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classroom activity structures that are made possible by applying new levels
of connectivity across diverse hardware platforms. Based on teaching
experiments involving core topics in basic algebra (slope-as-rate, linear
functions, simultaneous conditions), we examine 3 kinds of activity
structures exploiting a common display of student-produced mathematical
objects: (1) Construction and sharing of personally meaningful and executable
mathematical objects in "mathematical performances", (2) Aggregation and
display of student constructions that are systematically varied based on
classroom social and/or physical structure, and (3) The Where Am I?
aggregation activity structure, where students® constructions are aggregated
in ways that require students to perform careful analyses to "find
themselves" in the aggregation. Strong learning achievement pre/post-test
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EXPLORING THE PHENOMENON OF CLASSROOM CONNECTIVITY!

Stephen Hegedus James J. Kaput
University of Massachusetts-Dartmouth ~ University of Massachusetts-Dartmouth
jkaput@umassd.edu shegedus @ umassd.edu

We describe highly generative and affectively powerful classroom activity struc-
tures that are made possible by applying new levels of connectivity across diverse
hardware platforms. Based on teaching experiments involving core topics in basic
algebra (slope-as-rate, linear functions, simultaneous conditions), we examine 3 kinds
of activity structures exploiting a common display of student-produced mathemati-
cal objects: (1) Construction and sharing of personally meaningful and executable
mathematical objects in “mathematical performances,” (2) Aggregation and display
of student constructions that are systematically varied based on classroom social and/
or physical structure, and (3) The Where Am 17 aggregation activity structure, where
students’ constructions are aggregated in ways that require students to perform care-
ful analyses to “find themselves” in the aggregation. Strong learning achievement
pre/post-test results suggest considerable promise in such activities, especially with

low-performing students.

Context and Aims of the Sstudy

We are currently investigating the impacts and potentials of recent advances in
connectivity technology in grades 7-9 mathematics classroom, particularly linking
diverse hardware platforms such as the TI-83+ graphing calculators and larger com-
puters.

The work builds on earlier SimCalc research (for summary see Roshelle et al.,
2000) which aimed to democratize access to the Mathematics of Change and Variation
underlying the Calculus (Kaput, 1994) using a variety of new representations, links to
simulations and new curriculum materials. The software enables students to interact
with animated objects whose motion is controlled by visually editable piece-wise or
algebraically defined position and velocity functions. One form of the software has
been developed for the TI-83+ (Calculator MathWorlds) and the other is a cross-plat-
form Java application (Java MathWorlds) which exploits higher screen resolution,
with the ability to pass MathWorlds documents between the two platforms—see
www.simcalc.umassd.edu for further details. The new ingredient is classroom con-
nectivity that enables students to share mathematical functions across diverse hard-
ware platforms and teachers to collect, aggregate on a common classroom display, and
otherwise work with students’ constructions on the teacher’s workstation, as well as to
distribute functions to the students. Hence we combine the two root affordances of the
computational medium, representation and communication.

In this paper, we describe the phenomenological space of a SimCalc connected
mathematics classroom that arises from preliminary studies in the Spring and Fall
Semesters of 2001, and more tightly controlled empirical work currently underway.
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424 Algebraic Thinking

Theoretical Framework

Classroom connectivity (CC) opens a large and richly endowed opportunity space
for teaching, learning, assessment and curriculum activity design, a space jointly
structured by the structures of mathematics, and the social and physical structures
of the classroom in a dialectical relationship (Stroup, et al., these proceedings). The
social structure plays a direct role in the structuring of mathematical activities, and
vice-versa in a dialectical fashion. In some cases, the interplay of social and math-
ematical structures lead to an elevation of organization of mathematical structure, as
when students organized into groups build functions that vary parametrically across
the groups, yielding structured families of functions reflecting the structure of the
classroom, an elevation of the organizational structure of the mathematical objects,
from functions to families of functions. At the same time, the focus of student atten-
tion is likewise elevated to the level of what the group is doing rather than what the
individual is doing. In addition, for certain of the activities that we explore, students’
personal identities are intimately involved in their building and sharing of mathemati-
cal objects in the public space of the classroom. While in this brief paper we focus on
teaching and new activity structures, we note that an enormous range of foundational
educational issues are raised by CC because the radically increased bandwidth of
CC, supporting the direct sharing of mathematical objects such as functions, directly

@ affects the heart of what happens in classrooms, among students and between students @
and teacher. See our Discussion Group paper with Stroup, et al. (these Proceedings)
for further discussion of our theoretical framework.

Technological Connectivity

The prototype Navigator network from TI allows us to connect TI-83+ graphing
calculators together. As many as four calculators, including the teacher’s calculator,
can be physically connected to a hub which wirelessly communicates to an Inter-
net gateway in the classroom that in turn communicates with a remote server. This
server acts as an active storage buffer between students and teacher. The teacher can
also send and retrieve information and display received information on a standard
TI-Viewscreen. This information includes Calculator MathWorlds documents. For
example, a student can construct or edit a piece-wise defined position function and
send it to the teacher who can then display the function, run its animation, and base a
classroom discussion on it using the TI-83+ with ViewScreen.

Since Java MathWorlds can pass, collect and collate students’ documents, the
teacher can aggregate student constructions on the teacher’s computer as well, includ-
ing constructions produced on a computer rather than a graphing calculator and com-
municated via a standard computer network using standard intranet protocols. Finally,
using the ability to pass MathWorlds documents between the two types of platforms,
virtually any mix of the platforms can be used in the classroom (or computer labora-
tory). Our empirical work increasingly exploits these connectivity options.
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Data Sources

The ideas and data below reflect work in three venues, where we collected video
data, field notes, and student work, as well as pre-post test data in 2 & 3. The mathe-
matical topics across each venue included slope-as-rate, linear functions, simultaneous
conditions, and modeling of linearly changing phenomena in both motion and non-
motion contexts. In addition, in 2, we covered the full SimCalc curriculum, which
involved rate-accumulation connections across a wide variety of rates of change and
modeling contexts using graphical, algebraic and numerical descriptions. A fourth
intensive teaching experiment was carried out with high-performing middle school
students and which focused on peer-peer applications of connectivity, but will not be

reviewed here.

1. We piloted the Navigator system in two local high school Algebra I classes
in Spring 01 taught by their regular teacher (a SimCalc-experienced teacher).
Topic:

2. We used a more stable form of the system in combination with a teacher worksta-
tion in a required year-long course taught by the PI at UMass-Dartmouth for 12
academically weak entering College Freshmen (who mathematically and demo-
graphically are comparable to typical urban high school algebra students).

3. We used a mix of calculators and computers in a 5 week Spring 02 after-school
course for 35 grade 7-9 students in a second local high school taught by a SimCalc
novice teacher from that school and assisted by two other SimCalc novice teach-
ers. This course took place in a computer laboratory.

The first two venues helped generate and prototype activity structures that were
then used more intensely in the 3rd. And since the 3rd also included pre-post test data
where the majority of items were chosen from a required 10th grade state assessment,
we will focus on task-types used in this intervention and follow with a brief summary
of the results. Space limitations prevent transcript segments from sessions where these
activities were utilized, but annotated video will be offered as part of the PME-NA

presentation.
Three Basic Activity Structures
We will illustrate three kinds of activity structures, each of which uses the social

space of the classroom, and engages students’ identities, in a different way. We will,
however, limit the examples to topics associated with linear functions and slope-as-

rate.
(1) Creating and Sharing a Personally Meaningful Mathematical Object—
Mathematical Performances

This is a relatively simple type of activity, but one that we feel has enormous
pedagogical potential because of the ways it taps into adolescent students’ personal
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426 Algebraic Thinking

experience, their personal identity, their need for recognition, and their creativity in
expressing their unique personal experience. It also serves to focus class attention,
which leads to opportunity for intense follow-up engagement by the teacher to exploit
issues raised, for pedagogical and curricular purposes. We provide an example that
was used across all venues using the TI-83+ version of MathWorlds and, with links to
instructional material as well as graphics and student scripts illustrating the activity.

Create an Exciting Sack Race That Ends in a Tie (Slope-As-Rate-of-
Change)

We provide students the graph of a constant velocity position vs. time function
which controls the (horizontal) screen motion of one object (A, the “car-like box”
Above), which has the given constant velocity position vs. time graph in Figure 1 - A
travels for 10 seconds at 2 m/sec. With the short stub of a starter-graph for B, we ask
the student (1) to write a race-script for an “‘exciting race” with A; (2) to create a posi-
tion vs. time graph for B that enacts the race; and (3) Send the race-document to the
teacher who replays the race in front of the class on a large-screen display while the
student author of the race “calls the race” by reading their narrative script as it runs.

We have seen both a large variety of uniquely personal student creations in
response to this task and clear indicators of the “mathematical performance” aspects

@ of the task—for example, in most cases, the classroom audience breaks into spontane- @
ous applause when the race and story are complete. We offer a teacher’s model race
for simplicity’s sake, and, in order to give a sense of how this activity is introduced to
students, we embed the race-story in the form of directions to a teacher who is intro-
ducing the activity to a class. The teacher raises issues of steepness of line segments,
zero slope, negative slope as well as intersection of function graphs and their interpre-
tation as simultaneous position.

Imagine the teacher adding and adjusting one segment at a time (by stretching
left or right and “tilting” it to adjust its slope) to produce the composite race shown in
Figure 2 while asking a series of questions as follows. (i) Assume that B gets off to the
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Figure 1.
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slow start as indicated by the first segment. Where is A relative to B at the end of that
first segment? (ii) We want B to move faster than A and to pass A in a burst of speed.
What slope do we need for our new (2™) segment? (iii) Now, B went so fast he falls
down! What kind of slope do we now need so that B does not move for 2 seconds?
(iv) A has now caught up and is passing A, and B gets up confused and runs backward!
What kind of a segment do I need now? (v) Finally, B gets an amazing burst of energy
and finishes the race in a tie! How should I make my last segment? (This raises the
issue of what a “tie” means graphically, etc.) Finally, the teacher runs the race and
narrates it at the same time, to model what the students will be doing.

(2) Aggregation & Display of Student Constructions, Systematically Varied-
Based on Classroom Structure

Here the broad goal of this very general application of classroom connectivity is
to generate and examine important mathematical structures and relationships, and to
elevate the abstraction-level of mathematical attention from individual constructions
to publicly displayed aggregates of these. The underlying idea is to engage students,
or groups of students, in building mathematical objects that systematically vary in
ways that depend on their place in the social (and perhaps physical) space of the class-
room, and then to upload and aggregate these in a common classroom display. One

@ obvious example is the elevation from functions to parametrically varying families of @
functions. While this vertical flexibility is a powerful pedagogical resource not only
for supporting abstraction to parametrized families of objects but for many more gen-
eral purposes, we will offer only a basic pair of examples.

A Flexible and Generative Group Structure for the Class

Typically, the class is subdivided into groups, where the size of the group is
determined by the teacher or activity designer to fit both the given size of the class
and the mathematical activity (so the group might simply be the whole class, or each
group might have only two members, meaning students are organized in pairs). Then
the students count-off inside the group. In this way, each student has a two-number
identity that then serves as the value of a “personal parameter” that thus systematically
varies across students. The students then create mathematical objects that depend in
some critical way on their respective parameter values and then upload these to the
teacher where they are aggregated and displayed to the class. Sometimes important
variation occurs within a group and sometimes across groups, depending on the activ-
ity designer’s learning objective and how (s)he chooses to tap into students’ identities
(e.g., as colleagues, classmates, friends, fellow-sufferers, etc.) Moreover, if members
of a group are physically adjacent, then varying the count-off number allows students
to see the variation in their group’s productions. On the other hand, if we vary group
number and not the count-off number, then group members are creating the same
object and can help each other, be part of a team, etc. Again, choice of which to vary
depends on the goals of the activity.
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We will assume for our examples that students are formed into groups with 3-5
members, so each student has a count-off number ranging from 1 to 5, and the number
of groups will depend on the size of the class, say 24 in this case.
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Figure 3. Figure 4.

Linear Functions—The “‘Staggered-Start, Staggered Finish Race” (varying

“b” in y=mX-+b)

In the simplest cases, students make a linear position vs. time Y=mX+b function
where either m or b is their count-off number. In the latter, they make a 2 ft/sec motion
defined by the position vs. time function Y=2X+b where “b” is their count-off number.
We give Y=2X as areference point. (Nobody has count-off number zero, although we
can make activities where students subtract, say 3, from their count-off number, so
someone gets to have parameter value equal to zero.) The resulting set of parallel lines
and staggered starting points help reveal the invariance of slope (2 in this case), and
how the systematically varying y-intercept relates to initial position. A companion
activity involves using their group number as a starting point, so everyone in a group
travels side-by-side, as shown in Figure 3, where we see the screen after 3 seconds of
the 5 second race, and all persons in a group travel together. Furthermore, the position
vs. time graphs of a given group are coincident, while the respective graphs of the 6
groups are all parallel. Lastly, in Figure 4 we can see the equation of each function and
hence the parametric variation reflected in the seven values of “b” in y = 2X+b
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Linear Functions—The “Staggered-Start, Simultaneous Finish Race”

In this activity, one dot (A) starts at 0 m and travels at 2 m/sec for 6 seconds. Each
student starts at 3 times their group number and-is to finish in a tie with A. Here each
student in a group is solving the same problem, but may do so in many different ways.
Furthermore, since the group numbers vary from 1 to 6, the starting points vary from
3 to 18, which means that the slopes of the graphs (see Figure 5) vary from positive,
through 0, to negative, with all members of a group traveling together. The coef-
ficients of X vary, along with b, descending by 1.5 as Group number increases from
1 to 6. Group 4, interestingly, starts at the “finish line” (3*4 = 12), has zero velocity,
has X coefficient of 0, and has formula Y= 0X+12. This strongly contextualizes Y=12
in a family of functions in 3 ways—algebraically, graphically and in terms of motion
(where slope as rate of change is likewise in a central role). Groups 5 & 6 move back-
wards!

(3) The Where Am I? Aggregation
Activity Structure

In this genre of activities, both
group and count-off numbers typically
? are allowed to vary, so each student in
:d the class produces and sends up a unique @
object. However, the display of the
aggregate is deliberately ambiguated to
put the student in the position of needing
to focus and reason in generally predict-
able ways to “find themselves” in the
common display. We see two sources of
pedagogical power in this type of activity:
(1) The control of mathematical focus and
7 : ] reasoning based on the specific design of
e ——— =+ the activity (usually through the variation
Figure 5. of representational elements), and (2) The

engagement of the student’s personal iden-
tity at the mathematical heart of the activity via the student’s personal projection of
their identity into the publicly visible display — students and their peers quickly come
to refer to the objects as directly indexing the members of the class, referring to a dot
via a person’s name, rather than indirectly (e.g, using phrases such as “John is ahead
of Mary,” or “Is that you?” rather than indirect references such as “John’s dot is ahead
of Mary’s dot,” or “Is that your dot?”

Our repeated experience with this activity structure convinces us that it has enor-
mous power to energize a class, to focus students’ attention on specific and important
mathematical relationships and infuse it with affect based on the fact that students’

®
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personal identity is projected into the shared public space . We offer a simple example
with linear functions.

Linear Functions—Varying Starting Position (Group Number) and Velocity
(Count-off Number)A

Start at your group number & go for 5 seconds at a velocity (whose numeric
value is) equal to your count-off number.

(a) Which graph is yours? Explain your reasoning. (See Figure 6.)
(b) Based on your motion only, Where Are You? Explain your reasoning.
(See Figure7.)

(c) Which formula is yours? Explain your reasoning. (A list of all possible
formulas is shown.)

In versions (a) and (c), respectively, [FEi= e o or o@ roimrmy
students must relate the given initial posi- _— . i
tion and velocity information to vertical Lot 55!
intercept and slope of the graphs, or the |5yt s s g
constants in the formulas. In (b) they must " . . 4
relate the given initial position and veloc- ’ '
@ ity information to the motion, with the @

graphs hidden. Note that the teacher

has control of what information that
is made visible to the students, hence
can hide the graphs. In figure 6, we have
displayed all the functions and representa-
tional elements simultaneously. However,
we could display the motion with “Marks” _
dropped on a per-second basis, as shown [/ ==
Figure 7. = L7

In Figure 6, we included an “outlier.”” Figure 6.
The potential role of errors is enhanced,
as is the potential for student embarrass-
ment—hence the teacher has the option
of hiding any functions she chooses. We

have seen great excitement and excellent |. .. ‘E‘.z;_t.j}":h{ '“: _M: .
logical reasoning occur as students attempt ,f»f;ﬁ f. :‘: R t N
to track down the author of an erroneously E‘ rh “; ' ; :’ "t s
produced object. AW

Figure 7
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Results and Conclusion: What Are We Learning?

A pre/post-test comparison for a 15 hour intervention with grade 7-9 students that
applied the above activity structures as well as others involving simultaneous equa-
tions showed strongly significant gains on a battery of items drawn from a rigorous
state 10" grade examination. Two thirds of the students were 9* graders who had
previously failed or nearly failed the 8" grade version of the test a year earlier and the
remaining students were 7" and 8" grade volunteers. All students gained on almost all
items, and statistically strong gains summed across items for each of the groups. Of
special note were strong gains on open-ended modeling items which most students
find especially difficult.

We are in the very earliest stages of applying classroom connectivity and the
illustrations offered above barely scratch the surface of what we foresee. As noted in
Stroup, et al. (These Proceedings), the relationship between mathematical and class-
room social structure has been radically strengthened, as has the potential for engaging
aspects of students’ identity and personality. Not only are our traditional expectations
regarding classroom technology use being challenged, but our theories and accounts
of teaching and learning are being challenged as well.

Note

'This work was funded by National Science Foundation Grant # REC-0087771,
Understanding Math Classroom Affordances of Networked, Hand-Held Devices.
Assertions and conclusions are those of the authors and not necessarily those of the

Foundation.
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