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Person-fit statistics have been proposed to investigate the fit of an item score pattern

to an item response theory (IRT) model. I investigated how these statistics can be used

to detect different types of misfit. Intelligence test data were analyzed using person-fit

statistics in the context of the Rasch model and Mokken's IRT models. The sensitivity

for different types of misfit was illustrated. The effect of the choice of an IRT model to

detect person misfit and the usefulness of person-fit statistics as a diagnostic instrument

are discussed.
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From the responses to the items on a psychological test a total score is obtained that

reflects a person's position on the trait that is being measured. The test score, however,

might be inadequate as a measure of a person's trait level. For example, a person may

guess some of the correct answers to multiple-choice items on an intelligence test, thus

raising his/her total score on the test by luck and not by ability. Similarly, a person not

familiar with the test format on a computerized test may obtain a lower score than expected

on the basis of his/her ability level. Inaccurate measurement of the trait level may also

be caused by sleeping behavior, (e.g., inaccurately answering the first items in a test as a

result of, for example, problems of getting started), cheating behavior (e.g., copying the

correct answers of another examinee), and plodding behavior (e.g., working very slowly

and methodically and, as a result, generating item score patterns which are too good to be

true given the stochastic nature of a person's response behavior under the assumption of

most test models). Other examples can be found in Wright and Stone (1979, pp. 165-190).

It is important that a researcher has at his or her disposal methods that can help to

judge if the item scores of an individual are determined by the construct that is being

measured. Person-fit statistics have been proposed that can be used to investigate whether

a person answers the items according to the underlying construct the test measures or that

other answering mechanisms apply (e.g., Levine & Drasgow, 1985; Meijer & Sijtsma,

1995; 2001; Smith, 1985, 1986; Wright & Stone, 1979). Most statistics are formulated in

the context of item response theory (IRT) models (Embretson & Reise, 2000; Hambleton

& Swaminathan, 1985) and are sensitive to the fit of an individual score pattern to a

particular IRT model. IRT models are useful in describing the psychometric properties

of both aptitude and personality measures and are widely used both in psychological and

educational assessment.

An overview of the existing person-fit literature (Meijer & Sijtsma, 2001) suggests

that most person-fit studies have focused on theoretical development of person-fit

statistics and the power of these statistics to detect misfitting item score patterns under

varying testing and person characteristics. Most often, simulated data were used that

enabled the researcher to distinguish between misfitting and fitting score patterns and

thus to determine the power of a person-fit statistic. Also, in most studies a dichotomous

decision was made whether the complete item score pattern fit or did not fit the IRT model.
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However, it may also be useful to obtain information about the subsets of items a person

gives unexpected responses, which assumptions of an IRT model have been violated, and

how serious the violation is (e.g., Reise, 2000; Reise & Flannery, 1996). Answers to these

questions may allow for a more diagnostic approach leading to a better understanding of a

person's response behavior. Few studies illustrate systematically the use of these person-

fit statistics as a diagnostic tool.

The aim of this paper is to discuss and apply a number of person-fit statistics proposed

for parametric IRT and nonparametric IRT models. In particular, I will apply person-fit

statistics in the context of the Rasch (1960) model and Mokken's (1971; 1997) IRT models

that can be used to diagnose different kinds of aberrant response behavior. Within the

context of both kinds of IRT models, person-fit statistics have been proposed that can

help the researcher to diagnose the item scores. Existing studies, however, are conducted

using either a parametric or nonparametric IRT model, and it is unclear how parametric

and nonparametric person-fit statistics relate to each other. To illustrate the diagnostic use

of person-fit statistics I will use empirical data from an intelligence test in the context of

personnel selection.

This paper is organized as follows. First, I will introduce the basic principles of IRT

and discuss parametric and nonparametric IRT. Because nonparametric IRT models are

relatively unknown, I will discuss nonparametric models more extensively. Second, I

will introduce person-fit statistics and person tests that are sensitive to different types of

misfitting score patterns for both parametric and nonparametric IRT modeling. Third, I

will illustrate the use of the statistics to study misfitting item score patterns associated with

misunderstanding instruction, item disclosure, and random response behavior using the

empirical data of an intelligence test. Finally, I will give the researcher some suggestions

as to which statistics can be used to detect specific types of misfit.

IRT models

Parametric IRT

Fundamental to IRT is the idea that psychological constructs are latent, that is, not directly

observable and that knowledge about these constructs can only be obtained through the

6
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manifest responses of persons to a set of items. IRT explains the structure in the manifest

responses by assuming the existence of a latent trait (9) on which persons and items have

a position. IRT models allow the researcher to check if the data fit the model. The focus

in this article is on IRT models for dichotomous items. Thus, one response category is

positively keyed (item score 1), whereas the other is negatively keyed (item score 0);

for ability and achievement items these response categories are usually "correct" and

"incorrect", respectively.

In IRT, the probability of obtaining a correct answer on item g (g = 1, ..., k) is a

function of 8 and characteristics of the item. This conditional probability Pg(9) is the item

response function (IRF). Item characteristics that are often taken into account are the item

discrimination (a), the item location (b), and the pseudo-chance level parameter (c). The

item location b is the point at the trait scale where the probability of a correct response is

0.5. The greater the value of the b parameter, the greater the ability that is required for an

examinee to have a 50% chance of correctly answering the item; thus the harder the item.

Difficult items are located to the right or the higher end of the ability scale; easy items

are located_to the left of the ability scale. When the ability levels are transformed so their

mean is 0 and their standard deviation is 1, the values of b vary typically from about -2

(very easy) to +2 (very difficult). The a parameter is proportional to the slope of the IRF

at the point b on the ability scale. In practice, a ranges from 0 (flat IRF) to 2 (very steep

IRF). Items with steeper slopes are more useful for separating examinees near an ability

level O. The pseudo-chance level parameter c (ranging from 0 to 1) is the probability of a

1 score for low-ability examinees (that is, 0 > co).

In parametric IRT, P9(0) often is specified using the 1-, 2-, or 3-parameter logistic

model (1-, 2-, 3PLM). The 3PLM (Lord & Novick, 1968, Chaps. 17-20) is defined as

(1 cg) exp[ag (0 bg)]
Pg (0) Cg (1)

1 + eXP [a g (0 b9)]

The 2PLM can be obtained by setting cg = 0 for all items; and the 1PLM or Rasch (1960)

model can be obtained by additionally setting ag = 1 for all items. In the 2- and 3PLM

the IRFs may cross, whereas in the Rasch model the IRFs do not cross. An advantage of

the Rasch model is that the item ordering according to the item difficulty is the same for

each 0 value, which facilitates the interpretation of misfitting score patterns across 0.

7
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Most IRT models assume unidimensionality, and a specified form for the IRF which

can be checked empirically. Unidimensionality means that the latent space that explains

the person's test performance is unidimensional. Related to unidimensionality is the

assumption of local independence. Local independence states that the responses in a test

are statistically independent conditional on 0. Thus, local independence is evidence for

unidimensionality if the IRT model contains person parameters on only one dimension.

For this study it is important to understand that IRT models are stochastic versions of

the deterministic Guttman (1950) model. The Guttman model is defined by

and

0 < bg Pg(0) = 0 (2)

0 > bg Pg(0) = 1. (3)

The model thus excludes a correct answer on a relatively difficult item and an

incorrect answer on an easier item. The items answered correctly are always the easiest

or most popular items on the test. These principles are not restricted to items concerning

knowledge, but also apply to the domains of intelligence, attitude, and personality

measurement.

This view of test behavior leads to a deterministic test model, in which a person should

never answer negatively to an item when he/she answers correctly to a more difficult item.

An important consequence is that given the total score, the individual item responses can

be reproduced. On the person level this implies the following. When I assume throughout

this paper that the items are ordered from easy to difficult, it is expected on the basis of

the Guttman model that given a total score X+ , the correct responses are given on the

first X+ items and the incorrect responses are given on the remaining k X+ items. Such

a pattern is called a Guttman pattern. A pattern with all correct responses in the last X+

positions and incorrect responses in the remaining positions is called a reversed Guttman

pattern. As Guttman (1950, p. 64) observed, empirically obtained test data are often not

perfectly reproducible. In WI' models, the probability of answering an item correctly is

3
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between 0 and 1 and thus errors in the sense that an easy item is answered incorrectly

and a difficult item is answered correctly are allowed. Many reversals, however, point to

aberrant response behavior.

Parametric Person-Fit Methods

Model-data fit can be investigated on the item or person level. Examples of model-data

fit studies on the item level can be found in Thissen and Steinberg (1988), Meijer, Sijtsma,

and Smid (1990), and Reise and Waller (1993). Because the central topic in this study is

person fit, I will not discuss these item-fit statistics. The interested reader should refer to

the references above for more details.

Although several person-fit statistics have been proposed, I will discuss two types of

fit statistics that can be used in a complementary way: (a) statistics that are sensitive to

violations against the Guttman model and (b) statistics that can be used to detect violations

against unidimensionality. I will use statistics that can be applied without modeling an

alternative type of misfitting behavior (Levine & Drasgow, 1988). Testing against a

specified alternative is an option when the researcher knows what kind of misfit to expect.

This approitch has the advantage that the power is often higher than when no alternative

is specified. The researcher, however, is often unsure about the kind of misfit to expect.

In this situation, the statistics discussed below are useful.

There are several person -fit statistics that can be applied using the Rasch model. I

illustrate two methods that have well-known statistical properties. One of the statistics is

a uniformly most powerful test (e.g., Lindgren, 1993, p. 350).

liolations against the Guttman model. Most person-fit methods in the context of the

2- and 3PLM are based on determining the likelihood of a score pattern. Many studies

have been conducted using the log-likelihood function 1. Let X9 denote the item score on

item g, then

1= E{Xg In Pg(0) + (1 Xg) In[1 P9(0)] }.
g=1

(4)

A standardized version of this statistic is denoted lz (Drasgow, Levine, and Williams,

1985; Levine and Rubin, 1979). lz was proposed to obtain a statistic that was less

confounded with 9 than 1, that is, a statistic whose value is less dependent on O. lz is



given by

1 E (1)
1, =

1/Var (1)'
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(5)

where E (1) and Var(l) denote the expectation and the variance of 1, respectively. These

quantities are given by

and

E (1) E { P g (0)ln [ P g (0)] + [1 Pg (0)] In [1 Pg (0)]} , (6)
g=1

k 2

Var(l) = E Pg (9) [1 Pg (9)] [In 1_1'119(0)] .

g=1
(7)

Large negative 1, values indicate aberrant response behavior. Below I will give an

example of the use of 1 in the context of the Rasch model.

To classify an item score pattern as (mis)fitting, a distribution is needed under

response behavior that fit the IRT model. For long tests (larger than, say, 80 items) and

true 0 it can be shown that 1, is distributed as standard normal. A researcher can specify

a type I error rate, say a = 0.05, and classify an item score pattern as misfitting when

1, < 1.65. In practice, however, 0 must be estimated and with short tests this leads

to thicker tail probabilities than expected under the standard normal distribution which

results in a conservative classification of item score patterns as misfitting (Nering, 1995,

1997; Molenaar & Hoijtink, 1990). Therefore, Snijders (2001) derived an asymptotic

sampling distribution for a family of person-fit statistics like 1 where a correction factor

was used for the estimate of 0, denoted b. For an empirical example using this correction

factor see Meijer and van Krimpen-Stoop (2001).

The 1 or lz statistic is most often used in the context of the 2PLM or 3PLM. Because I

use the Rasch model to analyze an empirical dataset, a simplified version of 1 is employed.

For the Rasch model, 1 can be simplified as the sum of two terms,

with

1 = d + M (8)

I0
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d= Eln[1 + exp(0 bg)] + OX+
g=1

M = E bgXg.
g=1
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(9)

(10)

Given X+ = Egk X9 (that is, given 9, which in the Rasch model only depends on

the sufficient statistic X+), d is independent of the item score pattern (Xg is absent in

Equation 9) and M is dependent on it. Given X+, 1 and M have the same ordering in

the item score pattern, that is, the item score patterns are ordered similarly by M and 1.

Because of its simplicity, Molenaar and Hoijtink (1990) used M rather than 1 as a person-

fit statistic.

To illustrate the use of M consider all possible item score patterns with X+ = 2 on

a five-item test. In Table 1 all possible item score patterns on the test are given with

their M-values assuming b = (-2, 1, 0, 1, 2). Pattern #1 is most plausible, that is, this

pattern has the highest probability under the Rasch model. Pattern #10 is least plausible

under this configuration of item difficulties. Note that the items difficulty parameters as

explained above are centered around zero.

Molenaar and Hoijtink (1990) proposed three approximations to the distribution of

M: (1) complete enumeration, (2) a chi-square distribution, where the mean, standard

deviation, and skewness of M are taken into account, and (3) a distribution obtained via

Monte Carlo simulation. For all scores complete enumeration was recommended for tests

with k < 8, and up to k = 20 in the case of the relatively extreme scores X+ = 1, 2, k 2,

k 1. For other cases a chi-square distribution was proposed with the exception of very

long tests for which Monte Carlo simulation was recommended. For a relatively simple

introduction to this statistic and a small application see Molenaar and Hoijtink (1995).

Insert Table 1 about here

Statistics like lz and M are often presented as statistics to investigate the general fit of

an item score pattern. However, note that land M are sensitive to a specific type of misfit

Al
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to the ER7' model; namely, violations to Guttman patterns. As Idiscussed above, when the

items are ordered from easy to difficult, an item score pattern with correct responses in

the first X+ positions and incorrect responses in the remaining k X+ positions is called

a Guttman pattern because it meets the requirements of the Guttman (1950) model. To

illustrate this, consider again the item score patterns in Table 1. The pattern of person #1

is a perfect Guttman pattern which results in the maximum value of M and the pattern of

person #10 is the reversed Guttman pattern which results in a minimum value of M.

As an alternative to M, statistics discussed by Wright and Stone (1979) and Smith

(1986) can be used. For example, the statistic

k
B (X' P9(9))2

f7-1, kP9(0)(1 P9(0)

I prefer the use of M because research has shown (e.g., Molenaar & Hoijtink,

1990) that the actual type I error rates are too sensitive for this statistic to the choice

of the 0 distribution, item parameter values, and 0 level to be trusted, and the advocated

standardizations are, in most cases, unable to repair these deficiencies. For example,

Li and Olejnik (1997) concluded that for both lz and a standardized version of B the

sampling distribution under the Rasch model deviated significantly from the standard

normal distribution. Also Molenaar and Hoijtink (1995) found for a standardized version

of B and a standard normal distribution for 0 using 10,000 examinees that the mean of B

was -0.13, the standard deviation was 0.91 and the 95% percentile was 1.33 rather than

1.64 and that thus too few respondents would be flagged as possible aberrant.

Violations against unidimensionality. To investigate unidimensionality I will check

whether the ability parameters are invariant over subtests of the total test. In many

cases, response tendencies that lead to deviant item score patterns cause violations

of unidimensional measurement, that is, violations against the invariance hypothesis

of 0 for a suitably chosen subdivision of the test. Trabin and Weiss (1983) discuss,

in detail, how factors like carelessness, guessing, or cheating may cause specific

violations against unidimensional measurement when the test is subdivided into subtests

of different difficulty level. It is also useful to investigate other ways of subdividing

the test. For example, the order of presentation, the item format, and the item content

41 4")
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provide potentially interesting ways of subdivision. Each type of split can be used to

extract information concerning different response tendencies underlying deviant response

vectors.

Using the Rasch model, Klauer (1991) proposed a uniformly most powerful test that is

sensitive to the violation of unidimensional measurement. The statistical test is based on

subdivisions of the test into two subtests, Al and A2. Let the scores on these two subtests

be denoted by X1 and X2 and let the latent traits that underlie the person's responses on

these two subtests be denoted by 01 and 02, respectively. Under the null hypothesis (H0),

it is assumed that the probabilities underlying the person's responses are in accordance

with the Rasch model for each subtest. Under the alternative hypothesis (H1), the two

subtests need not measure the same latent trait, and different ability level 0k may underlie

the person's performance with respect to each subtest Ak. An individual's deviation from

invariance is given by the parameter n = 0, 02 and Ho : = 0 is tested against

H1 : # 0. To test this hypothesis Klauer (1991) considered the joint distribution of X1

and a person's total score, X. This joint distribution is determined on the basis of the

Rasch model. Given a prespecified nominal type I error, cut-off scores are determined for

subtest scores X1.

Klauer (1991) gives an example for a test consisting of 15 items with difficulty

parameters between -0.69 and 0.14, where the test is divided into two subtests of seven

easy and eight difficult items. Let the cut-off scores be denoted by c, (X+) and cu(X+)

For a test score of, for example, X+ = 8 the cut-off scores for X1 are CL(X+) = 3 and

cu (X+) = 6 . Thus, score patterns with X1 = 3, 4, 5, or 6 are considered to be consistent

with the Rasch model. A value of X1 outside this range points at deviant behavior. Thus

if an examinee with X+ = 8 has only 2 correct answers on the first subtest (X1 = 2)

and 6 correct answers on the second subtest (X2 = 6), the item score pattern will be

classified as aberrant. Also, note that an item score pattern with X1 = 7 and X2 = 1 will

be classified as aberrant. For this score pattern there are too many correct answers on the

first subtest and too few correct answers on the second subtest given the stochastic nature

of the Rasch model.

The test statistic equals
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X2 = 21odp(XklX+)) (12)

where Xk is the subtest score and p(XklX+) is the conditional probability discussed above

of observing deviations this large or even larger from the invariance hypothesis. Under

the Rasch model X2 is chi-squared distributed with two degrees of freedom.

To illustrate the use of this statistic I consider an empirical example given by Klauer

(1991). A verbal analogies test consisting of 47 items was divided into two subtests of

23 easy and 24 difficult items. Then a person with a total score of 10 but only 3 correct

answers on the easy subtest obtained X2 = 17.134 with p(XklX+) = 0.0003. For this

person, the invariant hypothesis was violated. Power curves for statistics analogous to

X2 can be found in Klauer (1995).

Note that the statistic X2 and M differ on the types of violations to the Rasch model.

The observed item score patterns is considered inconsistent with the Rasch model if

M < c(X+), where c(X+) is a cut-off score that depends on the test score X+ associated

with the response vector and on the chosen a-level. For example, assume that in Table

1 c(X+) = 2, then item patterns #9 and #10 are classified as inconsistent with the

Rasch model. Assume now as an alternative hypothesis, H1, that a few examinees exhibit

misfitting test behavior described above as "plodding" behavior, which probably result

in an almost perfect Guttman pattern like pattern #1. In this case maximal values of the

statistic M are obtained, indicating perfect fit. In contrast, the statistic X2 will flag such

a pattern as misfitting when I split the test into a subtest with the first k/2 items and a

subtest with the second k/2 items (assuming an even number of items). This pattern is

inconsistent with the Rasch model because X1 on the easiest subtest is too high and the X2

on the second subtest is too low given the assumptions of the (stochastic) Rasch model.

Important is that in this study I will calculate X2 on the basis of the item difficulty

ordering in the test, X2 will then be denoted by n1, and on the basis of the presentation

order of the items in the test, denoted X,2 d.

Nonparametric IRT

Although parametric models are used in many IRT applications, nonparametric IRT
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models are becoming more popular (e.g., Stout, 1990). For a review of nonparametric

IRT, see Sijtsma (1998) or Junker and Sijtsma (2001). In this study I will analyze the

data by means of the Mokken (1971) models. I use these models because they are

popular nonparametric IRT models (e.g., Mokken, 1997; Sijtsma, 1998). There is also

a user friendly computer program, MSP5 for windows, to operationalize these models

(Molenaar & Sijtsma, 2000).

The first model proposed by Mokken (1971; 1997; see also Molenaar, 1997) is

the model of monotone homogeneity (MHM). This model assumes unidimensional

measurement and an increasing IRF as function of 0. However, unlike parametric IRT,

the TRF is not parametrically defined and the IRFs may cross. The MHM allows the

ordering of persons with respect to 9 using the unweighted sum of item scores. In many

testing applications, it often suffices to know the order of persons on an attribute (e.g., in

selection problems). Therefore, the MHM is an attractive model for two reasons. First,

ordinal measurement of persons is guaranteed when the model applies to the data. Second,

the model is not as restrictive with respect to empirical data as the Rasch model and thus

can be used in situations where the Rasch model does not fit the data.

The second model proposed by Mokken (1971) is the model of double monotonicity

(DMM). The DMM is based on the same assumptions as the MHM plus the additional

assumption of nonintersecting IRFs. Under the DMM it is assumed that when k items are

ordered and numbered, the conditional probabilities of obtaining a positive response are

given as,

P1(9) > P2(0) > > Pk(0), for all O. (13)

Thus the DMM specifies that, except for possible ties, the ordering is identical for all 0

value's. Note that ordering of both persons and items is possible when the DMM applies,

however, attributes and difficulties are measured on separate scales. Attributes are

measured on the true score scale, and difficulties are measured on the scale of proportions.

Thus, persons can be ordered according to their true scores using the total score. For the

Rasch model, measurement of items and persons takes place on a common difference or

a common ratio scale.

15
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An important difference between the Mokken and the Rasch models is that the IRFs

for the Mokken models need not be of the logistic form. This difference makes Mokken

models less restrictive to empirical data than the Rasch model. Thus the Mokken models

can be used to describe data that do not fit the Rasch model.

In Figure 1 examples are given of IRFs that can be described by the MHM, DMM,

and the Rasch model.

Insert Figure 1 about here

This difference also suggests that an item score pattern will be less easily classified as

misfitting under the MHM than under the Rasch model because, under a less restrictive

model, item score patterns are allowed that are not allowed under a more restrictive model.

To use an extreme example, assume the data are described by the deterministic Guttman

model. In the case of the Guttman model every item score pattern with an incorrect

score on an easier item and a correct score on a more difficult item will be classified

as misfitting.

Nonparametric person-fit statistics

Person-fit research using nonparametric IRT has been less popular than with the

parametric MT modeling. Although several person-fit statistics have been proposed

which may be used in nonparnmetric IRT modeling, Meijer and Sijtsma (2001) conclude

that one of the drawbacks of these statistics is that the distribution of the values of these

statistics is dependent on the total score and that the distributional characteristics of these

statistics conditional on the total score is unknown.

Van der Flier (1982) proposed a nonparametric person-fit statistic U3 that was

purported to be normally distributed (see e.g., Meijer, 1998). Recently, Emons, Meijer,

and Sijtsma (in press) investigated the characteristics of this statistic and concluded that

in most cases studied there was a large discrepancy between the type I error rate under the

theoretical sampling distribution and the empirical sampling distribution. This finding

makes it difficult to interpret person-fit scores based on this statistic.

Another nonparametric person-fit method was proposed by Sijtsma and Meijer

(2001). They discussed a statistical method based on the person response function (PRF,

Trabin & Weiss, 1983; Reise, 2000). The PRF describes the probability that a respondent
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with fixed 8 correctly answers items from a pool of items with varying location. For

the Rasch model the PRF can be related to the IRF by changing the roles of 0 and b

where b is treated as a random item variable and 0 is treated as fixed. The PRF is a

nonincreasing function of item difficulty, that is, the more difficult the item the smaller

the probability that a person answers an item correctly. Under the DMM, local deviations

from nonincreasingness can be used to identify misfit.

To detect local deviations an item score pattern is divided into G subtests of items,

so that Al contains the m easiest items, A2 contains the next m easiest items, and so

on. Let subtests Ag of in increasingly more difficult items be collected in mutually

exclusive vectors Ag such that A = (A1, A2, ..., AG). Consider newly defined vectors

A(g) each of which contains two adjacent subsets Ag and A9 +1 : A(1) = (A1, A2),

A(2) = (A2, A3), ..., A(c_i) = (AG_LAG). The statistical method applies to each pair

in A(g). A useful question in person-fit research is whether the number of correct answers

on the more difficult items (denoted X+d) is exceptionally low given the total score and the

subtest score on the easier subtest (denoted X+e). To test this, Sijtsma and Meijer (2001;

see also Rosenbaum, 1987) showed that for each pair of subtest scores a conservative

bound based on the hypergeometric distribution can be calculated (denoted 2) for the

probability that a person has, at most, X+, ls on the easiest subtest. If, for a particular

pair, this probability is lower than, say 0.05, then the conclusion is that X+, in this pair is

unlikely given X+d and X. A conservative bound means that the probability under

the hypergeometric distribution is always equal or larger than under a nonparametric

IRT model. Thus, if P = 0.06 is found, then under the IRT model this probability is

smaller than 0.06. Although this method is based on item response functions that are

nonintersecting, Sijtsma and Meijer (2001) showed that the results are robust against

violations of this assumption. Furthermore, they investigated the power of P to detect

careless response behavior. Detection rates ranged from .018 through .798 depending on

the 0 level.

To illustrate the use of this method assume that the, items are ordered from easy

to difficult and consider a person who generates the following item score pattern

(11110100000). This person has four correct answers on the five easiest items which is as

expected under the DM model and the cumulative probability under the hypergeometric

17
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distribution equals 1.00. However, if I consider a pattern (00000110111) then this

cumulative probability equals .0238 and it is concluded that at a 5% level this item score

pattern is unlikely. Note that this method takes into account the subtest score, and not the

different permutations of zeros and ones within a subtest. In the Appendix the calculations

are given.

Sijtsma and Meijer (2001) did not relate P to specific types of misfit. However,

if I compare this method with M and X2, it can be concluded that P is sensitive to

violations of unidimensionality when the test is split into subtests according to the item

difficulty and for subtests with large values of X+d in combination with small values of

X +e. However, it is insensitive to violations of unidimensionality when X.4 is larger than

X +d. Also, random response behavior will not be detected easily because the expected

X+ is approximately the same on each subtest, which will not result in small values of

P. Thus, the method proposed by Sijtsma and Meijer (2001) can be considered a special

case within a nonparametric IMP framework of the method proposed by Klauer (1991),

as previously discussed.

Method

To illustrate the usefulness of the statistics to detect different types of misfit I used

empirical data of the Test for Nonverbal Abstract Reasoning (TNVA, Drenth, 1969). The

test consist of 40 items and the test is speeded. A sample of 992 persons was available.

The test is developed for persons at or beyond college/university level. For the present

analysis the sample consisted of high school graduates. The dataset was collected for

personnel selection in computer occupations, such as systems analyst and programmer. I

first investigated the fit of this dataset using the computer program RSP (Glas and Ellis,

1993) and MSP5 for Windows (Molenaar & Sijtsma, 2000). The program RSP contains

fit statistics for monotonicity and local independence that are improved versions of the

statistic proposed by Wright and Panchepakesan (1969; see also Smith, 1994). It also

contains statistics for testing the null hypothesis that the IRFs are logistic with equal slopes

against the alternative that they are not. I concluded that the items reasonably fit the Rasch

model and the Mokken models. Details about this fit procedure can be obtained by the

author. Before I analyze the item score patterns, I will first discuss some possible types
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of person misfit that can occur on the TNVA.

Types of Possible Misfit in Intelligence 'testing

Misunderstanding of instruction/Using a suboptimal strategy.

To maximize performance on the TNVA, examinees must work quickly because there is

a limited amount of time to complete the test. However, some examinees may focus

on accuracy, afraid of answering an item incorrectly and, as a result, may generate a

pattern where the answers on the first items are (almost) all correct and on the later items

are (almost) all incorrect ("plodding" behavior as discussed in Wright & Stone, 1979).

This strategy is especially problematic for the TNVA because the first items are relatively

difficult (for example item #5 has a proportioncorrect score equal to 0.55). A person

working very precisely will spend too much time answering the first items and the total

score on the test may then underestimate his/her true score.

As a result of this type of misfit it is expected that given X+ the test score on the first

part of the test is too large and on the second part too low given the stochastic nature of

an IRT model. X2,,d can be used to detect this type of misfit whereas M is less suitable.

n1 will only be sensitive to this type of misfit when the item presentation ordering

matches the item difficulty ordering in the test. P is not useful here. Remember that P

assumes that the items are ordered from easy to difficult and that the method is sensitive to

unexpected low subtest scores on an easy subtest in combination with high subtest scores

on a more difficult subtest. Working very precisely, however, will result in the opposite

pattern; namely, high subtest scores on the easy subtest and low subtest scores on the more

difficult subtest.

Item Disclosure

When a test is used in a selection situation with important consequences for individuals,

persons may be tempted to obtain information about the type of test questions or even

about the correct answers to particular items. In computerized adaptive testing this is

one of the major threats to the validity of the test scores, especially when items are used

repeatedly. This is also a realistic problem for paper-and pencil tests. The TNVA is often

used in the Netherlands by different companies and test agencies because there are no

19
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alternatives. Item exposure is therefore realistic and may result in a larger percentage of

correct answers than expected on the basis of the trait that is being measured.

Detection of item exposure by means of a person-fit statistic is difficult because for

a particular person it is often unknown which items are known and how many items are

known. Advance knowledge of a few items will only have a small effect on the test score

and is therefore not so easily detected. Also, advance knowledge of the easiest items will

only have a small effect on the test score. This outcome suggests that advance knowledge

of the items of median difficulty and of the most difficult items may have a substantial

effect on the total score, especially for persons with a low B level. This type of misfit may

be detected by fit statistics like M, nf, and P. Note that X0 2rd will only be sensitive

to item disclosure when the item difficulty order matches the order of presentation in the

test.

Note that item disclosure has some similarities with response distortion on personality

scales (Reise & Waller, 1993). Although the mechanisms beyond those two types of

misfit are different, the realized item scores patterns may be similar: both are the

result of faking and both have the effect of increasing the test score. Recently, Zickar

and Robie (1999) investigated the effect of response distortion on personality scales

for applicants in selection situations. Response distortion occurs when people present

themselves in a favorable light so that they make a more favorable impression, for

example, in selection situations where personality tests are used to predict job success, job

effectiveness, or management potential. Zickar and Robie (1999) examined the effects of

experimentally-induced faking on the item- and the scale-level measurement properties

of three personality constructs that possess potential utility for use in personnel selection

(Work orientation, Emotional Stability, and Nondelinquency). Using a sample of military

recruits, comparisons were made between an honest condition and both an ad-lib (i.e.,

"fake good" with no specific instructions on how to fake) and coached faking (i.e., "fake

good" with instructions on how to "beat" the test) condition. Faking had a substantial

effect on the personality latent trait scores and resulted in a moderate degree of differential

item functioning and differential test functioning. These results suggests that identifying

faking is important.
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Random response behavior

Random response behavior may be the result of different underlying mechanisms

depending on the type of test and the situation in which the test is administered. One

reason for random response behavior is lack of motivation. Another reason is lack of

concentration which may result from feeling insecure. In intelligence testing random

response behavior may occur as a result of answering questions too quickly. n,,,Xa2 d

and M may be sensitive to random response behavior, depending on which items are

answered randomly. P seems to less suited to detect random response behavior because

P is sensitive to unexpected low subtest scores on an easy subtest in combination with

high subtest scores on a more difficult subtest. Random response behavior as a result of

answering questions too quickly will probably result in similar number-correct scores for

different subtests.

In Table 2 the sensitivity of the statistics to different types of deviant response

behavior is depicted, where a "+" sign indicates that the statistic is sensitive to the

response behavior and a "-" sign indicates that the statistic is expected to be insensitive

to the response behavior. The reader, however, should be careful when interpreting the"

+" and "-" signs. For a particular type of deviant behavior, the sensitivity of a statistic

depends on various factors, like, for example, whether the presentation ordering of the

items is in agreement with the difficulty order. If this is the case both ,(11 and Xor2 d are

sensitive to "Misunderstanding of Instruction".

Insert Table 2 about here

To illustrate the validity of the different fit statistics I conducted a small simulation

study. 10,000 item score patterns were simulated on a 40-items test using the Rasch

model with item difficulties drawn from a uniform distribution between [-2,2] and 9 drawn

from a standard normal distribution. The three types of aberrant response behavior were

simulated as follows. The use of a suboptimal strategy was simulated by changing the

item scores on the first 10 items: the probability of responding correctly to these items

was .90, whereas the probability equalled .10 for the remaining items. Item disclosure

was simulated by changing the item scores on the 5 most difficult items, the probability

of answering an item correctly was .90, and random response behavior was simulated by
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changing the answers on the 10 most difficult items so that the probability of answering an

item correctly equalled .20. The proportion correctly identified misfitting score patterns

for the different statistics is given in Table 3. As expected Xerd had

Insert Table 3 about here

the highest power for detecting a suboptimal strategy, whereas P was insensitive to this

type of response behavior. X,,.2 d was insensitive to item disclosure and P was insensitive

to random response behavior.

Procedure

Person-fit statistics

The program RSP (Glas & Ellis, 1993) was used to compute the p-values (significance

probabilities) belonging to the M-statistic (Equation 10). A program developed by Klauer

(1991) was used to calculate the X2 person-fit statistic and a program developed in S-plus

(2000) was used to determine P. This program can be obtained from the author.

In the person -fit literature there has not been much debate about the nominal type I

error rate. In general, I prefer to choose a relatively large a, for example a = .05 or

a = .10, for two reasons. The first reason is that existing person-fit tests have relatively

low power due to limited test length and a relatively small number of observations.

Choosing a small value for a (e.g., a = .001) will then result in a very low number

of misfitting score patterns. The second reason is that, in practice, persons will never be

withheld a total score solely on the basis of the fit of their score pattern to an IRT model

(i.e., having an extreme person-fit score). A person-fit statistic will alert the researcher

that a person's response behavior is unexpected and that it may be interesting to study the

item score pattern more closely. This implies that, in practice, incorrectly rejecting the

null hypothesis of fitting response behavior has no serious consequences. In this study I

will use a= 0.10, a= 0.05, and a = 0.01.
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The mean number-correct score on the TNVA was 27.08 with a standard deviation of 5.73.

There were no persons who answered all items incorrectly and there was one person who

answered all 40 items correctly. The item proportion correct scores varied between 0.11

(item 40) through 0.99 (item 4).

Person-Fit results

Items ordered according to the item difficulty.

Table 4 shows the proportion of score patterns classified as misfitting (detection rates) for

m-,n1,x07.2d, and P. The results using X02 d will be discussed in the next paragraph.

Note that M is based on the complete item score

Insert Table 4 about here

pattern, whereas the X2 fit statistics and P are based on a split of the item score patterns

into subtests. By means of X2 and P, the number-correct scores on two subtests are

compared. I first split the test into a subtest containing the 20 easiest items and a

subtest containing the 20 most difficult items. Table 4 shows that for M the proportion

of misfitting item score patterns was somewhat higher than the nominal a-levels in all

conditions. For the Xlif statistic the proportions at a = 0.05 and a = 0.10 were higher

than for the M-statistic.

To calculate P I first ordered the items according to decreasing item proportion correct

score and split the test into two subtests of 20 items each. Table 4 shows that no item score

pattern was classified as misfitting. Therefore, I split the test into 4 subtests of 10 items

each, where subtest #1 contained the easiest items, subtest #2 contained the next 10 easiest

items, and so on. This was done because Sijtsma and Meijer (2001) showed empirically

that the power of P often increases when smaller subtests are used. Calculating P using

subtest #1 and subtest #2, however, no significant results were obtained. Thus, the
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proportion of item score patterns classified as misfitting was much higher using n,

than using P. For example, for a = 0.05 using Xclif , I found a proportion of 0.093

and for a = 0.10 I found a proportion of 0.149. P is only sensitive to score patterns

with unexpected 0 scores on the easier subtest in combination with unexpected 1 scores

on the more difficult subtest. Therefore, I also determined the detection rates using

X , when the total score on the second subtest was unexpectedly high compared to

the second subtest. For the split into two subtest of 20 items and a = 0.01, I found a

proportion of 0.012; for a = 0.05 a proportion of 0.043 and for a = 0.10 a proportion

of 0.051. Although the proportions are decreasing for this particular type of misfit, n1

still classifies a higher proportion of item score patterns as misfitting than P.

In Table 5 the four most deviant score patterns according to the n1 test are given

with their corresponding pvalues for the )(11 test and the M-statistic. Person # 754

with X+ = 12 produces a very unexpected item

Insert Table 5 about here

score pattern because only 4 out of the 20 easiest items are answered correctly, whereas

on the 20 most difficult items 8 items are answered correctly. This pattern was also

classified as unexpected using M. To further illustrate this unexpected behavior, item

#1 with a proportion correct score of 0.99 was answered incorrectly, whereas item #39

with a proportion correct score of 0.19 was answered correctly. Consider the types of

aberrant response behavior discussed above to interpret the type of misfit. It is clear that

"plodding" and "item disclosure" are very unlikely and that this response pattern may be

the result of "random response behavior". Note that the expected X+ for a person who is

completely guessing on this test with 40 items with four alternatives per item equals 10,

almost equal to the total score of person #754 with X+ = 12.

The pattern of person #754 was classified as fitting using P. Dividing the test into

two subtests of 20 items each resulted in P = 0.150. Also dividing the test into four

subtests of 10 items each and comparing the first two subtests resulted in a nonsignificant

result: P = 0.500.

The difference between the X2 statistics and M can be illustrated by the item score

pattern of person # 841. This person with X+ = 19, answers 19 out of the 20 easiest
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items correctly, and answers the 20 most difficult items incorrectly. This is unexpected on

the basis of the probabilistic nature of the Rasch model. Thus I expect less correct scores

on the easier subtest and more correct answers on the second subtest given X+ = 19. For

this pattern the n1 test has p = 0.0004. However, for the M statistic p = 0.4521 and

P = 1.000. This illustrates that both M and P are insensitive and ,(11 is sensitive

to violations of unidimensionality.. To interpret this response behavior consider also

the value of X02 7.d because this type of answering behavior has many similarities with

"plodding behavior". For person # 841 using Xa2,.d p = 0.0019. Thus on the basis of the

item ordering, this pattern is very unlikely. This pattern is a good example of someone who

is working very slowly but precisely, and uses a suboptimal strategy to obtain a maximal

score given his/her ability. If he/she had guessed the answers on the more difficult items

later in the test, the test score would have been higher.

Note that the item score pattern of person #669 is also very unlikely. This person

has 14 correct answers on the first 20 items and 14 correct answers on the second most

difficult items. Thus, given X+ = 27, too many correct answers on the difficult items and

too few correct answers on the easier items. This pattern is more difficult to interpret than

the other examples when only relying on the item difficulty order. Using X o2rdp = 0.0141;

thus on the basis of the item presentation order this pattern is less unlikely. Item preview

of the more difficult items may be an explanation, or it may be someone who is working

very fast and easily skips items.

Items ordered according to the rank order of presentation in the test

Different types of score patterns may be classified as misfitting depending on whether I

use the presentation order on the test or the item difficulty order. I will only discuss the

difference between )(11 and X0r2 d because M is not influenced by the ordering of the

items, and P is only based on the item difficulty order.

Because the order of the items in the TNVA according to presentation and difficulty

order are partly overlapping, some item score patterns are classified as misfitting by both

X2 statistics (see below). However, there are exceptions. In Table 6, it can be seen that

person #5, #827, and #101 produce item score patterns with many

Insert Table 6 about here
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correct item scores on the first subtest and many incorrect scores on the second subtest.

The ratio of the test scores on the two subtests for these persons was 16/0, 20/6, and 19/2.

This indicates people who work slowly but conscientiously. Note, that for these people,

p < .01, whereas using X02ip > 0.05. When I combine the information obtained

from both statistics I conclude that these people answer both difficult items and easy items

correctly (if not, they would have had very low p-values using 'Cif) and mainly answer

the first items in the test correctly. This is strong evidence for "plodding" behavior.

Overlap of the statistics

In Table 7 the overlap of the number of item score patterns classified as misfitting at

a = 0.05 by the different person-fit statistics is given. This table illustrates that the three

Insert table 7 about here

statistics are sensitive to different types of misfit. Note, however, that of the 69 patterns

classified as misfitting by M only 22 are also classified as misfitting by X07.2 d and only 19

are classified as misfitting using Xlif. . For X2, using the item difficulty- or presentation

order has an effect: the overlap of the number of items score patterns classified as

misfitting is only 30, whereas 88 patterns are classified as misfitting using XI d and 93

patterns are classified as misfitting using Xo72 d.

Discussion

In this study, the item score patterns on an intelligence test were analyzed using both

parametric and nonparametric person-fit statistics. A researcher uses an IRT model

because it fits the data or because it has some favorable statistical characteristics.

Nonparametric IRT models have the advantage that they more easily fit an empirical

dataset than parametric IRT models. Which model should be used to analyze item score

patterns ? From the results obtained in this study, I tentatively conclude that a parametric

IRT model may be preferred to a nonparametric IRT model.

Using different kinds of person-fit statistics with the Rasch model resulted in a higher

percentage of item score patterns classified as misfitting compared to Mokken's IRT

models and, perhaps more interesting, it resulted in different kinds of misfit. In this
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study, P was too conservative in classifying an item score patterns as misfitting. For

a = 0.05 no item score patterns were classified as misfitting. Because P only gives a

upper bound to the significance probability I conclude that for a set of items for which

the IRFs do not intersect a parametric approach may be preferred to a nonparametric

approach. As Junker (2001) noted, "the Rasch model is a very well-behaved exponential

family model with immediately understandable sufficient statistics (...). Much of the

work on monotone homogeneity models and their cousins is directed at understanding

just how generally these understandable, but no longer formally sufficient, statistics yield

sensible inferences about examinees and items". If I interpret "sensible inferences" here

as "inferences about misfitting response behavior" it seems more difficult to draw these

inferences using nonparametric IRT than using parametric IRT: This finding suggests

that future research should be aimed at improving the power of nonparametric person-fit

statistics, and specifying under which conditions these methods can be used as alternatives

to parametric person-fit statistics.

The researcher must also decide which logistic IRT model to use. Person-fit statistics

detect small numbers of outliers that do not fit an IRT model. When the Rasch model

shows a reasonable fit to the data, this model can detect person-fit because powerful

statistical tests are available for this model compared to other IRT models (Meijer &

Sijtsma, 2001). Moreover, I could distinguish different types of misfit using different

kind of statistics. Although I used data from an intelligence test, the person-fit statistics

illustrated in this paper could also be applied to data from personality testing to detect

aberrant response patterns related to different test taking behaviors.
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Appendix

For each pair of subtest scores a conservative bound based on the hypergeometric

distribution can be calculated for the probability that a person has at most X+, = x+, is

on the easiest subtest. Let J denote the number of items in the two subtests, let Jd denote

the number of items in the most difficult subtest and let Je denote the number of items

in the easiest subtest. The cumulative hypergeometric probability has to be calculated

bearing in mind that if X+ > Jd the minimum possible value of X+, is X+ Jd. Thus

P = P(X±, < x-i-e I J, 4, X+) =
x +eE P(X+e = Id J, Je, x+)

w=max(0,X+Jd)

To illustrate this, assume that I have the score pattern (1110100000) and that the items are

ordered according to increasing item difficulty, thus the first 5 items in the item ordering

are the easiest items and the second 5 items are the most difficult items. Suppose that I

would like to compare the subtest score on the first 5 easiest items (x+, = 4) with the

subtest score on the second 5 most difficult items. Then

4

P = P(X+, < 4 IJ = 10, Je = 5, X+ = 4) = E p(x+, = wp- = 10, Je = 5, X+ = 4)
w=0

which equals P = Tig)+(m)±1)+g)+(m)= 0.0238+ 0.2381+ 0.4762 4-

0.2381 + 0.0238 = 1 However, if we consider the item score pattern (0000010111) then

the cumulative hypergeometric probability equals 1) = 0.0238.



Figure Captions

Figure 1. Examples of IRFs for different IRT models.
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Table 1. M-values for different item score patterns

pattern M = > biXi
1 1 1 0 0 0 3
2 1 0 1 0 0 2

3 1 0 0 1 0 1

4 0 1 1 0 1 1

5 1 0 0 0 1 0
6 0 1 0 1 0 0
7 0 1 0 0 1 1
8 0 0 1 1 0 1
9 0 0 1 0 1 2
10 0 0 0 1 1 3
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Table 2
Sensitivity of person-fit statistics to different types of deviant behavior,
a "+" denotes sensitive and a "-" denotes insensitive to aparticular type of
deviant behavior

Misunderstand Item disclosure Random
ing of response
instruction behavior

A121,

Adif
X2ord

P



Table 3
Detection rates for different types of deviant
response behavior

Misunderstand Item disclosure Random
ing of response
instruction behavior

412
X dif
X ord
P

.071 .453 .764

.153 .872 .663

.871 .231 .343

.001 .453 .001
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Table 4
Detection rates for different person-fit statistics

a M X2dif X2ord "P

0.01 0.027 0.026 0.027 0
0.05 0.070 0.093 0.089 0

0.10 0.125 0.149 0.147 0
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Table 5
Significance probabilities for the four most deviant item score patterns according to
X2d,f with corresponding M values (items ordered according to increasing item
difficulty; a superscript denotes the number of consecutive Os or is thus 1203 denotes
11000)

Person # X.,. if2Xd M
754 010210b010210120210102101041202 12 0.0000 0.0001
285 0101301302101031014031011406 20 0.0003 0.0013
841 130116020 19 0.0004 0.4521

669 14016012010312011203102 27 0.0006 0.0062
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Table 6
Significance probabilities for item score patterns classified as misfitting using X2ord
and fitting using X2dif (item scores ordered according to the order in the test; a
superscript denotes the number of consecutive Os or is thus 1203 denotes 11000)

Person # Item score pattern X+ X2ord Xdjf
5 120160160120' 16 0.0015 0.072
827 121031014010 26 0.0016 0.082
101 07012041010" 21 0.0019 0.071



Table 7
Overlap of the number of item score patterns classified as misfitting at a =0.05

M X2ord X2dif

M 69
X2ord 22 88

X2dif 19 30 93
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