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Optimal Test Construction'

Abstract

Optimal test construction deals with the selection of items from a pool to construct a

test that performs optimal with respect to the objective of the test and simultaneously

meets all test specifications. Optimal test construction problems can be formulated as

mathematical decision models. Algorithms and heuristics have been developed to

solve the models that can be used to construct tests.

Keywords: 0-1 Linear programming, Automated test assembly, Heuristics,

Mathematical programming, Test construction, Weighted deviations model.

1 The paper is a extended version of Veldkamp, B.P. (2002). Optimal test
construction. In: Encyclopedia of Social Measurement. Submitted.
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Introduction

In the area of educational and psychological measurement, tests are often used as data

collection instruments. The data are used to assess the score of a testee on an ability.

To define the relation between the answers to a test and the ability, a measurement

model is formulated. Based on the model and the data, the score of the candidate is

estimated.

In the early days of testing, oral tests and interviews were used to assess the

abilities. The measurement model was not formulated explicitly, and the score did not

depend only on the answers but also on the mood of the rater. In some areas,

standardized test forms, like the Binet-Simon test, were introduced to make scores

more comparable. These standardized test forms solved one problem, but introduced

another. When items in the test become known, candidates might try to influence their

scores by formulating answers in advance and learning them by hart. Especially in

educational measurement this is a potential problem. Because of this, teachers, and

test committees had to formulate new items for every new test administration.

The new items had to be written, pre-tested, calibrated, edited and transported

to the test location, before they could actually be used to collect data. This process

was quite expensive, and because these items were used only once, it meant quite a

waste of efforts and time. To increase efficiency, new items were collected in item

pools. In educational measurement, these pools usually contain between a few

hundred and a few thousands of items. From these pools, tests can be selected for

several purposes. Item selection is based on the test specifications. For a large test

construction problem the number of specifications might easily run into a few

hundred. When the number of items to choose from is also large, manual test

construction will become far from optimal and a computer algorithm has to be used to

construct tests optimally.

Item Response Theory.

The introduction of Item Response Theory (IRT) to large scale testing provided new

opportunities for test assembly. In IRT measurement models, item parameters and

person parameters are modeled separately (Hambleton & Swaminathan, 1985). Apart

from sampling variation, the item parameters do not depend on the population or on

the other items in the test. For dichotomously scored items the Rasch Model, the 2-
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Parameter Logistic Model (2PLM), and the 3-Parameter Logistic Model (3PLM) are

most often applied. The relation between the item and the person parameters can be

formulated by the following logistic expression:

1);(0 i):= + (1 ci) (1)
1+ e

ai(Orbi) '

where Pi (6i) is defined as the probability of obtaining a correct answer to the item i

for person j. The person parameter Of denotes the latent ability and the item

parameters aobi, and ci denote the discrimination, the difficulty and the guessing

parameter. For the Rasch model and the 2PLM, the guessing parameter is supposed to

be zero, and for the Rasch model all discrimination parameter are supposed to be

equal to one. For polytomously scored items polytomous IRT models have also been

formulated, for example the Graded Response Model, the Graded Partial Credit

Model or the Nominal Response Model.

When IRT models are applied, measurement precision is determined by the

amount of information in the test. Test information (Lord, 1980), which is a function

of the person parameter and the parameters of the items in the test, is defined by:

1(e)= /0)_ (e)
ietest feint P,(0)Q,(9)'

(2)

where P,'(0) is the first derivative of PO) , and a (9) is the probability of obtaining a

wrong answer.

The focus in optimal test construction is therefore to find a computer

algorithm that selects items from the pool that maximize the amount of information in

the test but also meet the test specifications.

Knapsack problem.

To solve optimal test construction problem, all kinds of smart decision rules have

been developed. Birnbaum (1968) presented a rather general approach. His algorithm

consisted of the following steps.
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1. Decide on the shape of the desired test information function.

2. Select items from the pool with information functions to fill areas under the

target information function

3. After each item is added to the test, calculate the test information function

4. Continue selecting items until the test information function approximates the

desired shape.

However, if more and more test specifications have to be added to the construction

problem, the approach becomes hard to adapt. Theunissen (1985) made the

observation that optimal test construction is just one example of a selection problem.

Other well-known examples are flight-scheduling, work-scheduling, human resource

planning, inventory management, and the traveler-salesman problem.

In the area of Operations Research or Mathematical Programming, algorithms

are developed to solve such problems (Papadimitriou & Steiglitz, 1982). To find the

best algorithm for optimal test construction, algorithms from this area have been

adapted and applied. One class of selection problems are the so-called knapsack-

problems. Before a traveler leaves, he has to fill his knapsack. All possible items he

may wish to pack represent a certain value to him, but the volume of the knapsack is

limited. The problem is how to maximize the value of all the items in the knapsack,

while the volume restriction is met. More formally stated:

max E cgx,
1.1

subject to:

Ea,x, 5 b

x, E {0,l}

(3)

(4)

(5)

where ci denotes the value of item i, ai denotes the volume of item 1, and the volume

of the knapsack is denoted by b. The decision variables xi denote whether an item is

selected (xi =1) or not (xi =0). In Mathematical Programming terms, the formula in

Equation 3 is called the objective function, and Equations 4 and 5 are called the

constraints.
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In optimal test construction, a problem can be described as a knapsack

problem. The value of a test, that is the information in the test, has to be maximized,

in order to obtain optimal measurement precision. The volume can be interpreted as

all possible tests that meet the constraints defined by the test attributes, and an item

has either to be selected (xi =1) or not (xi =0) for the test.

Overview

In the remainder of this chapter it is demonstrated how to model several kinds of

optimal test construction problems using mathematical programming, and some

algorithms for solving the problems are described. The following topics were

selected. In Section II, the problem of constructing one linear test form is described.

Several objective functions and different kinds of constraints are suggested. This

section results in a general formulation of a test construction problem. Section DI

addresses models for several major test construction problems. The algorithms and

heuristics to solve the problems are described in Section IV. In Section V, a numerical

example of a test construction problem is given. Finally, Section VI discusses the

topic and gives some recommendations about the use.

Constructing a Single Linear Test Form

The traditional format in both educational and psychological testing is the linear test

form. A linear test form is a paper-and-pencil (P&P) test that can be used for a

population of candidates. To select a linear test form from an item pool, first the

objective of the test has to be specified. Then, the test specifications have to be

written as a set of constraints. For a review of the literature on test construction that

uses these steps, see van der Linden (1998).

Objective functions.

How to specify the objective function in a test construction model depends on the

goals or objectives of the test. Three examples of objective functions are given.

A simple objective deals with security of the item pool and the costs of testing.

When more items are exposed to candidates, the item pool becomes known faster and

the costs of maintaining the pool will be higher. So when the objective of the test is to

3



Optimal test construction - 7

maximize security of the pool, or to minimize costs of testing, a reasonable objective

function is to minimize the number of items in a test. In this case, the objective

function can be formulated as:

min Ix; . (6)

The objective of the test can also be chosen to depend on the decisions that

have to be taken based on it's scores. In criterion-referenced testing, a cut-off

score 0' is specified in advance. When the estimated ability o is larger than or equal to

, the candidate passes, otherwise the candidate fails. For candidates who clearly

pass or clearly fail, measurement precision need not be optimal. However, for

candidates who are close to the cut-off score, measurement precision should be high.

To construct a test that will serve this purpose, the following objective function can be

used:

max E .

rer

(7)

where or) denotes the information item i provides for the cut-off score.

A third example is a broad ability test. The test should measure the abilities of

a population of candidates, for example in diagnostic testing in school classes. Before

the test is constructed, targets for the information in the test are defined. The objective

of the test construction problem is to minimize the distance between the target

information function and the test information function. A few points on the 0 -scale

are chosen, and for these points the distance between target and test function is

minimized. This problem leads to the following objective function:

min y

subject to:

/,(0, )
1.1

y Vk,
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where y is the maximum distance between the test information function and the target

information function T for the k ability points. If no targets for the test information

functions are defined a Maximin approach can be applied:

max y

subject to:

E roux, y Vk,
,=1

(8')

(9')

In this approach the minimum value of the test information function over the k ability

points is maximized.

These three objective functions are most commonly used in optimal test

construction. The number of objective functions can easily be extended because

almost every property of the test can be used to define an objective function. In some

optimal test construction problems, even multiple objectives are necessary

(Veldkamp, 1999). Later, some other examples objective functions are given, but first

several possible constraints are introduced.

Constraints based on test specifications

Test specifications can be categorized in several ways. In this chapter, they are

categorized based on properties of the test construction model. Three kinds of

constraints are distinguished.

First, categorical constraints can be distinguished. Categorical item attributes

partition the pool in a number of subsets. Examples of categorical item attributes are

item content, cognitive level, item format, author, or answer key. In a categorical

constraint, the number of items in a category is specified:

x; c=1,...,C (10)

where K. is the subset of items in category c, nn is an upper bound to the number of

items chosen from category c, and C denotes the number of categories.

The second kind of constraints are the quantitative constraints. These

constraints do not impose direct bounds on the numbers of items, but on a function of



Optimal test construction 9

the items. Examples of quantitative attributes are word count, exposure rates,

expected response times, but also item parameters. To limit the expected response

time for a test, the following constraint can be added:

Et ,x, 5 T,

The sum of the expected response times t1, is bounded from above by a time limit T1.

Quantitative constraints are usually indexed with the symbol q.

The third type of constraints deal with inter-item dependencies. They are also

called logical constraints. If, for example, one item contains a clue to the solution to

another, these items can not be selected for the same test. If one item is chosen, the

other one should thus be excluded. An example of an inclusion constraint deals with

item sets. If one item in the set is chosen, all items in the set have to be chosen. These

kind of constraints can be formulated as:

xi y elE V (12)

E,
leg

(13)

where v, denotes a logical set 1, and ni defines the number of items to be chosen from

the set. The variable yi is equal to 1, if an item from the set is chosen. Equation 13,

implies that if one item is chosen, all items will be chosen. For an exclusion constraint

= 1, for an inclusion constraint ni is equal to the number of items to be chosen from

the set.

For an overview of different constraints, see van der Linden and Boekkooi-

Timminga (1989).

General model for construction linear test forms.

Now that the objective functions and constraints have been formulated, a general

model for optimal test construction can be given. In this model generic constraints

will be used to denote the different kinds of constraints. For a typical high-stakes
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achievement test, such as the LSAT, the GMAT or the TOEFL, the total number of

constraints easily runs into the hundreds. The general model can be formulated as:

min y (14a)

subject to:

±ii(00x, -T(9k) y Vk, (target information) (14b)
i.1

Ex, 'lc c =1,...,C (categorical constraints) (14c)
teV,

Ex, = n,

x, e {OM

(quantitative constraints) (14d)

(logical constraints) (14e)

(total test length) (14f)

(decision variables) (14g)

The constraint in Equation 14g guarantees that each item is selected or not. In the

remainder of the chapter, this model will be used to formulate optimal test

construction problems.

Weighted-Deviations Model

In the general model, all test specifications are considered as constraints that have to

be met. For some test construction problems, the test specifications are considered to

be desirable properties rather than constraints. As a result, they are allowed to be

violated in the test construction process. When properties are considered as desirable

properties, a weighted deviation model can be formulated (Stocking & Swanson,

1993). In this model, targets are defined for all test attributes. The objective function

is a weighted sum of all violations or deviations. This model can be formulated as:

min E (minimize weighted deviation) (15a)

subject to:

x; 5_ di (categorical constraints) (15b)
IEV

12
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(quantitative constraints) (15c)

(logical constraints) (15d)

(decision variables) (15e)

where the variables di denote the deviations, and wj denotes the weight of deviation j.

In this model the difference between the target information function and the test

information functions is formulated as a quantitative constraint. When some

specifications are considered to be of paramount interest, their weights get high

values. When other specifications are considered to be less important, the weights get

low values. Because the specifications do not have to be met, the model is less

restrictive. A less favorable feature of this model is that two different tests constructed

by the same model might have different attributes.

Models for construction other testing formats.

In educational and psychological measurement a wide variety of testing formats have

been developed. Models for the majority of these formats can be formulated by

slightly changing the general test construction model defined in the previous section.

For a number of testing formats it will be explained how they differ from the general

test construction problem and how the model should be adapted to construct the

desired test form.

Parallel test forms

In many applications, several linear test forms have to be constructed that meet the

same set of specifications. For security reasons, several versions of the same test

might be needed or the test can be offered to candidates on different occasions. When

tests meet the same set of specifications they are considered to be parallel. Several

definitions of parallel tests are given in the literature, but the concept of weakly

parallel tests is often applied. This means that the same set of constraints is met by the

tests and the test information functions are identical. If a model is developed for

constructing parallel tests, a few changes have to be made to the general model stated

13
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in Equation 14 (van der Linden & Adema, 1998). First, the decision variables have to

change. Where in the general model variable xi indicates whether or not an item is

selected for the test, an additional index j is needed to determine for which test the

item is selected, where j runs from 1 to the number of parallel tests that have to be

constructed. The new decision variables xi./ are defined as

{xi =1 item i is selected for test j,

x u = 0 otherwise.
(16)

The same sets of constraints should hold for all parallel tests. However, the

objective function has to change slightly. For all parallel tests, the maximum

difference between the target information function and the test information function

should be minimized. It might also happen that no targets for the information

functions have been defined. It that case, the maximum difference between the test

information functions of the parallel test can be minimized.

Tests with item sets

Some items in the pool may be grouped around a common stimulus. The stimulus can

be a text passage, a table, a figure, a video or music fragment (sometimes denoted as

vignettes), e.g.. Whenever the stimulus is selected for the test, all items, or at least a

minimum number of items, that belong to the stimulus have to be selected. Several

ways of dealing with these inclusion constraints have been presented (van der Linden,

2000). One of them was discussed above when constraints on inter-item dependencies

were introduced. However, when test specifications at stimulus level have also been

met, this approach does not work.

An alternative approach is to introduce decision variables z5, where

; =1 if stimulus s is selected,

; = 0 otherwise.
(17)

Categorical, quantitative, and logical constraints can be formulated both at

stimulus and item level. To make sure that the relation of inclusion between the

stimulus and the items is also met the following constraint can be added to the model:

14



E= nzz.,
ley,

Optimal test construction - 13

(18)

Whenever stimulus s is selected, this constraint guarantees that ns items from

Vs, the set of items that belong to the stimulus, are selected.

Classical test construction

Even though classical item parameters depend on the population and the other items

in the test, in practice classical test theory is often applied to construct tests. When the

assumption can be made that the population for the test does hardly change, test

construction may be possible for classical test forms. In general, the objective

function for these tests is to optimize reliability of the test. The reliability of the test is

hard to estimate, but Cronbach's a defines a lower bound to it. The objective function

for maximizing Cronbach's a can be defined for a fixed length test as:

n

a,
max

n i=1

(n 1)
aipix

(19)

where a,2 is the observed score variance, and pi, is the item test correlation of item i.

These parameters are based on earlier administrations of the items. The expression for

Cronbach's a is a non-linear function of the decision variables. In order to formulate

the test construction problem as a linear programming problem the following

modification is often made. Instead of maximizing the expression in Equation 19, the

denominator of the last term is maximized and its numerator is bounded from above

(Adema & van der Linden, 1989):

max Ecripix
(=I

subject to:

Ea, c
1=1

15
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(21)
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Tests measuring multiple abilities.

For certain types of items, several abilities are involved in answering the item

correctly. When taking a driving test, the candidate both has to master the car and to

show insight in traffic. In some cases, all abilities are intentional, but in other cases,

some of them are considered nuisance. When multiple abilities are involved,

optimizing the information in the test is more complicated. Fisher's information

measure takes the form of a matrix instead of a function (Segall, 1996). From

optimum design theory several criteria for optimizing matrices are known, but they all

result in non-linear and complicated objective functions. An alternative approach is to

use Kullback-Leibler information instead of Fisher information (Veldkamp & van der

Linden, 2002). Kullback-Leibler information is a linear expression in the decision

variables even in the case of multiple abilities. The resulting test constructing model

can be written as:

max I KLI(0)xi , (22)

where KL,(0) denotes the amount of Kullback-Leibler information of the item, and 0 is

a vector instead of a scalar.

Tests with equated observed-score distributions.

In many large-scale test programs observed scores are presented to the candidates.

Expensive equating studies have to be carried out to make the observed scores of

different test forms comparable. Adding constraints to the optimal test construction

model that would guarantee equal observed-score distributions would decrease the

costs of testing. It can be proven (van der Linden & Luecht, 1998) that the conditional

distributions of observed scores given 0 for two test forms are identical if

E PRO) = Pjr (0) r = 1, ...,n (23)

where gr (0)is the r-th power of PO) . In practice, the impact of high powers of

PO) vanishes quickly. To construct tests with equated observed score the constraints

in Equation 23 should be added for several values of 0 .

I.
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Computerized adaptive testing (CAT)

Computerized adaptive testing (Wainer, 1990, van der Linden & Glas, 2000) can be

compared to an oral exam. Instead of a teacher, in CAT a computer algorithm adapts

the difficulty of the items to the answers of the candidate. After an item is

administered the ability level of the candidate is estimated. Based on this estimate the

item that provides most information at the examinee's estimated ability level is

selected to be presented next. CAT reduces the test length by almost 40 percent. An

important dilemma in CAT is that optimal CAT construction requires sequential item

selection to maximize the adaptivity of the test but simultaneous test construction to

realize all the test specifications. In order to deal with this dilemma the Shadow Test

Approach was developed (van der Linden & Reese, 1998). This approach consists of

the following steps:

1. Initialize the estimator of the ability parameter.

2. Assemble a shadow test that meets the test specifications, contains all the

items already administered and gives maximum information at the current

ability estimate.

3. Administer the best eligible item in the shadow test.

4. Update the ability estimate.

5. Adjust the constraints to allow for the attributes of the items already

administered.

6. Return all unused items to the pool.

7. Repeat Steps 2 6 until n items have been administered.

The main idea in this approach is that to maximize adaptivity, in every

iteration a shadow test is constructed. This shadow test contains all previously

administered items and meets the test specifications. From the unadministered items

in this shadow test the next item is selected. Because of this, the complete CAT will

also meet the test specifications.

In Step 2 of the algorithm a shadow test has to be constructed. The objective

function in this test construction problem is to maximize the information at the current

ability estimate. This objective function can be compared with the objective function

in Equation 7. The difference is that the estimated ability is used instead of the cutoff-

score. The constraints are formulated by the test specifications. However, an

17
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additional constraint is needed to guarantee that all the items that are administered are

contained in the test. For selecting the k-th shadow test, the following constraint is

added:

I xi k 1

lE

(24)

where the set sk_, is the set of items that have been administered in the k-1 previous

iterations.

Multi-stage testing

A multi-stage test form consists of a network of item sets. The item sets are also

called testlets. The path of a candidate through this network of testlets depends on the

answers. So, after a testlet is finished, the next testlet is selected adaptively. An

example of a network for multi-stage test form is shown in Figure 1.

Insert Figure 1 at about here

In the first two stages, all candidates answer the same items. From the third to

the last stage, the group of candidates are assigned to low difficulty, medium

difficulty, and high difficulty testlets. Based on an estimate of their ability, the

candidates proceed to the high-, medium-, or low difficulty testlet. The path through

the network is chosen to maximize the information in the test as well as to meet the

test specifications.

The problem of constructing multi-stage tests is rather complicated. First,

testlets have to be constructed from the item pool and then they have to be assigned to

slots in the network. A testlet can be viewed as a small linear test with its own target

information function and a small set of constraints. Constructing one testlet is a

straightforward application of the model in Equation 14. However, to assemble a

multi-stage test, many testlets have to be constructed. Sequentially solving the model

in Equation 13 would result in high quality testlets in the beginning and low quality

testlets at the end of the construction process, because high quality items would be

18
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selected first. For simultaneous selection, decision variables have to be introduced,

which are defined as

Ixti =1 item i is selected for testlet j,

xu = 0 otherwise.
(25)

Besides, Equation 14b should be slightly changed because different target

information functions are defined for different testlets. The large number of decision

variables in this test construction problem makes it very hard to solve (see also,

Luecht & Nungester, 1998).

Constructing rotating item pools.

When optimal test constructing methods are applied, some items turn out to be more

popular than others are. A typical observation is that 30 percent of the items is

selected for 70 percent of the tests. To increase the usage of the less popular items and

decrease the exposure rates of the popular items a system of rotating item pools can

be used. Rotating item pools are subpools that are constructed from a master pool, and

these subpools rotate over timepoints and locations (Stocking & Swanson, 1998,

Ariel, Veldkamp & van der Linden, submitted). The subpools have to be weakly

parallel, so that they serve the test construction process equally well. Constructing

parallel subpools is comparable with constructing parallel tests. The main difference

is that all items have to be selected for a sub-pool. The resulting pool construction

problem minimizes the maximum differences between the pool information functions.

In order to increase the number of subpools that can be constructed from a

master pool, overlap between subpools can also be allowed. Popular items are only

allowed to be selected for one subpool, where less popular items can be selected more

often. To guide the process of selecting items for multiple subpools, the following

constraint has to be added to the rotating item pool construction problem:

x
1.1

<n Vi
1.1

(26)

Each item i can be selected for at most ni sub-pools. The consequence of using

rotating item pools is an increase in item pool usage. However, measurement

19
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precision will slightly decrease, because the best items will be spread over the

different subpools.

Algorithms and heuristics for solving optimal test construction problems.

In the previous section, models for optimal test construction were described. An

important question is, how to solve the models, that is, how to construct optimal tests.

Several algorithms and heuristics have been proposed. In this section 0-1 linear

programming techniques, network-flow programming, and a number of heuristics will

be discussed.

0-1 Linear programming techniques

When a problem is formulated in mathematical programming terms, many algorithms

are available for solving the model. For example, linear programming, 0-1 linear

programming, quadratic programming and interior point methods can be applied. It

depends on the kind of decision variables; and on the formulation of the constraints

which algorithms will perform best. In optimal test construction, the decision

variables are 0-1 variables. For the general formulation of a test construction problem

in Equation 14, all constraints consist of sums of decision variables. Because the

general test construction model only consists of linear constraints, 0-1 linear

programming techniques can be applied. 0-1 Linear programming problems are

known to be NP-hard, which means that it is not guaranteed that the optimal solution

is found in polynomial time. However, this is only a worst case performance (see also,

Papadimitriou & Steiglitz, 1982).

To find optimal values for the decision variables standard 0-1 linear

programming software such as CPLEX can be used. CPLEX employs an efficient

implementation of the Branch-and-Bound (B&B) algorithm. For most test

construction problems, a solution can be found in a reasonable amount of time. Only

such problems as the multiple-stage testing problem are too time consuming.

Some models described in the previous section had non-linear objective functions

or constraints. These have to be linearized before the 0-1 linear programming

techniques can be applied.
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Network-flow programming

For some special test construction problems a much faster 0-1 linear programming

algorithm is available, the network-flow programming algorithm (Armstrong, Jones,

& Wang, 1995). In order to apply this algorithm the model is allowed to only have

categorical constraints. When this algorithm is applied, even large test construction

problems with thousands of variables can be solved quickly.

Unfortunately, most optimal test construction problems also have to deal with

quantitative constraints. To embed these constraints in a network-flow programming

algorithm they are added to the objective function as penalty terms times a

Lagrangian multiplier. For example if a time limit of thirty minutes is to be imposed

on a test, the following term is added to the objective function

A(30 Etixi) (27)

The remaining problem is to find appropriate values for the Lagrangian

multipliers A . These values are usually found iteratively. Even when this iterative

process is needed to find the solution of the test construction problem, the algorithm is

fast, but the solution might accidentely suffer from constraint violation.

Logical constraints might also be part of the optimal test construction problem.

Some of them can be incorporated in the same way as the quantitative constraints.

When it not possible to use Lagrangian multipliers, a heuristic is needed to calculate a

solution under these constraints.

Heuristics

For some optimal test construction problems, 0-1 Linear Programming techniques can

not be applied because of non-linearity of the objective function or the constraints, or

the techniques may need too much time. Besides, it might not be possible to formulate

the problem as a network-flow model. In those cases, heuristical methods can be

applied to find a solution. A heuristic is an approximation method that works fast but

tends to result in a solution that is only close to optimal. In optimal test construction,

the greedy algorithm, simulated annealing, and genetic algorithms have been applied

successfully.
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Greedy algorithms work very fast. They select items seqiuentially. In every

iteration, the item is selected that contributes most to the objective function. The

NWADH (Luecht, 1998) is a well known application of a greedy heuristic. It has also

been applied very successfully in combination with the weighted-deviations model in

Equation 15. However, because these heuristics operate sequantially, the algorithm

may run into infeasibility problems at the end of the test.

Simulated annealing is a much more time-consuming method. First, an initial

test is constructed that meets all the specifications. Than, one item is swapped with an

item in the pool. If the new test performs better with respect to the objective function

it is accepted, otherwise it is accepted with a probability that decreases during the test

assembly process. The method stops when the probability of accepting a worse test is

smaller than a lower bound.

When genetic algorithms are applied several tests are constructed that meet all

the specifications. New tests are constructed by selecting one part from one test and

another part from a second test. If the new test performs better with respect to the

objective function it is added to the set of candidate tests. At the end, the best

candidate in the set is selected.

Infeasibility analysis

Sometimes, 0-1 linear programming techniques, network-flow programming, and

heuristical methods might not be able to construct a test from the item pool that meets

all the test specifications. When this happens the model is said to be infeasible. The

reason might be that there is a logical contradiction between some of the

specifications, a writing error may have occurred in the modeling process, or the item

pool may be poor. The exact reason of infeasibility is often very hard to detect. A

typical test construction model might consist of thousands of variables and hundreds

of constraints.

Several methods have been developed to diagnoze infeasibility (e.g.

Timminga, 1998, Huitzing, submitted). Since infeasibility is always caused by the

specifications in combination with the item pool, the focus of the methods is on the

interaction of individual specifications as well as interaction of specifications and the

item pool. The main idea in most methods is to isolate a small group of specifications

that have to be modified in order to construct a test from the pool. Closer
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investigations of such a group of specifications has to reveal the exact reasons of

infeasibility.

Numerical Example

To illustrate the optimal test construction modeling process and some of the

algorithms and heuristics, a numerical example is presented. An item pool for the

ACT Assessment Program Mathematics test consisting of 176 items was calibrated

using a two-dimensional version of the 2PLM. The calibration of these items was

carried out using the computer program NOHARM (Fraser & McDonald, 1988). The

probability of obtaining a correct answer in this model is defined as

P,(0,,O2):
1+ eq4+an82 +6'

eqfol +44202 44

(28)

where an is the discrimination index for the first ability and a2 is the discrimination

index in for the second ability. The parameter bi is a difficulty parameter, and 0, and 0,

are two ability parameters for each person. For the items, the content, and the item

types for these items have been specified. The original pool did not contain speeded

response times for the items, but to illustrate the use of quantitative constraints these

were added to the pool.

The objective of the test is to measure both abilities as precise as possible,

therefore the information in the test has to be maximized. Test length was 25, the time

limit was one hour, items 79 and 124 contained clues to each other, Table 1 and Table

2 describe the item type and the content specifications.

Insert Table 1 at about here.

Insert Table 2 at about here.
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The first step in formulating an optimal test construction problem was

formulation of the objective function. In a two-dimensional context, Fisher's

information for a test of n items is the following matrix:

1(0) =

(29)

aliPAM(0) auchiPi(0)a(9)
1=1 1=1

E aaP, )(2,(0)
r=1

n

I al (0)Q, (0)
1=1

where 9 is a two-dimensional vector. Several approaches for optimizing this matrix

have been proposed in the literature, but to illustrate the differences between the

algorithms and heuristics, the D-optimality criterion (e.g. Segall, 1998) was applied.

This criterion comes down to maximizing the determinant of the matrix. The

determinant is a continuous function of the two person parameters. Therefore, a small

grid e E {- 1AI} x {-1,0,1} of (00,) -points was chosen and the minimum value of the

determinant for these points was maximized.

In the set of specifications, categorical constraints were defined by the item

type and content specifications, the time limit defined a quantitative constraint, and

the enemies defined a logical constraint. The optimal test construction model could be

formulated as:

max y

subject to:

(30)

2
n

Eai2,13,(0s,)Q,(0)x, Ea,2,13,(03,)Q,(0,,)x,(Eaa2,P,(0)Q,(0)x,) y V s,t
i=i r=1

(Determinant of the matrix) (31)

Exi 3
ieV,G

Ex, 3
rev.

E , 3
/EVE,

(Plane geometry) (32)

(Pre-algebra) (33)

(Elementary algebra) (34)
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(Coordinate geometry)

(Trigonometry)

(Intermediate algebra)

(Analysis)

(Application)

(Basic Skills)

(Time limit)

(Enemy set)

(Test length)

(Decision variables)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

The determinant of the matrix was a non-linear function of the decision

variables. This function was linearized (Veldlcamp, 2002) in order to apply 0-1 linear

programming techniques. The greedy heuristic and simulated annealing were also

applied to construct an optimal test. The results are shown in Figure 2.

Insert Figure 2 at about here

The greedy heuristic performed best for this problem. For all the elements of

the grid, the greedy heuristic performed slightly better than simulated annealing. Both

heuristics performed much better than the linear programming approach. The

performance of the methods is illustrated in Figure 2, where two test information

functions are shown.

For this complicated problem, the greedy heuristic performed better than

expected. Because the item pool was well suited for this problem, the heuristic did not

encounter any infeasibility problems. Simulated annealing performed almost as well.
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This heuristic is time-consuming, but at the end it will almost allways result in a

solution close to optimallity. Linear programming did not perform that well. The

reason was that the objective function for linear programming was an approximation

of the D-optimality criterion. Allthough, the approximated problem was solved

optimally, the solution was worse than the solutions of both heuristics which

optimized the D-optimality criterion itself.

In this example, several aspects of test construction were illustrated. First, it

illustratres the process of formulating a model that describes the test assembly

process. Several ways of defining the objective function and the constraints are often

available. In this example, it was chosen to use the D-optimality criterion and a linear

approximation of the criterion. As can be seen in Figure 2, the results for the D-

optimality criterion were much better than for it's linear approximation. In general,

the test assembler has to be sure, that the model truly describes the problem.

Otherwise, the solution will be optimal to the model, but not for the problem. The

second step is choice of an assembly method. Several algorithms and heuristics are

available. They all have their own merits, and might result in different tests.

Conclusion and discussion

The main issue in optimal test construction is how to formulate a test assembly model.

In this chapter, models for a number of optimal test construction problems have been

introduced. However, all these models are based on the general test construction

model in Equation 14. They may need a different objective function, some additional

constraints, or different definitions of the decision variables, but the structure of the

model remains the same. When different optimal test construction problems have to

be solved, the question is not how to find a new method, but how to define an

appropriate objective function and a set of constraints.

In the second section, the weighted-deviations model was introduced as an

alternative to the linear programming model. All the models in the third section could

also be written as weighted deviation models. It depends on the nature of the

specifications whether linear programming models or weighted deviation models

should be applied. When the specifications have to be met, linear programming

models are more suitable but when the specifications are less strict, the weighted-

deviations model can be used. In practical testing situations it may even happen that a
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combination of both models is applied if only some of the specifications have to be

met. Both the linear programming models and the weighted deviation models can be

solved by the exact algorithms and heuristics.

Finally, some remarks have to be made about the quality of optimal test construction

methods. The models, algorithms and heuristics presented in this chapter are very

effective in constructing optimal tests. Additional gain is possible by improving the

quality of the item pool. Some efforts have already been made to develop optimal

blueprint for item pool design. These blueprints combine test specifications and

optimal test construction methods to develop better item pools. In doing so

measurement precision is increased further.
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Figure Captions

Figure 1. Multi-stage testing format

Figure 2. Test information functions.
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Table 1

Item type specifications.

Item type Lower Upper

bound bound

Analysis 8 15

Application 8

Basic Skills 2
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Table 2.

Content specifications

Content Lower bound Upper bound

Plane geometry 3 3

Pre-algebra 3

Elementary algebra 3

Coordinate 3

geometry

Trigonometry 3 7

Intermediate 3

algebra
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