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Abstract

Unfortunately, researchers do not usually have measurement instruments that

provide perfectly reliable scores. Therefore, the researcher may want to account for the

level of unreliability by appropriately increasing the sample size. For example, the results

of a pilot study may indicate that a particular instrument is not as reliable with a given

population as it has been with other populations. Using this information, a researcher can

use the tables provided to determine an appropriate sample size for their study. Tables are

also provided that illustrate the reduction in power from decreased reliability for given

sample sizes. Also, the computer program will be made available through the World

Wide Web to help researchers determine what the actual statistical power they can expect

for their studies with less-than-perfect reliability.
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Power and Reliability for Correlation and ANOVA

Students of statistics usually become familiar with the factors that affect

statistical power. For example, most students learn that sample size, level of significance,

and effect size all determine the power of a statistical analysis. Additionally, some know

that how effectively a particular design reduces error variance affects power, as does the

directionality of the alternative hypothesis. However, many students do not realize that

the reliability of measurements may also affect the statistical pOwer (Hopkins & Hopkins,

1979). The purpose of this paper is (1) to explain the relationship between reliability and

statistical power and (2) to provide sample size tables that account for reduced reliability.

A series of Monte Carlo analyses were conducted to determine the sample sizes required

when measurements are not perfectly reliable. Several statistical methods will be

investigated, including (1) Pearson correlation, (2) Spearman rank correlation, and (3)

analysis of variance.

Background

One of the chief functions of experimental design is to ensure that a study has

adequate statistical power to detect meaningful differences, if indeed they exist (Hopkins

& Hopkins, 1979). There is a very good reason researchers should worry about power a

priori. If researchers are going to invest a great amount of money and time in carrying out

a study, then they would certainly want to have a reasonable chance, perhaps 70% or

80%, to find a difference between groups if it does exist. Thus, a priori power (the

probability of rejecting a null hypothesis that is false) will inform researchers how many

subjects per group will be needed for adequate power.

Several factors affect statistical power. That is, once the statistical method and the
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alternative hypothesis have been set, the power of a statistical test is directly dependent

on the sample size, level of significance, and effect size (Stevens, 2002). Often

overlooked, however, is the relationship that variance has with power. Specifically,

variance influences power through the effect size. For example, Cohen (1988) defined the

effect for the t statistic as 8 = p.0) / An An applied example is that because

variance is reduced, analysis of covariance is more powerful than analysis of variance

when a useful covariate is utilized. Other variance reduction techniques include using a

more homogeneous population and improving the reliability of measurements (Aron &

Aron, 1997; Zimmerman, Williams, & Zumbo, 1993).

Reliability and Effect Size

Cleary and Lim (1969) reported that "in the derivation and interpretation of

statistical tests, the observations are generally considered to be free of error of

measurement" (p. 50). From a classical test theory perspective, an individual's observed

score (X) is the sum of true score (T) and error score (E); that is, X = T + E. Therefore,

if there is no error of measurement, then the observations are the true scores. For a set of

scores, measurements made without error occur only when the instruments provide

perfectly reliable scores. Observed score variance, o2x, is defined as the sum of true score

variance, a2T, and measurement error variance, 13E2. Because reliability, pxx,, is defined as

the ratio of true score variance to observed score variance, Rice = aT/ox = 1 crE/ox,

reliability can only be perfect (i.e., pxx, = 1.0) when there is no measurement error

(Lord & Novick, 1968).

Because ox can be written as or / Rice, the standardized effect size for the t test

can be written as S = / ar (Levin & Subkoviak, 1977; Williams &
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Zimmerman, 1989). Consequently, reliability affects statistical power indirectly through

effect sizes. Cohen (1988) reported that reduced reliability results in reduced effect sizes

in observed data (ES), which therefore reduces power. That is, observed effect sizes,

ES = ESP * rte,, where ESP is the population effect size. When reliability is perfect,

observed ES equals the true population ES; but when reliability is less than perfect,

ESP * is a value smaller than the true effect size. Therefore, effect sizes are reduced

when measurement error exists. Some introductory statistics textbooks discuss this

problem in reference to attenuation in correlation due to unreliability of measures (e.g.,

Glass & Hopkins, 1996).

Reliability and Power

Controversy surrounds the relationship between power and reliability (Williams

& Zimmerman, 1989). For example, good statistical power can exist with poor reliability

and a change in variance can be unrelated to reliability can change power. However,

there are persuasive reasons to consider reliability as an important factor in determining

statistical power.

There is no controversy that statistical power depends on observed variance.

Zimmerman and Williams (1986) noted that when speaking of statistical power it is

irrelevant whether the variance measured is true score variance or observed score

variance; that is, "the greater the observed variability of a dependent variable, whatever

its source, the less is the power of a statistical test" (p. 123). But because reliability is

defined by observed variance in conjunction with either true or error variance, one cannot

be certain which is changed when reliability improves. That is, if observed variance

increases, we cannot be certain whether the increase is due to an increase in true score
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variance or a increase in error variance, or both. Or as Zimmerman, Williams, & Zumbo

(1993) reported, power changes as reliability changes only if observed score variance

changes simultaneously.

However, if we assume (1) that true variance is a fixed value for the given

population and (2) that improved reliability results in less measurement error, then it

follows that a change in reliability will result in a change in observed score variance.

Indeed, statistical power is a mathematical function of reliability only if either true score

variance or error variance is a constant; otherwise power and reliability are simply related

(Cohen, 1988; Williams & Zimmerman, 1989). But improvement in reliability is usually

interpreted as a reduction in the measurement error variance that occurs from a more

precise measurement (Zimmerman & Williams, 1986). Therefore, a reduction in

reliability that is accompanied by an increase in observed score variance will indeed

reduce statistical power (Zimmerman, Williams, & Zumbo, 1993b). That is, if true score

variance remains constant but lower reliability leads to increased error variance, then

statistical power will be reduced because of the increased observed score variance (cf.

Humphreys, 1993). It becomes apparent then that "failure to reject the null hypothesis

with observed scores is obviously not equivalent to a failure to reject the null hypothesis

with true scores" (Cleary & Linn, 1969, p. 50).

Based on such an assumption, for example, Light, Singer and Willett (1990)

advised that when measurements are less than perfectly reliable, improving the power of

statistical tests involves a decision either to increase sample size or to increase

reliabilitythe researcher must compare the costs associated with instrument

improvement to the costs of adding study participants (see also Cleary & Linn, 1969;
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Fe ldt & Brennan, 1993). Researchers may encounter such a situation if an instrument

does not perform as reliably in a given study as it has elsewhere, leading to increased

variance in the current project. Assuming that the increased variance is not due to more

heterogeneity in the population and that the true score variance of the population hasn't

changed, the observed score variance will change as a consequence of the change in

reliability.

Power is a function of level of significance, sample size, and effect size only

under the assumption of no measurement error, but our measures in the social sciences

are typically not measured perfectly (Cleary & Linn, 1969; Levin & Subkoviak, 1977).

Indeed, the implicit assumption that our measures are perfectly reliable is not justified in

practice (Crocker & Algina, 1986; Sutcliffe, 1958). Measurement error in the dependent

variable should be considered a priori for sample size and post hoc for power (Subkoviak

& Levin, 1977).

Unfortunately, there are few easy ways to account for reliability when

determining sample sizes. The tables found in Cohen (1988) do not provide the option to

vary reliability. Computer programs such as SamplePower and PASS 2000 also assume

perfect reliability. Along the same lines of work done by Kanyongo, Kyei-Blankson, and

Brooks (2001), this paper will report on the impact of reliability on power as well as

provide tables to assist researchers in finding sample sizes necessary with fallible

measures.

Method

Two Monte Carlo programs, MC2G (Brooks, 2002) and MC3G (Brooks, 2002)

written in Delphi Pascal, were used to create normally distributed but unreliable data and



Power and Reliability - 8

perform analyses for several statistical methods, including Pearson correlation, Spearman

rank correlation, and analysis of variance (ANOVA) with three levels. The programs

were used to create power and sample size tables for these tests. Reliability was varied

from .70 to 1.0 in increments of 0.05. For power tables, power rates will vary from .70 to

.90 by .10. Population effect sizes were varied from small to large using Cohen's (1988)

conventional standards. Specifically, for correlations, a small effect was set at r = .10,

medium was r = .30, and a large effect was set to be r = .50; for ANOVA, a small

standardized difference effect was set at f = .10, medium was f = .25, and large was

f = .40.

Statistical power tables for given sample sizes are based on empirical Monte

Carlo results of 100,000 iterations; the sample size tables were based on 10,000

simulated samples. For the power tables, the sample sizes were obtained under the

assumption of perfect reliability. That is, the sample sizes were fixed at the values needed

to achieve power levels of .70, .80 and .90 when reliability was 1.0. The remaining

values in the power tables were determined by systematically varying the reliability with

that given sample size. For the sample sizes tables, power was fixed, reliability was

varied, and sample sizes were tried until the required power was achieved.

Data Generation

For each analysis, the researchers entered appropriate information into the

program. For example, the values for large effect size of r = .50 and reliability or .90

were provided as input to the program (see Figure 1). The programs generate uniformly

distributed pseudorandom numbers to be used as input to the procedure that will convert
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them into normally distributed data. For each sample, the appropriate statistical analysis

is performed. The number of correct rejections of the null hypothesis is stored and

reported by the program. These procedures were repeated as necessary for each sample

condition created.

The L'Ecuyer (1988) generator was chosen for the programs. Specifically, the

FORTRAN code of Press, Teukolsky, Vetterling, and Flannery (1992), was translated

into Delphi Pascal. The L'Ecuyer generator was chosen because of its large period and

because combined generators are recommended for use with the Box-Muller method for

generating random normal deviates, as will be the case in this study (Park & Miller,

1988). The computer algorithm for the Box-Muller method used in this study was

adapted for Delphi Pascal from the standard Pascal code provided by Press, Flannery,

Teukolsky, and Vetterling, 1989. Extended precision floating point variables were used,

providing the maximum possible range of significant digits. Simulated samples were

chosen randomly to test program function by comparison with results provided by SPSS

for Windows version 10.1.

The programs generate normally distributed data of varying reliability based on

classical test theory. That is, reliability is not defined using a particular measure of

reliability (e.g., split-half or internal consistency); rather it is defined as the proportion of

raw score variance explained by true score variance, or/ or or equivalently 1 aE/ax.

Each raw score generated is taken to be a total score. The program user enters (1) the

expected true score variance for the population and (2) a reliability estimate.

Consequently, as reliability decreases, raw score variance increases as compared to the

given true score variance. For correlation analyses, the same reliability was used for both
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measures.

Monte Carlo Simulations

The number of iterations for the study is based on the procedures provided by

Robey and Barcikowski (1992). Significance levels for both tests on which Robey and

Barcikowski's method is based were set at a = .05 with (1 (3) = .90 as the power

level; the magnitude of departure was chosen to be a ± .2a, which falls between their

intermediate and stringent criteria for accuracy. The magnitude of departure is justified

by the fact that at ±.2a, the accuracy range for a = .05 is .04 s a s .06. Based on the

calculations for these parameters (this set of values was not tabled), 5422 iterations

would be required to "confidently detect departures from robustness in Monte Carlo

results" (Robey & Barcikowski, 1992, p. 283), but applies to power studies also (Brooks,

Barcikowski, & Robey, 1999). However, to assure even greater stability in the results, a

larger number of simulations was chosen for each type of analysis. Specifically, 100,000

samples were used for the power tables, but because the determination of sample sizes is

a much slower process, only 10,000 simulated samples were used in creating those tables.

Results

Table 1, Table 3, and Table 5 show the relationship between statistical power and

reliability for the Pearson product-moment correlation, Spearman rank-order correlation,

and ANOVA, respectively. There is a relatively linear relationship between the two when

sample size is fixed (variations are due to the Monte Carlo sampling process). Chart 1,

Chart 3, and Chart 5 show graphical representations of these relationships. This

relationship is roughly the same for all tests at all effect sizes. When reliability changes,

the observed score variance changes, and any change in reliability that increases
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observed score variance reduces statistical power. Similarly, increasing reliability

increases power.

For example, Table 1 shows that when statistical power is chosen to be .80 for a

Pearson correlation, 28 cases are required when perfect reliability is assumed and a large

effect size (a correlation of .50) is expected. When reliability was changed to .90, the

actual statistical power was observed to be .70. Reliability set at .80 resulted in observed

statistical power of .58. Finally, actual power was .46 when reliability was set at .70.

Such depreciation of power occurs also with t-tests and their nonparametric alternatives.

Table 2, Table 4, and Table 6 show the change in sample size required for

analyses in order to maintain a given power level when reliability is less than perfect.

Again, there are relatively linear relationships for all tests at all power levels. Chart 2,

Chart 4, and Chart 6 show that sample sizes must increase much more dramatically for

smaller effect sizes. For example, Table 2 shows that when the desired statistical power

level is set at .80 and a large effect size (a correlation of .50) is expected, the use of 28

cases results in power of .80 when reliability is 1.0; but when reliability is reduced to .90,

36 cases are required. If reliability is .80, then the study needs 46 participants. Finally,

61 cases must be used to achieve power of .80 when reliability is .70.

Conclusions

In social sciences, few things are measured perfectly (Subkoviak & Levin, 1977).

However, by making judicious design decisions, one can improve the quality of his or her

measurements. To begin with, the researcher needs to understand what influences

measurement quality or helps to reduce measurement error. There are three main sources

of errors: (a) flaws in the instrument and its administration, (b) random fluctuations over

12



Power and Reliability - 12

time in subjects measured, and (c) disagreement among raters or scores (Light, Singer &

Willet, 1990). Knowing what the sources of error are and how they get into

measurements helps in improving the quality of measurement.

Researchers should make an effort to minimize the effects of measurement error.

There are several strategies that have been developed for minimizing the effects of

measurement error and increasing reliability. These include revising items, increasing the

number of items, lengthening item scales, administering the instrument systematically,

timing of data collection and use of multiple raters or scores (Light, Singer & Willet,

1990). Effect of measurement fallibility on power and on sample size is most dramatic

for small effect size.

Before one chooses a fmal sample size, the possibility of measurement error

should be considered. To determine sample sizes "without simultaneously considering

errors of measurement is to live in a 'fool's paradise" (Levin & Subkoviak, 1977, p.

337). If one suspects that measurement error exists and there is no viable means to reduce

it, sample size should be increased accordingly. Researchers can identify potential

problems with measurement error through pilot studies or previous research. Where

reliability information is lacking, the researcher should use cautious estimates, with a

preference toward more conservative values, when deciding sample sizes in the presence

of less-than-perfect reliability (Levin & Subkoviak, 1977). Light, Singer, and Willett

(1990) provided tables to illustrate the point. Unfortunately, their tables provide only a

very few situations and are therefore limited in their usefulness. The present study

extends their tables and provides such information for additional statistical methods.
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Figure 1

Example screen for the MC2G program

SCORE 1
Population Mean:

Population Standard Deviation:

Group 1 Size (under 1000):

Restriction,
Integer Data Only
Minimum Possible Score:
Maximum Possible Score:

4

Distribution,

0.0

1.0

28

SCORE 2
Population Mean:

Population Standard Deviation:

G Normal 0 Uniform

Dependent Measure Reliability:11.0

Restriction
Integer Data Only
Minimum Possible Score:

Cl Maximum Possible Score:

Distribution:

0.0

1.0

0 Normal Uniform

Dependent Measure Reliability: 11.0

STATISTICAL TEST
C independent t (pooled variance)
O Independent I (unequal variance)
O Mann-Whitney-Wilcoxon
O Paired-Samples t-Test
O Wilcoxon Signed-Rank Test
O Bivariate Correlation
O Spearman Rank Correlation
O Single Sample t-Test

Correlation between Measures

Population Correlation:1.50

Average Sample Correlation: 0.4945

HYPOTHESIS TESTING

C) One-tailed Test

G Two-tailed Test
ALPHA= .05

MONTE CARLO
Automatically Set PseudoRandom
Seeds for Successive Analyses

Integer Seed for Data
Generation

Number of Monte Carlo
Samples to Generate

11948662094

10000

SAMPLING DISTRIBUTION INFO

Population Rho - Squared: 0:2500

_ Average Sample F11: 1072T

Average, Adjusted (Ra2Y 0283

Average CroisVddity R= (Rca): 0.115

11 Correlations to Keep: 1000

(You must use File I Save Correlations
to save them to a" disk file. You can
save up to 10000 correlations to disk)

RESULTS: Power Analysis
Rejections Actual POWER Desired

8=10.80260 J. 1"--ntr
Actual Power is 0.8026, which is the
proportion of correct rejections
(8026/10000) of the
known-to-be-false null hypothesis.
Note that the sample correlation is a
biased estimated the population ,

correlation, such that the expected I

Press F5 to Run
RUNAnalysis or click ->

1.404..;10

BEST COPY AVAILABLE
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Pearson Product-Moment Correlation

Table 1
Actual Power at Different Reliability Values at two-tailed a = .05 100,000 iterations

Effect
Size N

Reliability

1.0 .95 .90 .85 .80 .75 .70

Large
(r ...: .5)

23 .71 .65 .60 .55 .49 .43 .38

28 .80 .75 .70 .63 .58 .52 .46

37 .90 .86 .82 .77 .71 .65 .58

Mediu
m

(I. .3)

66 .70 .65 .60 .55 .50 .45 .40

84 .80 .75 .71 .66 .60 .54 .49

112 .90 .87 .83 .78 .73 .67 .61

Small
(r = .1)

615 .70 .65 .61 .56 .51 .46 .41

787 .80 .76 .71 .67 .61 .55 .50

1021 .90 .86 .82 .78 .73 .67 .61

Table 2
Sample Sizes Required at Different Reliability Values at two-tailed a = .05 (10,000
iterations)

Effect
Size Power

Reliability

1.0 .95 .90 .85 .80 .75 .70

Large
(r = .5)

.70 23 25 29 35 37 43 49

.80 28 32 36 41 46 54 61

.90 37 42 47 54 61 72 81

Mediu
m

(1. .3)

.70 66 75 83 95 104 120 138

.80 84 95 105 119 132 151 172

.90 112 128 140 158 175 205 235

Small
(r = .1)

.70 615 663 756 838 945 1095 1293

.80 787 918 973 1169 1251 1386 1709

.90 1021 1211 1292 1515 1694 1922 ****
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Spearman Rank-Order Correlation

Table 3
Actual Power at Different Reliability Values at two-tailed a = .05 100,000 iterations

Effect
Size N

Reliability

1.0 I .95 .90 .85 .80 .75 I .70

Large
(r = .5)

26 .70 .65 .70 .54 .49 .42 .38

33 .80 .76 .71 .65 .60 .53 .47

43 .90 .87 .83 .77 .72 .65 .60

Mediu
m

(I. = .3)

75 .70 .65 .61 .55 .51 .45 .41

94 .80 .76 .71 .66 .60 .55 .49

128 .90 .88 .84 .79 .74 .68 .62

Small
(r = .1)

680 .70 .66 .61 .56 .51 .46 .41

827 .80 .74 .70 .65 .59 .54 .48

1148 .90 .87 .83 .78 .73 .68 .62

Table 4
Sample Sizes Required at Different Reliability Values at two-tailed a = .05 (10,000
iterations

Effect
Size Power

Reliability

1.0 .95 .90 .85 .80 .75 .70

Large
(r

.70 26 30 33 37 41 48 54

80 33 36 41 47 53 60 68

.90 43 48 52 62 67 79 91

Mediu
m

(1. .3)

.70 75 82 92 104 118 129 153

.80 94 105 116 131 149 169 197

.90 128 137 156 176 198 222 252

Small
(r = .1)

.70 680 753 841 954 1075 1235 1387

80 827 941 1044 1254 1345 1589 1740

.90 1148 1212 1512 1593 1685 1826 ****
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Analysis of Variance (three independent samples)

Table 5
Actual Power at Different Reliability Values at two-tailed a = .05 (100,000 iterations

Effect
Size

N
per

group

Reliability

1.0 .95 .90 .85 .80 .75 .70

Large
(f = .40)

17 .70 .67 .65 .63 .60 .56 .53

21 .80 .78 .75 .73 .71 .67 .64

28 .91 .89 .87 .85 .83 .80 .77

Medium
(f.= .25)

41 .70 .67 .65 .62 .60 .57 .54

)1 .80 .78 .75 .73 .70 .67 .64

66 .90 .88 .86 .84 .82 .79 .76

Small
(f = .10)

269 .71 .68 .65 .62 .60 .57 .54

333 .80 .78 .75 .73 .70 .67 .64

441 .90 .89 .87 .85 .82 .80 .77

Table 6
Sample Sizes Required at Different Reliability Values at two-tailed a = .05 (10,000
iterations)

Effect
Size Power

Reliability

1.0 .95 .90 .85 .80 .75 .70

Large
(f = .40)

.70 17 18 19 20 21 22 24

.80 21 22 23 25 26 28 30

.90 28 29 30 32 34 36 39

Medium
(f _

.70 41 44 45 48 50 54 58

.80 51 54 56 61 65 68 73

.90 66 70 75 78 83 88 95

Small
(f

.70 269 288 300 314 332 356 382

.80 333 353 374 395 419 451 482

.90 441 464 488 516 551 583 619



TEST: 1.000 Pearson
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Power and Reliability - 20

Pearson Product-Moment Correlation

Chart 1
Statistical power and reliability (for N based on Power = .80)
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Chart 2
Reliability and sample size at power = .80
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TEST: 2.000 Spearman
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Spearman Rank-Order Correlation

Chart 3
Statistical power and reliability (for N based on Power = .80)
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Chart 4
Reliability and sample size at power = .80
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Power and Reliability - 22

Analysis of Variance (three independent samples)

Chart 5
Statistical power and reliability (for N based on Power = .80)

TEST: 3.000 ANOVA
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Chart 6
Reliability and sample size at power = .80
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