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Abstract

In some areas of measurement item parameters should not be modeled as fixed but

as random. Examples of such areas are: item sampling, computerized item generation,

measurement with substantial estimation error in the item parameter estimates, and

grouping of items under a common stimulus or in a common context. A hierarchical

version of the three-parameter normal-ogive model is used to model parameter variability

in multiple populations of items. Tkvo Bayesian procedures for the estimation of the

parameter are given. The first method produces an estimate of the posterior distribution

using a Markov chain Monte Carlo method (Gibbs sampler), the second produces a Bayes

modal estimate. It is shown that the procedure using the Gibbs sampler breaks down if

for some of the random item parameters the sampling design yields only one response.

However, in this case, marginalization over the item parameters does result in a feasible

estimation procedure. Some numerical examples are given.

Keywords: Bayesian estimates; Bayes modal estimates; Gibbs sampler; item

generation; item grouping; item sampling; multilevel item response theory; marginal

maximum likelihood; Markov chain Monte Carlo; sampling design.
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Introduction

Item response theory (IRT) models with random examinee parameters have become

a common choice among practitioners in the field of educational measurement. Though

initially the choice for such models was motivated by the attempt to get rid of the

statistical problems inherent in the incidental nature of the examinee parameters (Bock

& Lieberman, 1970), the insight soon emerged that such models more adequately

represent cases where the focus is not on measurement of individual examinees but

estimation of characteristics of populations. Early examples of models with random

examinee parameters in the literature are given in Andersen and Madsen (1977) and

Sanathanan and Blumenthal (1978), who were interested in estimates of the mean and

variance in a population of examinees, and in Mislevy (1991), who provided the tools for

inference from a response model with a regression structure on the examinee parameters

introduced to account for sampling from populations of examinees with different values

on background variables.

In traditional large-scale testing, a statistical necessity to model item parameters in

IRI' models as random has hardly been felt. Typically, the values of the item parameters are

first estimated from large samples of examinees, with the examinee parameter integrated

out of the likelihood or posterior distribution. During operational testing, because the

calibration sample was large, the item parameters are fixed to their estimates and treated as

known constants rather than as incidental parameters with unknown values. Nevertheless,

the measurement literature shows a recent interest in response models with random item

parameters. The reason for this phenomenon is the insight that such models better

represent the use of sampling designs that involve random selection of items or cases

where sets of items can be considered as exchangeable once we know they belong to the

same "group" or "class".

The most obvious case of measurement with random item characteristics arises is

domain-referenced testing. In this type of testing, the idea of assembling a fixed test for

all examinees is abandoned in favor of a random sample from a large pre-written pool

of items for each examinee (e.g., Millman, 1973). The model originally used to guide

5
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domain-referenced testing programs with dichotomously scored items was the binomial

error model (Lord & Novick, 1968, chap. 23), given by

Pr{X = x I = rx.(1_71..)k-x
X

where Xn is the number of successes for examinee 71 on a test of size k sampled from the

domain and 7rn is the examinee's success parameter. Clearly, the success parameter in this

model depends both on the examinee and the domain of test items. Attempts to decompose

7rn into separate components for the examinee and the items led to the introduction of IRT

models with random item parameters. One of the first models of this kind is found in

Albers, Does, Imbos and Jansen (1989), who needed an explicit examinee parameter to

estimate progress of learning in a longitudinal study with tests sampled from the same

pool of items at different time points.

A more sophisticated application of the idea of item sampling has become available

through the introduction of computer-generated items in educational measurement. Using

an item-cloning technique (see, for instance, Bejar, 1993, or Roid & Haladyna, 1982), it

is no longer necessary to write each item in the domain individually. Instead they can

be generated by the computer from a smaller set of "parent items" through the use of

transformation rules. One of the more popular types of computer generation of items

is based on so-called "replacement set procedures" (Millman & Westman, 1989), where

the computer is used to replace elements in the parent item (e.g., key terms, relations,

numbers, and distractors) randomly from well-defined sets of alternatives. Because the

substitution introduces (slight) random variation between items derived from the same

parent, it becomes efficient to model the item parameters as random and shift the interest to

the hyperparameters that describe the distributions of the item parameters within parents

(Glas & van der Linden, 2001). Observe that this application is more general than the

previous one because we now consider sampling from multiple populations of items in

the same test.

6
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The current trends towards increased testing in education and individualization

of test administration have put stress on the resources for item calibration at testing

organizations. As a consequence, it becomes attractive to find alternatives to the

traditional large-sample approach to item calibration. A possible solution is to accept

non-negligible estimation error in item parameter estimates and treat them as random

in operational testing, e.g., using their posterior distribution when assembling a test

or estimating examinee parameters. The first to deal with this problem in IRT were

Tsutakawa and Johnson (1990; see also van der Linden & Pashley, 2000). The problem

of how to deal with posterior distributions for the item parameters in an adaptive testing

procedure has been addressed in Glas and van der Linden (2001).

An omnipresent feature of mainstream IRT models is the assumption of conditional

independence between the response variables given the examinee's ability level.

However, it has long been known that items that share a common element may loose

this feature. Examples are sets of items with a common stem or items sharing a common

context because the test is organized as a set of fixed testlets (Wainer & Kiely, 1987). To

deal with this problem, Brad low, Wainer and Wang (1999; see also Wainer, Brad low & Du,

2001) replaced the well-known parameter structure in two-parameter and three-parameter

IRT models by

ai(On bi 7nd(i)),

where 9n, bi and a,: are the traditional parameters for the ability of examinee n and the

difficulty and discrimination power of item i. The new parameter -yndo) was introduced

to represents a random effect for the combination of examinee n and the nesting of

item i in testlet d. Observe that this model actually is an (overparameterized) version

of a multidimensional IRT model with decomposition ynd(i) = aidOdn, where Odm is

the score for examinee n on an ability dimension unique to testlet d and aid is the

discrimination parameter for item i on this dimension. Because testlets have a fixed

structure, randomness of -ynd(i) cannot come from sampling of the items. However, if

the examinees are sampled, Oa, becomes random, and so does -Nd(i).

7
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A final example of the use of a model with random item parameters is given in

Janssen, Tuerlinckx, Meulders and de Boeck (2000). These authors are interested in the

process of standard setting on a criterion-referenced test with sections of items in the

test grouped under different criteria. Because of this grouping, the IRT model is chosen

to have random item parameters with different distributions for different sections. At

first sight, grouping of items does not necessarily seem to lead to a model with random

parameters. However, a general approach to account for dependency due to common

elements between units is to behave as if they were a stratified random sample from a

set of subpopulations and model the process accordingly. A Bayesian argument in favor

of this approach is that if the only thing known a priori about the items is that they are

grouped under common criteria, they are exchangeable given the criterion and can be

treated as if they are a random sample.

It is the purpose of this article to give a Bayesian treatment of the problem

of estimating the parameters in a model with random item parameters and multiple

populations of items. The model does not only allow for all item properties that have

traditionally been modeled using the three-parameter logistic model (item difficulty,

discriminating power, and possibility to guess) but also for dependency between these

features within populations (e.g., correlation between parameters for discriminating

power and guessing). The treatment is fully Bayesian in the sense that (informative)

priors are formulated for all hyperparameters describing the distributions of the item

parameters within the populations. Two estimation procedures are presented. In the first

procedure, the posterior distribution of all parameters are generated concurrently using

a Markov chain Monte Carlo (MCMC) simulation algorithm (i.e., the Gibbs sampler).

In the second procedure, Bayesian modal estimates for a subset of the parameters are

computed marginalizing over the other parameters. Before presenting the procedures,

a feature of the sampling design for collecting the response data critical for the choice

between the parameter estimation procedures is discussed.
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Sampling Design

The sampling design governs sampling of items and examinees in the calibration

study and thus controls how much response data we have for each possible realization

of the random item and examinee parameters. A critical feature for item parameter

estimation in the multilevel model below is the number of responses per realization of

the random item parameters. If, as will become clear below, this number is equal to one

for some of the items, a procedure for concurrently estimating the posterior distributions

of all parameters in the model, breaks down in the sense that we have too little data, that is,

no statistical information can be aggregated for the some of the parameters in the model.

In the sequel, these item parameters will be called incidental item parameters.

A practical illustration of the distinction between a sampling design where all the

item parameters can be treated as structural and a sampling design where some of

the item parameters are incidental is the case of computer-generated items discussed

above. One possible implementation of computer-based item generation is to have the

computer generate a new item for each examinee ("item generation on the fly"). Another

implementation is to generate a set of item clones prior to operational testing and sample

from this set during testing. In the former case, all item parameters are incidental; in the

latter case, some items will have incidental parameters if the set is large relative to the

population of examinees tested and the design involves random assignment of items to

examinees (as, for instance in adaptive testing).

The distinction between structural and incidental parameters in statistical models

has been introduced by Neyman and Scott (1948; also see, Kiefer & Wolfowitz, 1956).

In an estimation problem with structural parameters, the number of parameters remains

finite if the number of observations goes to infinity, whereas in a problem with incidental

parameters the number of parameters goes to infinity. The presence of incidental

parameters causes problems for statistical inferences, for instance, the solutions to

the likelihood equations for the structural parameters may loose their consistency or

asymptotic efficiency.
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If each examinee gets a different item, the random item parameters are incidental

parameters in the sense of Neyman and Scott. If the items are sampled from a finite

set, their parameters are structural. However, the latter may still result in inestimable

parameters in the Bayesian framework below. Nevertheless, one of the proven measures

to solve problems with incidental parameters marginalizing them out of the likelihood

function also works for the case in which some examinees get unique items. For such

cases a marginal maximum likelihood approach is presented. This solution can be used

as an alternative to the Bayesian framework in testing with computerized item generation

if new items are generated on the fly for each examinee, or in any other application of

response models with random item parameter with too few responses per item.

We will return to this issue in the Discussion section to discuss other sampling

designs that complicate parameter estimation in models with random item parameters.

In fact, as already admitted in Newman and Scott (1948), more complex cases exist

in which parameters appear in varying combinations of random variables. Educational

measurement with random item parameters and incomplete sampling design clearly

belongs to this category.

The Model

Consider a set of item populations p = 1, P of size kl, kp, respectively. The

items in population p will be labeled ip = 1, ..., kp. It proves convenient to introduce

sampling design variables dnip , which assumes a value equal to one if person n responded

to item ip and zero otherwise. Let Xra, be the response variable for person n and item

ip. If dni, = 1, Xnip attains the value one for a correct response and a value zero for an

incorrect response. If dnip = 0, Xnip attains an arbitrary value r (r 0; r E 1). Notice

that with this definition the design variables are completely determined by the response

variables; they are only introduced to facilitate the mathematical presentation.



Variability in Item Parameters 9

First-Level Model

The first-level model is the three-parameter normal ogive (3PNO) model, which

describes the probability of a correct response as

P(xnip = 1 I dnip = 1, On, a2p, b2p, cip) = cip (1 cip )4D(aipOn bip), (1)

where a2p, b2p,and cip are item parameters, On is an examinee parameter, and C.) is

the normal cumulative distribution function. The parameterization of the models in (1)

is slightly different from the usual parameterization for the logistic and normal-ogive

models, (9 1)2p). The only motivation for our choice is to simplify the presentation

below.

The reason for considering the 3PNO model rather that the 3PL model is that the

former appears to be more tractable in an MCMC framework. However, as is well

known, for an appropriately chosen scale factor both models are numerically nearly

indistinguishable and either model is expected to fit only if the other does.

Second-Level Model

The values of the item parameters (aip, b2p, cip) in (1) are considered as realizations

of a random vector. We will use the transformation

= (aip, bip , logit ), (2)

which gives the item parameters scales for which the following assumption of multivariate

normality is reasonable:

Mttp, Er), (3)

where op is the vector with the mean values of the item parameters for population p and

Ep their covariance matrix. Observe that the hyperparameters (pp, Ep) are allowed to

vary across the populations of items.
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In the inferences below, we assume that On has a standard normal distribution

en N(0, 1). (4)

This assumption holds if examinee n is from a population of exchangeable examinees with

a normal distribution of abilities. Examinees and items are thus distributed independently,

that is, we do not assume that the items are sampled dependently on the examinee abilities.

Prior for Hyperparameters

A convenient choice for the prior distribution for the hyperparameters (j ,,Ep) is

a normal-inverse-Wishart distribution (see, for instance, Box & Tiao, 1973, or Gelman,

Carlin, Stearn & Hall, 1995). The prior follows from the specification

Ep ti Thy Wishart,o(E0)

Ap I Ep ti MVAr(ito, ESN))

and has a density given by

koP(itp, Ep) oc 1E0
1-((v0-1-3)/21-1) exp (--

2
tr(EoEp 1)

2
(AP 110)7.; 1(ttp AO))

(5)

where Eo and vo are the scale matrix and degrees of freedom for the prior on Ep and

po and /co are the weight for the prior on p,p, respectively. The weight expresses the

information in the prior distribution as the number of prior measurements it can be equated

to.

It should be noted that, though the hyperparameters (p,p,Ep) are allowed to take

different values across populations, a common prior is specified for all hyperparameters.

The function of the prior is only to bound their distribution to a likely region of possible

values.

1
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Likelihood Function

The response vector of examinee n is denoted as xn = (xnii, xni, xnip).

Using the assumptions of (1) independence between examinees, (2) independence

between items and examinees, and (3) local independence within examinees, the

likelihood function associated with response data x (xn) can be written as

P(0 , t E; x, (dn)) = JJ p ( xn 1 dn, On, 11, E)
n

= RII p(xni, I dnip , en, Cdp(en )
n p ip

firip(c, I µpi Ep)
P ip

The convention will be followed that p(xnip I dnip = On, aip, bip, cip) = 1.

(6)

Discussion

The current model for random items and multiple item populations differs from

the multilevel IRT models for testlets in Bradlow, Wainer & Wang (1999) and Wainer,

Bradlow, and Zu (2000) in that the latter only has a random interaction parameter between

examinees and items but fixed parameters ai, bi, and ci. The statistical treatment of the

models is the same, however; in these two papers an MCMC framework is used to estimate

the parameters as well. The current model also differs from the one in Albers, Does,

Imbos and Jansen (1989). These authors use a one-parameter version of the normal-ogive

model, i.e., the model in (1) with ai = 1 and ci = 0, but add a growth parameter for each

examinee that is assumed to increase linearly over time. Finally, the model introduced in

Janssen, Therlincicx, Meulders and de Boeck (2000) is a two-parameter version of the one

in (1) obtained by setting ci = 0. Their second-level model specifies independent normal

distributions for ai and bi and is thus a special case of (3) with EP reduced to a 2x2 identity

matrix. These authors also treat parameter estimation in an MCMC framework, but with

uninformative priors for (pa, pb) rather than the prior in (5).
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Parameter Estimation

Three methods for estimation of the parameters of the model will be discussed. The

first two pertain to sampling schemes where the item parameters Sip can be viewed as

structural parameters, that is, as the sample size grows, their number remains limited; or,

in other words, the sampling design is such that statistical information with respect to these

parameters can be accumulated. The first method is a Bayesian method where the joint

posterior distribution of all model parameters is evaluated using the Gibbs sampler. The

second method is a Bayes modal estimation procedure that produces point estimates of the

item parameters. From a Bayesian perspective, the latter method produces posterior mode

estimates of the item parameters Sip, 6, and Ep, where the posterior is marginalized over

the incidental parameters O. The third estimation procedure pertains the case where the

item parameters Sip are also incidental. The third procedure is a Bayes modal estimation

procedure where the likelihood or the posterior is marginalized both with respect to Sip

and O.

Bayesian Estimation Using the Gibbs Sampler

In Bayesian modeling, all parameters are considered as random variables. A modem

approach to produce the posterior joint distribution of the parameters of interest is by

simulation. A Markov chain Monte Carlo (MCMC) procedure will be used to sample this

posterior distribution. The chains will be constructed using the Gibbs sampler (Gelfand

& Smith, 1990). To implement the Gibbs sampler, the parameter vector is divided into

a number of components, and the components are sampled consecutively from their

conditional posterior distributions given the last sampled values for all other components.

This sampling scheme is repeated until the distribution of sampled values forms a stable

estimate of the posterior distributions. Albert (1992) applies Gibbs sampling to estimate

the parameters of the 2PNO model. A generalization to the 3PNO model is given by

Beguin and Glas (2001). A more general introduction to MCMC for IRT models is found

in Patz and Junker (1999a), whereas applications for models with multiple raters, multiple

item types and missing data are given in Patz and Junker (1999b), models with a multi-
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level structure on the ability parameters in Fox and Glas (2001) and multidimensional

models in Beguin and Glas (2001) and Shi and Lee (1998).

Data Augmentation

Beguin and Glas (2001) introduce a data augmentation scheme for the 3PNO based

on the following interpretation. (In their implementation of the Gibbs sampler they

choose a Beta prior for cip and a uniform prior on the positive real line for aip, though.)

Suppose that the examinee knows the correct answer with probability CAnip), with

Anip = aipOri 6ip, and then gives a correct response with probability one or does not

know the correct answer with probability 1-4(Anip) and then guesses the correct response

with probability cip. The marginal probability of a correct response is equal to (I)(Anip)+

cip (1 CAnip)). Let

1 if person i knows the correct answer to item j
Wni =

P 0 if person i doesn't know the correct answer to item j. (7)

So if Wnip = 0, person i will guess the response to item j, and if Wnip = 1, person i will

know the right answer and will give a correct response. Consequently, the conditional

probability of Wnip = wnip given Xnip = xnip is given by

P(Wnip = 1 I Xnip = 1, Anip ,cip) a 4)(Anip)

P(Wnip = 0 1 Xnip = 1, Anip ,cip) o cip (1 CAnip))

P(Wnip = 1 I Xnip = 0, Anip,cip) = 0

P(Wnip = 0 I Xnip = 0, Anip,cip) = 1.

(8)

In addition to Wnip, following Albert (1992), the data are also augmented with latent data

Znip, which are independent and normally distributed with mean Anip = aip0 bip and

standard deviation equal to one. The observed data Xnip are considered as indicators of

the sign of Znip; if Xnip = 0 or 1, Znip is negative or positive, respectively.
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Posterior Distribution

The aim of the procedure is to simulate samples from the joint posterior distribution

given by

1)(C 0, 12,E,z,w (x) cx p(z, w x; 0)P(0)P( I t, E)P(tt, Eltto, E0). (9)

The right-hand side probability (density) functions are given by (10) (see below), (4), (3)

and (2), respectively.

Steps in the Gibbs Sampler

The steps of the Gibbs sampler are the following.

Step 1

The posterior p(z, w I x; 0) is factored as p(z I x; w, 0)p(w I x; 0). For the

cases with clnip = 1, the values of wnip and znip are drawn in following two substeps:

a) wwip is drawn from the conditional distribution of Kip given the data x and

and 0, which is given in (8).

b) znip is drawn from the conditional distribution of Znip given w, 0 and which is

defined as

N(Anip, 1) truncated at the left at 0, if wrap = 1,
Znip I w, 0, x

N(Anip, 1) truncated at the right at 0, if wnip = 0.
(10)

Step 2

The value of 0 is drawn from the conditional posterior distribution of 0 given z and

The distribution is derived as follows. From the definition of the latent variables Znip

it follows that Znip + bip = aipOn, Enip , with erii, being a normally distributed residual.

Because (aip,k) is fixed, the equality defines a linear model for the regression of Znip

on ctip, with regression coefficient On, which has a normal prior with parameters µ = 0
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and a = 1. Therefore, the posterior of On is also normal. That is,

where

on.=

and

On rsa N
/ v iticr2 1

1/v + 1/(72 (1/v + 1/0-2))'

E E dnipaip(znip bip) / E E dnipaip
P ip P ip

1/ [E E dnipaip.1

P ip

Step 3

The vector of random item parameters dip is partitioned into ö (Sip)

b1 bip , ...) and c (c117 ...). Hence, their conditional posterior

density factors as p(Cple, zip, /zip, Zip) = p(logit cip , 8, zip, 1.105)Ec15)

p(Oiple , Zip, ttp, Ep), where /to and Ec15 are the expectation and variance of logit

cipconditional on Sip. Then the following two substeps are made:

a) The value of Sip is drawn from the conditional posterior distribution of the

parameters of S given 8, zip, p,p, and Ep The distribution is derived as follows: Parameters

Sip can be viewed as coefficients of the regression of zip (Znip ) , on X (8, -1), with

-1 being a column vector with entries -1. So we have zip = X6ip + eip. Only examinees

responding to item ip are considered here. Further, Sip has a normal prior with mean /.41,

and variance Ep. Define Sip (XtX) -1 xtzip, define d = xtxSip + and define

D (XtX + ET,1) -1. Then a well-known result from Bayesian regression analysis (see,

for instance, Box & Tiao, 1973) is that

Sip 0, zip, X, pp, Ep ti N (Dd, D) . (12)
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b) The value of cip is sample from the conditional posterior distribution given (Sip, 9,

p,o,and Ec18. Let tip be the number of persons who do not know the correct answer

to item ip and guess the response. For the probability of a correct response of a person

n on item ip given tunip = 0 it thus holds that P(Ynip = 1 I Wnip = 0) = ci.p. The

number of correct responses obtained by guessing, Sip, say, has a binomial distribution

with parameters cep and tip. Since logit cep has a normal prior with parameters i-,16 and

E,15, the procedure for sampling in a generalized linear model with a logit-link and a

normal prior (see, Gelman Carlin, Stearn & Hall, 1995, sects 9.9 and 10.6) can be used.

Step 4

Values for (pp, Ep) are drawn from the conditional posterior distribution given

9, z, and x. The number of items sampled from population p is equal kp. The prior

distribution in (5) is the conjugate for (6,, Ep). Hence, the posterior distribution is also

normal-inverse-Wishart, with parameters

o kP= + Spkp Kip

//pEp = 110E0 S 641C AO) (Sp 110)t)

(13)

(14)

k

where ip = + vp = vo + kp, S = E(Cp 4)(Cp 4 ) t and 4 E Cp . The
ip 2p

corresponding posterior distribution is thus given by

Ep I C, rj Inverse-Wishartk _1(S-1) ,

Ap I Ep4p rsJ N (tp,Ep k).
(15)

The procedure thus amounts to iterative generation of parameter values using the

above four steps. Multiple MCMC chains can be started from different points to

evaluate convergence by comparing the between- and within-sequence variance. Another

approach is to generate a single MCMC chain and to evaluate convergence by dividing
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the chain into subchains and comparing between- and within-subchain variance. For these

and other technical details, see Gelman, Carlin, Stearn and Hall (1995).

Necessary Condition on Sampling Design

As already discussed, the procedure breaks down if the examinees are administered

unique items. This point can now be illustrated using the steps in the above Gibbs

sampler. For example, Step 3a is based on a normal linear model zip = )(Sip + eip.

However, if random item ip is administered to one examinee, zip has only one entry,

and it is not possible to estimate two regression coefficients from one observation.

Likewise, the generalized linear model in Step 3b is based on one observation, and here

the estimation procedure also breaks down. A solution to this problem is marginalization

of the likelihood function over the random item parameters. The remaining structural

parameters are the hyperparameters (pp, Ep). The estimation equations for these

parameters based on the marginal likelihood are given in the next section (cf. van der

Linden & Glas, 2001).

Bayes Modal Estimation

All Item Parameters Structural

In Bayes modal estimation (Bock & Aitkin, 1982), a distinction in made

between structural and nuisance parameters. If the number of item parameters is

limited, that is, this number does not depend on the number of respondents, the

item parameters can be viewed as structural parameters and the ability parameters

are the nuisance parameters. The structural parameters are stacked in a vector

(C) Sip, 111)E1) pp, ;7 ktp,Ep). The structural parameters are

estimated from a log-likelihood marginalized with respect to the nuisance parameters.

That is, the so-called complete data likelihood given by (6) is integrated over the nuisance

parameters. As a result, the marginal probability of observing response pattern xn is given

9
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P( Xn dn, 4) = f HP(xni, I dnip, en, Eip)P(On)d0,
ip

and the marginal log-likelihood function of 7-, is given by

log L07; x E log p( xn d, + logp(4i, dnip, Igyp, Ep)
P n ip

+1°g P(itp, Ep Itto Eo)

(16)

(17)

As above, the convention is used that p(xnip
I dnip = 0, On, eip) = 1. The marginal

likelihood equations for ,j can be easily derived using Fisher's identity (Efron, 1977;

Louis 1982; see also Glas, 1992, 1998). The first-order derivatives with respect to 77

can be written as

a log L(71 ;x) = EE E(a log fp
'
n(rhOn ; Xn ) I Xn) = 0, (18)arj

p n

where Ep En log fp,n(n,On) is the complete data log-likelihood, that is,

Ep En log fp,(77,9 ;xn.) =

Ep En log [P(Xn I 41, 4p, On) + log p(On) + Lip log p(C, I dnip, tip, Ep)]

+ log p(/-tp, EpItto, E0).

Notice that the first-order derivatives in (18) are expectations with respect to the

conditional posterior density of the nuisance parameters.

Let Pne, and (13,:p be defined by Pnip p(xnip = 1, Ono Sip) Cip (1

Cip )(Nip SO (Nip is the normal-ogive part of the probability Pnip. By taking first order

derivatives of the logarithm of this expression, likelihood equations for the parameters
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E E
nidnip=i
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(Xnip Pnip)(Dnip(On bip)xn,
(aip Apo = 0,

Pnip

EE (( Pnip xnip)4)nipaip

nidnip =1 Pnip

and

xn,n) (bip Ap2) = 0,

( xnip Pnip (1 (Dnip)Cip (1 Cip)

nicinip =1 Pnip (1 Pnip )

(19)

(20)

77) + (logitcip Ap3) = 0. (21)

These expressions are a straightforward generalization of the usual likelihood

equations for the 3PNO; for details, refer to Glas (2000). It is easily verified that the

likelihood equation for the parameters of the parent items are given by (13) and (14).

The likelihood equations be solved using an EM or Newton-Raphson algorithm. Since

the number of parameters in practical applications will be quite large, the latter algorithm

will seldom be feasible. Expressions for confidence intervals can also be derived using

Fisher's identity (Louis 1982; Mislevy, 1986, Glas, 1998). However, the computation

of the asymptotic covariance matrix of the estimates also involves the inversion of a

matrix of second-order derivatives (information matrix). In the application presented

below, only the information matrix within the item populations will be inverted, that is,

the covariance between the populations will be assumed zero. This approximation results

in confidence intervals that are larger than the confidence intervals obtained when the

complete information matrix would be inverted.

Incidental Item Parameters

In the case every person is administered a unique item, say in a procedure where

items are generated on the fly, the situation is different in the sense that the random item
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parameters are unique for every person. This will be made explicit by adding an index it

and writing Co.. Now the number of item parameters Cpn grows with the sample size,

so it is doubtable whether they can be consistently estimated, and, therefore, they must

be viewed as nuisance parameters, together with the ability parameters (Heyman & Scott,

1948; Kiefer & Wolfowitz, 1956). These nuisance parameters are stacked in vectors 0 and

respectively. This leaves 71 = E1, ..., pp, Ep, ..., p Ep) as structural parameters.

The marginal probability of observing response pattern xn is now given by

p( xn; 77) f P ( xni, dnip, On, Cpm)p(C,n1 Ep)p(0 n)dCpncl0n

[= f II f . . . f p ( xnip I dnip , On, Cpn)P (Cn I dnip , µp, Ep ) dC p ( On ) an .

OP

Notice that (8) entails a multiple integral over It It now follows that the likelihood

equations are given by

and

1

lipu = -7 EE4, I xn, 77),

1 2
aP 2u

N E(6,2 X-n) 77) /-tpu,
n

a
N= E(6puept,I Xn 77) Apuiapv,

n

(22)

(23)

(24)

where indices u and v u denote the uth and with element in the parameter vectors.

Again, these equations can be solved using an EM or Newton-Raphson algorithm.

Discussion

A final remark concerns a case where each generated item is administered to more

than one person, but the number of generated items still grows with the sample size. In
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that case, the random item parameters must still be considered as nuisance parameters.

Consider the case where each random item is given to two respondents, say n and m.

The responses of both respondents now depend on the same random item parameter; this

dependency will be made explicit by labeling this item parameter as C9nm The complete-

data likelihood can now be written as

p(X 19, E) = fi Hilp(x.ip I dni, On, Cpnrn)
(n,m,) p ip

P(Xmip I dmip Om, ipmn)P(ipnni I dmip lip)IP)1304(0m),

where the product is over pairs of respondents, and marginalized results in

PO( ; 77) = 11 f f [f P(XThip I dnip On, Cpnm)

(71,m)

P(Xmip I dmip)0m)ipnm)P(Cpnmidmip, Ep)ckipn] p(04(0,,m)dOndOin,

Notice that the integral does not factor further. In fact, as the number of respondents

receiving the same random item goes up, we are quickly left with a multiple integral that

cannot be computed by the usual Gauss-Hermite procedure (see, for instance, Glas, 1992).

Fortunately, the fully Bayesian procedure discussed above does not have these problems.

Some Numerical Examples

A number of studies were conducted to assess the feasibility of the procedures in

practical situations. In some practical situations, the number of responses per population

of items might be quite low and the number of item parameters might be quite high. In

such cases, the convergence of the MCMC- or the EM-algorithm to reasonable parameter

estimates is not a priori obvious. On the other hand, in a Bayesian framework the

computation of estimates can be supported by a sensible choice of priors.
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The study consisted of two stages. In the first stage, two real data sets were analyzed

to obtain some idea of the covariance between the item parameters. Then, in the second

stage, the estimates obtained in the first stage were used in a number of simulation studies

aimed at assessing the quality of parameter recovery.

The first data set consisted of the responses of 429 students to 10 multiple choice

items in a computer based test for a course on naval architecture at the Ngee Ann

Polytechnic in Singapore. The data were collected in 1999 and 2000. The numerical

information in the item stem and the response alternatives was randomly changed every

time an item was administered. The second data set consisted of the responses of a sample

of 4000 students from the population participating in the 1991 central examination on

French language comprehension in Secondary Education in the Netherlands. In thiscase,

the test was a traditional paper-and-pencil test. Students were clustered in 116 schools,

and it was assumed that the item parameters varied across classes. Itwas expected that the

item-parameter variance might be high in the first example and low in the second example.

In the first example, Bayes modal estimates of p, and E were obtained by marginalizing

over all incidental parameters and 0. In the second example, two procedures were used.

In the first procedure, concurrent estimates of 0, p, and E were obtained using the

MCMC method run with 13,000 iterations, 3000 of which were burn-in iterations. Below,

expected a posteriori (EAP) estimates are reported as point estimates. In the second

procedure, Bayes modal (MAP) estimates of j and E were obtained by marginalizing

over 0. Computations were carried out using the EM-algorithm.

In both examples, the same prior covariance matrix Eo was used. The values in E0

are shown in Table 1; they are no more than an educated guess. For instance, the negative

covariance between the discrimination parameter aipand the logit-guessing-parameter

logit cip is based on the consideration that, to obtain similar the item characteristic curves

(ICCs), the discrimination parameter must go down if the lower asymptote goes up. In the

same manner, when the respondents are relatively proficient, lowering the item difficulty

parameter can be counterbalanced by lowering the discrimination parameter. This feature

accounts for the choice of a positive prior covariance between the two parameters. The

4
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prior for the parent item parameters was chosen equal to go= (1.0, 0.0,logit(0.25)). To

obtain convergence in the analysis of the language comprehension data, it turned out that

the parameters in the normal-inverse-Wishart prior for (p,p, Ep) had to be set equal to

vo = 10 and Ko = 10, respectively. Since kp = 160, this choice results in a slightly

informative prior. An uninformative prior sufficed for the Naval Architecture data.

The averages of the point estimates of the covariance matrices are shown in Table 1

(first three columns), together with their confidence intervals (last three columns). It

can be seen that both the posterior variance of the item discrimination and difficulty

parameters was generally lower than expected. For the EAP estimates, the posterior

standard deviation is reported; for the MAP estimates, the values computed using the

normal approximation are shown. It can be seen that the estimated variances are lower

than the prior variances. Further, the standard errors of the MAP estimates are smaller

than those of the EAP estimates. This effect is consistent with the findings of Glas, Wainer

and Bradlow (2000). They argue that posterior distributions of bounded parameters, such

as a variance or a discrimination parameter, are skewed. The standard error of the MAP

estimate used here is based on an assumption of asymptotic normality, which, in turn, is

based on a Taylor-expansion of the likelihood which terms of order higher two ignored.

The fact that here only the within-item-population information matrices were used to

obtain the standard errors did not nullify the effect.

[Table 1 about here]

The second part of this study was aimed at assessing the quality of parameter

recovery. Since the difference in the covariances obtained for the two examples given

above was not dramatically different, it was decided to study two conditions in two

simulation studies. In the first simulation study, the prior parameters go and E0 were

the same as in the examples presented above. The parent item parameters, pp were

drawn from a normal distribution indexed by go and Ea, and Ep was set equal to Ep.

Then, for each population, 10 items were randomly drawn from a normal distribution with

parameters gp and Ep. To produce realistic data, parent and random item discrimination

parameters drawn below 0.5 were truncated to 0.5. The responses to the random items
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were generated for simulees with an ability parameter randomly drawn from a standard

normal distribution. Every simulee responded to 20 random items from 20 different

populations. So the total data matrix consisted of 1,000 responses. As above, 13,000

iterations were made, including 3,000 burn-in iterations. To obtain convergence, the

parameters in the normal-inverse-Wishart prior had to be set equal to vo = 2 and /co = 2,

respectively. Since kp = 10, this choice entails a quite informative prior.

The second simulation study had a similar set-up. The average of the EAP estimates

of the mean and covariance matrix obtained using the French language examination was

used as /./.0 and Eo. Further, the number of item populations was equal to 40, the number

of random items per population was qual to 20, and the number of responses to each

random item was 200. So in this case, the total number of responses was equal to 4,000.

[Table 2 about here]

Some results of the two simulations are presented Table 2. The results are averaged

over 10 replications and all items. The rows labeled a, b and logit c relate to random

item parameters; all other rows relate to item-population parameters. The two columns

labeled EAP relate to EAP estimates obtained using the Gibbs sampler, the columns

labeled MAP relate to Bayes modal estimates from a posterior marginalized over 0. The

columns labeled MAE give the mean absolute error of the estimates, averaged over items

and replications. The columns labeled SE give the posterior standard deviation and the

normal approximation for the EAP and the MAP estimates, respectively, again averaged

over items and replications. It can be seen that the magnitudes of these estimates are

clearly smaller than the corresponding MAEs. Further, especially in the case P = 40,

the estimates of the covariance matrices seemed much more precise than the estimates

of the item parameters. This result, however, is explained by the fact that the covariance

matrices were not varied over populations, but chosen equal to their prior values. Further

inspection of the results shows that the MAEs of the MAP estimates were somewhat

smaller than the corresponding EAP estimates.



Variability in Item Parameters - 25

[Figure 1 about here]

Figure 1 shows the posterior distributions of a typical set of parameters for a run

with P = 20. The three pictures in the first row are the posterior distributions of the

three elements of pp for a typical item-population p. The three pictures in the next row

show the posterior distributions of the three parameters of an arbitrarily chosen random

item ip. The last two rows give the posterior distributions of the elements of forfor the

same item-population p. The dotted line in the pictures are the asymptotic distributions

computed using the normal approximation described above. It can be seen that the latter

approximations are not always realistic. The normal approximation of the variance of

logit cip, for instance, gives discernible larger positive weight to negative values. The

actual posterior distributions of several elements of ; are notably skewed to the right.

Figure 2 shows the convergence of the Gibbs sampler for the same 12 parameters. The

plot is based on the 2,000 draws taken equally spaced from the 10,000 draws following

the burn-in iterations. From inspection of the plots it can be concluded that the chain

has properly converged. In practice, visual inspection of the convergence plots of all

parameters is not very practical. However, convergence can also be evaluated by dividing

the generated chain into batches and comparing the within and between batch variance of

the generated values.

[Figure 2 about here]

Finally, the figures 3 and 4 give a scatter plot of the generating values (x-axis) and the

EAP-estimates (y-axis) of the population and random item parameters for two replications

of both simulation studies. The truncation of the discrimination parameters at 0.5 is

caused by the generation strategy described above. It can be seen from the plots that

the relation between the generated and recovered parameters is quite good; in fact, all

four correlations were above 0.80. Similar plots could not be made for logit cip and its

mean and the elements of the covariance matrices, because the variance in the generating

values was too low and zero, respectively.
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Discussion

Several authors (Brad low, Wainer & Wang, 1999; Janssen, Therlincicx, Meulders & de

Boeck, 2000; Wainer, Brad low & Du, 2001) have proposed IRT models with random item

parameters. These models, however, do not include within-item covariance of random

item parameters. In this article, such a model was proposed, and Bayesian estimation

methods for such models were outlined. It was shown that the sampling design is a crucial

factor here. If every random item is responded to by a substantial number of respondents,

Bayesian methods using the Gibbs sampler or marginalization over the ability parameters

can be used. If only one response is given to every random item, these approaches break

down. However, in that case, and only then, a Bayes modal estimation procedure using

a posterior distribution marginalized with respect to ability parameters and the random

item parameters can be used to estimate the means and covariance matrices of the item

population parameters.

A rule of thump for the minimum number of respondents that should respond to a

random item in the first case was not sought here. However, already with 10 and 20

random items per parent and 100 and 200 responses to every random item, the prior on the

covariance matrix had to be informative. Situations with fewer random item parameters

and observations per random item parameter might be modeled by assuming that all item

parents have the same covariance matrix, but this suggestion remains a point of further

study.
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Table 1
Prior and posterior values

item covariance matrix
Prior Covariance Matrix
.200
.100 1.000

-.050 .050 .100
French Language Comprehension
EAP Estimate SE
.102 .017
.031 .208 .017 .033

-.018 .010 .116 .018 .020 .039
French Language Comprehension
MAP Estimate SE
.098 .014
.029 .199 .012 .025

-.018 .006 .107 .015 .016 .037
Naval Architecture
EAP Estimate SE
.120 .032
.027 .122 .030 .051
.001 .002 .110 .022 .023 .073
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Table 2
Parameter Recovery

P kp np Parameter True
EAP

MAE SE
MAP

MAE SE
20

40

10

20

100

200

a
b

logit c
/la
Pt

Alogit c
0.a2

2
(lb

2
0 logitlogit c

aa,b
cra,logit c

Grb,logit c

a
b

logit c
Pa
1-tb

Alogit c.2
" a.2
' b,2

" logit c
0a,b

Cra,logit c

ab,logit c

1.000
0.000

-1.099
1.000
0.000

-1.099
0.200
1.000
0.100
0.100

-0.050
0.050
0.950
0.190

-0.979
0.960
0.180

-1.002
0.102
0.208
0.116
0.031

-0.018
0.010

0.404
0.514
0.327
0.311
0.494
0.214
0.076
0.289
0.377
0.089
0.046
0.071
0.392
0.365
0.306
0.298
0.318
0.199
0.044
0.100
0.011
0.037
0.009
0.016

0.334
0.346
0.654
0.199
0.307
0.414
0.235
0.684
0.550
0.289
0.227
0.470
0.204
0.192
0.294
0.095
0.124
0.130
0.065
0.118
0.050
0.066
0.043
0.055

0.407
0.425
0.322
0.283
0.368
0.188
0.091
0.080
0.477
0.067
0.051
0.091
0.424
0.327
0.252
0.261
0.200
0.163
0.040
0.076
0.014
0.025
0.009
0.016

0.330
0.214
0.639
0.107
0.178
0.124
0.059
0.020
0.108
0.014
0.034
0.055
0.203
0.141
0.333
0.062
0.076
0.104
0.058
0.106
0.047
0.057
0.043
0.045

r) 00J
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Figure Captions

Figure 1. Posterior densities and normal approximations

Figure 2. Convergence of the Gibbs samper

Figure 3. Generating values and parameter estimates K= 20,k,p=10

Figure 4. Generating values and parameter estimates K= 40,1c1p = 20
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