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Abstract: The Non-Equivalent-groups Anchor Test (NEAT) Design
involves two populations, P and Q, of test-takers and make use of an anchor
test to link them. Two observed-score equating methods used for NEAT
designs are those based on chain equating and those using the anchor to
post-stratify the distributions of the two operational test scores to a common
populationi.e. Tucker equating and frequency estimation. We introduce a
method that can be used in the NEAT design to study the population
invariance of equating methods. We then apply this method to study the
relative population invariance of Chain and Post stratification equating

M
methods. Our method combines self-equating (equating at test to itself) with

o the RMSD measure of the population invariance of test linking methods
introduced by Dorans and Holland (2000). We illustrate our method using
data from the AP Examinations.
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1. Introduction
Test equating methods are used to produce scores that are comparable

across different test forms. Weaker forms of test linking often use the same
computations as test equating but do not necessarily result in scores that are
comparable. One of the primary requirements of equating functions is that
they should be population invariant. Because strict population invariance is
often impossible to achieve, Dorans and Holland (2000) introduced a
measure of the degree to which an equating method is sensitive to the
population on which it is computed. The measure compares equating or
linking functions computed on different subpopulations with the equating or
linking function computed for the whole population. Their discussion is
restricted to equating designs that involve only one population (such as the
equivalent-groups design and the single group design).

The Non-Equivalent-groups Anchor Test (NEAT) Design involves
two populations (usually different test administrations), P and Q, of test-
takers and makes use of an anchor test to link them. We also want
population invariance to hold for equating functions used in the NEAT
design, but there are two populations now, so there can be ambiguity as to
which population is the one on which the equating (or linking) is done.

For the NEAT design there are several observedscore equating
methods that are used in practice. Two important classes of these methods
are those we will call Chain equating and Post-Stratification equating,
following Holland (2002).

In this paper we examine the relative population invariance of Chain
versus Post-Stratification equating methods in the NEAT Design. We use the
existence of two subpopulations, such as Male and Female examinees, to
mimic a situation where a test has been reused so that it can be equated to
itself and the result compared to the identity function. We use this idea to
adapt the Dorans and Holland (2000) measure of Root Mean Square
Difference, RMSD(x), to compare the results of Chain and Post-
Stratification equating methods. Data from the Advanced Placement
program are used to illustrate these ideas.

1.1 The NEAT Design:
Holland (2002) describes the NEAT design. Here we just reiterate

some of its basic features. The important idea is the data structure:

P
Q

X V Y
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X, V observed on P
Y, V observed on Q



Usually, X and Y are the "operational tests" given to "test
administrations" P and Q, respectively, and V is the "anchor test" given to
both P and Q. The anchor test score, V, can be either a part of both X and Y
(the internal anchor case) or a separate score (the external anchor case).

The Target Population, T, for the NEAT design is a mixture of P and
Q and denoted by T = wP + (1 w)Q. The mixture is determined by a
weight w. When w = 1, then T = P and when w = 0 then T = Q. Other
choices of w are often used as well.

In this situation we will let the (continuized) cdfs of the score
distributions of X, Y and V be denoted by F(x), G(y), and K(v) and will
append subscripts as necessary to distinguish between P, Q and the "target
population", T.

The two most important test scores, X and Y, are not observed in both
P and Q, but only one or the other, unlike the anchor test score, V. Thus,
assumptions must be made in order to overcome this aspect of the NEAT
Design. The different observed score equating methods used in this design
each make different assumptions about the distributions of X and Y in the
populations where they are not observed.

1.2 Chain and Post-Stratification Equating methods for the NEAT
Design

The Chain Equating (CE) and the Post-Stratification Equating (PSE)
methods, described in Holland (2002) are two important classes of observed
score equating methods used in the NEAT Design. They are briefly
described below for the equipercentile case.

A. Chain Equating. Chain equating uses a two-stage transformation of X
scores into Y scores. First equate X to V on P and then equate V to Y on Q.
These two equating functions are then functionally composed to map X to Y
through V. This method is a valid observed score equating method if the
following two assumptions, CE1 and CE2, hold, Holland (2002).

CE1: Given any target population T, the link from X to V is population
invariant, so that

Kp-10Fp(x) = oFT(x).

(This makes use of the fact that Kil.FT(x) is the equipercentile function
linking X to V on population T, for any T.)
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CE2: Given any target population T, the link from V to Y is population
invariant, so that

GQ 14(4V) = GT-1 oKT(V).

Applying these two assumptions to the computation of the composed
link from X to V to Y, we get

exy;Tp(X) = GQ- 1 01(Q01(p- I oFp (X).

See Holland (2002) for more details. We note that because the target
population, T, cancels out from the formula for the composed function that
equates X to Y, exY;T(C)(X) is assumed to "work" for any T. In a sense, it is
defined to be population invariant, but this is only strictly true for
populations that are mixtures of P and Q, and not for subpopulations of P or

Q.

B. Post-Stratification Equating. This method first estimates the marginal
distributions of both X and Y on a target population T (that is a specific
mixture of P and Q) and then computes the equipercentile equating function.
In order to estimate the distribution of X in Q and the distribution of Y in P,
PSE method makes the following assumptions: the conditional distribution
of X given V and the conditional distribution of Y given V are population
invariant, i.e.,

PSE1: Given a target population T, the conditional distribution of X given V
is population invariant, i.e.

fT(ps)(x) = fp(xlv)kT(v),

where f(x) denotes the score probabilities for X and k(v) the score
probabilities for V.

PSE2: Given a target population T, the conditional distribution of Y given V
is population invariant, i.e.

gT(ps)(y) = E gp(ylv)kT(v),
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where g(y) denotes the score probabilities for Y.

Using PSE1 and PSE2, fi(Ps)(x) and gr(Ps)(y) are computed and from
these, continuous cdfs, FT(ps)(x) and Gr(Ps)(Y) are formed. Then Y is equated
to X on T through:

eXY;T(pS)(X) = GT(PS)
1

T(PS)(X).

Note that the equating function, exy;i(Ps)(x), can depend on the choice of T
unlike exymc (X).) Therefore, PSE can be different from CE, though they can
also be identical in a particular circumstance that we now discuss.

2. When will CE and PSE both give the same results?
One of the important roles of the anchor test in NEAT Design is to

provide information about differences in the relevant abilities of the
examinees in the two populations, P and Q. This is why the anchor test
should be appropriately constructed. Brennan & Kolen (1987) discuss
conditions for an appropriate anchor test. Marco, Petersen and Stewart
(1983), Petersen, Marco and Stewart (1982), Angoff and Cowell (1985)
examined a number of equating methods, with or without an anchor test,
varying the similarity of the examinee groups. Other studies focused on
matching on the anchor for equating (Lawrence and Dorans, 1990;
Livingston, Dorans, & Wright, 1990). These empirical studies are
summarized well by the observation:

"The general [...] finding is that, when the anchor test design is
used to equate carefully constructed alternate forms, the groups
taking the old and new forms are similar to one another, and the
common set is a miniature version of the total test form, then
equating methods all tend to give similar results."

(M. Kolen, 1990, pp. 98-99).

The theorem given next is an analytical proof of a part of this
statement. More precisely, our first result concerns the case when the anchor
test has the same distribution on both P and Q (without any additional
assumptions about how similar X and Y are or without any further
assumption about the anchor test being "a miniature version of the test"). In
this situation we show that, as they are described in section 1.2, both CE and
PSE will result in exactly the same equating function.
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Theorem 1: If, in the NEAT design we have Kp = KQ, then both CE and PSE
yield the same equating function and it is

exy;T(c)(x) = eXY;T(PS)(X) = GQ10Fp(X).

Proof: The case for CE is obvious because the composition, KQ.Kp-1(x) now
equals the identity function, so that it cancels out, i.e.,

exy;T(c)(x) = GQ-10KQ:Kp-loFp(x) = GQ-1.Fp(x).

For the case of PSE, suppose Kp = KQ, then the score probabilities satisfy

kT = wkp + (1 w)kQ kp = kQ, for any T = wP + (1 w)Q.

Hence,

fT(pc)(x) = E fpociv*T(v)= E fp(xlv)kp(v) = fp(x), and

gT(Pc)(Y) E gQ(Yiv)k-r(v) = E gQ(Yiv)k(Av)= gQ(y)

Once continuized, we must also have FT(pc)(x) = Fp(x), and GT(Pc)(Y)
GQ(y), from which the result for PSE follows. QED

Also note that the theorem will also hold for the Tucker and chain
linear equating methods (see Holland, 2002, p. 8, on the relationship
between linear and equipercentile equating functions).

This theorem shows that CE and PSE are closely connected when the
distributions of V are similar on both P and Q, or, in other words CE and
PSE must yield nearly identical results when the two populations are similar
in abilities.
The next theorem addresses the case when the distributions of the anchor
test can be very different for P and Q, but the anchor test is highly correlated
with both X and Y. While the statement of Theorem 2 is fairly obvious we
include it because we believe that it lies behind the often stated conclusion
that a high correlation between the anchor and the operational test is
important.
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Theorem 2: If, in the NEAT design we have X = V = Y, so that there is a
perfect correlation between the anchor test and the other two tests, then both
CE and PSE give the same equating function and it is:

exymc)(x) = exy;T(ps)(x) = x, the identity.

Proof: Now, because X = V = Y we have FT(x) =GT(x) =KT(x) for any T.
The case for CE follows from the fact that now both GQ-10KQ(x) = x and
Kp-1.Fp(x) = x so that

exy;T(c)(x) = GQ-10KQ(Kp10Fp(x)) = GQI.KQ(x) = X,

regardless of how different FP and FQ are.

For the case of PSE, note that the conditional score probabilities fp(xlv),
fQ(xlv), gp(ylv) and gQ(ylv) are all 0 unless x = v = y, and then they equal 1.
Then the score probabilities satisfy

fT(pc)(x) = fp(xlv)4(v)= kT(x) = fT(x) = wfp(x) + (1 w)fQ(x), and

gT(Pc)(Y) = E mylv)kT(v) = ker(Y) = gT(Y) = wgP(Y) + (1 w)go(Y) = fT(Y)

Hence the two sets of score probabilities are the same. Once
continuized, we must also have FT(pc)(x) = GT(pc)(x) from which the result
for PSE follows. QED

Theorem 2 might seem trivial at the first sight, but what it proves
analytically that when the anchor is a perfect parallel form of the two tests,
then the two methods are population invariant (regardless how big the
difference is between the population is). The assumption of perfect parallel
tests forms is made, for example, by Levine-observed score equating
method.

Theorem 2 will also hold for the Tucker and chain linear equating
methods.

We can, therefore, only distinguish between CE and PSE when the
distribution of V is sufficiently different between P and Q, and the anchor V
is sufficiently different from X and Y. This is the case we will consider in the
rest of this paper.
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3. Self-equating in the NEAT Design
"Equating a test to itself" has a long history in test equating (see

Petersen, Marco, & Stewart, 1982; Marco, Petersen, & Stewart, 1983; Harris
and Crouse, 1993). We shall use it here but in a way that we think is
somewhat different from how it has been used in the past. In our use of self-
equating, the implicit assumptions that it makes about population invariance
combine to yield testable predictions.

In the NEAT Design, a situation where self-equating suggests itself
arises when we can subdivide P and Q into two subpopulations, such as
Males and Females (M and F). In terms of the data structures of the design
this can be seen in the following terms:

NEAT Design Reusing X on Q M and F as P and Q
X V Y X V X X V

p V V -p V V > M V

Q F V V

On the left side we have the NEAT design as described earlier. In the
middle we have the NEAT design when X is reused on the "new form sample"
Q rather than being a new test Y. Finally, on the right side we see that if we
treat the two subpopulations, M and F, as two different test administrations
(rather than as two subpopulations of the same test administration) then we get
the same data structure that arises when X is reused on the "new form sample."

This observation suggests equating X to itself through V (either with CE
or PSE) with M and F treated as the two "administrations". This can be done
both on P and on Q to see the stability of the results. In the next two sub-
sections we examine what happens to CE and PSE when equating X to X in a
NEAT Design.

3.1 Self-equating and Chain Equating for the NEAT Design
The CE-assumptions, CE1 and CE2, in self-equating (SE) become:

CE1(SE): Kp-1.Fp(x) = KT-1.FT(x), and therefore FT(c)(x) = Kr.Kp-1.Fp(x),

CE2(SE): FQ-1.1C,Q(v) = FT-10KT(v), and therefore FT(c)1(x) = FQ'oKQ(v)oKT'.

Hence: exxmc)(x) FT(C) I (X)0FT(c)(X) = x = FQ-101(Q(V)01(p-1°FP(X))



which is a testable prediction with data for which self-equating is possible.
Note that the equation, x = FQ-1.1(Q(v).Kp loFp(x), does not depend on T, but
does depend on P and Q.

3.2 Self-equating and Post Stratification Equating for the NEAT Design
The PSE-assumptions, PSE1 and PSE2, in self-equating become:

PSE1(SE): fT(Pc)(x) = fPT(x) = E fp(xlv)kT(v), which continuizes to FpT(x),

PSE2(SE): fT(Pc)(x) = fQT(x) = E fQ(xlv)kT(v), which continuizes to FQT(x).
V

Hence: exx;T(ps)(x) = FQT-1.Fp-r(x) = FT(pc)-10FT(pc)(x) = x. Note that the
expression, FQT-10FpT(x), can depend on T. If we let T = P then we get

exx;p(Ps)(x) = FQp-I.Fpp(x) = FQP-1.FP(x),

and if we let T = Q then we get

exxmps)(X) FQQ1 oFpQ(X) = FQ1 oFpQ(X).

Thus we get two different functions, FQp-I.Fp(x) and FQ-10FpQ(x), which
should both be the identity function if the population invariance assumptions
for PSE hold. Again these are testable predictions.

4. RMSD for Self-Equating using both Chain and Post Stratification
Dorans and Holland (2000) define RMSD(x) as a measure of the

degree to which an equating procedure fails to be population invariant across
a given set of subpopulations of a base population, P. At each X-score,
RMSD(x) is the root-mean-square difference between the equating functions
computed on each subpopulation and the equating function computed on the
whole population, P. It is standardized by dividing by the standard deviation
of Y on P, so that it is a type of "effect size".

Holland (2002) describes the RMSD(x) measure when applied to the
NEAT Design and gives explicit formulas for CE and PSE.

In our analysis we make use of the natural self-equating that arises
when the two subpopulations (say M and F) of the original P of the NEAT
Design are treated as if they are themselves two different "test
administrations" where X has been reused, as discussed in Section 3.1 and
3.2. In the notation we Use here, the two subpopulations, M and F, are called



P and Q, respectively. We will call the original P the target population T.
The weights, wp and wQ, are, in this interpretation, the weights we give to M
and F. In our application we take these to be proportional to the relative sizes
of M and F in P, i.e., of P and Q in T.

RMSDcE(x)

RMSDpsE(x)

W P (exx;T(c) (x) x)2 (exx;T(c) (x) x)2 eXX;T(C) (x) x

XT CTXT

w eXX;P(PS) (x) - xy +w (eQ (x) - X)2

2
XT

The RMSDCE simplifies because the two equating functions, the ones for P
and Q, are, as usual for CE, the same. We may compare these two RMSD's
because they are both "effect sizes" relative to the same standard deviation.
They put the violations of the two "population invariance" assumptions (for
CE and PSE) into the same scale. We think this is helpful in deciding which
methdd, CE or PSE, is "more" population invariant, that is, which is less
dependent on the population used for the equating. Some way of putting the
two sets of assumptions, CE1-2 and PSE1-2, on the same footing is
necessary because, as stated, these assumptions involve very different
distributional quantities for which there is no obvious comparison.

5. An Example Using Data from the AP Examinations
We will use data from' the AP Examinations to illustrate our approach

to addressing the question: which of the two methods, CE or PSE, is less
sensitive to the population invariance assumption. The data discussed here
are from the 1998 and 2000 administration of the AP English Language &
Composition Examination. In our data sets there were 79,434 examinees in
the 1998 administration and 112,868 examinees in the 2000 administration.

We used the Multiple Choice (MC) data from the tests, and did not
use the Free Response data at all. This AP test uses a NEAT Design with the
year 2000 test being linked back to the one given in 1998. The anchor test is
an embedded anchor (EQ) within the MC component of the whole test. The
two subpopulations we examined were Males and Females. In 1998 there
were 30,217 male and 49, 217 female test takers, and in 2000 there were
42,317 male and 70,551 female test takers.

The effect size computations given in Table 1 show that the M/F
differences were about the same size as the test year differences on the
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anchor test. We think this observation makes the M/F comparison more
relevant to the year to year comparison than if these differences had been
less similar.

Table 1: Effect Size calculations for Male/Female differences on the Anchor
Test. MC Anchor-Test Data from the 1998 and 2000 Administrations of the
AP English Language & Composition Test.

Year Mean
Males

SD
Males

Mean
Females

SD
Females

Mean
All

SD
All

M-F
Means

Effect
size

1998 9.408 3.16 9.166 3.15 9.258 3.16 0.242 7.7%
2000 9.152 3.21 8.903 3.23 8.996 3.22 0.249 7.7%

The effect size for the difference between 1998 and 2000 for all examinees
is (9.258 8.996)/3.19 = 8.2%. (3.19 is the average of 3.22 and 3.16). Thus,
the 7.7% effect size for the M/F differences each year are similar to the 8.2%
effect size for the difference between the two years.

The correlations between the X = MC98 and anchor test V = EQ and
between MCOO and EQ are both about 0.82 in both P = 1998 and Q = 2000.
This correlation is considered relatively low for an internal anchor with the
test. This low correlation may be relevant to our analysis of the two equating
methods. It is known from empirical studies (Livingston et al., 1995), that
PSE is more sensitive than CE is to the degree of correlation between the
operational and anchor tests.

All of the equipercentile equating functions computed in this analysis
made use of the kernel method of equating (Holland and Thayer, 1989; von
Davier, Holland, & Thayer, 2002), outlined in appendix A2 of Holland
(2002). This procedure included fitting log-linear models to the joint
distributions of X and V and of Y and V on both M and F within each of the
two years of data. Before computing the equating functions, the cdfs were all
made continuous using the automatic bandwidth selection that "post-
smoothed" the "teeth" that were observed in these joint distributions of
rounded MC formula scores. The resulting continuous cdfs did not have
rapidly changing derivatives. As a result of this approach, the resulting
RMSD(x) curves are very smooth.

Results: Figures 1 and 2 show the results for the two years of data
separately. We used Males and Females to subdivide the P and Q into M and
F. Then we used the formulas resulting from self equating for RMSD(x) for
both CE and PSE, as derived in Section 4. The curves in each of these of
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these figures are the two RMSD(x) curves, one for PSE and one for CE. We
put them on the same graph to aid their comparison over the entire score
range of X = operational MC test score each year.

(Figures 1 and 2 go about here)

Both figures show very similar results for both CE and PSE. The
variation from the identity function is generally greatest in the middle of the
score range and reaches an effect size of9% in 1998 and 5% in 2000. In
both years there is some evidence that self-equating does not lead to the
identity function for either method, but in each case, in the middle range of
scores where most of the examinees are, there is evidence that CE is slightly
less sensitive to the choice of population. We will need many more examples
using these methods before we could conclude any thing stronger about their
relative merits. We believe that these results show that our approach can be
used to give a fairly interpretable basis for comparing the two methods on an
important criterion for test equating.

6. Summary
In this paper we introduce a new approach for diagnosing the equating

methods in the NEAT Design. We describe testable conditions with the data
at hand when two subpopulations are identifiable within P and Q. In this
way, we can check which method is less sensitive to violations of the
population invariance assumption for the given set of data. With experience
we believe this approach can give useful information to aid the decision as to
which equating method to use in a given situation.

While it is too early to say much about the two methods, CE and PSE,
using our approach, with more examples we may be able to quantify their
relative sensitivity to the equating population in various situations of
interest. We expect that two factors will be important in studies using our
approach. First, the correlations of the anchor test with the operational tests.
Second, how different the subpopulations are on the anchor test scores.
These factors are known to play a role in the NEAT design and our methods
provide another way to examine their effects.

We also point out that the combination of the "self-equating" and
RMSD(x) might be used for comparisons of other equating and test linking
methods with respect to the sub-population differences. This would include
both observed and true scores methods. For use with true score methods the
formula for RMSD(x) may need some alteration to accommodate test
reliability. This is an interesting topic for a future research.
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