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Abstract

In some areas of measurement item parameters should not be modeled as fixed but
as random. Examples of such areas are: item sampling, computerized item generation,
measurement with substantial estimation error in the item parameter estimates, and
grouping of items under a common stimulus or in a common context. A hierarchical
version of the three-parameter normal-ogive model is used to model parameter variability
in multiple populaﬁons of items. Two Bayesian procedures for the estimation of the
parameter are given. . The first method produces an estimate of the posterior distribution
using a Markov chain Monte Carlo method (Gibbs sampler), the second produces a Bayes
modal estimate. It is shown that the procedure using the Gibbs sampler breaks down if
for some of the random item parameters the sampling design yields only one response.
However, in this case, marginalization over the item parameters does result in a feasible
estimation procedure. Some numerical examples are given.

Keywords: Bayesian estimates; Bayes modal estimates; Gibbs sampler; item
generation; item grouping; item sampling; multilevel item response theory; marginal

maximum likelihood; Markov chain Monte Carlo; sampling design.
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Introduction

Item response theory (IRT) models with random examinee parameters have become
a common choice among practitioners in the field of educational measurement. Though
initially the choice for such models was motivated by the attempt to get rid of the
statistical problems inherent in the incidental nature of the examinee parameters (Bock
& Lieberman, 1970), the insight soon emerged that such models more adequately
represent cases where the focus is not on measurement of individual examinees but
estimation of characteristics of populations. Early examples of models with random
examinee parameters in the literature are given in Andersen and Madsen (1977) and
Sanathanan and Blumenthal (1978), who were interested in estimates of the mean and
variance in a population of examinees, and in Mislevy (1991), who provided the tools for
inference from a response model with a regression structure on the examinee parameters
introduced to account for sampling from populations of examinees with different values
on backgfound variables.

In traditional large-scale testing, a statistical necessity to model item parameters in
IRT models as random has hardly been felt. Typically, the values of the item parameters are
first estimated from large samples of exanﬁﬁees, with the examinee parameter integrated
out of the likelihood or posterior distribution. During operational testing, because the
calibration sample was large, the item parameters are fixed to their estimates and treated as
known constants rather than as incidental parameters with unknown values. Nevertheless,
the measurement literature shows a recent interest in response models with random item
parameters. The reason for this phenomenon is the insight that such models better
represent the use of sampling designs that involve random selection of items or cases
where sets of items can be considered as exchangeable once we know they belong to the
same ”group” or "class”.

The most obvious case of measurement with random item characteristics arises is
domain-referenced testing. In this type of testing, the idea of assembling a fixed test for
all examinees is abandoned in favor of a random sample from a large pre-written pool

of items for each examinee (e.g., Millman, 1973). The model originally used to guide

Ut
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domain-referenced testing programs with dichotomously scored items was the binomial

error model (Lord & Novick, 1968, chap. 23), given by
k T ,i;—ZE
Pr{X,=z|km}= . (1 — )" %,

where X, is the number of successes for examinee 7 on a test of size k sampled from the
domain and 7, is the examinee’s success parameter. Clearly, the success parameter in this
model depends both on the examinee and the domain of test items. Attempts to decompose
7, into separate components for the examinee and the items led to the introduction of IRT
models with random item parameters. One of the first models of this kind is found in
Albers, Does, Imbos and Jansen (1989), who needed an explicit examinee parameter to
estimate progress of learning in a longitudinal study with tests sampled from the same
pool of items at different time points.

A more sophisticated application of the idea of item sampling has become available
through the introduction of computer-generated items in educational frleasurement. Using
an item-cloning technique (see, for instance, Bejar, 1993, or Roid & Haladyna, 1982), it
is no longer necessary to write each item in the domain individually. Instead they can
be generated by the computer from a smaller set of ”parent items” through the use of
transformation rules. One of the more popular types of computer generation of items
is based on so-called “replacement set procedures” (Millman & Westman, 1989), where
the computer is used to replace elements in the parent item (e.g., key terms, relations,
numbers, and distractors) randomly from well-defined sets of alternatives. Because the
substitution introduces (slight) random variation between items derived from the same
parent, it becomes efficient to model the item parameters as random and shift the interest to
the hyperparameters that describe the distributions of the item parameters within parents
(Glas & van der Linden, 2001). Observe that this application is more general than the
previous one because we now consider sampling from multiple populations of items in

the same test.
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The current trends towards increased testing in education and individualization
of test administration have put stress on the resources for item calibration at testing
organizations. As a consequence, it becomes attractive to find alternatives to the
traditional large-sample approach to item calibration. A possible solution is to accept
non-negligible estimation error in item parameter estimates and treat them as random
in operational testing, e.g., using their posterior distribution when assembling a test
or estimating examinee parameters. The first to deal with this problem in IRT were
Tsutakawa and Johnson (1990; see also van der Linden & Pashley, 2000). The problem
of how to deal with posterior distributions for the item parameters in an adaptive testing
procedure has been addressed in Glas and van der Linden (2001).

An omnipresent feature of mainstream IRT models is the assumption of conditional
independence between the response variables given the examinee’s ability level.
However, it has long been known that items that share a common element may loose
this feature. Examples are sets of items with a common stem or items sharing a common
context because the test is organized as a set of fixed testlets (Wainer & Kiely, 1987). To
deal with this problem, Bradlow, Wainer and Wang (1999; see also Wainer, Bradlow & Du,
2001) replaced the well-known parameter structure in two-parameter and three-parameter

IRT models by

a;(frn — b; — ’Ynd(i))’

where 0, b; and a; are the traditional parameters for the ability of examinee n and the
difficulty and discrimination power of item 7. The new parameter v,,4(;) was introduced
to represents a random effect for the combination of examinee n and the nesting of
item ¢ in testlet d. Observe that this model actually is an (overparameterized) version
of a multidimensional IRT model with decomposition v,4; = @iafan, Where 04y, is
the score for examinee 7 on an ability dimension unique to testlet d and a;q is the
discrimination parameter for item ¢ on this dimension. Because testlets have a fixed
structure, randomness of -y,,(;) cannot come from sampling of the items. However, if

the examinees are sampled, 64, becomes random, and so does ¥,,q;)-
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A final example of the use of a model with random item parameters is given in
Janssen, Tuerlinckx, Meulders and de Boeck (2000). These authors are interested in the
process of standard setting on a criterion-referenced test with sections of items in the
test grouped under different criteria. Because of this grouping, the IRT model is chosen
to have random item parameters with different distributions for different sections. At
first sight, grouping of items does not necessarily seem to lead to a model with random
parameters. However, a general approach to account for dependency due to common
elements between units is to behave as if they were a stratified random sample from a
set of subpopulations and model the process accordingly. A Bayesian argument in favor
of this approach is that if the only thing known a priori about the items is that they are
grouped under common criteria, they are exchangeable given the criterion and can be
treated as if they are a random sample.

It is the purpose of this article to give a Bayesian treatment of the problem
of estimating the parameters in a model with random item parameters and multiple
populations of items. The model does not only allow for all item properties that have
traditionally been modeled using the three-parameter logistic model (item difficulty,
discriminating power, and possibility to guess) but also for dependency between these
features within populations (e.g., correlation between parameters for discriminating
power and guessing). The treatment is fully BayeSian in the sense that (informative)
priors are formulated for all hyperparameters describing the distributions of the item
parameters within the populations. Two estimation procedures are presented. In the first
procedure, the posterior distribution of all parameters are generated concurrently using
a Markov chain Monte Carlo (MCMC) simulation algorithm (i.e., the Gibbs sampler).
In the second procedure, Bayesian modal estimates for a subset of the parameters are
computed marginalizing over the other parameters. Before presenting the procedures,
a feature of the sampling design for collecting the response data critical for the choice

between the parameter estimation procedures is discussed.
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Sampling Design

The sampling design governs sampling of items and examinees in the calibration
study and thus controls how much response data we have for each possible realization
of the random item and examinee parameters. A critical feature for item parameter
estimation in the multilevel model below is the number of responses per realization of
the random item parameters. If, as will become clear below, this number is equal to one
for some of the items, .a procedure for concurrently estimating the posterior distributions
of all parameters in the model, breaks down in the sense that we have too little data, that is,
no statistical information can be aggregated for the some of the parameters in the model.
In the sequel, these item parameters will be called incidental item parameters.

A practical illustration of the distinction between a sampling design where all the
item parameters can be treated as structural and a sampling design where some of
the item parameters are incidental is the case of computer-generated items discussed
above. One possible implementation of computer-based item generation is to have the
computer generate a new item for each examinee (”item generation on the fly”). Another
implementation is to generate a set of item clones prior to operational testing and sample
from this set during testing. In the former case, all item parameters are incidental; in the
latter case, some items will have incidental parameters if the set is large relative to the
population of examinees tested and the design involves random assignment of items to
examinees (as, for instance in adaptive testing).

The distinction between structural and incidental parameters in statistical models
has been introduced by Neyman and Scott (1948; also see, Kiefer & Wolfowitz, 1956).
In an estimation problem with structural parameters, the number of parameters remains
finite if the number of observations goes to infinity, whereas in a problem with incidental
parameters the number of parameters goes to infinity. The presence of incidental
parameters causes problems for statistical inferences, for instance, the solutions to
the likelihood equations for the structural parameters may loose their consistency or

asymptotic efficiency.
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If each examinee gets a different item, the random item parameters are incidental
parameters in the sense of Neyman and Scott. If the items are sampled from a finite
set, their parameters are structural. However, the latter may still result in inestimable
parameters in the Bayesian framework below. Nevertheless, 6ne of the proven measures
to solve problems with incidental parameters — marginalizing them out of the likelihood
function - also works for the case in which some examinees get unique items. For such
cases a marginal maximum likelihood approach is presented. This solution can be used
as an alternative to the Bayesian framework in testing with computerized item generation
if new items are generated on the fly for each examinee, or in any other application of
response models with random item parameter with too few responses per item.

We will return to this issue in the Discussion section to discuss other sampling
designs that complicate parameter estimation in models with random item parameters.
In fact, as already admitted in Newman and Scott (1948), more complex cases exist
in which parameters appear in varying combinations of random variables. Educational
measurement with random item parameters and incomplete sampling design clearly

belongs to this category.

The Model

Consider a set of item populations p = 1, ..., P of size k, ..., kp, respectively. The
items in population p will be labeled i, = 1, ...,k,. It proves convenient to introduce
sampling design variables d.;,, which assumes a value equal to one if person n responded
to item 4, and zero otherwise. Let X,;, be the response variable for person n and item
ip. If dpi, = 1, Xy, attains the value one for a correct response and a value zero for an
incorrect response. If dn;, = 0, X, attains an arbitrary value  (r # 0;r # 1). Notice
that with this definition the design variables are completely determined by the response

variables; they are only introduced to facilitate the mathematical presentation.
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First-Level Model
The first-level model is the three-parameter normal ogive (3PNO) model, which

describes the probability of a correct response as
p(xn'ip = 1 | d”up = 1’0'"/’ a"ip’ b’ip’ c‘p) = cip + (1 - czp)Q(azpon - bip)’ (1)

where a;,,b;,,and c;, are item parameters, 0, is an examinee parameter, and ®(.) is
the normal cumulative distribution function. The parameterization of the models in (1)
is slightly different from the usual parameterization for the logistic and normal-ogive
models, a;,(# — b;,). The only motivation for our choice is to simplify the presentation
below.

The reason for considering the 3PNO model rather that the 3PL. model is that the
former appears to be more tractable in an MCMC framework. However, as is well
known, for an appropriately chosen scale factor both models are numerically nearly

indistinguishable and either model is expected to fit only if the other does.

Second-Level Model
The values of the item parameters (a;,, b;,, c,-p) in (1) are considered as realizations

of a random vector, We will use the transformation
£, = (ai,, bi,, logit c;,), 2)

which gives the item parameters scales for which the following assumption of multivariate

normality is reasonable:
512,, ~ N(I‘l’pa Ep)’ (3)

where p,, is the vector with the mean values of the item parameters for population p and
X, their covariance matrix. Observe that the hyperparameters (p,, ip) are allowed to

vary across the populations of items.
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In the inferences below, we assume that §,, has a standard normal distribution
6 ~ N(0,1). 4)

This assumption holds if examinee n is from a population of exchangeable examinees with
a normal distribution of abilities. Examinees and items are thus distributed independently,

that is, we do not assume that the items are sampled dependently on the examinee abilities.

Prior for Hyperparameters
A convenient choice for the prior distribution for the hyperparameters (p,,,3,) is
a normal-inverse-Wishart distribution (see, for instance, Box & Tiao, 1973, or Gelman,

Carlin, Stearn & Hall, 1995). The prior follows from the specification

X, ~ Inv — Wishart,,(Xo)

Hp | Bp ~ MV N (10, Ep/50)
and has a density given by

_ 1 _ K _
DLy Byp) o |Zo| (/24D gy (—Etr(EoE,, Y= 2p, — o) TE; (s, — uo)) ,

2

&)

where 3, and vy are the scale matrix and degrees of freedom for the prior on X, and

o and ko are the weight for the prior on u,, respectively. The weight expresses the

information in the prior distribution as the number of prior measurements it can be equated
to.

It should be noted that, though the hyperparameters (u,,%;) are allowed to take

different values across populations, a common prior is specified for all hyperparameters.

The function of the prior is only to bound their distribution to a likely region of possible

values.

foe A
'S
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Likelihood Function

The response vector of examinee n is denoted as x, = (Zn;,,, cey Tnipy -y Trip )+
Using the assumptions of (1) independence between examinees, (2) independence
between items and examinees, and (3) local independence within examinees, the

likelihood function associated with response data x = (x,,) can be written as

p(0,€, 11,5, (dn)) = [][p(xn|dn,6n,& %)

TTTIT] p(ws, | duiy 6ns &:,)0(00) -
n op ip

TT1I»E, | &, 55). (6)
P ip

The convention will be followed that p(Zp, | dni, = 0,604, a4, b;,,¢:,) = 1.

Discussion

The current model for random items and multiple item populations differs from
the multilevel IRT models for testlets in Bradlow, Wainer & Wang (1999) and Wainer,
Bradlow, and Zu (2000) in that the latter only has a random interaction parameter between
‘examinees and items but fixed parameters a;, b;, and c;. The statistical treatment of the
models is the same, however; in these two papers an MCMC framework is used to estimate
the parameters as well. The current model also differs from the one in Albers, Does,
Imbos and Jansen (1989). These authors use a one-parameter version of the normal-ogive
model, i.e., the model in (1) with a; = 1 and ¢; = 0, but add a growth parameter for each
examinee that is assumed to increase linearly over time. Finally, the model introduced in
Janssen, Tuerlinckx, Meulders and de Boeck (2000) is a two-parameter version of the one
in (1) obtained by setting ¢; = 0. Their second-level model specifies independent normal
distributions for a; and b; and is thus a special case of (3) with X, reduced to a 2x2 identity
matrix. These authors also treat parameter estimation in an MCMC framework, but with

uninformative priors for (i, 11,) rather than the prior in (5).
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Parameter Estimation

Three methods for estimation of the parameters of the model will be discussed. The
first two pertain to sampling schemes where the item parameters &;, can be viewed as
structural parameters, that is, as the sample size grows, their number remains limited; or,
in other words, the sampling design is such that statistical information with respect to these
parameters can be accumulated. The first method is a Bayesian method where the joint
posterior djstributibn of all model parameters is evaluated using the Gibbs sampler. The
second method is a Bayes modal estimation procedure that produces point estimates of the
item parameters. From a Bayesian perspective, the latter method produces posterior mode
estimates of the item parameters ¢; , p, and I, where the posterior is marginalized over
the incidental parameters 6. The third estimation procedure pertains the case where the
item parameters {;  are also incidental. The third procedure is a Bayes modal estimation
procedure where the likelihood or the posterior is marginalized both with respect to &,
and 4.

Bayesian Estimation Using the Gibbs Sampler

In Bayesian modeling, all parameters are considered as random variables. A modern
approach to produce the posterior joint distribution of the parameters of interest is by
simulation. A Markov chain Monte Carlo (MCMC) procedure will be used to sample this
posterior distribution. The chains will be constructed using the Gibbs sampler (Gelfand
& Smith, 1990). To implement the Gibbs sampler, the parameter vector is divided into
a number of components, and the components are sampled consecutively from their
conditional posterior distributions given the last sampled values for all other components.
This sampling scheme is repeated until the distribution of sampled values forms a stable
estimate of the posterior distributions. Albert (1992) applies Gibbs sampling to estimate
the parameters of the 2PNO model. A generalization to the 3PNO model is given by
Béguin and Glas (2001). A more general introduction to MCMC for IRT models is found
in Patz and Junker (1999a), whereas applications for models with multiple raters, multiple

item types and missing data are given in Patz and Junker (1999b), models with a multi-
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level structure on the ability parameters in Fox and Glas (2001) and multidimensional
models in Béguin and Glas (2001) and Shi and Lee (1998).

Data Augmentation

Béguin and Glas (2001) introduce a data augmentation scheme for the 3PNO based
on the following interpretation. (In their implementation of the Gibbs sampler they
choose a Beta prior for c;, and a uniform prior on the positive real line for a;,, though.)
Suppose that the examinee knows the correct answer with probability ®(\;,), with
Ani, = a;,0, — b;,, and then gives a correct response with probability one or does not
know the correct answer with probability 1— @()\mp) and then guesses the correct response
with probability c;,. The marginal probability of a correct response is equal to ®(An,)+
ci,(1 — ®(Ans,))- Let

@)

Wo. = 1 if person ¢ knows the correct answer to item j
b 0 if person ¢ doesn’t know the correct answer to item j.

So if Wy, = 0, person ¢ will guess the response to item j, and if Wy;, = 1, person 7 will
know the right answer and will give a correct response. Consequently, the conditional

probability of Wy,;, = wy;, given X,;, = xy;, is given by

PWhi, = 1| Xni, =1, Ani,sCi,) X B(Ans,)

P(Waip = 0| Xnip = 1, Aniy1i,)) ¢ Cip (1 = (A, )

PWhi, = 1| Xni, = 0, Mni, i) = ®
P(Wpi, = 0| Xpi, =0, Ani, ) =

In addition to Wy, following Albert (1992), the data are also augmented with latent data
Zniy» Which are independent and normally distributed with mean A,;, = a;,6 — b;, and
standard deviation equal to one. The observed data X,,;, are considered as indicators of

the sign of Z,;,; if X;, = O or 1, Z,;, is negative or positive, respectively.

A
Ci
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Posterior Distribution
The aim of the procedure is to simulate samples from the joint posterior distribution

given by

p(ﬁ) 0,#" E,Z,W l X) 15,8 p(z, w I X; €’ 0)p(0)p(€ | P', E)P(ﬂ', 2'”’0) 20) (9)

The right-hand side probability (density) functions are given by (10) (see below), (4), (3)

and (2), respectively.

Steps in the Gibbs Sampler
The steps of the Gibbs sampler are the following.

Step 1

The posterior p(z, w | x; €, ) is factored as p(z | x; w, &, 0)p(w | x;§,8). For the
cases with d,;, = 1, the values of wy;, and zp;, are drawn in following two substeps:

a) Wy, is drawn from the conditional distribution of Wy, given the data x and &,
and @, which is given in (8).

b) zy;, is drawn from the conditional distribution of Z,,;, given w, 8 and £, which is

defined as

N (Ani,, 1) truncated at the left at 0, if wp;, =1,
Zni, | w,0,€,x ~ (10)
N (Ani,, 1) truncated at the right at 0, if wp;, = 0.

Step 2

The value of @ is drawn from the conditional posterior distribution of € given z and
&. The distribution is derived as follows. From the definition of the latent variables Z,;,
it follows that Z,;, + b;, = ;,0n + Eniy, With £n;, being a normally distributed residual.
Because (a;, b;,) isfixed, the equality defines a linear model for the regression of Z;, +by,

on a;,, with regression coefficient 6,,, which has a normal prior with parameters ;. = 0
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and o = 1. Therefore, the posterior of §,, is also normal. That is,

Bn/v + /o 1
O~ N( v+ 1/o? (It 1/0-2))’ (b

where
é'n.-: Z Z d'n:ipaip (z'n.ip + bip) / Z Z d"ipa'ip
P ip P i
and
v=1/ Z de,,ai,,-
P i
Step 3

The vector of random item parameters §; is partitioned into d =(4,) =
(@1,,b1,, ..y @iy, b5y ... )and ¢ = (e, ..., Gy, -..). Hence, their conditional posterior
density factors as p(§;_ |6, Z, , M, 3.,) = p(logit c;, |5i,,» 0,2, Les) Xejs)

p(d:,]0, Z; , Mp» 3,), where pgs and 3.5 are the expectation and variance of logit
ci,conditional on d;,. Then the following two substeps are made:

a) The value of §;, is drawn from the conditional posterior distribution of the
parameters of d given 0, z;,, i,,, and 3, The distribution is derived as follows: Parameters
d;, can be viewed as coefficients of the regression of z;, = (2,4,), on X = (8, —1), with
—1 being a column vector with entries -1. So we have z;, = Xéip +€;,. Only examinees
responding to item i, are considered here. Further, d;, has a normal prior with mean p,,
and variance X,. Define &-p = (X‘tX)_1 X'z;,, defined = XtXSip +3; 1 i, and define
D= (XtX + 3, 1) ~!. Then a well-known result from Bayesian regression analysis (see,

for instance, Box & Tiao, 1973) is that

8, 10,2, X,p, 5, ~ N (Dd, D). (12)

b-a
\?
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b) The value of c;, is sample from the conditional posterior distribution given d;,, 8,
Ziy, Mejs,and 35. Let t;, be the number of persons who do not know the correct answer
to item %, and guess the response. For the probability of a correct response of a person
n on item i, given wy;, = 0 it thus holds that P(Y;, = 1 | Whi, = 0) = c,. The

number of correct responses obtained by guessing, S; , say, has a binomial distribution

p?
with parameters ¢;, and ¢,,. Since logit c;, has a normal prior with parameters p,; and
3.6, the procedure for sampling in a generalized linear model with a logit-link and a

normal prior (see, Gelman Carlin, Stearn & Hall, 1995, sects 9.9 and 10.6) can be used.

Step 4

Values for (u,, X.p) are drawn from the conditional posterior distribution given &,
0, z, and x. The number of items sampled from population p is equal k,. The prior
distribution in (5) is the conjugate for (u,, X;). Hence, the posterior distribution is also

normal-inverse-Wishart, with parameters

Ko kp--
= — -2 13
""p Klp’-"O + fipgp ( )
Kok, — —
VS, = S, +S + ,‘; 2(&,— o) (€, — )", (14)

P
k _ _ - k
where k, = ko + Kp, vp = Vo + kp, S = E(Ei, —&)(&, — &) and &, = 57&, . The

ip

corresponding posterior distribution is thus given by

€, ~ Inverse-Wishart,_;(S™1),

Hp | Bpkp ~ N(E,Z,/k).

(15)

The procedure thus amounts to iterative generation of parameter values using the
above four steps. Multiple MCMC chains can be started from different points to
evaluate convergence by comparing the between- and within-sequence variance. Another

approach is to generate a single MCMC chain and to evaluate convergence by dividing
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the chain into subchains and comparing between- and within-subchain variance. For these

and other technical details, see Gelman, Carlin, Stearn and Hall (1995).

Necessary Condition on Sampling Design

As already discussed, the procedure breaks down if the examinees are administered
unique items. This point can now be illustrated using the steps in the above Gibbs
sampler. For example, Step 3a is based on a normal linear model z;, = Xd;, + €,
However, if random item ip is administered to one examinee, z;, has only one entry,
and it is not possible to estimate two regression coefficients from one observation.
Likewise, the generalized linear model in Step 3b is based on one observation, and here
the estimation procedure also breaks down. A solution to this problem is marginalization
of the likelihood function over the random item parameters. The remaining structural
parameters are the hyperparameters (u,, ¥,). The estimation equations for these
parameters based on the marginal likelihood are given in the next section (cf. van der

Linden & Glas, 2001).
Bayes Modal Estimation

All Item Parameters Structural

In Bayes modal estimation (Bock & Aitkin, 1982), a distinction in made
between structural and nuisance parameters. If the number of item parameters is
limited, that is, this number does not depend on the number of respondents, the
item parameters can be viewed as structural parameters and the ability parameters
are the nuisance parameters. The structural parameters are stacked in a vector
17=(511,...,&?,...,ul,Zl,...,,u,p,Zp,...,uP,Ep). The structural parameters are
estimated from a log-likelihood marginalized with respect to the nuisance parameters.
That is, the so-called complete data likelihood given by (6) is integrated over the nuisance

parameters. As a result, the marginal probability of observing response pattern x,, is given

i3
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by
(30 1 dus &) = [ [T Pt | 0,8, )p(6)e0,

and the marginal log-likelihood function of 7 is given by

log L(n ;%) ZZ log p( Xn | dn, &) +Zlogp (&6, | dniy, b, Zp)
(16)

+log p(py, Lp|2g, o) (17)

As above, the convention is used that p(zn;, | dni, = 0, 9m§i,,) = 1. The marginal
likelihood equations for ) can be easily derived using Fisher’s identity (Efron, 1977,
Louis 1982; see also Glas, 1992, 1998). The first-order derivatives with respect to 1

can be written as
P ‘
—a—ﬁlogL n;%X) ZZE —log fpn(m,0r;X%, )| xn,m) =0, (18)

where ) 3, log fpn(n,05) is the complete data log-likelihood, that is,

Zp Zn log fp,n(n’on y X ) =
2p 2 nlog [p( Xn | dn, &5, 0n) + logp(0s) + 3=, logp(€;, | dni,, by Ep)}
+log p(pey, |1ty Zo)-

Notice that the first-order derivatives in (18) are expectations with respect to the
conditional posterior density of the nuisance parameters.

Let Py, and ®y;, be defined by P, = p(Zni, | dni, = 1,9n,§i,,) =c, + (1 -
Cip)q’nip’ so ®;, is the normal-ogive part of the probability Fy;,. By taking first order

derivatives of the logarithm of this expression, likelihood equations for the parameters
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ijurv=1,...,3, are found as

(mm',J - Pnip )an’p (0n - bip)
S gty

xmn) + (ai, — ;1) =0, (19)
nld,"‘p=1 ip

( F, nip — Tni, )Qni,,ai,J
> (g

xn’n) + (b‘ip - IJ‘p2) = 0’ (20)

n'dngp=1 tp

and

(mnip - Pnip )(1 - q)nz’p)cip(l - cip)
2 B < Pocy (L= P

xmn) + (logite,, — f1,5) = 0. (21)

n]dm‘p=1

These expressions are a straightforward generalization of the usual likelihood
equations for the 3PNO; for details, refer to Glas (2000). It is easily verified that the
likelihood equation for the parameters of the parent items are given by (13) and (14).
The likelihood equations be solved using an EM or Newton-Raphson algorithm. Since
the number of parameters in practical applications will be quite large, the latter algorithm
will seldom be feasible. Expressions for confidence intervals can also be derived using
Fisher’s identity (Louis 1982; Mislevy, 1986, Glas, 1998). However, the computation
of the asymptotic covariance matrix of the estimates also involves the inversion of a
matrix of second-order derivatives (information matrix). In the application presented
below, only the information matrix within the item populations will be inverted, that is,
the covariance between the populations will be assumed zero. This approximation results
in confidence intervals that are larger than the confidence intervals obtained when the

complete information matrix would be inverted.

Incidental Item Parameters
In the case every person is administered a unique item, say in a procedure where

items are generated on the fly, the situation is different in the sense that the random item
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parameters are unique for every person. This will be made explicit by adding an index n
and writing §; ,,. Now the number of item parameters §; ,, grows with the sample size,
so it is doubtable whether they can be consistently estimated, and, therefore, they must
be viewed as nuisance parameters, together with the ability parémeters (Neyman & Scott,
1948; Kiefer & Wolfowitz, 1956). These nuisance parameters are stacked in vectors 6 and
&, respectively. This leaves n = (u,, X, ..., 4y, T, ..., Up, T p) as structural parameters.

The marginal probability of observing response pattern x,, is now given by

P( Xn; Tl) = /”'/Hp(mnip l dnimon)gipn)p(gipnlu‘p) Zp)p(on)dgipndon

plip

= / H/"'/p(mnip | dm'p)on)Eipn)p(gipnldnip)u‘p) z:zri)dgipn p(on)don
Pip

Notice that (8) entails a multiple integral over §; ,,. It now follows that the likelihood

equations are given by

1
1
Opu = N > E(El, | Xn,m) — 2, (23)
and
1

where indices v and v # wu denote the uth and vth element in the parameter vectors.

Again, these equations can be solved using an EM or Newton-Raphson algorithm.

Discussion
A final remark concemns a case where each generated item is administered to more

than one person, but the number of generated items still grows with the sample size. In

2.
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that case, the random item parameters must still be considered as nuisance parameters.
Consider the case where each random item is given to two respondents, say n and m.
The responses of both respondents now depend on the same random item parameter; this
dependency will be made explicit by labeling this item parameter as §; ,,. The complete-

data likelihood can now be written as

p(x|60,&um,3) = [[ [T1TI7(@n, | dniy»0n:&ipnm)

(nm) p ip

P(IL'mz',, | dm‘ipa 0ma €ipnm)p(€ip'nm | dmipa p’p) zp)p(en)p(om)7

where the product is over pairs of respondents, and marginalized results in

p(x; m) = 11 / / IT [ / (i, | driyy Orss &)

(n,m)

DTy | i B EsynIP sy i > Zp) 8| PO )P(Br) Al

Notice that the integral does not factor further. In fact, as the number of respondents
receiving the same random item goes up, we are quickly left with a multiple integral that
cannot be computed by the usual Gauss-Hermite procedure (see, for instance, Glas, 1992).

Fortunately, the fully Bayesian procedure discussed above does not have these problems.

Some Numerical Examples

A number of studies were conducted to assess the feasibility of the procedures in
practical situations. In some practical situations, the number of responses per population
of items might be quite low and the number of item parameters might be quite high. In
such cases, the convergence of the MCMC- or the EM-algorithm to reasonable parameter
estimates is not a priori obvious. On the other hand, in a Bayesian framework the

computation of estimates can be supported by a sensible choice of priors.
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The study consisted of two stages. In the first stage, two real data sets were analyzed
to obtain some idea of the covariance between the item parameters. Then, in the second
stage, the estimates obtained in the first stage were used in a number of simulation studies
aimed at assessing the quality of parameter recovery.

The first data set consisted of the responses of 429 students to 10 multiple choice
items in a computer based test for a course on naval architecture at the Ngee Ann
Polytechnic in Singapore. The data were collected in 1999 and 2000. The numerical
information in the item stem and the response alternatives was randomly changed every
time an item was administered. The second data set consisted of the responses of a sample
of 4000 students from the population participating in the 1991 central examination on
French language comprehension in Secondary Education in the Netherlands. In this case,
the test was a traditional paper-and-pencil test. Students were clustered in 116 schools,
and it was assumed that the item parameters varied across classes. It was expected that the
item-parameter variance might be high in the first example and low in the second example.
In the first example, Bayes modal estimates of 1 and ¥ were obtained by marginalizing
over all incidental parameters £ and 6. In the second example, two procedures were used.
In the first procedure, concurrent estimates of ¢, 6, u and 3 were obtained using the
MCMC method run with 13,000 iterations, 3000 of which were burn-in iterations. Below,
expected a posteriori (EAP) estimates are reported as point estimates. In the second
procedure, Bayes modal (MAP) estimates of £, &+ and X were obtained by mérginalizing
over §. Computations were carried out using the EM-algorithm.

In both examples, the same prior covariance matrix 3, was used. The values in X
are shown in Table 1; they are no more than an educated guess. For instance, the negative
covariance between the discrimination parameter a;,and the logit-guessing-parameter
logit c;, is based on the consideration that, to obtain similar the item characteristic curves
(ICCs), the discrimination parameter must go down if the lower asymptote goes up. In the
same manner, when the respondents are relatively proficient, lowering the item difficulty
parameter can be counterbalanced by lowering the discrimination parameter. This feature

accounts for the choice of a positive prior covariance between the two parameters. The
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prior for the parent item parameters was chosen equal to g,= (1.0, 0.0,logit(0.25)). To
obtain convergence in the analysis of the language comprehension data, it turned out that
the parameters in the normal-inverse-Wishart prior for (g, X,) had to be set equal to
vg = 10 and k9 = 10, respectively. Since k, = 160, this choice results in a slightly
informative prior. An uninformative prior sufficed for the Naval Architecture data.

The averages of the point estimates of the covariance matrices are shown in Table 1
(first three columns), together with their confidence intervals (last three columns). It
can be seen that both the posterior variance of the item discrimination and difficulty
parameters was generally lower than expected. For the EAP estimates, the posterior
standard deviation is reported; for the MAP estimates, the values computed using the
normal approximation are shown. It can be seen that the estimated variances are lower
than the prior variances. Further, the standard errors of the MAP estimates are smaller
than those of the EAP estimates. This effect is consistent with the findings of Glas, Wainer
and Bradlow (2000). They argue that posterior distributions of bounded parameters, such
as a variance or a discrimination parameter, are skewed. The standard error of the MAP
estimate used here is based on an assumption of asymptotic normality, which, in turn, is
based on a Taylor-expansion of the likelihood which terms of order higher two ignored.
The fact that here only the within-item-population information matrices were used to

obtain the standard errors did not nullify the effect.

[Table 1 about here]

The second part of this study was aimed at assessing the quality of parameter
recovery. Since the difference in the covariances obtained for the two examples given
above was not dramatically different, it was decided to study two conditions in two
simulation studies. In the first simulation study, the prior parameters p, and ¥, were
the same as in the examples presented above. The parent item parameters, s, were
drawn from a normal distribution indexed by g, and 3, and 3, was set equal to X,.
Then, for each population, 10 items were randomly drawn from a normal distribution with
parameters p, and %,. To produce realistic data, parent and random item discrimination

parameters drawn below 0.5 were truncated to 0.5. The responses to the random items

nx
P



Variability in Item Parameters - 24

were generated for simulees with an ability parameter randomly drawn from a standard
normal distribution. Every simulee responded to 20 random items from 20 different
populations. So the total data matrix consisted of 1,000 responses. As above, 13,000
iterations were made, including 3,000 burn-in iterations. To obtain convergence, the
parameters in the normal-inverse-Wishart prior had to be set equal to vy = 2 and kg = 2,
respectively. Since k, = 10, this choice entails a quite informative prior.

The second simulation study had a similar set-up. The average of the EAP estimates
of the mean and covariance matrix obtained using the French language examination was
used as 4 and Xy. Further, the number of item populations was equal to 40, the number
of random items per population was qual to 20, and the number of responses to each

random item was 200. So in this case, the total number of responses was equal to 4,000.

[Table 2 about here]

Some results of the two simulations are presented Table 2. The results are averaged
over 10 replications and all items. The rows labeled a, b and logit c relate to random
item parameters; all other rows relate to item-population parameters. The two columns
labeled EAP relate to EAP estimates obtained using the Gibbs sampler, the columns
labeled MAP relate to Bayes modal estimates from a posterior marginalized over 8. The
columns labeled MAE give the mean absolute error of the estimates, averaged over items
and replications. The columns labeled SE give the posterior standard deviation and the
normal approximation for the EAP and the MAP estimates, respectively, again averaged
over items and replications. It can be seen that the magnitudes of these estimates are
clearly smaller than the corresponding MAEs. Further, especially in the case P = 40,
the estimates of the covariance matrices seemed much more precise than the estimates
of the item parameters. This result, however, is explained by the fact that the covariance
matrices were not varied over populations, but chosen equal to their prior values. Further
inspection of the results shows that the MAEs of the MAP estimates were somewhat

smaller than the corresponding EAP estimates.

26
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[Figure 1 about here]

Figure 1 shows the posterior distributions of a typical set of parameters for a run
with P = 20. The three pictures in the first row are the posterior distributions of the
three elements of p,, for a typical item-population p. The three pictures in the next row
show the posterior distributions of the three parameters of an arbitrarily chosen random
item ¢,,. The last two rows give the posterior distributions of the elements of X, for the
same item-population p. The dotted line in the pictures are the asymptotic distributions
computed using the normal approximation described above. It can be seen that the latter
approximations are not always realistic. The normal approximation of the variance of
logit c;,, for instance, gives discernible larger positive weight to negative values. The
actual posterior distributions of several elements of X, are notably skewed to the right.
Figure 2 shows the convergence of the Gibbs sampler for the same 12 parameters. The
plot is based on the 2,000 draws taken equally spaced from the 10,000 draws following
the burn-in iterations. From inspection of the plots it can be concluded that the chain
has properly converged. In practice, visual inspection of the convergence plots of all
parameters is not very practical. However, convergence can also be evaluated by dividing
the generated chain into batches and comparing the within and between batch variance of

the generated values.

[Figure 2 about here])

Finally, the figures 3 and 4 give a scatter plot of the generating values (x-axis) and the
EAP-estimates (y-axis) of the population and random item parameters for two replications
of both simulation studies. The truncation of the discrimination parameters at 0.5 is
caused by the generation strategy described above. It can be seen from the plots that
the relation between the generated and recovered parameters is quite good; in fact, all
four correlations were above 0.80. Similar plots could not be made for logit c;, and its
mean and the elements of the covariance matrices, because the variance in the generating

values was too low and zero, respectively.

i~
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Discussion

Several authors (Bradlow, Wainer & Wang, 1999; Janssen, Tuerlinckx, Meulders & de
Boeck, 2000; Wainer, Bradlow & Du, 2001) have proposed IRT models with random item
parameters. These models, however, do not include within-item covariance of random
item parameters. In this article, such a model was proposed, and Bayesian estimation
methods for such models were outlined. It was shown that the sampling design is a crucial
factor here. If evéry random item is responded to by a substantial number of respondents,
Bayesian methods using the Gibbs sampler or marginalization over the ability parameters
can be used. If only one response is given to every random item, these approaches break
down. However, in that case, and only then, a Bayes modal estimation procedure using
a posterior distribution marginalized with respect to ability parameters and the random
item parameters can be used to estimate the means and covariance matrices of the item
population parameters.

A rule of thump for the minimum number of respondents that should respond to a
random item in the first case was not sought here. However, already with 10 and 20
random items per parent and 100 and 200 responses to every random item, the prior on the
covariance matrix had to be informative. Situations with fewer random item parameters
and observations per random item parameter might be modeled by assuming that all item
parents have the same covariance matrix, but this suggestion remains a point of further

study.
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Table 1
Prior and posterior values
item covariance matrix
Prior Covariance Matrix
200
.100 1.000
-050 .050 .100
French Language Comprehension

EAP Estimate SE
.102 017
031 208 017 .033

-018 .010 .116 018 .020 .039
French Language Comprehension

MAP Estimate SE
.098 014
029 199 012 .025
-018 .006 .107 015 016 .037
Naval Architecture
EAP Estimate SE
120 032
027 122 030 .051

001 .002 .110 022 .023 .073

(k)
W)




Variability in Item Parameters - 31

Table 2
Parameter Recovery
EAP MAP
P k, n, Parameter True MAE SE MAE SE
20 10 100 a 1000 0404 0334 0407 0.330

b 0000 0514 0346 0425 0214
logitc -1.099 0.327 0.654 0322 0.639
p, 1000 0311 0199 0283 0.107

s 0.000 0494 0307 0368 0.178
Hiogic . -1.099 0214 0414 0.188 0.124
g2 0200 0076 0235 0.091 0.059

o2 1.000 0289 0.684 0.080 0.020
Ogite 0100 0377 0550 0477 0.108
g.p 0.100 0089 0289 0.067 0.014
Ootogite -0.050 0.046 0227 0.051 0.034
Oblogite 0.050 0.071 0470 0.091 0.055
40 20 200 a 0950 0392 0.204 0424 0.203
b 0190 0365 0.192 0327 0.141
logitc -0979 0306 0.294 0.252 0.333
K, 0960 0298 0.095 0.261 0.062

w, 0180 0318 0.124 0.200 0.076
Miogic . -1.002 0.199 0.130 0.163 0.104
o2 0102 0044 0.065 0.040 0.058

o 0208 0.100 0118 0.076 0.106
Ohgite 0116 0011 0050 0014 0.047
0ap 0031 0037 0.066 0.025 0.057
Ootogite -0.018 0.009 0.043 0.009 0.043
Oblogitc 0010 0.016 0.055 0.016 0.045

aNn

(R
(&%)
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Figure Captions
Figure 1. Posterior densities and normal approximations
Figure 2. Convergence of the Gibbs samper

Figure 3. Generating values and parameter estimates K =20, k,-p =10

Figure 4. Generating values and parameter estimates K = 40, k,»p =20
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