suggestions by van der Linden (2000) are discussed. Each

transformation deals in a different way with the fact that 0 in (18) is unknown.

Estimated Conditional Equating

A simple approximation to (18) is to replace 0 by an estimated inferred from the

examinee's response vector. Let be be such an estimate. In the empirical examples below,

the expected a posteriori (EAP) estimator was used to estimate 9. A possible equating

function, following upon the substitution of 3 into (7), is thus:

co(y;B) = F;c:11;oFy1o(y), 9 E R. (19)

This transformation is based only on observable quantities. In an actual equating

study, the following steps have to be taken to calculate an equated score for an examinee:

(1) estimating the examinee's value of 0 from his/her response vector; (2) calculating

the true transformation in (18); and (3) using this transformation to calculate the equated

score associated with the examinee's observed number-correct score Y = y.

Posterior Expected Conditional Equating

The transformation in (19) uses the mean of the posterior distribution of 0 but ignores

the remaining uncertainty about 0 in this distribution. From a Bayesian perspective,

it seems fair to acknowledge this uncertainty and take the expectation of (7) over the

posterior distribution as an alternative to (19). If feiui,...,u (0) denotes the density of the

posterior distribution of 0 for response vector (ui , un), the equating transformation
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(P(Y;u1,...,u,,)= f Fi119FY10(Y)felui,...,u,,(19)c10. (20)

Discussion

Observe that the error functions in (19) and (20) are dependent on the response vector

of the examinee. Because we are generally not interested in the evaluation of these

functions for a single response by an examinee, it makes sense to evaluate them over

random responses, for example, to examine their bias or average error across responses.

This was done in the empirical examples below

Statistically, the conditional transformations in (19)-(20), though never as good as

the true transformation in (8), are expected to perform better than the marginal equation

in (2). One reason is the bias in the marginal transformation due to its dependency

on the population distribution of 9. Another is that the fact that the conditional

transformations exploit the full information in the response vector of the examinee to

find his/her he equated number-correct score, whereas the marginal transformation uses

only the part of the information in the number-correct scores. Finally, we expect the

conditional transformations to have better behavior for increasing test length. If the

test length increases, the number of parameters that define the distribution functions on

which the marginal transformation in (2) is based increases and less data per parameter

becomes available to estimate them. On the other hand, if the test length increases,

the point estimate of 9 in (19) becomes more accurate and the posterior distribution of

9 (20) degenerates at the true value of 9. Because, for each value of y, the equating

transformations yo* (y; 0) are continuous in 0, (19) and (20) converge to the true equations

in (18).

Empirical Examples

Under a variety of conditions, response vectors for examinees on two different

versions of a test were simulated and their number-correct scores were equated using

18
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the marginal equating method in (1) as well as the estimated conditional and posterior

expected conditional equating method in (19)-(20). The results were evaluated using the

bias or average of the error defined in (17) across examinees at the same value of 9. Given

the setup of the equating study, which is explained below, the marginal equating method

had constant error for each value of 0, but for simplicity we will refer to this error also as

bias.

The bias in the three transformations was evaluated for tests varying on the following

factors:

(1) Length of X and Y;

(2) Difficulty of items in Y relative to those in X;

(3) Discriminating power of items in Y relative to those than in X;

(4) Size of error in parameter estimates of items in Y and X;

(5) Adaptive or fixed format for Y.

The first four factors were included in the study to identify possible aspects of tests

critical with respect to the difference between results from marginal and conditional

equating. When the effects of the first three factors were studied, all values of the

item parameters were treated as if they were the true values. The fourth factor was

included in the study to examine the effects of this assumption. The last factor was

added because, even though examinees get different items if Y is adaptive, the conditional

transformations in (18)-(19) put all examinees' number-correct scores on the same scale

as X. This feature means that conditional equating is a potential alternative to the test

characteristic curve method currently in use to report scores on adaptive tests as number-

correct scores on a paper-and-pencil reference test or to equate score when examinees

have the choice between an adaptive and a paper-and-pencil version of the same test

(Lawrence & Feigenbaum, 1997; Segall, 1997; van der Linden, 2001).

Method

All versions of X and Y were derived from two blocks of 20 items selected from

previous forms of the Law School Admission Test (LSAT). The 20-item, 40-item and 60-

item tests in the conditions with varying test length consisted of one, two and three times
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the same block. This setup guaranteedconditions with homogenous test lengthening and

no confounding between test length and test composition.

The same 40-item versions of test X and Y were used as a standard for comparison

in all conditions . The conditions with more and less difficult versions of the items in Y

were simulated by subtracting and adding .5 to the values of parameter bi for the items in

the standard test, respectively. The conditions with more and less discriminating items in

Y were simulated by multiplying their values for parameter ai by .5 and 2.0, respectively.

The condition with the smaller errors in the estimated value of the item parameters in

X and Y was simulated by adding random numbers from [-.15, .15] to the values of the

items in the two standard tests for parameters ai and bi, and from [-.10, .10] to the values

for parameter ci,. The condition with larger error was simulated by taken the intervals

twice as wide. In both conditions, the values of the estimates of ai and ci were set equal

to .10 and .00 if the results was lower than these values.

The adaptive version of Y was a 40-item adaptive test simulated from a previous

pool of 678 items from the LSAT. The ability estimator in the adaptive test was the EAP

estimator with a uniform prior over [-4,4], which was always initiated at 9 = 0. The

items were selected using the maximum-information criterion (van der Linden & Pashley,

2000).

Test administrations of X and Y were simulated for 5,000 examinees for each value

9=-2.00, -1.50, ..., 1.50, 2.00. The error functions in (17) were calculated for each

examinee and the bias in the transformations was estimated as the averaged error in the

functions over all examinees at the same value of 0. The number of simulations for each

value of 0 was large enough to get stable estimates of these bias functions.

The marginal equating transformation in this study was calculated generating the

conditional observed-score distributions of X and Y given 0 using (15) and then averaging

these functions over the 0 values (for another application of this method in equating, see

Zeng & Kolen, 1995). The transformation was thus not the version estimated from the

sample distribution functions in (2) but the population version in (1). The bias in the

marginal equating transformation was therefore entirely due to the difference between
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(1) and the true transformations in (18), and not to estimation error in the distribution

functions in (2). As a consequence, the comparison between the results for the marginal

and conditional methods is thus somewhat conservative in the sense that the marginal

method was based on our knowledge of the true 9 values of the examinees whereas for

the conditional methods estimates of 9 were used.

Results

The results for the different lengths of the test are displayed in Figure 1. The two

conditional equating methods had already negligibly small bias at n = 20 for all values

of 9, which further decreased with the length of the test. At n = 20, the bias in the

posterior expected conditional equating method, though still less than one score point on

X for all values of y, was noticeable larger than for the estimated conditional method,

but the difference disappeared for the larger tests. The effect is believed to be due to the

Bayesian nature of the former, which involves a larger bias as a price to be paid for a

smaller accuracy.

[Figure 1 about here]

The plots for the marginal equating methods in all conditions yielded curves that

were generally ordered in 9, with the curves for the higher values of 0 more to the left.

As expected, in Figure 1 these plots showed considerable bias at n = 20 for all values of

9, which further increased with the length of the test. Also, all curves showed a typical

"wave", which is the result of the difference in shape between the marginal transformation

in (1) and the true conditional transformations in (18).

Note that Figure 1 does not display functions over the entire range of y for all values

of 0. The reason is the value of the conditional probability functions of X and Y given O.

For values smaller than .0001, it was decided that in a practical application the equating

transformation would be unstable outside this range because too few examinees would be

available and reporting of bias would no longer be relevant.

The difference in the values of the difficulty parameters for the two versions of the test

resulted only in a shift in the wave of the curves for the marginal equating transformation.
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This shift can be explained by the difference in shape between the marginal equating

transformations for X less and more less difficulty than Y. In the former case, the

transformation is concave; in the latter, it is convex.

[Figure 2 about here]

Interesting results were obtained for the conditions with a change in the values of the

item discrimination parameter for the new test, Y, relative to the old test, X. Generally,

lower values for this parameter means both wider observed number-correct distributions

and less accurate estimators of 0. The first effect is visible in the plots for the marginal

equating method in Figure 2, which shows curves over larger ranges of y values than in

the previous plot. The second effect explains the larger errors in the conditional equating

transformations, which for this case became substantial, particularly for the lower values

of 0. For larger values of the discrimination parameter the opposite was observed: the

marginal equating method still had large bias but the curves were defined over much

smaller ranges of values of y whereas the conditional methods became virtually error free.

However, it should be remembered that the changes in the values of the discrimination

parameter in these two conditions relative to the values of 40-item test in Figure 1 used as

the standard in this simulation study were dramatic. In practice, it will seldom be possible

to find tests developed by a professional testing agency with parameter values that differ

from the standard test in this study by a factor equal to two.

[Figure 3 about here]

The results in Figure 4 show that the presence of estimation error in the values of the

parameters of the items did not have much impact, even for the condition with the larger

errors. All curves were basically the same as those for the 40-item standard test in Figure

1, which were obtained without any estimation error in the values for the item parameters.

[Figure 4 about here]

The largest errors for the marginal equating method were obtained for the condition

with an adaptive version of test Y in Figure 5. The reason is much more peaked

conditional distributions of Y given 0 for the adaptive version of the test than the version
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with a fixed format. As a result, the marginal equating transformation become extremely

sensitive to the population distribution of 0, which serves as the source of its bias.

However, the results for the marginal transformation are presented only to make this effect

visible, not to suggest any practical value. Real-life testing programs that use the marginal

method to equate scores on an adaptive version of their test to a paper-and-pencil version

typically use the estimated value of B on the adaptive test and not the number-correct score

for this purpose (Lawrence & Feigenbaum, 1997; Segall, 1997).

[Figure 5 about here]

Note that the marginal transformations in Figure 5 are defined over a smaller region

of y than in the other conditions. This finding is also the result of the tendency of

number-correct score on adaptive tests to be strongly peaked. As a result, the marginal

transformations had to be truncated earlier at the value of .0001 for the joint probability

function of X and Y.

As indicated before, the reason to look into the equating of an adaptive version of

a test to a version with a fixed format was the fact that conditional methods seem much

appropriate for this task. The results for the bias in the estimated conditional and posterior

expected conditional transformations confirmed this expectation. The transformations

had negligible bias over the region of values of y values for which the criterion of a

probability of a score larger than .0001 was met. The application of these two methods in

large-scale adaptive testing can be recommended without any hesitation.

Conclusion

The research in this paper was motivated by the fact that the error definition in the

literature on observed-score equating allows only for sampling errors in the estimates of

the distribution functions for the two versions of the test in the population of examinees.

It was argued that, because the scores on one version of the test are transformed to

be indistinguishable from the scores on another version, a definition of equating error

based on the differences between these scores would be more natural. Embedding such
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a definition in the framework of IRT led to the notion of conditional equating as well as

to the formulation of two new methods of observed-score equating expected to perform

better than traditional marginal equipercentile equating.

The results in the simulation studies were in agreement with this expectation. The

conditional methods outperformed the marginal method under all conditions. Also, they

never had a bias larger than one score point on the scale of the version of the test to which

the scores were equated. The only exception was a condition with unrealistically low

values for the discrimination parameter for the items in the test from which the scores

were equated. On the other hand, marginal equipercentile equating yielded a bias in the

equated scores that under some conditions reached a maximum as large as 10-15% of the

maximum score on the test to which they were equated.

The results also showed that the conditional equating methods can be used to equate

scores on an adaptive test to number-correct scores on a test with a fixed format, for

example, a paper-and-pencil version of the test released for score-reporting purposes.

Application of these methods in this context is natural because all items in the item pool

are calibrated and it is a relatively simple step for the computer algorithm to produce a

number-correct on the paper-and-pencil version of the test along with the ability estimate

on the adaptive version.
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Figure Captions

Figure 1. Bias in (i) marginal equating transformations, (ii) estimated

conditional equating transformations, and (iii) posterior expected conditional equating

transformations at different values of 0 for test lengths n = 20 (Panel a), n = 40 (Panel

b) and 7/ = 60 (Panel c).

Figure 2. Bias in (i) marginal equating transformations, (ii) estimated

conditional equating transformations, and (iii) posterior expected conditional equating

transformations at different values of 0 for an easier (Panel a) and more difficult (Panel

b) new version of the test, Y (71 = 40).

Figure 3. Bias in (i) marginal equating transformations, (ii) estimated

conditional equating transformations, and (iii) posterior expected conditional equating

transformations at different values of 0 for a less discriminating (Panel a) and more

discriminating (Panel b) new version of the test, Y (n = 40).

Figure 4. Bias in (i) marginal equating transformations, (ii) estimated

conditional equating transformations, and (iii) posterior expected conditional equating

transformations at different values of B for smaller (Panel a) and larger (Panel b) estimation

errors in the values of the item parameters for the two versions of the test (n = 40).

Figure 5. Bias in (i) marginal equating transformations, (ii) estimated

conditional equating transformations, and (iii) posterior expected conditional equating

transformations at different values of B for an adaptive new version of the test, Y (n = 40).
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