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Abstract

Previous research has shown that testlet structures often violate important assumptions of

dichotomous IRT (D -IRT) modelsapplied to item-level scoresthat can in turn affect the

results of many measurement applications. In this situation, polytomous IRT (P -IRT)

modelsapplied to testlet-level scoreshave been used as an alternative. The objective of this

study was to examine the distributional characteristics of vertical scales created using selected D-

IRT and P -IRT models for a test composed of testlets. ITBS Reading Comprehension test scores

from 60,000 randomly selected students (10,000 students per grade from Grade 3 through Grade

8) who took the ITBS during a recent fall administration were used in this study. For this data,

vertical scales were produced using three D -IRT modelsthe Rasch model (RM) and the three-

parameter logistic (3PL) model calibrated under concurrent and separate group optionsand

four P -IRT modelsthe nominal model (NM), the graded response model (GRM), the partial

credit model (PCM) and the generalized partial credit model (GPCM). The results showed a

number of differences in the distributional properties of vertical scales derived from IRT models

applied at the item and testlet levels.
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Comparing Vertical Scales Derived from

Dichotomous and Polytomous IRT Models for a Test Composed of Test lets

Nearly all multilevel achievement tests utilize developmental score scales. These scales

serve a significant role in educational measurement. For test developers, developmental score

scales are often the primary scale for multilevel tests. That is, they are the scales from which

other auxiliary scales are derived. For test users, developmental score scales are required for

examining achievement growth patterns of students across grade levels. This task represents one

of the most important uses of standardized achievement test scores. Clearly, the processes used

to derive vertical scales, referred to as "scaling to achieve comparability" in the Standards for

Educational and Psychological Testing (American Educational Research Association, American

Psychological Association, National Council on Measurement in Education, 1999), represent a

significant application of current psychometric theories and techniques. Consequently, the

methods used to derive such scales, and in particular the resulting scale characteristics, should be

studied.

Although a variety of procedures exist for creating vertical scales, this paper focuses only

on methods based on the application of Item Response Theory (IRT). Two IRT models are

frequently used for vertical scaling: the one-parameter logistic (1PL) model (see Gardner,

Madden, Rudman, Karlsen, Merwin, Callis, & Collins, 1985) and the three-parameter logistic

(3PL) model (see CTB, 1984, 1989). Early applications of these models yielded growth trends

that were different from other scaling methods (Anastasi, 1958; Phillips & Clarizio, 1984;

Hoover, 1984; Burket, 1984; Yen, 1986; Clemans, 1993). A common perception of IRT derived

vertical scales is that they suggest lower achieving students grow more rapidly than higher

achieving students. As a result, scale variability tends to decrease across grade levels (Hoover,
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1984; Yen, 1986). At times, the Rasch model (RM) can also produce scales with these

characteristics. For example, the Stanford Achievement Test (SAT), which was scaled using the

RM, shows this pattern in its expanded score scale (Gardner et al., 1985). This pattern of

decreasing scale variances within grades, from fall to spring, and across grades has been termed

"scale shrinkage" (Camilli, 1988).

Many authors, such as Yen (1983, 1985, 1986, 1988), Hoover (1984a, 1984b, 1988),

Camilli (1988), and Camilli, Yamamoto, and Wang (1993) have attempted to explain why IRT

vertical scales have these characteristics. Hoover (1984a) claimed that scale shrinkage is

unfounded empirically as well as intuitively and suggested that this pattern is an artifact of IRT

scaling methodologies. Using simulated data, Yen (1986) showed how the treatment of a

multidimensional space as a unidimensional ability vector could cause this pattern. Camilli

(1988) suggested that scale shrinkage could be the product of systematic estimation errors,

measurement errors, and unobtainable ability estimates that might result from a mismatch

between item difficulty and examine ability. For example, in two simulated data sets that

differed in the variability of the item difficulties, relatively more scale shrinkage was observed

when the variability of the item difficulties was smaller. Camilli (1988) and Camilli et al. (1993)

found that for groups with large differences in average ability, the one with the smaller amount

of measurement error had less variability in their ability scores. For the 3PL model, it is

generally agreed that there is greater measurement error for groups at the lower end of the ability

continuum than for groups at the higher end.

Although previous vertical scaling studies have used testlet-based data, the effects of the

testlet structures have never been a research focus. Consequently, little is known about the

psychometric properties of vertical scales for tests composed of testlets. Lee, Brennan, and

5
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Frisbie (2000) defined a testlet as a "subset of items in a test form that is treated as a

measurement unit in test construction, administration, and/or scoring." An example of a testlet-

based test is a passage-based reading comprehension test. Here, each reading selection has an

associated set of questions about it. Because all items in a particular subset pertain to a specific

passage selection, they represent a stimulus-based testlet. There has been an increased interest in

the psychometric properties of testlets. Many large-scale assessment programs now employ

testlet structures (in the form of content-dependent item sets, item bundles, etc.) within their

content area tests. Some tests are composed exclusively of testlets.

Despite their widespread usage, it is acknowledged that testlet structures can violate the

assumptions of dichotomous IRT (D-IRT) models, particularly local item independence, when

applied to item-level scores. Local item independence means that the responses of examinees to

any pair of items are statistically independent when the abilities underlying test performance are

controlled. Under these conditions, the probability of a response pattern over a setof items

equals the product of the individual item response probabilities (Hambleton, 1989; Hambleton,

Swaminathan, & Rogers, 1991). A logical question to ask is whether violation of the local

independence assumption might also be a factor related to scale shrinkage.

Many vertical scaling studies employ D -IRT methodologies even though the items may

not exhibit the necessary property of local item independence. Although sometimes ignored in

practice, violation of this assumption has been shown to have non-trivial consequences for many

measurement applications. For example, inflated estimates of score reliability, precision, and

test information can occur (Sireci, Wainer, & Thissen, 1991; Thissen, Steinberg, & Mooney,

1889; Wainer, 1995; Wainer & Thissen, 1996; Wainer & Wang, 2001). Thissen et al. (1989)

6
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observed lower validity correlation coefficients between scores from an external criterion and

ability scores derived with traditional IRT procedures for a testlet-based test.

Several studies have shown that local item dependence can bias item parameter and

ability estimates and that the magnitude of the effect seems related to degree of dependence

(Ackerman, 1987; Ackerman & Spray; 1986; Yen, 1993; Wainer & Wang, 2001). In a recent

study, Wainer and Wang (2001) showed overestimates in guessing parameters occurred for both

reading comprehension and listening comprehension items when testlet-associated local item

dependence was ignored. Underestimates in item discrimination parameters occurred for

listening comprehension items while overestimates occurred for reading comprehension items.

Finally, although Huynh (1994) has shown that the Rasch and partial credit model yield the same

results under some conditions, when local item dependence exists, the two models can produce

different results (see Wilson, 1988). These findings highlight the importance of investigating the

properties of vertical scales for testlet-based tests when methods acknowledging the test structure

are properly applied.

Although the local item independence assumptions might not hold at the item level, it

often can be met for the testlet-level scores. In fact, applying polytomous IRT (P-IRT) models to

testlet-level scores has been suggested as an alternative that might ameliorate these problems in

measurement applications such as estimating reliability and conditional standard errors of

measurement, horizontal equating, and DIF analysis. (See Lee et al., 2000 for a listing of

representative research using testlet scores in these areas.) Given the potential utility of P-IRT

models in these areas, in conjunction with the knowledge that testlet associated local item

dependence has been shown to affect other psychometric applications, an investigation of the

properties of P-IRT derived vertical scales for testlet-based tests seems warranted.

7
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A search of the relevant literature did not uncover any prior research comparing D-IRT

and P-IRT derived vertical scales for testlet-based tests. However, a recent study conducted by

Lee, Kolen, Frisbie, and Ankenmann (2001) compared horizontal equating results derived from

P -IRT models (applied to testlet-level scores) to those derived from D-IRT (applied to item-level

scores) and classical equating procedures. Using a random-equivalent-groups design, these

authors compared observed- and true-score equating relationships from 3PL, graded response,

and nominal models using results from traditional equating methods as baselines. Alternate

forms for three ITBS tests that employed testlet structures were equated: Reading

Comprehension, Maps and Diagrams, and Math Problem Solving and Data Interpretation.

Noteworthy differences (nearly two raw-score points at some locations on the raw score scale)

were observed between the equated scores derived from P-IRT and D-IRT models. The authors

noted that differences tended to be more pronounced at the lower and upper ends of the score

scale and for tests that most strongly violated the IRT assumptions.

Based on Lee et al's findings, one might speculate that vertical scales derived using

testlet-level procedures might exhibit differences from those derived using item-level procedures

at the lower and upper grades where previous trends in means and variances have been observed.

However, one should be cautious about generalizing horizontal equating results to the vertical

scaling scenario. Vertical scaling differs from horizontal equating in several ways. First, in

contrast to horizontal equating, alignment of the content specifications and statistical properties

between forms is not a paramount issue in vertical scaling. In fact, ascending test levels have

progressively increasing item difficulties. In addition, the dimensionality across ascending test

levels is in question. For these reasons, Skaggs and Lissitz (1986) distinguished these two tasks

in their review of IRT equating research.

8
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Lee et al. (2000) noted that the most appropriate analyses for some tests would be carried

out using testlets explicitly. However, the authors acknowledged that testlets might be ignored if

it can be demonstrated that the testlets have no practical consequences for the measurement issue

in question. Toward this end, the purpose of this study is to explore the effects of testlets on

vertical scaling results by examining the distributional properties of vertical scales created using

DIRT models (applied at the item level) and P-IRT models (applied at the testlet level).

Method

Instrument

Data from Form K of the Iowa Tests of Basic Skills (ITBS) Reading Comprehension test

(Hoover, Hieronymus, Frisbie, and Dunbar, 1994) was used in this study. Like most passage-

based reading comprehension tests, the ITBS Reading Comprehension test is comprised entirely

of testlets. Consequently, one might expect that the assumption of local item independence

would not hold for the within-testlet items. Table 1 presents the following characteristics for the

tests across levels 9 14 (Grades 3 8): the number of individual items, the number of testlets

(passage/item sets), and the number of items within each testlet.

The ITBS Reading Comprehension test overlaps test items and passages across adjoining

test levels. This overlap, in terms of the number individual items and testlets, is also presented in

Table 1. The overlapping items and testlets were treated as "common items" in the vertical

scaling procedures described below. Testlet scores were calculated by summing the item-level

scores for all items nested within a passage.

Subjects

ITBS Reading Comprehension test scores from 60,000 randomly selected Iowa students

(10,000 students per grade from Grade 3 through Grade 8) who took the ITBS (Form K) during a

9
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recent fall administration were used in this study. Because of the cross-sectional nature of this

design, where data at only one time during the school year was used, only across-grade scale

properties (shrinkage) are addressed in this paper.

IRT Assumptions

Exploratory factor analysis (EFA) was used to investigate the dimensionality of the

item-level and testlet-level scores. All analyses were conducted using Mplus (Muthen &

Muthen, 1998). Both the item-level and testlet-level scores were treated as categorical variables.

For categorical variables, Mplus estimates latent means and threshold structures in addition to

factor loadings and latent covariance structures. Muthen (1984) has shown similarities between

his factorial model with threshold structures and IRT models. Specifically, the threshold

structures are like IRT difficulty-parameter estimates while the factor loadings are like IRT

slope-parameter estimates. Because the dependent variables were categorical, the usual

assumption of multivariate normality between explanatory variables was relaxed and no

distributional assumptions were placed on the latent factors. This is also consistent with IRT

where the items are not considered continuous (let alone normally distributed) and the latent

dimensions are typically continuous. A weighted-least-squares estimation procedure was

employed.

Yen's Q3 statistic, between and within testlets, was used to assess local item

independence for the D-IRT models. The computer program IRTNEW (Chen, 1998) was used to

compute Q3 for each item pair. For the purposes of this study, only local item independence

relative to the 3PL D-IRT was investigated. This was because testlet-level analysis is a

recommended strategy when local dependence is observed at the item level (Ferrara et al., 1997;

Yen, 1993). Q3 is computed as follows. First, expected examinee performance on items is

JO



Vertical Scaling with Testlets 10

determined using available ability and item-parameter estimates. Next, deviations (residuals)

between the examinees' expected and observed performance is determined for each item.

Finally, the value of Q3 for an item pair is simply the correlation between their respective

deviations. According to Yen (1993), the expected value for Q3 is 1/(k-1), where k equals the

number of test items. Yen notes that the expectation is slightly negative because item scores are

involved in the calculation of the ability estimates, which constitutes apart-whole contamination.

For a test with k items, there are a total of k(k-1)/2 item pairs for which Q3 can be computed.

Design

This study compares the distributional characteristics of vertical scales derived under

three D-IRT modelsthe Rasch model (RM) and the 3PL model calibration with concurrent

group and separate group optionsand four P-IRT modelsthe partial credit model (PCM), the

generalized partial credit model (GPCM), the graded-response model (GRM), and the nominal

model (NM). These models were selected for the following reasons. First, the Rasch and 3PL

models are frequently used in practice. Second, unlike the separate-group calibration, the 3PL

model concurrently calibrated with the group option provides an explicit opportunity to estimate

the first two latent moments of the ability distributions during marginal-maximum-likelihood

estimation (Bock & Zimowski, 1997). Third, the selected P -IRT procedures cover many of the

major polytomous models. This allows for a number of interesting comparisons. For example,

the two different conceptualizations of the PC model can be compared (where the GPCM relaxes

the assumption of a common discrimination parameter across all items). Additionally, the PCM,

GPCM, and GRM assume that there is an ordered quality to the testlet scores whereas the NM

makes no such assumption.

11
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The GPCM and GRM extend the two-parameter D-IRT model for use with polytomous

items. That is, both models do not include a "guessing" parameter and allow the discrimination

parameter to vary across items. The two models develop their probability functions differently,

however. The GPCM, credited to Muraki (1992, 1997), is very similar to Master's PCM

(Masters, 1982). However, Master's model does not allow its discrimination parameter to vary.

In the GPCM, the probability that an examinee with ability theta will score k on item j is

expressed as:

exP[iDa,(0-b,1
pik(o).

exp[t Da, bp)]
c=0 v=0

In this model, j is the item, mj is the number of response categories for item j, and k is the

response category of interest. D represents the scaling constant (where D=1.7 is used for the

normal ogive approximation), ai is the slope parameter for each response category and bjv is the

item category parameter. The ai parameter governs the spread of the step curve while bjv

indicates the location where two adjacent categories have equal probabilities.

In contrast, the GRM, credited to Samejima (1969, 1972, 1997), models the category k

probability by using a series of dichotomous two-parameter functions. Specifically,

1 1

P,(0)=
1+ exp Da,(0 1+ exp[Da,(0b,(k+1))J

where D is the scaling constant, a; is the slope parameter for item j, and bp, is the item-category

difficulty parameter. The value of bjk is the point on the theta scale at which the first ratio in the

12
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equation passes 50% of the responses in category k+1 or higher. When k=0, the first ratio in the

equation is evaluated to be 1. When k=m3 +1, the second ratio becomes 0.

Unlike the previous models, the NM, credited to Bock (1972), does not assume ordinality

of the category difficulty parameters. The NM is mathematically operationalized in the following

category k response function:

eXPla 0 +
A(0)= m,

A _A

zexp[a ,v0-1-c,v]
v=.

where ask is the slope parameter for category k of item j, and cjk is the intercept parameter for the

nominal category k of item j. The slope parameter governs the spread of the category response

curve while the intercept parameter indicates the item-category difficulty interaction with the

slope parameter.

BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) was used for scaling under the

3PL model both for the concurrent calibrations with groups and the separate calibrations without

groups. For the separate groups calibration, the ST computer program (Hanson & Zeng, 1995)

was applied to the common-item parameters obtained from BILOG-MG to determine the scaling

constants used to derive the vertical scale. The 3PL concurrent calibration with groups required

no scaling constants. WINSTEPS (Linacre & Wright, 1998) was used to derive item and ability

estimates for the RM and the PCM. MULTILOG (Thissen, 1991) was used to estimate the item

parameter and ability estimates used for constructing vertical scales under the NM and GRM,

while PARSCALE ( Muraki & Bock, 1997) was used for the GPCM.

While WINSTEPS uses the unconditional maximum-likelihood-estimation algorithm,

BILOG-MG, PARSCALE, and MULTILOG all implement marginal-maximum-likelihood

13
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estimation algorithms. In general, defaults were used for most program options. However, the

"repeat" option was employed on PARSCALE's Block card to allow each testlet to have its own

step value. Also, 20 quadrature points were used for parameter estimation when programs

allowed for user manipulation of this feature. Maximum-likelihood estimation was used to

estimate theta scores for all models. In order to facilitate comparisons among all the vertical

scales, a common metric was required. This was accomplished by scaling all Grade 3 ability

distributions to have a mean of zero and a standard deviation of one.

The version of MULTILOG used for this study only accommodated items with 10

categories. However, one testlet at Grade 8 consisted of 11 categories. To address the program

requirements, the two upper score points for this testlet were collapsed into one category (as

these two scores affected the smallest number of examinees). It is not believed this poses an

obstacle. In fact, such collapsing can be advantageous during estimation when categories have

small counts (Wainer, Sireci, & Thissen, 1991 ). This procedure does not affect the other

categories as they would retain their response frequencies. Although the GRM and NM vertical

scales were derived differently than the PCM and GPCM, this only affects the Grade 8 results.

For the RM, PCM and GPCM, scaling constants were derived using the mean/mean

method. In the case of the RM and PCM, this essentially entailed determining the difference in

the item/step difficulties among the common itemsas described in Masters (1984) but without

differentially weighting more precisely estimated steps. Estimation of the scaling coefficients

for the NM and GRM was accomplished with a polytomous extension of the test characteristic

curve approach as developed by Baker (1992 and 1993b) and implemented with the EQUATE

program (Baker, 1993a). An additional program issue arose because EQUATE only allows for

items with nine categories. Therefore, another practical decision was required for managing this

14
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situation. Specifically, one common testlet (consisting of 10 categories) between the Grade 7

and 8 tests was not used in the determination of the scaling constants. Scaling constants were

estimated on the remaining three common testlets, which consisted of 18 total categories. This

situation might have been managed in other ways (e.g., collapsing the 10 category testlet into 9

categories), which in turn would have likely resulted in different scaling constants. As before,

this issue only impacts the Grade 8 results for the GRM and the NM.

Results

Descriptive Statistics

Descriptive statistics (including means, standard deviations, skewness and kurtosis

indices, and KR-20 reliabilities) for the tests at each grade level are reported in Table 2.

Unidimensionality Assumption

The EFA results are provided in Table 3, which reports the eigenvalues and the root mean

squares (RMS) for the off-diagonal residuals for several models that differ in the number of

factors. Regarding item-level scores, there were a number of eigenvalues greater than one. At

all test levels, the RMS residual for the first factor on the item-level scores is greater than 0.05.

Additionally, visual inspection of the resulting pattern matrices (Promax rotation) revealed that

items nested within the same testlet tended to load on the same factor. On the other hand, there

seemed to be a dominant factor relative to Reckase's (1979) recommendation that the first factor

account for a minimum of 20% of the test variance. For testlet-level scores, a one-factor model

appears sufficient in all cases.

Local Independence Assumption

Table 4 reports the distributional characteristics of Q3 for item pairs categorized as

between-testlet items and within-testlet items. At all test levels, the mean value of Q3 for items

15
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between testlets is very close to the expected value. In contrast, the mean value of Q3 for items

within testlets is nearly one standard deviation greater than the expected value at all grade levels.

In Figure 1, boxplots are used to further illustrate the magnitude of these differences. At all

grades, P75 of the between-testlet Q3 distribution was less than P25 of the within-testlet Q3

distribution. As expected, these results suggest that the assumption of local independence does

not hold for the item-level data. This in turn supports the proposed testlet-level analyses.

Vertical Scale Characteristics

Vertical scales based on the theta estimates from seven IRT models were created. Due to

the large number of pair-wise comparisons (21), attention will only be given to several selected

contrasts. As noted earlier, the RM and PCM were derived using WINSTEPS, which employs a

different algorithm than the other programs used in this study. Also, both models are solely

functions of the difficulty of the items/steps and result in a one-to-one correspondence between

the raw scores and theta estimates (i.e., there is no pattern scoring). For these reasons, it is

sensible to contrast the results from these two models apart from the others. All P-IRT theta

estimates were derived under separate calibrations; therefore, the NM, GRM, and GPCM results

will primarily be compared to the 3PL separate calibration theta estimates. Finally, results from

the separate and group calibrations for the 3PL model will also be compared because of the

asserted advantages of group calibrations in the vertical scaling scenario.

Table 5 presents the correlations among the theta estimates both within and across grades.

The theta estimates for all models tended to be very highly correlated, with nearly all correlations

being greater than 0.94 in magnitude. The RM and PCM yielded the greatest correlations, 0.996

and above in all cases. The 3PL separate and group theta estimates were also highly correlated,

but to a slightly less degree (typically around 0.990). Correlations between the 3PL separate

16
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calibration and P-IRT theta estimates varied somewhat. Although many of these correlations

were high in magnitude, they were typically lower than the correlations among the various P-IRT

theta estimates.

At Grade 8, the correlations involving the 3PL group theta estimates were noticeably

lower than at the other grades. As evidenced in Table 6, there was a ceiling effect at this grade

for the theta estimates derived from Phase 3 of the BILOG-MG group calibration (specifically,

P95 and P99 have the same value). This occurred because a number of these theta estimates were

assigned a common maximum value. The magnitude of correlations among the Grade 8 theta

estimates for this model were likely affected, in part, by this ceiling effect.

Inspection of the within-grade scatterplots for the theta estimates revealed slight, yet

noticeable, non-linear trends. Figure 2 presents the Grade 3 scatterplots. (Scatterplots for the

other grades are not presented as they were very similar to those at Grade 3.) The scatterplots

involving the 3PL separate and group theta estimates tended to exhibit a "dog-leg" pattern at the

lower end of the theta scale. Several of the theta estimates from the P-IRT models also showed

curvilinear trends, both at the lower and upper theta values. These patterns were observed at all

grades. Finally, the correlations among the theta estimates across all grade levels were often

lower than their within grade counterparts. Although across-grade correlations are often greater

in magnitude than within-grade correlations because of increased variability, the cumulative

effect of the nonlinear trends observed in the within-grade scatterplots likely lowered the across-

grade correlations in some instances. Scatterplots for the estimated thetas across all grades are

also presented in Figure 2.

Table 6, in conjunction with Tables 7 and 8 as well as Figures 3 and 4, provide

information regarding the distributional characteristics of the theta estimates. Table 6 reports a
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number of descriptive statistics for the theta estimates. Figurts 3 and 4 graphically summarize

many of the more noteworthy trends. As in previous scale shrinkage studies, these figures reflect

across grade changes both in the magnitude and variability of the estimated thetas. Figure 3

depicts the grade-to-grade change in the theta estimates at various percentiles (the actual

magnitudes of the grade-to-grade changes are listed in Table 7). Yen (1986) has suggested such

data needs to be interpreted cautiously because true-score growth of the same amount will not

maintain the same percentiles in the observed score distribution across grades because of

measurement error. The plots are used here only as descriptive information about the

distributions of the theta estimates.

As seen in Figure 3 and documented in Table 7, the theta estimates from the 3PL separate

calibrations are fairly typical of previous trends reported for IRT vertical scales. That is, changes

at the lower percentiles are greater than the changes at the higher percentiles. The changes in

estimated theta for nearly all percentiles for this model became smaller across grades. This

general trend was often true for other models as well. Exceptions to this trend are presented in

bold type in Table 7. Although the 3PL group theta estimates also show this trend, it is not

nearly as pronounced as in the 3PL separate calibrations plot. It is also less pronounced in the

GRM and GPCM plots. The PCM, RM, and NM seem least similar to the separate 3PL plot in

this respect.

Although plots like those in Figure 3 have been frequently used to illustrate the results

from vertical scaling studies, they don't readily facilitate comparisons across models. To better

illustrate model differences, Figure 4 provides plots for the mean, standard deviation (SD), P10,

and P90 trends for all models. For the mean and SD plots, the 3PL group Phase 2 results are also

included. These means and SDs (reported separately in Table 9) were directly estimated by the

18
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MMLE algorithm during estimation of item parameters (Phase 2). These directly estimated

group parameters, especially the variability indices, are frequently recommended over indices

based on theta estimatesi.e., BJLOG MG's Phase 3 estimates (Mislevy, 1984; Camilli, 1988;

Bock & Zimowski, 1997). Without quantifying the different measurement error variances at each

grade level, the true variability at each level may be confounded, thus, complicating inferences

about growth trends (Camilli, Yamamoto, & Wang, 1993).

The plots in Figure 4 show that model differences tend to become more pronounced for

higher percentiles and across increasing grade levels. Like the percentile trends noted in Figure

3, decelerating changes in the values for the mean, P10, and P90 across grades was a common

feature for most models. As noted earlier exceptions are presented in bold type in Table 7. The

magnitude of the change was considerably different across models. For example, the NM, GRM,

and GPCM estimated thetas increased in value more than the 3PL separate calibration estimated

thetas. These plots also revealed a great deal of similarity between the RM and the PCM.

The differences in the variability of the theta estimates across grades are also noteworthy.

The SD plots clearly show a reduction in variability across grades for most models, but in

particular for the 3PL separate calibrations. The magnitude of the SDs across grades are reported

in Table 8. SDs that do not decrease across grades are presented in bold type. The SDs for the

group 3PL, GRM, and GPCM also tended to decrease across grades. However, the magnitude of

the SD reduction relative to their Grade 3 values is not nearly as extreme as in the 3PL separate

calibration results. The same trend is also seen for the group 3PL Phase 2 direct SD estimates, a

noteworthy finding for testlet-based tests. As depicted in Figure 3, the difference between SDs

for the direct SD estimates and the SDs based on theta estimates were fairly constant across

grades. The RM and PCM were very similar to each other in terms of SD change across grade
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levels. In fact, the SDs for these models were generally close to their initial Grade 3 values. The

NM standard deviations also tended to remain close to the Grade 3 values. For the P-IRT models

that included multiple discrimination parameters (in the NM case each category had unique

discrimination and item-category difficulty parameters), this was the only model that did not

reveal at least some reduced variability at the upper grades.

Table 8 also documents the variability trends in terms of interquartile range ((P75 P25)/2)

differences and the (P95 P5)/2 differences. These results generally agree with the trends in the

SD plots. Namely, there were marked reductions in these differences for the 3PL separate

calibrations across grades. The group 3PL, GRM, GPCM also showed reductions, but not nearly

as much as observed for the separate 3PL results. Also, the PCM, RM, and NM differences

remained close to their Grade 3 values.

Discussion

To date there has been little or no direct research regarding how testlet structures affect

the properties of vertical scales. For this reason it is believed that this study has addressed a gap

in current educational measurement research and should contribute to both the testlet and vertical

scaling literature. Moreover, this research should also inform practice as the current study

involved several commonly used methods for producing vertical scales.

Understanding the properties of vertical scales derived from different methods is

important for several reasons. First, vertical scales are often the primary score scale for many

multilevel achievement tests (i.e., they are the scales from which other auxiliary scales are

derived). Second, vertical scales are the basis upon which interpretations regarding growth are

made. Growth is clearly an important educational outcome, particularly for the school

improvement movement. Finally, when different methods produce different results, test
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developers must make choices about the types of scales they provide to assess growth and

evaluate educational outcomes (Becker & Forsyth, 1992). Such choices are nontrivial,

particularly for the users of standardized achievement tests who must help students and parents

interpret test results.

Although multidimensional tests may manifest symptoms of local dependence, symptoms

of local dependence do not necessarily imply that the ability underlying a test is

multidimensional. For the Reading Comprehension test used in this study, a factor analysis of

the testlet level scores revealed one clear dominant factor. However, the item-level scores,

clearly violated local item independence assumption. One might speculate violation of this

assumption was at least partially responsibly for the observed differences between the D-IRT and

P -IRT derived scales. For this testlet-based data, vertical scales derived from both the item and

testlet models tended to exhibit decelerating mean growth and reduced variability (scale

shrinkage) across grades. However, the magnitude of the mean growth and variability

differences varied considerably across models. Scale shrinkage also occurred when the scales

were derived with recommended direct estimates of variability, namely the multiple groups item-

level approach. For item-level models, the Rasch model appeared least prone to this trend. This

is consistent with what has been observed in past literature (Loyd and Hoover, 1980).

Polychotomous models are often recommended as an alternative IRT approach when the

local item independence assumption is violated. These models tended to show considerably less

scale shrinkage, especially compared to the item-level 3PL separate calibration results. In

particular, the partial credit model and Bock's nominal model appeared most immune to this

pattern. These two models are either less parameterized (the partial credit) or the more

parameterized (the Nominal model) than the other polychotomous models considered. The
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Nominal model, in particular, stood out from the rest of the models because it does not assume

that the categorical responses are ordered (Baker, 1993). The suitability of this assumption for

achievement test data may be debatable. Additionally, this model has as many discrimination

parameters as category intercept parameters. Within the Rasch family, the partial credit and

Rasch model results were very similar. Both these models are solely functions of item/step

difficulties. Also, the raw-scores provide sufficient statistics for deriving the theta estimates.

A strength of this study is that several competing models were used to develop vertical

scales from the same test data. Also, the available sample size at each grade level was well

above the minimum generally recommended for IRT calibrations. Finally, the ITBS Reading

Comprehension test is similar to other passage-based reading comprehension tests. Because it is

recognized that items attached to the same reading passage can cause local item dependence, one

would expect that these results might generalize to other tests of this type.

Because research regarding the psychometric properties of testlets has not adequately

addressed the subject of vertical scaling to date, issues related to creating vertical scales for

testlet-based tests should be a promising area for future research. Indeed, the current study has

several limitations that might be addressed by future studies. For example, these analyses were

based on data from only one kind of test (a passage-based reading comprehension) with the focus

on Grades 3 8. To establish the generalizability of these results it would be necessary to 1)

conduct additional studies using other content domain tests and grade levels, and 2) create

simulated data sets that control for the magnitude of item dependence and dimensionality.

Additionally, this study only focused on the distributional characteristics of the vertical scales.

Other properties and outcomes, such as model-data fit and information as well as within-grade

shrinkage, should also be considered. Based on the findings from prior testlet research, one
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might expected that future studies will show that differences depend on the degree to which the

testlet structure violates these assumptions.

Other IRT models could be employed in this situation. Even those who have

recommended applying P -IRT models to score testlets recognize that this approach has

limitations. For example, this method might lose information that the item-level pattern holds.

Such procedures might also be difficult to apply in some contexts, like adaptive testing. In

response to these concerns, Wainer and Wang (2001) have studied a new testlet-level model that

is applied to the item-level scores. Specifically, this model extends the traditional 3PL model by

including a random effect component for the person-by-testlet interaction.

Within IRT methodologies, a wide variety of procedural and design options exist. For

example, this study utilized common items across test levels to determine the scaling constants

used to create the vertical scales. Scaling tests consisting of an external set of common items

have been employed in other situations. Also, common-person designs have been employed

(e.g., where examinees take two adjoining levels). In this study all passage-related items were

included in the testlet scores. However, Yen (1993) recommended that testlets only be created

for items that exhibited dependence. These are important design and procedural variations that

might affect the characteristics of the P-IRT derived vertical scales. Consequently, the effects of

these variations should be addressed in future studies.

A number of practical decisions were applied in this study because of software

limitations (e.g., collapsing categories). Both the program limitations and the resulting practical

decisions noted earlier would need to be addressed if P-IRT procedures are applied in practice.

For example, no reference could be found regarding the application of a test-characteristic-curve

procedure to derive scaling constants for the GPCM.
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Table 1. Characteristics of the ITBS Reading Comprehension Test at each Grade

Test
Characteristic

Grade
3 4 5 6 7 8

Items 36 38 41 44 46 49

Test lets 7 8 8 7 7 8

Items in
each Test let

6,4,6,
6,5,3,6

6,5,3,6,
5,4,3,6

5,4,3,6,
8,4,5,6

8,4,5,6,
7,7,7

7,7,7,
9,4,7,5

9,4,7,5,
5,6,3,10

Item
overlap Below

NA 20 18 23 21 25

Test let
overlap Below

NA 4 4 4 3 4

Item
overlap Above

20 18 23 21 25 NA

Test let
overlap Above

4 4 4 3 4 NA
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Table 2. Descriptive Statistics for ITBS Reading Comprehension Raw Scores at each Grade

Sample
Statistics

Grade
3 4 5 6 7 8

n-count 10,000 10,000 10,000 10,000 10,000 10,000

Mean 19.32 21.68 24.65 28.17 27.92 27.74

Median 19.28 21.99 25.25 29.13 28.43 27.75

SD 7.39 7.24 8.05 8.81 8.93 9.78

Skewness 0.00 -0.12 -0.23 -0.37 -0.20 0.01

Kurtosis -0.92 -0.80 -0.80 -0.76 -0.82 -0.87

KR-20 0.87 0.86 0.88 0.90 0.89 0.90

N Max 6 9 14 20 18 12/24

Notes. N Max documents the number of students with perfect test scores. At grade 8, 12 examinees had perfect

raw scores. However, 24 perfect scores resulted when the top two score levels were collapsed in order to

accommodate MULTILOG.
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Table 3. Exploratory Factor Analysis Results for Item- and Testlet-Level Scores

Factor

Grade Level
3 4 5 6 7 8

Eigen RMS Eigen RMS Eigen RMS Eigen RMS Eigen RMS Eigen RMS

Item Level Scores

1 10.57 0.065 10.35 0.080 11.66 0.087 14.23 0.084 13.77 0.063 14.03 0.080

2 1.79 0.044 1.75 0.062 1.91 0.062 2.11 0.061 1.98 0.053 2.00 0.065

3 1.29 0.037 1.49 0.046 1.31 0.048 1.28 0.046 1.34 0.043 1.44 0.054

4 1.12 0.031 1.25 0.035 1.25 0.036 1.14 0.038 1.22 0.038 1.33 0.044

5 1.07 0.027 1.09 0.030 1.14 0.028 1.07 0.034 1.12 0.034 1.16 0.039

6 1.00 0.024 1.06 0.025 1.07 0.024 1.04 0.028 1.06 0.030 1.06 0.034

7 0.97 0.021 1.02 0.022 1.03 0.020 0.98 0.025 1.05 0.026 1.00 0.031

8 0.94 0.018 0.99 0.020 0.95 0.019 0.94 0.022 0.95 0.023 0.94 HW

Test let Level Scores

1 3.59 0.036 3.73 0.028 3.94 0.034 3.99 0.039 3.86 0.041 4.38 0.028

2 0.89 0.008 0.88 0.008 0.74 0.008 0.69 0.009 0.76 0.009 0.72 0.015

3 0.62 0.003 0.72 HW 0.66 0.007 0.65 0.003 0.68 0.005 0.63 0.006

4 0.53 0.60 0.64 0.002 0.49 0.51 0.56 0.002

5 0.50 0.56 0.62 0.43 0.44 0.50

6 0.45 0.53 0.57 0.41 0.39 0.45

7 0.42 0.51 0.45 0.34 0.36 0.40

8 0.45 0.39 0.36

Notes. Eigen = Eigenvalue; RMS = Root Mean Square of the off-diagonal residuals; HW = Heywood Case.

All analysis conducted with Mplus using a weighted-least-squares estimation procedure.
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Table 4. Distribution of Q3 Between and Within Test lets at each Grade

Level No. of Q3 E(Q3) Mean Diff. SD Skew Kurt Min - Max

Grade 3 630 -0.0286
Between 551 -0.0299 0.0013 0.025 -0.332 0.277 -0.119 - 0.040

Within 79 0.0270 0.0556 0.045 1.592 4.719 -0.040 - 0.235

Grade 4 703 -0.0270
Between 626 -0.0290 0.0020 0.024 -0.167 0.545 -0.109 - 0.067

Within 77 0.0291 0.0561 0.056 2.323 8.644 -0.039 - 0.316

Grade 5 820 -0.0250
Between 727 -0.0300 0.0050 0.025 0.454 0.036 -0.103 - 0.038

Within 93 0.0375 0.0625 0.058 1.392 1.569 -0.048 - 0.242

Grade 6 946 -0.0233
Between 824 -0.0280 0.0047 0.021 -0.099 0.368 -0.114 - 0.067

Within 122 0.0332 0.0565 0.046 2.141 8.536 -0.045 - 0.292

Grade 7 1035 -0.0222
Between 899 -0.0234 0.0012 0.019 -0.203 0.388 -0.095 - 0.051

Within 136 0.0154 0.0376 0.040 0.183 1.124 -0.112 - 0.137

Grade 3 1176 -0.0208
Between 1030 -0.0229 0.0021 0.019 -0.221 0.181 -0.093 - 0.034

Within 146 0.0240 0.0448 0.041 0.423 3.374 -0.132 - 0.168

Notes. Expected value given by Yen (1993) as -1/(k-1). Number of possible item pairs is k(k-1)/2. Figure 3

graphically depicts the between- and within-testlet differences.
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Table 5. Within and Across Grade Correlations between Estimated Thetas

Grade 3 Above Diagonal/Grade 4 Below Diagonal

3PL S RM PCM NM GRM GPCM 3PL G

3PL S 0.955 0.951 0.966 0.949 0.949 0.997

RM 0.964 0.999 0.987 0.989 0.992 0.962

PCM 0.960 0.999 0.986 0.987 0.994 0.958

NM 0.972 0.992 0.991 0.985 0.991 0.970

GRM 0.959 0.989 0.986 0.988 0.990 0.956

GPCM 0.960 0.993 0.994 0.995 0.990 0.956

3PL G 0.992 0.971 0.968 0.978 0.964 0.968

Grade 5 Above Diagonal/Grade 6 Below Diagonal

3PL S RM PCM NM GRM GPCM 3PL G

3PL S 0.972 0.966 0.973 0.969 0.967 0.990

RM 0.972 0.998 0.990 0.992 0.996 0.981

PCM 0.961 0.996 0.990 0.987 0.998 0.976

NM 0.975 0.988 0.987 0.981 0.993 0.977

GRM 0.964 0.988 0.979 0.982 0.987 0.976

GPCM 0.959 0.990 0.994 0.990 0.985 0.976

3PL G 0.989 0.983 0.977 0.985 0.974 0.976

Grade 7 Above Diagonal/Grade 8 Below Diagonal

3PL S RM PCM NM GRM GPCM 3PL G

3PL S 0.967 0.959 0.976 0.962 0.960 0.989

RM 0.952 0.998 0.992 0.991 0.994 0.972

PCM 0.945 0.999 0.990 0.987 0.996 0.965

NM 0.969 0.987 0.984 0.987 0.992 0.978

GRM 0.950 0.989 0.985 0.987 0.988 0.967

GPCM 0.947 0.995 0.995 0.989 0.991 0.964

3PL G 0.981 0.927 0.918 0.951 0.931 0.919

Grades 3 - 8

3PL S RM PCM NM GRM GPCM 3PL G

3PL S
RM 0.941

PCM 0.938 0.999

NM 0.940 0.981 0.978

GRM 0.964 0.988 0.986 0.973

GPCM 0.952 0.989 0.991 0.963 0.990

3PL G 0.983 0.974 0.972 0.972 0.979 0.972
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Table 6. Summary Statistics for Estimated Thetas at each Grade

3PL S 3PL G RM PCM NM GRM GPCM

Grade 3

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Skew. -0.62 -0.52 0.24 0.39 0.09 0.20 0.54

Kurt. 1.13 1.11 -0.07 0.29 0.62 -0.31 0.77

P 01 -3.21 -3.23 -2.02 -1.98 -2.36 -2.06 -2.03

P os -1.79 -1.67 -1.46 -1.42 -1.59 -1.53 -1.46

P 10 -1.22 -1.18 -1.31 -1.27 -1.23 -1.27 -1.19

P is -0.55 -0.56 -0.78 -0.76 -0.66 -0.76 -0.72

P so 0.09 0.07 -0.08 -0.10 0.00 -0.03 -0.07

P 75 0.64 0.64 0.65 0.61 0.64 0.72 0.61

P 90 1.13 1.17 1.26 1.25 1.23 1.31 1.29

P 95 1.45 1.51 1.67 1.70 1.61 1.64 1.73

P 99 2.15 2.19 2.65 2.86 2.59 2.39 2.74

Grade 4

Mean 0.66 0.67 0.73 0.73 0.69 0.77 0.87

SD 0.78 0.86 0.95 0.94 0.95 0.94 0.93

Skew. -0.53 -0.37 0.23 0.39 0.14 0.09 0.46

Kurt. 1.10 1.35 0.01 0.27 0.50 -0.33 0.59

P -1.92 -1.83 -1.17 -1.09 -1.47 -1.19 -0.97

P os -0.63 -0.72 -0.70 -0.64 -0.82 -0.72 -0.52

P 10 -0.28 -0.38 -0.44 -0.40 -0.50 -0.47 -0.28

P 25 0.22 0.15 0.04 0.04 0.05 0.06 0.21

P SO 0.71 0.69 0.71 0.68 0.69 0.77 0.82

P 75 1.17 1.22 1.32 1.29 1.29 1.44 1.46

P90 1.58 1.72 1.93 1.92 1.88 1.99 2.08

P 95 1.81 2.00 2.33 2.35 2.22 2.28 2.44

ss 2.32 2.67 3.30 3.43 3.22 2.93 3.40

Grade 5

Mean 1.12 1.22 1.40 1.43 1.25 1.40 1.71

SD 0.59 0.75 0.99 0.97 0.91 0.83 0.96

Skew. -0.43 -0.24 0.25 0.49 0.38 0.05 0.53

Kurt. 1.25 1.18 -0.04 0.38 1.19 -0.37 0.70

P 0i -0.84 -0.70 -0.69 -0.56 -0.74 -0.35 -0.23

os 0.13 0.02 -0.12 0.00 -0.20 0.06 0.28

P 0.42 0.30 0.11 0.22 0.14 0.30 0.55

P 25 0.79 0.75 0.74 0.78 0.67 0.80 1.05

P so 1.15 1.23 1.35 1.33 1.23 1.41 1.64

P 75 1.49 1.70 2.05 2.02 1.79 1.99 2.28

P 90 1.80 2.14 2.70 2.71 2.36 2.48 2.95

P 95 2.02 2.43 3.16 3.24 2.74 2.76 3.42

1399
2.52 3.09 3.91 4.11 3.85 3.29 4.44
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Table 6. Continued

3PL S 3PL G RM PCM NM GRM GPCM

Grade 6

Mean 1.38, 1.61 2.00 2.04 1.67 1.84 2.31

SD 0.47 0.73 1.08 1.07 1.00 0.76 0.89

Skew. -0.45 -0.12 0.17 0.51 0.24 0.01 0.54

Kurt. 1.24 1.02 -0.25 0.12 0.58 -0.51 0.35

P01 -0.20 -0.18 -0.29 -0.01 -0.54 0.22 0.59

P os 0.60 0.45 0.35 0.54 0.12 0.60 1.01

P 0.81 0.72 0.57 0.72 0.44 0.82 1.23

P25 1.11 1.15 1.26 1.29 1.01 1.28 1.67

P so 1.40 1.60 1.96 1.91 1.62 1.85 2.22

P 75 1.68 2.08 2.69 2.65 2.29 2.41 2.86

P90 1.94 2.52 3.39 3.46 2.92 2.83 3.51

P 9s 2.10 2.81 3.95 4.12 3.35 3.08 3.93

P99 2.45 3.30 4.37 4.62 4.16 3.58 4.73

Grade 7

Mean 1.62 1.96 2.58 2.62 1.99 2.24 2.83

SD 0.42 0.70 1.01 1.00 1.03 0.70 0.81

Skew. -0.47 -0.45 0.22 0.45 0.17 0.09 0.54

Kurt. 1.13 1.24 -0.12 0.11 0.31 -0.44 0.45

Poi 0.25 0.10 0.53 0.73 -0.29 0.80 1.29

P os 0.93 0.84 1.04 1.17 0.34 1.12 1.65

P io 1.10 1.10 1.25 1.36 0.69 1.31 1.84

P25 1.38 1.54 1.85 1.88 1.30 1.72 2.25

P so 1.64 1.97 2.50 2.50 1.96 2.23 2.76

P75 1.90 2.44 3.25 3.26 2.65 2.75 3.34

P90 2.12 2.83 3.82 3.88 3.31 3.15 3.90

P 95 2.25 3.08 4.19 4.31 3.70 3.38 4.25

P99 2.53 3.31 5.14 5.36 4.59 3.84 5.07

Grade 8

Mean 1.81 2.25 3.06 3.11 2.30 2.62 3.24

SD 0.39 0.70 0.99 0.99 1.09 0.73 0.73

Skew. -0.66 -1.14 0.44 0.59 0.04 0.19 0.58

Kurt. 1.28 3.28 0.14 0.44 0.31 -0.45 0.66

P 0.47 -0.29 1.07 1.21 -0.19 1.18 1.86

P os 1.14 1.11 1.57 1.68 0.56 1.49 2.20

P io 1.33 1.43 1.78 1.88 0.91 1.67 2.36

Pss 1.59 1.87 2.34 2.39 1.58 2.06 2.72

P so 1.84 2.31 3.02 3.03 2.30 2.60 3.19

P 75 2.06 2.72 3.66 3.67 3.00 3.13 3.68

P90 2.27 3.10 4.37 4.40 3.67 3.61 4.19

P 95 2.38 3.30 4.89 4.96 4.10 3.86 4.55

P99 2.63 3.30 5.83 6.00 4.97 4.34 5.30
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Table 7. Grade-to-Grade Change in Estimated Theta Values for Several Location Indices

Model/Statistic

Grade Level
3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 3 - 8

3PL S Mean 0.66 0.46 0.26 0.24 0.19 1.81

P5 1.16 0.76 0.46 0.34 0.21 2.93

Pio 0.93 0.70 0.40 0.29 0.23 2.55

P25 0.76 0.57 0.33 0.27 0.21 2.14

P50 0.62 0.44 0.25 0.24 0.20 1.75

P75 0.53 0.32 0.19 0.22 0.16 1.42

P90 0.45 0.22 0.13 0.18 0.15 1.14

P95 0.35 0.21 0.08 0.15 0.14 0.93

3PL G Mean 0.67 0.55 0.39 0.35 0.28 2.25

P5 0.96 0.74 0.43 0.38 0.28 2.78

Pio 0.81 0.67 0.42 0.38 0.33 2.61

P25 0.71 0.60 0.40 0.39 0.34 2.44

P50 0.63 0.54 0.37 0.37 0.34 2.24

P75 0.58 0.48 0.37 0.36 0.28 2.08

P90 0.55 0.43 0.37 0.31 0.26 1.93

P95 0.49 0.43 0.38 0.27 0.22 1.79

RM Mean 0.73 0.67 0.60 0.58 0.48 3.06

P5 0.76 0.58 0.48 0.69 0.54 3.03

Pio 0.81 0.70 0.52 0.59 0.49 3.11

P25 0.87 0.55 0.46 0.69 0.53 3.09

P50 0.79 0.64 0.61 0.55 0.51 3.10

P75 0.67 0.73 0.64 0.56 0.41 3.01

P90 0.67 0.77 0.70 0.42 0.56 3.11

P95 0.66 0.84 0.79 0.24 0.70 3.23

PCM Mean 0.73 0.70 0.61 0.59 0.48 3.11

P5 0.78 0.64 0.54 0.63 0.51 3.10

Pio 0.87 0.61 0.50 0.64 0.52 3.15

P25 0.80 0.74 0.52 0.59 0.51 3.15

P50 0.78 0.65 0.58 0.59 0.54 3.14

P75 0.68 0.73 0.63 0.61 0.41 3.06

P90 0.67 0.79 0.75 0.42 0.52 3.15

P95 0.65 0.88 0.89 0.18 0.66 3.26

GPCM Mean 0.87 0.84 0.60 0.52 0.41 3.24

P5 0.94 0.80 0.73 0.64 0.55 3.66

Pio 0.91 0.82 0.69 0.61 0.52 3.55

P25 0.93 0.84 0.62 0.58 0.47 3.44

P50 0.89 0.82 0.58 0.54 0.43 3.26

P75 0.78 0.87 0.56 0.40 0.29 2.90

P90 0.84 0.82 0.58 0.49 0.33 3.06

P95 0.71 0.98 0.51 0.31 0.30 2.82

GRM Mean 0.77 0.64 0.44 0.40 0.38 2.62

P5 0.80 0.78 0.54 0.52 0.37 3.02

Pio 0.80 0.77 0.53 0.49 0.36 2.94

P25 0.83 0.74 0.48 0.44 0.34 2.83

Pso 0.80 0.64 0.44 0.38 0.37 2.64

P75 0.71 0.55 0.42 0.34 0.39 2.41

P90 0.68 0.49 0.36 0.32 0.45 2.29

P95 0.64 0.48 0.32 0.29 0.48 2.22

NM Mean 0.69 0.56 0.42 0.32 0.31 2.30

P5 0.77 0.62 0.31 0.23 0.22 2.15

Pio 0.73 0.64 0.30 0.25 0.22 2.15

P25 0.72 0.62 0.34 0.29 0.29 2.25

Pso 0.69 0.54 0.40 0.34 0.34 2.29

P75 0.66 0.49 0.50 0.36 0.35 2.37

P90 0.65 0.48 0.57 0.39 0.36 2.44

P95 0.60 0.52 0.61 0.35 0.40 2.49

Notes. Change values greater than the change value from the previous grade are in bold type.
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Table 8. Indices of Variability for Theta Estimates across Grades

Grade Level
Model 3 4 5 6 7 8 8/3 Ratio

Standard Deviation

3PL S 1.00 0.78 0.59 0.47 0.42 0.39 0.39

3PL G 1.00 0.86 0.75 0.73 0.70 0.70 0.70

RM 1.00 0.95 0.99 1.08 1.01 0.99 0.99

PCM 1.00 0.94 0.97 1.07 1.00 0.99 0.99

GPCM 1.00 0.93 0.96 0.89 0.81 0.73 0.73

GRM 1.00 0.94 0.83 0.76 0.70 0.73 0.73

NM 1.00 0.95 0.91 1.00 1.03 1.09 1.09

(P75- P25) / 2

3PL S 0.59 0.48 0.35 0.28 0.26 0.24 0.40

3PL G 0.60 0.54 0.48 0.46 0.45 0.42 0.70

RM 0.71 0.64 0.65 0.71 0.70 0.66 0.93

PCM 0.68 0.62 0.62 0.68 0.69 0.64 0.94

GPCM 0.67 0.62 0.61 0.59 0.55 0.48 0.72

GRM 0.74 0.69 0.59 0.56 0.51 0.53 0.72

NM 0.65 0.62 0.56 0.64 0.68 0.71 1.09

(P95- P5) / 2

3PL S 1.62 1.22 0.94 0.75 0.66 0.62 0.38

3PL G 1.59 1.36 1.20 1.18 1.12 1.09 0.69

RM 1.56 1.52 1.64 1.80 1.58 1.66 1.06

PCM 1.56 1.50 1.62 1.79 1.57 1.64 1.05

GPCM 1.59 1.48 1.57 1.46 1.30 1.17 0.74

GRM 1.59 1.50 1.35 1.24 1.13 1.18 0.75

NM 1.60 1.52 1.47 1.62 1.68 1.77 1.10

Notes. Variability indices greater than the value from the previous grade are in bold type.
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Table 9. BILOG-MG Phase 2 Means and SDs for the 3PL Concurrent Group Calibration across Grades

Grade Level
3 4 5 6 7 8

Mean
SD

0.00
1.00

0.79
0.89

1.45
0.79

1.92
0.78

2.37
0.76

2.76
0.72
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Figure 1. Boxplots for Q3 Between and Within Test lets at each Grade
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Figure 3. Grade-to-Grade Change in Estimated Thetas at Five Percentiles
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Figure 4. Model Differences in Estimated Thetas for Four Distributional Indices
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Figure 4. Continued
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