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Abstract

This paper explores alternative methods of estimating the number of latent dimensions

represented by binary test data. The alternative methods vary in their complexity and include the

minimum average partial correlation technique (Velicer, 1976) applied to phi correlations between

binary responses, the bootstrapped parallel analysis method (Buja & Eyuboglu, 1992) applied to

phi correlations, the minimum average partial correlation technique applied to data that has been

optimally scaled using a monotonic transformation in which tied data may be untied (Kruskal,

1964; SAS Institute, 1990a), the bootstrapped parallel analysis procedure applied to those same

optimally scaled responses, and the DETECT procedure (Zhang & Stout, 1999). The binary

responses were simulated with either a one-dimensional or a two-dimensional, three-parameter

logistic model, and then those responses were analyzed with each of the five dimensionality

estimation techniques. The mean difference between the estimated and true dimensionality

suggested that the MAP and DETECT procedures performed best, on average, in conditions

where the data were truly unidimensional. In contrast, the bootstrapped parallel analysis and the

DETECT procedures performed best, on average, in the two-dimensional data conditions.

Additionally, the bootstrapped parallel analysis estimates were less sensitive to the amount of

correlation between latent dimensions relative to those produced by the DETECT procedure.

These limited simulations suggest that the.bootstrapped parallel analysis procedure may be useful

to applied researchers and students outside of the psychometrics arena who have either little

access to or less knowledge about more technically sophisticated dimensionality assessment

methods.
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Analyzing the Structure of Binary Test Responses Using an Optimal Scaling Approach

There have been many methods proposed for dimensionality assessment of binary responses to

educational test items. These include traditional principal components or factor analysis (Green,

1983; Hambleton & Rovinelli, 1986; Hambleton & Traub, 1973; Reckase, 1979), factor analysis

models based on parametric item responses theory (Bock, Gibbons, & Muraki, 1988; Fraser,

1988) and models based on nonparametric item response theory (Zhang & Stout, 1999) among

others. The traditional principal components (PC) approach suffers from two main difficulties.

First, PC is a linear model of the response process whereas item responses to educational tests are

generally thought to be a nonlinear function of a latent trait (Lord, 1980). Second, when

analyzing binary responses, those items with similar difficulties may give rise to spurious

"difficulty factors" (Gorsuch, 1983). McDonald & Ahlawat (1974) have argued that it is not

necessarily the binary nature of the item responses that leads to the emergence of difficulty

parameters, but rather the nonlinear relationship between the latent trait and the item responses.

There are several complex factor analytic models available to researchers and measurement

professionals who are psychometrically savvy. These include models like those implemented in

the POLYFACT (Muraki & Carlson, 1995), NOHARM (Fraser, 1988) and TESTFACT (Wilson,

Wood & Gibbons, 1991) computer programs. The programs attempt to explicitly model the item

responses as a nonlinear function of a multidimensional latent trait which, in turn, overcomes the

two problems associated with the PC approach; namely the binary character of responses and the

nonlinear relationship between responses and the latent trait. However, these models assume

particular parametric relationships between the latent trait and the observed responses and are

valid only to the extent that such relationships hold. Other models such as the DETECT
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procedure are nonparametric in this sense, and thus, appear to be more general.

Although the complex dimensionality assessment tools mentioned above are more justifiable in

a theoretical sense, they require more rigorous quantitative training for the data analyst and

specialized software relative to the traditional principal components procedure. If one is

introducing students and/or practitioners from other areas to the basics of testing and

measurement, then more simplistic methods must be employed. The benefit of using PC-based

methods to assess dimensionality arises because of their simplicity. PC is generally taught in

introductory courses on multivariate data analysis or applied measurement. Moreover, most

statistical computer programs perform PC analysis. Unfortunately, estimating the number of

dimensions from PC-based methods may be compromised to the extent that difficulty factors are

included in the estimates.

In this study, an alternative type of principal components analysis will be explored.

Specifically, the responses to each item will be optimally scaled to maximize their covariance with

linear combinations of the remaining test items. The optimal scaling technique is based on a

method developed by Kruskal (1964) in which tied responses can be untied as long as the ordinal

relationship between the original 0/1 categorization is preserved. Principal components based on

the optimally scaled data results in a nonparametric representation of the underlying structure of

the test items. This type of optimal scaling is available in a popular statistical computing package

(i.e., the SAS PRINQUAL procedure), and the method itself can be conceptually described to

individuals who possess only a modest understanding of multiple regression and principal

components.

The objective of this study is to compare the classical principal components method, the
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principal components of optimally scaled responses, and the DETECT procedure with regard to

the ability to determine the number of dimensions inherent in a set of binary test data. These

methods were chosen to represent an overly simplistic approach, a rationally based approach, and

a highly sophisticated theoretical approach. Although the analysis of high-stakes testing data will

always warrant more sophisticated dimensionality assessment procedures, it will be interesting to

see how a ubiquitous computer program like the SAS PRINQUAL procedure can perform

relative to specialty software such as DETECT which has been specifically designed for

dimensionality assessment with binary test responses.

Method

Two different simulations were conducted in this study. In one simulation, binary

responses were generated using a unidimensional item response model. In the second simulation,

a two-dimensional item response model was used to generate responses. Each of these

simulations is described in detail below.

Unidimensional Simulation

Data Generation

Data in the unidimensional simulation were generated using a unidimensional, three-parameter

logistic model (Birnbaum, 1968) in which the probability of a correct response to an item was

given by:

exp[ a1 (6n bi) ]
P;(0)= ci+ (1 -ci)

1+ exp[ ai(On bi)]'
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where:

0 is the latent ability for the nth simulee,

b, is the location of the ith item on the latent continuum (i.e., the item difficulty),

a. the discrimination of the ith item, and

c, is the pseudo-chance level parameter for the ith item.

Both test length and item difficulty were systematically varied. Five levels of test length (12, 24,

36, 48 and 60 items) were chosen to represent a range of tests from extremely short to fairly long.

These test lengths were crossed with two levels of item location clustering (unclustered and

clustered item locations). In the unclustered item location condition, true b, parameters were

randomly sampled from a uniform distribution along the interval (-2, +2) reflecting values often

found in practice (Hambleton & Swaminathan, 1985). In the clustered item location condition,

true bi parameters were clustered into three intervals defined by (-2.0, -1.5), (-.25, +.25) and

(+1.5, +2.0), and one-third of the test items were randomly located within each cluster. The

clustered item difficulty condition was included to promote the occurrence of difficulty factors

(Gorsuch, 1983). Item discriminations were sampled from a log normal distribution with 11=0 and

a =.5, whereas pseudo-chance parameters were sampled from a beta distribution with a=5 and

33=17. These distributions of item discrimination and pseudo-chance level parameters are identical

to the corresponding prior distributions used in BILOG (Mislevy & Bock, 1990). Person

parameters (i.e., 0 ) for 1000 simulees were independently sampled from a standard normal

distribution on each replication.

One hundred replications were performed in each experimental condition. All model

parameters were independently sampled from their respective distributions on each of these
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replications, and consequently, each model parameter was a random variable. It was hoped that

this feature would increase the generalizability of the results. The binary response to a given item

was obtained by comparing the value of a uniform (0,1) random deviate to the probability value

obtained from Equation #1 using the true model parameters for a given simulee-item combination.

Dimensionality Assessment

After the 1000 response vectors were generated for a given replication, the dimensionality

of the item responses was determined using each of five methods. Each method is described

below.

Minimum Average Partial Correlation Criterion (MAP). The MAP procedure (Velicer, 1976)

estimates the number of dimensions inherent in a set of data by finding the number of successive

principal components that must be extracted in order to minimize the average squared partial

correlation. The MAP criterion was applied to Pearson product moment correlation matrix

associated with the binary item responses (i.e., phi coefficients).

Minimum Average Partial Correlation Criterion Based on Optimally Scaled Data (MAPOP).

The MAPOP procedure was identical to the MAP procedure with the exception that principal

components were calculated from item responses that were first transformed in an optimal fashion

using a minimum generalized variance (MGV) method implemented in the SAS PRINQUAL

procedure (SAS Institute, 1990ab). The MGV method is an iterative method in which the

following steps are performed:

a) select the ith variable in the N x I data matrix to serve as a criterion variable in a

multiple regression where the predictors are the remaining /-1 columns in the data

matrix (or some full rank subset of the remaining /-1 columns)
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b) obtain the predictions for the criterion variable from this regression model

c) optimally scale these predictions using a monotonic transformation (i.e., monotonic

in relation to the criterion variable) that allows originally tied criterion values to

become untied (Kruskal, 1964)

d) standardize the optimally scaled data to have a mean and standard deviation equal to

that for the original variable

e) replace the ith column in the N x I data matrix with the optimally scaled data

0 repeat processes (a) through (e) for each column of the N x I data matrix

g) repeat processes (a) through (f) until the algorithm converges (i.e., until the rescaled

data changes very little from one iteration to the next.)

The MGV algorithm attempts to produce a set of transformed variables that are as redundant as

possible while maintaining a monotonic relationship between the transformed variables and the

original variables. This type of transformation will maximize the variance produced by each

successive principal component under the constraint that the transformed variable must be

monotonically related to the original variables. Given the nonlinear, monotonic relationship

between P;(6) and 0, we presumed that binary item response variables transformed in this fashion

would have less tendency to yield difficulty factors in a subsequent dimensionality analysis. In that

subsequent analysis, the dimensionality was estimated by applying the MAP criterion to the

principal components of the transformed data.

Bootstrapped Parallel Analysis (BSP). The BSP procedure (Buja & Eyuboglu, 1992) is a

resampling analog of Horn's (1965) parallel analysis procedure. In the BSP procedure, an N x I

random response matrix is constructed where N is the sample size and I is the test length. Each
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column of this matrix is built independently by resampling with replacement from the

corresponding column in the original data matrix. In this way, the correlation among the item

responses is effectively eliminated whereas the marginal distribution characteristics of responses

to each item are maintained. After the random response matrix is created, the principal

components of the Pearson product moment (phi) correlations derived from this matrix are

calculated and the resulting eigenvalues are stored. This process is repeated t times, and the

average eigenvalue obtained over these t repetitions is calculated for each successive component.

These average eigenvalues are compared to the eigenvalues associated with the real responses.

The estimated number of dimensions is equal to the first m components for which the eigenvalues

of real data are greater than the corresponding average eigenvalues of random data. Note that, in

this simulation, the creation of eigenvalues from random data was repeated t=100 times in each

replication, and then eignenvalues were subsequently averaged over these 100 values.

Bootstrapped Parallel Analysis of Optimally Scaled Data (BSPOP). The BSPOP procedure is

simply the BSP procedure applied to item responses that have been optimally scaled using the

MGV method described above.

Dimensionality Evaluation to Enumerate Contributing Traits ( DETECT). Zhang and Stout

(1999) have developed a quantity known as the DETECT index to determine the number of

dimensionally distinct clusters of items on a test and simultaneously assign items to those clusters.

The number of dimensionally distinct clusters, K, can be used as an estimate of the number of

dimensions inherent in a data set with approximate simple structure. A set of test items can be

assigned to K clusters a variety of ways. Each of these different assignments constitutes a

different partition, P. The theoretical DETECT index can be defined for a given partition as:

9
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D(P )
2 E 8. (P) E [Cov (Xi , I OT )

1(1 -1) 1<i<j</
(2)

where:

I is the number of test items,

E [Coy , X. I OT ) is the expected conditional covariance between scores on items i and j

after conditioning on the latent test composite, OT,

(P) is an indicator variable that is equal to +1 when items i and j are in the same cluster, and it

is equal to -1 when items i and j are in different clusters.

The theoretical DETECT index is maximized when each item is assigned to the correct cluster.

The DETECT procedure estimates D(P) for alternative partitions, P, using a genetic algorithm.

The partition that maximizes the estimate is chosen as the optimal partition of items, and the

number of clusters, K, can be used as an estimate of the dimensionality of the test responses.

The DETECT procedure was implemented using commercial software also referred to as

DETECT (The William Stout Institute for Measurement, 1999). The current study used the cross

validation strategy recommended by Zhang and Stout (1999). Simulees were randomly divided

into two halves of 500 simulees each. The DETECT index was maximized in the first half of

data. Denote this index as TheThe procedure was run again in the second half of data (i.e., the

cross validation data set). The optimal partition found in the cross validation data was then used

to recalculate the DETECT index in the first half of data. Denote this recalculated index as n .

The estimated dimensionality was set equal to 1 whenever .6 < .1 or

f fiREF > .5. The DETECT procedure conditions on both total test score and

corrected test score when calculating conditional covariances between pairs of items.

10
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Consequently, the user must specify the minimum number of respondents required at each

corrected score level. This value was initially set to 20 for each replication but was then

adaptively reduced on each replication in order to ensure that at least 85% of the respondents

were maintained in the analysis. The user must also specify the number of mutations allowed in

the genetic algorithm that is implemented in the program. This value was set to 7 for all

experimental conditions.

Data Analysis

The results were analyzed using a 5 (test length) x 2 (item clustering) x 5 (dimensionality

estimation method) split-plot ANOVA where the first two factors represented between-

replications factors and the last was a within-replications factor. Statistical tests of effects that

involved the within-replications factor were adjusted for sphericity violations using the Huynh-

Feldt (1970) procedure. The dependent variable was the number of dimensions suggested by a

given estimation method. One hundred replications were performed in each of the between-

replications cells. The statistical significance and effect size estimate (if) for each ANOVA

effect were examined. The if values were calculated separately for between-replications and

within-replications effects due to the fact that there were multiple error terms in the split-plot

design. For between-replications effects, the if value represented the proportion of between-

replications sums of squares accounted for by the given effect. For within-replications effects, the

if represented the proportion of within-replications sums of squares attributable to an effect. To

guard against interpreting small effects with little practical importance, only those effects that

were both statistically significant (p < .05) and had if values > .02 were deemed worthy of

interpretation.

11
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Two-dimensional Simulation

Data Generation

The second simulation was similar to the first with the primary exception that binary

responses were generated with a two-dimensional, three-parameter logistic model with

compensatory abilities (Reckase & McKinley, 1983) given by:

2

exp[ E (aik(Onk- b ))]
P1( = c + (1 c,)

k=1

2

1 + exp[ E (a, (Onk- kk))]
k=1

(3)

where:

bi k is the location parameter for the ith item on the kth dimension in the latent space,

k is the discrimination parameter for the ith item on the kth dimension in the latent space,

c, is the pseudo-chance level parameter for the ith item, and

0 k is the location of the nth individual on the kth dimension in the latent space.

Note that a refers to a vector containing the k-dimensional coordinate locations for the nth

individual. In this study, item location coordinates were randomly sampled from two independent

uniform distributions (both again ranging from -2 to +2) or were clustered into square segments

of the two-dimensional latent space. The sides of each square correspond to the cluster intervals

defined in. Study 1. Person locations were sampled from a bivariate standard normal distribution

with a correlation equal to p. The value of p was set equal to .1 or .6 to reflect minimally or

markedly oblique dimensional structures, respectively. These values are consistent with those

used by Hambleton and Rovinelli (1986) in their study of dimensionality assessment. Pseudo-

chance parameters were again sampled from a beta distribution as in Study 1. Item discrimination

12
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parameters were sampled from a mixture of two lognormal distributions using a technique

described by Nandakumar (1991). Specifically, ai was sampled from a lognormal distribution

where the mean value of a,1 was equal to (1-41)A, and a standard deviation was 41-TTLI)x,

whereas a,2 was independently sampled from a lognormal distribution where the mean value of

a,2 was equal to TX and a standard deviation was ICFx. The values of A, and ic were set equal to

1.13 and .6, respectively, and these values corresponded to the hyperparameters of the lognormal

prior distribution (i.e, p.=0 and a=.5) used in B1LOG. (See Baker, 1992 for a description of the

relationship between hyperparameters associated with the distribution of ail and those for

log(a, i).) When ai and a,2were added together, the resulting variable had a mean equal to ?

and a standard deviation of x. The '11 parameter was set equal to 0 to produce items that were a

function of only the first dimension, whereas it was set equal to 1 to produce items that

represented solely the second dimension. The P parameter was set to .5 to produce items that

were a function of both dimensions (i.e., the complex structure condition). Together, the values

of T and lc determined the strength of the relationship between each dimension and the responses

generated for a given item. An illustration of the prototypical types of discrimination parameters

that were generated under the complex structure condition (i.e., when =.5) is given in Figure 1.

Insert Figure 1 About Here

The number of items that contributed to each dimension was also manipulated. In the case of

simple structure, items were split either 50%/50% or 75%/25% across the two dimensions. The

proportion of items assigned to each dimension was based on previous dimensionality studies

(Hambleton & Rovinelli, 1986; DeChamplain & Gessaroli, 1998). In the complex structure
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condition, 25% of the items reflected solely the first dimension, 25% reflected solely the second

dimension, and 50% were a function of both dimensions. According to DeChamplain & Gessaroli

(1998) this condition is typical of what one might encounter in practice. In summary, when

considering the two item assignment strategies in the simple structure condition and the single

item assignment strategy in the complex structure condition, there were a total of three structure

types examined.

Dimensionality Assessment

The dimensionality of the items responses was estimated using the MAP, MAPOP, BSP,

BSPOP and DETECT procedures. Each of these procedures was implemented in a fashion

identical to that for the unidimensional simulation.

Data Analysis

The results from Study 2 were analyzed with a 5 (test length) x 2 (item clustering) x 3

(structure type) x 2 (correlation between dimensions) x 5 (dimensionality estimation method)

factorial, split-plot ANOVA where the first four variables constituted between-replications factors

and the last was a within-replications factor. There were 100 replications in each between-

replications cell of the design, and the dependent variable was the number of dimensions

suggested by a given method. As in Study 1, the Huynh-Feldt (1970) procedure was used to

adjust the statistical significance of within-replication effects, and the statistical significance and

effect size (TC) were both used in conjunction to identify the most important effects in the

ANOVA.

14
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Results

Unidimensional Simulation

Results from the ANOVA on the number of dimensions suggested by each method in the

unidimensional simulation are shown in Table 1. With regard to between-replications variability,

there was a substantial effect of test length (F(4,990)=135.93, MSe = .43, p<.001). The mean

estimates were equal to 1.25, 1.50, 1.63, 1.78, and 1.86 as the test length increase from 12 to 60

items, respectively. Thus, the number of dimensions in the data was generally overestimated, and

the degree of overestimation increased with test length. There were also some notable within-

replications effects including a main effect of dimensionality estimation method

(F(4,3960)=2695.33, MS. = .425, Padjusted <.001) and an interaction of dimensionality estimation

method and test length (F(16,3960)=97.30, MSe = .425, Padjusted <.001). The average

dimensionality estimate was equal to .88 for MAP, 1.05 for MAPOP, 1.15 for DETECT, 1.47 for

BSP, and 3.48 for BSPOP. Thus, the MAP method tended to underestimate the dimensionality of

the data, but this tendency was counteracted when the data were optimally scaled. In contrast,

the BSP procedure tended to overestimate the dimensionality of the responses, and this tendency

was enhanced when this method was applied to data that were optimally scaled. The DETECT

procedure also tended to overestimate the dimensionality of the data, albeit to a smaller degree

than BSP.

Insert Table 1 and Figure 2 About Here

The mean dimensionality estimates associated with the interaction between estimation method

and test length are shown in Figure 2. With a small test length of 12 items, the MAPOP and BSP

15

16



procedures produced the most accurate mean dimensionality estimates. The DETECT procedure,

in contrast, overestimated the dimensionality of the data as did the BSPOP method. The MAP

procedure underestimated the dimensionality. For larger tests of 24 to 60 items, the DETECT,

MAP and MAPOP estimates were all relatively accurate on average, whereas the BSP tended to

overestimate the dimensionality. The overestimation observed with the BSP became more

pronounced as the test length increased. The BSPOP method produced an even greater degree of

overestimation, and again, the degree of overestimation increased with test length.

Two-dimensional Simulation

Table 2 portrays the statistical significance and effect size estimate for each ANOVA effect

explored in the two-dimensional simulation. There were three notable between-replications

effects observed when binary responses were simulated from the two-dimensional model. There

was an effect of test length in which the average estimated dimensionality increased as the length

of the test grew larger (F(4,5940)=1340.46, MSe =.750, p<.001). The mean estimate was equal

to 1.64, 2.02, 2.31, 2.51, and 2.67 as the test length increased from 12 to 60 items. The structure

type also affected the mean number of dimensions estimated (F(2,5940)=231.45, MSe =.750,

p<.001), albeit, only slightly. The mean number of dimensions found in the case where half of the

items were assigned to each factor was equal to 2.38. In contrast, the mean was equal 2.12 when

the items were assigned to factors in a 1 to 3 ratio. The mean number of items was similar (i.e.,

2.20) in the case where one-fourth of the items were assigned to each factor while the remaining

items each represented both factors to some degree. The effects of increasing the correlation

between the two dimensions was also noticeable (F(1,5940)=1516.28, MS, =.750, p<.001). The

number of estimated dimensions was larger when the correlation between dimensions was small
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relative to when the correlation was relatively large (2.43 versus 2.04).

Insert Table 2 About Here

There were also three noteworthy within-replications effects. The effect of dimensionality

estimation method was substantial (F(4, 23760)=12250.67, MSe =.762, padj,,ed<.001). The

average number of dimensions estimated with each method was equal to 1.08 for MAP, 1.41 for

MAPOP, 2.18 for DETECT, 2.19 for BSP, and 4.29 for BSPOP. Thus, the MAP procedure

underestimated the number of dimensions, but this underestimation was mitigated somewhat by

the optimal scaling procedure. In contrast, estimates derived from the DETECT and BSP

procedures were both relatively more accurate. However, when optimal scaling was combined

with the BSP, the number of dimensions was substantially overestimated. There was also an

interaction between estimation method and test length (F(16, 23760)=363.90, MSe =.762, Dadjusted

. <.001). The mean estimates corresponding to this interaction are portrayed in Figure 3. For tests

of 12 items, the BSP procedure yielded an accurate estimate of the actual number of dimensions.

In contrast, the MAP and MAPOP procedures severely underestimated the true dimensionality

whereas the DETECT and BSPOP methods overestimated the dimensionality. For tests of 24 to

60 items the DETECT procedure provided the most accurate average estimates followed by the

BSP method. The BSPOP method consistently overestimated the true number of dimensions, and

this overestimation increased with test length. In contrast, both the MAP and MAPOP

consistently underestimated the true number of dimensions, but the degree of underestimation

attenuated somewhat as the test length increased. There was also an interaction between

estimation method and the degree of correlation between dimensions (F(4,23760)=438.22, MSe
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.762, ',adjusted <.001). The means corresponding to this interaction are shown in Figure 4. The

mean number of estimated dimensions decreased for all methods when the correlation between

dimensions increased. However, the decrease observed with the DETECT method was noticeably

larger than for the other methods. As seen in the figure, the average number of dimensions

suggested by the BSP method was the most accurate when portrayed as a function of the

correlation between dimensions.

Insert Figures 3 and 4 About Here

Discussion

An unfortunate finding that emerged from these simulation results was that the optimal scaling

transformation did not produce the desired effect. It was hoped that the transformation would

help increase the linear relationship between the item" responses and the underlying dimensions.

This, in turn, should have logically reduced the estimated number of dimensions derived with

either MAPOP or BSPOP relative to MAP and BSP, respectively. Both the MAP and BSP

procedures relied on decomposing a matrix of phi correlations and were presumably susceptible to

difficulty factors. However, the results from the simulations exhibited a pattern that was

unexpected. When optimal scaling was applied in conjunction with traditional MAP or BSP

strategies, the number of estimated dimensions increased on average. A post hoc examination of

the optimally scaled data and associated eigenvalues showed that the technique often increased

the eigenvalues for the first few components beyond those corresponding to the real latent traits.

This suggests that the optimal transformation used here actually increased the impact of difficulty

factors on the estimated number of dimensions. It is possible that other optimal scaling methods
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might not suffer from this problem. For example, the maximum total variance method (Young,

Takane, and de Leeuw, 1978) used in the SAS PRINQUAL procedure allows the user to

optimally rescale data so that only the first M eigenvalues of a correlation matrix are maximized.

However, specifying the number of eigenvalues to maximize when trying to determine the

optimum number of dimensions seems logically circular, and thus, the maximum total variance

method of optimal scaling was not pursued in this study.

Another interesting finding in these results is that the MAP procedure generally estimates the

number of dimensions quite well when the latent trait is unidimensional. However, the procedure

substantially underestimates the number of dimensions when the latent trait is two-dimensional,

although the degree of underestimation attenuates as the number of test items grows larger. The

tendency for the MAP procedure to underestimate dimensionality was demonstrated clearly by

Zwick and Velicer (1986) in the case of continuous variables that were linearly related to latent

traits in a factor analysis model. However, Zwick and Velicer downplayed the practical

significance of this finding by suggesting that the MAP procedure underestimated dimensionality

because it generally did not identify the most "poorly defined components". The authors even

implied that this might be an advantage for the MAP procedure. In contrast, the results of this

limited simulation suggest that the underestimation incurred with the MAP procedure is

sometimes substantial even when factors are reasonably well defined.

Most measurement theories assume that the dimensionality of test items is either implicitly or

explicitly known. In most of these theories, overestimation of the number of latent dimensions

represented in test responses will simply make measurement tasks more cumbersome. For

example, notions of validity must be more complex, multidimensional measurement models must
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be used instead of simpler unidimensional models, or the responses to test items must be split into

several essentially unidimensional subtests which are subsequently analyzed separately. In

contrast, underestimation of the number of latent dimensions represented by test items can lead to

more severe consequences. When the dimensionality of test items is underestimated, test score

validity is suspect, and issues such as test bias arise. In item response models, the underestimation

of dimensionality will generally lead to local dependence of item responses, and thus, even the

most basic notions about the form of the likelihood function are disturbed. Thus, the

consequences seem to be less severe when dimensionality is overestimated rather than

underestimated. The value of the MAP procedure in dimensionality assessments of binary item

responses seems questionable given this logic and the results of these limited simulations.

The DETECT procedure was chosen to represent a "state of the art" means to identify the

dimensionality of binary test items. Moreover, the procedure performed quite well on average in

both the undimensional and two-dimensional simulations. The largest average discrepancies in

dimensionality estimates produced with the DETECT procedure occurred with small tests of 12

items, but these quickly dissipated with larger tests. However, the DETECT procedure was

sensitive to the amount of correlation between the latent dimensions in the two-dimensional case.

It exhibited a substantial degree of dimensionality overestimation when the correlation between

the latent dimensions was .1, and it underestimated the number of dimensions noticeably when this

correlation was equal to .6. The two types of discrepancies tended to cancel out overall. This

behavior was not too surprising because the DETECT procedure was designed to perform best

when approximate simple structure holds in the context of orthogonal dimensions. Nonetheless,

it appears that even a method as theoretically and technically elegant as the DETECT procedure is
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not without its problems.

Given the complexity of the DETECT algorithm and corresponding theory, it is unlikely that

truly applied measurement practitioners or students outside of the psychometrics area would

generally use the procedure. Moreover, the DETECT procedure can only be implemented with

specialized commercial software. The fact that it cannot be calculated with commonly available

statistical analysis software will, no doubt, constitute an additional barrier for this segment of

individuals.

The BSP procedure was not without its faults. It generally overestimated the number of

dimensions in the unidimensional case, and this overestimation became substantial as the test

length increased. However, it performed relatively well in the two-dimensional simulation

regardless of test length. The small amount of estimation error that occurred with the BSP

procedure in the two-dimensional case was typically due to overestimation. Given the

aforementioned logical argument about overestimation being the lesser of two evils, these results

suggest that BSP procedure would be a better choice than the MAP procedure when estimating

the dimensionality of binary test responses. The BSP procedure was also fairly robust to changes

in the correlation between latent dimensions. In this respect, the BSP method performed better

than the DETECT procedure.

The BSP is preferable to its original parallel analysis counterpart (Horn, 1965) because it

maintains the characteristics of the marginal distribution of responses to each item. In contrast,

applications of traditional parallel analysis typically use some arbitrary distribution from which

random responses are sampled (e.g., the standard normal distribution). This arbitrary distribution

may not adequately represent the distributional characteristics of real item responses, and in such
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cases, the results of parallel analysis are suspect. The BSP procedure is relatively simple from a

conceptual standpoint, and it can be easily implemented with publicly available SAS or SPSS

macro programs. Thus, there are few, if any, barriers to using this method. When these

characteristics are combined with the results of the simulations described above, the BSP

procedure has much to offer in applied measurement tasks where the dimensionality of binary test

items is in question.

Limitations

As is the case with any simulation study, the results are limited in scope and may not reflect the

wide variety of binary item characteristics that occur in practice. Therefore, these results should

be viewed as preliminary in nature. Another limitation of this work is that it has investigated

dimensionality assessment only from the perspective of a naive user who simply wants to know

how many dimensions exist in a set of binary test responses. This study made no attempt to

ascertain which items corresponded to each dimension and if such correspondence mimicked the

true latent structure. Similarly, there was no attempt to determine which, if any, dimensions were

so poorly determined that they should be ignored. These are interesting questions which might

lead one to make alternative judgments about the procedures evaluated in this study.

Conclusions

Determining the dimensionality of binary test responses is not an easy task. All of the

dimensionality assessment procedures examined in this study showed both strengths and

weaknesses. The bootstrapped parallel analysis procedure (BSP) performed reasonably well in
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the two-dimensional case, although it substantially overestimated the number of dimensions in the

unidimensional case. If overestimation can be tolerated more than underestimation, then the BSP

procedure seems better suited to estimating the dimensionality of binary test items than does the

minimum average partial (MAP) method. The results from the BSP method in the two-

dimensional case were comparable to those from the DETECT procedure on average. Moreover,

the BSP procedure was more robust to the level of correlation between latent dimensions than the

DETECT procedure. Given its reasonable performance, its conceptual simplicity and its

availability from within common statistical computing programs, the BSP procedure may prove

useful to applied practitioners and students who need a relatively easy way to estimate the

dimensionality of binary test responses.
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Table 1. ANOVA results from simulations of one-dimensional item responses. Effects that are
both statistically significant and account for at least two percent of the between-replications or
within-replications sums of squares are denoted with bold font. Note: I=test length, C=item
cluster condition, M=dimensionality assessment method.

Source p-value re

I <.001 0.352

C 0.002 0.006

I*C 0.687 0.001

M <.001 0.659

M*I <.001 0.095

M*C 0.003 0.001

M*I*C 0.016 0.002
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Table 2. ANOVA results from simulations of two-dimensional item responses. Effects that are
both statistically significant and account for at least two percent of the between-replications or
within-replications sums of squares are denoted with bold font. Note: I=test length, C=item
cluster condition, S=structure type, R=correlation between dimensions M=dimensionality
assessment method.

Source p-value re

I <.001 0.387

C 0.001 0.001

PC <.001 0.003

S <.001 0.033

PS 0.059 0.001

C*S <.001 0.004

I*C*S 0.046 0.001

R <.001 0.109

PR <.001 0.006

C*R 0.857 0.000

I*C*R 0.013 0.001

S*R <.001 0.010

I*S*R <.001 0.006

C*S*R <.001 0.007

I*C*S*R <.001 0.002
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Table 2. continued.

Source p-value re

M <.001 0.589

M*I <.001 0.070

M*C <.001 0.001

M*I*C <.001 0.002

M*S <.001 0.012

M*I*S <.001 0.003

M*C*S <.001 0.001

M*I*C*S 0.380 0.000

M*R <.001 0.021

M*I*R <.001 0.007

M*C*R 0.062 0.000

M*I*C*R 0.447 0.000

M*S*R <.001 0.001

M*I*S*R <.001 0.003

M*C*S*R <.001 0.003

M*I*C*S*R 0.001 0.001
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Figure 1. Prototypical values of discrimination parameters for the two-dimensional, complex
structure case with 60 items.
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Figure 2. Average number of estimated dimensions in the unidimensional scenario by estimation
method and test length.
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Figure 3. Average number of estimated dimensions in the two-dimensional scenario by estimation
method and test length.
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Figure 4. Averae number of estimated dimensions in the two-dimensional scenario by estimationg
method and degree of correlation between dimensions.
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