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Mathematics education has been very sensitive to needed changes
over the past fifty years. Researches in developmental psychology, new
technologies, andnew requirements in assessment have supported them.
But their impact has been more effective on mathematics curriculum and
on means of teaching than on the explanations of the deep processes of
understanding and learning in mathematics. Difficulties of such research
stem from the necessity of defining a framework within the epistemological
constraints specific to mathematical activity and the cognitive functions of
thought which it involves are not separated. That requires going beyond
local studies of concept acquiring at each level of the curriculum and beyond
mere reference to very general theories of learning and even beyond global
description of student's activity in classroom.

Representation and visualization are at the core of understanding in
mathematics. But in which framework can their role in mathematical
thinking and in learning of mathematics be analyzed? Already in 1961,
Piaget admitted the difficulty to understand what mathematicians call
"intuition", a way of understanding which has close links with representation
and visualization: "rien n'est plus difficile a comprendre pour un psych-
ologue que ce que les mathematiciens entendent par intuition". He
distinguished "many forms of mathematical intuition" (1961, pp. 223-241)
from the empirical ones to the symbolizing ones. From a cognitive
viewpoint, the question is not easier. Representation refers to a large range
of meaning activities: steady and holistic beliefs about something, various
ways to evoke and to denote objects, how information is coded. On the
contrary, visualization seems to emphasize images and empirical intuition
of physical objects and actions. Which ones are relevant to analyze the
understanding in mathematics in order to bring out conditions of learning?

Our purpose in this panel is to focus on some main distinctions which
are necessary to analyze the mathematical knowledge from a learning point
of view and to explain how many students come up against difficulties at
each level of curriculum and very often cannot go beyond. Studies about
reasoning, proving, using geometrical figures in problem solving, reading
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of graphs... have made these distinctions necessary. They lead not only to
emphasize semiotic representations as an intrinsic process of thinking but
also to relativize some other ones as the distinction between internal and
external representations. They lead also to point out the gap between vision
and visualization. And from a learning point of view, visualization, the
only relevant cognitive modality in mathematics, cannot be used as an
immediate and obvious support for understanding. All these distinctions
find accurate expression in different sets of cognitive variables. Within the
compass of this panel we shall confine ourselves to sketching the complex
cognitive architecture that any subject must develop because it underlies
the use of representations and visualization in mathematics.

I. Three key ideas to define a framework
to analyze the conditions of learning

1. The first one is the paradoxical character
of mathematical knowledge

On the one hand, the use of systems of semiotic representation for
mathematical thinking is essential because, unlike the other fields of
knowledge (botany, geology, astronomy, physics), there is no other ways
of gaining access to the mathematical objects but to produce some semiotic
representations. In the other fields of knowledge, semiotic representations
are images or descriptions about some phenomena of the real external world,
to which we can gain a perceptual and instrumental access without these
representations. In mathematics it is not the case.

On the other hand, the understanding of mathematics requires not
confusing the mathematical objects with the used representations. This
begins early with numbers, which have not to be identified with digits,
numeral systems (roman, binary, decimal). And figures in geometry, even
when they are constructed with accuracy, are just representations with
particular values that are not relevant. And they cannot be taken as proofs.

2. The second one is the ambiguous meaning
of the term "representation"

This term is often used to refer to mental entities: image, something away
or missing that is evoked and, finally, what subjects understand. In this
context, "mental" representation is considered as the opposite of signs which
should be only "material" or "external" signs. Semiotic, and therefore
external representations, would be at first necessary for the communication
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between the subjects. But this is a misleading division (Duval, I 995b, pp.
24-32) which brings about two very damaging confusions.

When it is applied to the representations, the distinction mental/
external refers to their mode of production and not to their nature or to their
form. In that sense, signs are neither mental nor physical or external entities.
More specifically, there is not a term to term correspondence between the
distinction mental/material and the distinction signified/signifiant, because
the signifiant of any sign is not determined by its material realization but
only by its opposite relations to the other signs: it is the number of possible
choices what matters, as Saussure explained it. The binary system and
decimal systems are very trivial examples of this semiotic determination of
significance: the significance of any digit depends not only on its position
but also on the number of possible choices per position. And, as for language,
any use of a semiotic system can be mental or written (that is external).
Thus, mental arithmetic uses the same decimal system like written
calculation but not the same strategies because of the cognitive cost.

There are two kinds of cognitive representations. Those that are
intentionally produced by using any semiotic system: sentences, graphs,
diagrams, drawings... Their production can be either mental or external.
And there are those which are causally and automatically produced either
by an organic system (dream or memory visual images) or by a physical
device (reflections, photographs). In one case, the content of the
representations denotes the represented object: it is an explicit selection
because each significant unit results from a choice. In the other case, the
content of representations is the outcome of a physical action of the
represented object on some organic system or on some physical device
(Duval etal., 1999, pp. 32-46). In other words, the basic division is not the
one between mental representation and external representation, which is
often used in cognitive sciences as though it was evident and primary, but
the other one between semiotic representation and physical/organic
representation. We cannot deal anyway with a representation without taking
into account the system in which it is produced.

3. The third one is about the need of various
semiotic systems for mathematical thinking

History shows that progress in mathematics has been linked to the
development of several semiotic systems from the primitive duality of
cognitive modes which are based on different sensory systems: language
and image. For example, symbolic notations stemmed from written language
have led to the algebraic writing and, since the nineteenth century, to the
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creation of formal languages. For imagery, there was the construction of
plane figures with tools, then that in perspective, then the graphs in order to
"translate" curves into equations. Each new semiotic system provided
specific means of representation and processing for mathematical thinking.
For that reason, we have called them "register of representation" (Duval,
1995b). Thus, we have several registers for discursive representation and
several systems for visualization. That entails a complex cognitive interplay
underlying any mathematical activity.

INTENTIONAL
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Figure]. Cognitive classification of conscious representations. This
classification can be expanded more and includes all kinds of
representations. We can notice the existence of two heterogeneous
kinds of "mental images": the "quasi-percepts" which are an
extension of perception (on the right) and the internalized semiotic
visualizations (on the left). Actions like the physical ones (rotation,
displacement, separation) can still be performed on some quasi-
percepts and their time cost can be measured by reaction times to
comparison tasks.

Firstly, as well as for discourse (description, explanation, reasoning,
computation) as for visualization, we have two kinds of registers: the
registers with a triadic structure of significance (natural language, 2D or
3D shapes representation) and registers with a dyadic structure of
significance (symbolic notations, formal languages, diagrams) (Duval,
1995b, pp. 63-64). Within a dyadic structure any meaning is reduced to an
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explicitly defined denotation of objects. Within a triadic structure, we have
meanings playing independently of any explicit denotation of objects and
one must take into account their interplay. We can even fall into a cognitive
conflict between the meaning game, which is proper to the register, and the
denotation set for the representation. For example, the complexity of
geometrical figures stems from their triadic structure of significance.
Secondly, mathematical thinking often requires to activate in parallel two
or three registers, even when only one is externally used, or seems sufficient,
from a mathematical point of view.

This need of various registers of representation gives rise to several
questions that are important in order to understand the real conditions of
learning mathematics. First of all, there is a question about the specific
way of working in each register: what operations are favored, or are only
possible, within each register? This question is not trivial, because there
are several registers for visualization and because they cannot be the same.
Then, there are questions about the change from one register to another
one. Are these changes very frequent or necessary? Are they always easy
or evident to make? At last, is there a register more convenient or more
intrinsically suitable for the mathematical thinking than others? It is obvious
that registers with dyadic structure are technically more useful and more
powerful than registers with triadic structure. But natural language remains
essential for a cognitive control and for understanding within any
mathematical activity. These questions may appear unimportant from a
mathematical point of view. Even more, very often a mathematician cannot
see why these questions arise. But from a didactical point of view, they are
those questions that the difficulties of learning pose.

II. How the problems of mathematics learning
come to light in this framework

1. No learning in mathematics can progress without
understanding how the registers work

Cartesian graphs are very common examples because they look
visually easy to grasp. But many observations have shown that most 15-17
year old students cannot discriminate the equations y = x +2 and y = 2x
when looking at the two graphs presented in Figure 2. Notwithstanding
this kind of failure, students succeed in the standard tasks such as
constructing the graph from a given equation or reading the coordinates of
a point! This kind of failure means that graphs cannot be useful
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Figure 2. Visual discrimination of two elementary linear functions.
This kind of discrimination presupposes that the qualitative values
of two visual variables be distinguished: comparison between the
angle with x-axis and the one obtained by bisection of xy angle,
and position of crossing point with y-axis. Most often students
confine themselves to the visual variable which is not relevant:
how far some points are above x-axis (Duval, 1988).

representations neither to control intuitively some calculations nor to
organize and to interpret data in other fields. And we have similar
observations for each register of representation, even those which look more
natural, like geometrical figures, or which are very utilized, like the decimal
system in which the position of digits determines the operative meaning
(French National Assessment, 1992, 1996).

All these repeated observations show that semiotic representations
constitute an irreducible aspect of mathematical knowledge and that wanting
to subordinate them to concepts leads to false issues in learning. That
amounts to forget the paradox of mathematical knowledge: mathematics
objects, even the more elementary objects in arithmetic and geometry, are
not directly accessible like the physical objects. Each semiotic register of
representation has a specific way of working, of which students must become
aware.

2. We must distinguish two kinds of cognitive operations in
mathematics thinking: "processing" and conversion

Mathematical processes are composed of two kinds of transformations
of representations. There are transformations that are made within the same
register of representation, like arithmetical or algebraic computation. The
semiotic possibilities of generating a new representation from a given
representation are exploited. With the dyadic structure, these possibilities
depend both on the semiotic system and on mathematical rules. The
geometrical figures give also rise to the intrinsic gestalt transformations of
configurations apart from any previous consideration of mathematical
properties. These gestalt transformations are like the visual transformations
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that anamorphoses or jigsaws lead to bring into play. We have called
"processing" this kind of transformation.

Figure 3. Visual change of configuration. The figurative units of
any figure can be "reconfigured", mentally or materially, in another
figure. For this kind of merely figurative transformation, neither
hypotheses nor mathematical justification are required. Very often
problem solving or explanations meant to convince students to
resort to such transformations as if they were immediate and
obvious for every student. Many observations show that this is
not the case. There are factors that inhibit or trigger the ovisibility»
of such transformations. We can study them experimentally (Duval,
1995a).

And there are transformations that lay on a change of register: the
representation of an object is "translated" into a different representation
of the same object in another register. For example, when we go from a
statement in native language to a literal expression. The transformation of
equations into Cartesian graphs is another example. We have called
"conversion" this kind of transformation.

One does not pay very close attention to the gap between these two
kinds of cognitive operations that underlie mathematical processes.
Nevertheless, if most students can learn some processing, very few of
them can really convert representations. Much misunderstanding stems
from this inability. But, very often, teachers attach more importance to the
mathematical processes than to their application to daily life problems or
to physical, or economic problems.

3. Conversion of representations is crucial problem
in the learning of mathematics

Mathematical activity, in problem solving situations, requires the ability
to change of register, either because another presentation of data, which



fits better an already known model, is required, or because two registers
must be brought together into play, like figures and natural language or
symbolic notations in geometry. From a didactical point of view, only
students who can perform register change do not confuse a mathematical
object with its representation and they can transfer their mathematical
knowledge to other contexts different from the one of learning. Two facts
show the great complexity of conversion operation.

Any conversion can be congruent or non-congruent. When a conversion
is congruent the representation of the starting register is transparent to
the representation of the target register. In other words, conversion can
be seen like an easy translation unit to unit. Very accurate analyses of
the congruent or non-congruent character of the conversion of a
representation into another one can be systematically done. And they
explain in a very accurate way many errors, failures, misunderstandings
or mental blocks (Duval, 1995b, pp. 45-59; 1996, pp. 366-367).

The congruence or the non-congruence of any conversion depends on
its direction. A conversion can be congruent in one way and non-
congruent in the opposite way. That leads to striking contrasts in the
performances of students, such as those summarized in Figure 4.
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Figure 4. Elementary task of conversion (Pavlopoulou, 1993, p. 84)

Of course, the contrasts caused by the non congruence can be observed in a
systematic way at all stages of the curriculum, from the more elementary
verbal problems at primary school (Damm, 1992), to the university level.

It is surprising to see that this wide-ranging phenomenon is always
ignored in the teaching of mathematics. Most teachers, mathematicians and
even psychologists pay little attention to the difference of nature between
processing and conversion. These two kinds of cognitive operations are
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grouped together in the unity of mathematical processes to solve a problem.
And when a change of register must be introduced in the learning, one
generally chooses one direction and the cases that are congruent. From a
cognitive point of view, it is frequently a one-sided activity, which is
proposed to students! There is something like an instinct to avoid the non-
congruence situations that lead to real difficulties. But they are impossible
to avoid especially when transfer of knowledge is required. Then failures
and blocks are explained as conceptual misunderstanding, what is not a
right explanation, since we have a contrast of successes and failures for the
same mathematical objects in very similar situations. In reality the fact that
students don't recognize anymore, when direction of conversion is changed,
reveals a lack of co-ordination between the registers that have to bring into
play together. The coordination of registers is not the consequence of
understanding mathematics; on the contrary, it is an essential condition.

4. The learning of mathematics and the progressive
coordination between registers

All these various and continual observations point out to a basic
requirement that is specific for any progress in the learning of mathematics:
the coordination between the registers of representation. This basic
requirement is not fulfilled for most students, what is noticed in a global
way often at the end of learning. For example, many teachers have, in one
way or another, experienced what Schoenfeld (1986) described after a one
yearlong study:

[S]tudents may make virtually no connections between reference
domains and symbols systems that we would expect them to think
of as being nearly identical... the interplay occurs far more rarely
than one would like (pp.239-242)

[T]he students did not see any connection between the deductive
mathematics of theorem proving and the inductive mathematics of
doing constructions... they fail to see the connections or dismiss
the proofs as being irrelevant (pp.243-244) If students fail to see
such obvious connections, they are missing what lies at the core of
mathematics (p.260)

Schoenfeld characterized this splitting rightly like an "inappropriate
compartmentalization" (p. 226). But, unlike Schoenfeld's analysis, the kind
of operative connections we expect to be made when learning is not between
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deductive and empirical mathematics, proofs and constructions, nor between
mathematical structures and symbol structures, but between the different
registers of semiotic representation. These connections between registers
make up the cognitive architecture by which the students can recognize the
same object through different representations and can make objective
connections between deductive and empirical mathematics. Learning
mathematics implies the construction of this cognitive architecture. It always
begins with the coordination of a register providing visualization and a
register performing one of the four discursive functions (Duval, 1995b, pp.
88-94).

III. Vision and visualization

From a psychological point of view, "vision" refers to visual perception
and, by extension, to visual imagery. As perception, vision involves two
essential cognitive functions.

The first one consists in giving direct access to any physical object "in
person". That is the reason why visual perception is always taken as a
model for the epistemological notion of intuition. Nothing is more
convincing than what is seen. In that sense, vision is the opposite of
representation, even of the "mental images", because representation is
something which stands instead of something else (Peirce). We shall
call this function the epistemological function.

The second one is quite different. Vision consists of apprehending
simultaneously several objects or a whole field. In other words, vision
seems to give immediately a complete apprehension of any object or
situation. In that sense, vision is the opposite of discourse, of deduction,
which requires a sequence of focusing acts on a string of statements.
We shall call it the synoptic function.

In fact, visual perception performs in a very imperfect way the
synoptic function. Firstly, because we are inside a three dimensional world:
just one side of things can be seen, and complete apprehension requires
movement, either of the one who is looking at it or of what is seen. In any
case, this movement is a transformation of the perceived content: we have
just a juxtaposition of successive sights which can be full-face, in profile,
from above...Secondly, because visual perception always focalizes on a
particular part of the field and can jump from one part to another one. There
is no visual perception without such an exploration.

Now we can ask the following question that is decisive in the
perspective of learning: are there cognitive structures that can perform both
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the epistemological and the synoptic function for the mathematical
knowledge? The previous remarks lead us to answer this question negatively:
More precisely, they lead to distinguish visualization from vision. Unlike
vision, which provides a direct access to the object, visualization is based
on the production of a semiotic representation. As Piaget, who has
highlighted the synthetic inability of 3-5 year old children for the drawing
of geometrical gestalts, explained it:

Le dessin est une representation, c'est-à-dire qu'il suppose la
construction d'une image bien distincte de la perception elle-
meme, et rien ne prouve que les rapports spatiaux dont cette image
est faire soient du meme niveau que ceux dont temoigne la
perception correspondante (1972, p.65).

We have here the breaking point between visual perception and
visualization. A semiotic representation does not show things as they are in
the 3D environment or as they can be physically projected on a small 2D
material support. That is the matter of visual perception. A semiotic
representation shows relations or, better, organization of relations
between representational units. These representational units can be 1 D
or 2D shapes (geometrical figures), coordinates (Cartesian graphs),
propositions (propositional deductive graphs or "proof graph"), or words
(semantic networks). And these units must be bi-dimensionally connected,
because any organization requires at least two dimensions to become
obvious. In a string of discrete units (words, symbols, propositions) not
any organization can be displayed. Thus, inasmuch as text or reasoning,
understanding involves grasping their whole structure, there is no
understanding without visualization. And that is why visualization should
not be reduced to vision, that is to say: visualization makes visible all that
is not accessible to vision. We can see now the gap between visual perception
and visualization. Visual perception needs exploration through physical
movements because it never gives a complete apprehension of the object.
On the contrary, visualization can get at once a complete apprehension of
any organization of relations. We say "can get" and "cannot get" because
visualization requires a long training, as we shall prove it below. However,
what visualization apprehends can be the start of a series of transformations,
that makes its inventive power. This difference between visual perception
and visualization entails two consequences for the learning of mathematics.

Visualization refers to a cognitive activity that is intrinsically semiotic,
that is, neither mental nor physical. Also such expressions as "mental image",
"mental representation", mental imagery", are equivocal. They can only
be the extension of visual perception. Accordingly, Neisser wrote:
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"[V]isual image". is a partly undefined term for something seen
somewhat in the way real objects are seen when little or nothing in
the immediate or very sensory input appears to justify it. Imagery
ranges from the extremely vivid and externally localized images
of the eidetiker to the relatively hazy and unlocalized images of
visual memory.

(Neisser, 1967; p.146)

Experiments on mental rotation of three-dimensional objects, since
Shepard and Meztler (1971), are in the line of this conception of mental
image as an extension of visual perception. But "mental imagery" can also
be a mere visualization, that is, the mental production of semiotic
representations as in mental calculation. Thus in "mind", we find the split
into two kinds of representation back (Figurel). By resorting to mental
images one does not avoid the difficulties arising from the paradoxical
character of mathematics.

The way of watching is not the same in vision than in visualization.
Two phenomena are confusing this issue. First, when they are graphically
produced, semiotic representations are subject to visual perceptive
apprehension. In that sense, visualization is always displayed within visual
perception or within its mental extension. Second, some semiotic
representations, like drawings, aim at being "iconic" representations: there
is a relating likeness between the representation content and the represented
object, so that one recognizes it (a tree, a car, a house) at once, without
further information. Iconic representations refer to a previous perception
of the represented object, from which to their concrete character. In
mathematics, visualization does not work with such iconic representations:
to look at them is not enough to see, that is, to notice and understand what
is really represented.

The use of visualization requires a specific training, specific to
visualize each register. Geometrical figures or Cartesian graphs are not
directly available as iconic representations can be. And their learning cannot
be reduced to training to construct them. This is due to the simple reason
that construction makes attention to focus successively on some units and
properties, whereas visualization consists in grasping directly the whole
configuration of relations and in discriminating what is relevant in it. Most
frequently, students go no further than to a local apprehension and do not
see the relevant global organization but an iconic representation.

To sum up, visualization, which performs only the synoptic function,
is not intuition but representation. In that sense, there are several possible
geometrical registers for visualization. Visualization in mathematics is
needed because it displays organization of relations, but it is not primitive,
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because it is not mere visual perception. In this respect, there is learning
from the geometrical registers. Is there any vision that could perform the
epistemological function? That is a philosophical question. From a cognitive
view, the essential fact is the paradoxical character of the mathematical
knowledge, which excludes any resort to mental representations as direct
grasping of mathematical objects, at least in the didactical context.

IV. How visualization works toward understanding

We have characterized visualization as a bi-dimensional organization
of relations between some kinds of units. Through visualization, any
organization can be synoptically grasped as a configuration. In this way,
we have as many kinds of visualization as kinds of units: geometrical
configurations where units are ID or 2D shapes or Gestalts, Cartesian graphs
where units are couples { point, coordinates }, propositional graphs where
units are statements... For the visualization of each register of visualization
there are some rules or some intrinsic constraints to produce units and to
form their relations. Thus, geometrical configurations can be constructed
with tools and according to mathematical properties of the represented
objects. One does not draw a pentagon as an oak-leaf or as a flower. There
lies the point where visualization leads away from any iconic representation
of a material object. In the perspective of learning, three problems have to
be taken into account about visualization: the problem of discrimination,
the problem of processing and the problem of coordination with a discursive
register.

1. How can the relevant visual features be discriminated?

Unlike iconic representations, visualizations used in mathematics
are not sufficient to know what are the denoted objects. Very early, young
children learn quickly to recognize by themselves images of physical objects,
perhaps because schematizations of frequently perceived outlines are
automatically developed. But learning visualization in mathematics is not
quite so easy and successful as it is for physical objects and real environment.

In front of simple Cartesian graphs, most students only have a local
apprehension confined to the associations of points with coordinates. They
do not get a global apprehension of all visual variables, which enables them
to discriminate visually between the different graphs of functions such as

y = 2 x, y = 2x, y = x 4- 2.
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In other words, Cartesian graphs do not work visually for most
Students except for giving the naïve holistic information: the line goes up
or down, like a mountain road. But that can be misleading when they have
to compare the graphs of two series of observations. And Cartesian graphs
can perform anyway a checking or a heuristic function in the tasks of
formulae computation or interpretation. No connections can be made
between the different graphs and the definitions, descriptions or explanations
that are displayed in other registers.

Some simple 2D geometrical figures are taught at the primary level:
triangle, circle, different quadrilateral polygons. But all these geometrical
figures are equivocal representations. They can be hard iconic
representations and they are nothing further than an herbarium of
mathematical Gestalts. Or they can work as representations of geometrical
objects and, in this case, they must appear as 2D organizations of ID figural
units. In other words, there are quite different apprehensions of the most
elementary geometrical figures; the one which is according only to the
spontaneous perceptive work, and the other which is "discursive" or
anchored in some statements (definitions, theorems), (Duval, 1998. pp. 39-
40). Thus, with the discursive apprehension, we can have several figures
for the same geometrical object: for example, there are two typical figures
to represent a parallelogram (I and II in Figure 5).

0

Construct a parallelogram of center 0,
having one side on DA, another on DC

Figure 5. Which of the two figures, I or II, can be useful to solve
the problem? With the visual help of Figure I, one can only roughly
make the drawing by successive attempts of measurements on DA
and DC. With the visual help of Figure II, one easily succeeds by
drawing the diagonal DOD'. Although they knew all the properties
of parallelogram, most students failed as if they were confined
themselves to visualization I (Dupuis, 1978, pp.79-8 I ). In fact, I
and II give a visual help only when one works with configurations
of 1 D figural units.
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Such observations have been made many times for very simple
problems (Schoenfeld, 1986, pp. 243-244). And these phenomena are all
the stronger the geometrical figure appears as a joint of several Gestalts
(triangles, parallelograms, circles, straight lines). For most students, there
is like a heuristic deficiency of geometrical interpretation to visualization.
But the equivocal character of geometrical figures appears also when a
figure is directly taken for proof and leads to reject any resort to deductive
reasoning. In that case, the figure works as a true iconic representation
which makes discursive apprehension meaningless.

All these observations, which can be made anytime and anywhere in
curricula, reveal the intrinsic difficulties of mathematical visualization. The
intricacy of mathematical visualization does not consist.in its visual units
they are fewer and more homogeneous than for the imagesbut in the
implicit selection of which visual contrast values within the configurations
of units are relevant and which are not. Here is the representation barrier
specific to learn visualization in mathematics. Is it really taken into account
in teaching?

Very often one believes that to learn how to construct graphs or
geometrical figures is enough to learn visualization in mathematics.
Moreover, in this kind of task students get satisfactory results. But any
such a task of construction requires only a succession of local apprehensions:
one needs to focus on units and not on the final configuration. In other
words, a student can succeed in constructing a graph or a geometrical figure
and being unable to look at the final configurations other than as iconic
representations. That is easy to observe and to explain.

Constructing a graph requires only to compute some coordinates and
to plot a straight line, a curve: one goes ever from data tables, or from
equations, to graduated axis. But visualization requires the opposite change:
one must go from the whole graph to some visual values that point to the
characteristic features of the represented phenomenon or that correspond
to a kind of equation and to some characteristic values within the equation.
Therefore, visualization causes the anticipation of the kind of equation to
find out. And this gap between local apprehension and global apprehension
that can exist to the end of the construction is more important for geometrical
figures than for graphs. The reason is that from a geometrical figure we
have not one but many possible configurations or subconfigurations. And
the relevant configurations or subconfigurations in the context of a problem
are not always those highlighted at first glance. What we called above a
heuristic deficiency is like an inability to go further from this first glance.
What reason is it due to teaching or some cognitive way of working?
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2 Visualizationand,figural processing
. ,

L

In order to analyze any forthof visualization there is a key idea: the existence
of several registers Of representation provides specific ways to process each
register. Thus,. if geometrical figures depend on a register, that is on a system
of representation, We must obtain specific visual operations that are peculiar
to this register and 'that allow to change any initial geometrical figure into
anothei=,'One; While keeping the properties of the initial figure. What are
these visual operations?

Three kinds of operations can be distinguished according to the way
of modifying a given figure (Duval, 1988, pp. 61-63; 1995a, p.147):

(a) The mereologic way: you can divide the whole given figure into parts
of various shapes (bands, rectangles) and you can combine these parts in
another whole figure or you can make appear new subfigures. In this way,
you change the shapes that appeared at the first glance: a parallelogram is
changed into a rectangle, or a parallelogram can appear by combining
triangles. We call "reconfiguration" the most typical operation.

Z2:k 42Th
Figure 6. Figural processing by reconfiguration. Apprehension of
this transformation within the only starting figure can be inhibited
by the visual difficulty of double use of one sub-figure. But the
starting figural frame is not changed like in the examples in Figure
3.

(b) The optic way: you can make a shape larger or narrower, or slant, as if
you would use lenses. In this way, without any change, the shapes can
appear differently. Plane figures are seen as if they were located in a 3D
space. The typical operation is to make two similar figures overlap in depth
(Duval, 1995 b, p.1 87): the smaller one is seen as it was the bigger one at
the distance (See Figure 7).

(c) The place way: you can change its orientation in the picture plane. It is
the weakest change. It affects mainly the recognition of right angles, which
visually are made up of vertical and horizontal lines.
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Figure 7. Figural processing by overlapping in depth of two similar
figures

These various operations constitute a specific figural processing
which provides figures with a heuristic function. One of these operations
can give an insight to the solution of a problem. We call it the operative
apprehension of a given figure. It is different both from perceptual and
discursive operation.

Operative apprehension is different from perceptual apprehension
because perception fixes at the first glance the vision of some shapes and
this evidence makes them steady.

(Starting figure) C F

Comparison problem : is the perimeter of the triangle ABC
greater, equal or smaller than the length of the two
segments EA and AF ?

subconfiguration or shape organisation (I) subconfiguration or shape organisation (II)

Figure 8. The perception of the starting figure highlights the shape
organization (I) and makes it steady. But solving the problem
requires the apprehension of the shape organization (II). Changing
the perceptual apprehension of (I) into a perceptual apprehension
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of (II) constitutes a non-natural jump, because the symmetry axis
AO sets forward the triangle within which the side BC is like an
indivisible visual unit. Changing (I) into (II) requires looking at
BC as a configuration of two segments! Moreover, the starting figure
can be constructed without having to take into account the shape
organization (II) with BO and BC as symmetry axis. Less than
fifty per cent of 14-year-old students succeeded such a jump. And
key figure does not help them for that (Mesquita, 1989, pp. 40, 68-
69; Pluvinage, 1990, p. 27). However, by changing just a little the
problem statement, and therefore the starting figure, all students
can succeed: by naming I the point of intersection between AO and
BC and by asking them to compare BI and IC, students are led to
look at BC as a configuration of two segments. In that case, the
statement of the problem becomes a congruent description of the
subconfiguration (II), and geometrical visualization is reduced to
an illustration furiction (Duval, 1999). But the learning problem is
bypassed. A true didactical approach requires to embrace the whole
range of variations of the conditions of a problem and to bring out
the various factors that make them clear. It is only on the basis of
students' knowledge that teachers can organize learning sequences.

In operative apprehension, the given figure becomes a starting point
in order to investigate others configurations that can be obtained by one of
these visual operations. In this respect, operative apprehension can develop
several strings of figures from a given figure. According to the stated
problem, one string shows an insight to the solution. The ability to think of
drawing some units more on the given figure is one of the outward sign of
operative apprehension. Now we can pose well the problem of heuristic
deficiency: why perceptual apprehension does not ever lead to operative
apprehension? For each operation, we were able to identify visual variables
that trigger or inhibit the visibility of the relevant subfigure and operation
within a given figure. And we were able to define the conditions of their
influence on operative apprehension. Even the use of key figures in problem
solving depends on these visual variables. Therefore, it would be naïve to
believe that providing students with key figures would help them in problem.
solving. At the least change in the starting figure, most students do not
recognize the correspondence with the key figure anymore. The visual
variables must be taken into account in teaching. Their study opens an
important field of research in order to understand the way cognition works
for visualization in geometry (Duval, 1995a, pp.148-154; 1998, pp. 41-
46).
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Operative apprehension is independent of discursive apprehension.
Vision does not start from hypotheses and does not follow from mathematical
deduction. Otherwise, geometrical figures would not perform a heuristic
function but only an illustrative function (Duval, 1999). That is the blind
spot of many didactical studies. They do not differentiate between
visualization and hypotheses, which depend on two heterogeneous registers
of representation, and they subordinate the way of working of visualization
to the way of working of deduction or of computation. In fact; shape
recognition is independent of shape size and of perimeter magnitude. For
example, when hypotheses include numbers as measures of sides or
segments, operative apprehension is neutralized and the figure fulfills only
an illustrative or support function. We can have even a conflict between the
figure and the measures leading to a paradox. The most well known case is
the reconfiguration of an 8 x 8 square into a 5 x'13 rectangle, within which
a parallelogram is perceptively reduced to a diagonal.

5

Figure 9.

8

3 5

Visualization consists only of operative apprehension. Measures are
a matter of discursive apprehension, and they put an obstacle in the way
not only for reasoning but also for visualization. Usually, the introduction
of "geometrical figures" runs against this fact. Mathematical tasks are
conceived as if the perceptual, discursive and operative apprehensions were
inseparable! And the general outcome for most students is the inhibition of
operative apprehension and a lack of interplay between perceptual and
discursive apprehension.
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3. Transitional visualization and development of the
coronation of registers of representation

There is an introspective illusion that often distorts the analysis of
mathematics learning processes. What is simple from a mathematical point
of view appears also simple from a cognitive point of view when we are
becoming experts. In fact, more often than not, what is taken as
mathematically simple becomes cognitively evident only at the end of
learning (Duval, 1998c). That is why assuming these simple-evident
conditions cannot be taken as a starting point for learning and teaching. As
I said above (II.4), learning mathematics implies the construction of this
cognitive architecture that includes several registers of representation and
their coordination. Thus geometrical figures used to solve problems involves
some ability in operative apprehension and awareness of how deductive
reasoning works. Students do not come into such apprehension and
awareness by themselves. Moreover, some coordination is required between
operative apprehension, discursive apprehension and deductive reasoning.
In other words, geometrical activity requires continual shifts between
visualization and discourse. In order to achieve such coordination another
kind of visualization is required.

The introduction of graphs in proof learning is well known since
their use with computer tutor (Anderson et al., 1987). This example is
interesting because it shows the hidden cognitive complexity of any
visualization. In front of that use we must ask two questions:

Firstly, what can be visualize from any propositional graph?

Secondly, what kind of task makes the students able to understand proof
by means of visualization?

The answer to the first question seems easy. "Proof graphs" display
the whole deductive organization of propositions like a tree structure. But
from that, one does not visualize how such organization works. The essential
point is not visible on a graph: each connection is only based on the status
of the connected propositions, and we have three kinds of deductive status.
And in order to be able to become aware of this point, one must succeed at
least once in constructing a whole proof graph. That concers to the second
questioh, we find two kinds of task: to construct oneself the whole graph or
to find out forward and backward paths from hypotheses to the to-be-proven
statement, which are already given at the top and at the bottom of screen.

In Anderson's research, proof graph was used to provide heuristic
help "during problem-solving". Hence the second kind of task was chosen.
As to what graph is expected to visualize, it is mainly "a hint in the form of



suggesting the best nodes from which to infer" (Anderson et al., 1987,
p.116). In other words, proof graph must focus attention on the new step to
find out in order to progress. This way of using a graph turned out to be
disappointing. And it is easy to know why. On the one hand, a graph cannot
perform a heuristic function in geometry problem solving: that depends on
figural processing. On the other hand, if the goal is to understand how
deductive organization of propositions works, the task has the crucial point
bypassed. In fact, proof graph becomes a helpful visualization for the
students only when they have to construct it by themselves according to
rules explaining how to shift the status of propositions into visual values.
Then proof graph can visualize not a particular proof of the to-be-proven
statement, but how any proof works (Duval, 1989, 1991). To understand
how a mathematical proof works and why it does not work, as other language
reasoning is the necessary condition for being convinced by a mathematical
proof. We are there on the crucial threshold of learning in mathematics.
Under very specific conditions, proof graph is a kind of visualization that
allows one to explore and to check our own understanding of deductive
reasoning. Once this threshold is crossed, proof graph becomes useless and
interplay can start between deductive reasoning and geometrical figures.
Proof graph is a transitional visualization that furthers register coordination.

It may more evident for proving than for any other mathematical
activity, that what is mathematically simple is cognitively complex and can
be understood only at the end of learning. Heterogeneous ways of working,
specific to each register, must be first learnt in parallel. Is it possible to lead
frontally all the training that this requires? For experimental reasons, our
researches have aimed separately at each register and we have identified
some conversion problems. But, recently, an attempt to join all the aspects
involved in proof activity has been made within a computational
environment (Luengo, 1997). And this attempt seems to be promising.

STATEMENTS IN NATURAL LANGUAGE

Deductive reasoning

GEOMETRICA L FIGURE

Discursive apprehension. Perceptual ap. Operative ap.

way of mathematical working
in a situation of geometry problem solving

Figure 10. Skills and coordinations to be developed in mathematics
education. Most often students confine to perceptual apprehension
and reduce discursive apprehension to simple denomination of
recognized shapes.
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Conclusion

There is no direct access to mathematical objects but only to their
representations. We cannot compare any mathematical object to its
representations, as we can compare a model with its photo or its drawn
image. This comparison remains attached to epistemological patterns to
analyze knowledge (Platon, Res Publica VI 510 a-e, X 596 a-e), and it
cannot be relevant in mathematics and in teaching of mathematics. We can
only work on and from semiotic representations, because they are the means
of processing. At the same time we have to be able to activate in parallel
two or three registers of representations. That determines the three specific
requirements in learning of mathematics: to compare similar representations
within the same register in order to discriminate relevant values within a
mathematical understanding, to convert a representation from a register to
another one; and to discriminate the specific way of working in order to
understand the mathematical processing that is performed in this register.
This is not the familiar way of thinking. And it is the reason why an
anchorage in concrete manipulations or in applications to real situations is
often pursued in order to make sense of the activity proposed. But that
comes often to a sudden end, because it does not provide means of transfer
to other contexts. Besides, representation becomes usable in mathematics
only when it involves physical things or,concrete situations. We find the
same problems with visualization use, whatever the register be, it focuses
on a synoptic way, organization of particular units and it does not show
objects as any iconic representation. One does not look at mathematical
visualization as one does at images.

Mathematical activity has two sides. The visible or conclusive side
is the one of mathematical objects and valid processes used to solve a given
problem. The hidden and crucial side is the one of cognitive operations by
which anyone can perform the valid processes and gain access to a
mathematical object. Registers of semiotic representation and their
coordination set up the cognitive architecture which anyone can perform
the cognitive operations underlying mathematical processes. That means
that any cognitive operation, such as processing within a register or
conversion of representation between two registers, depends on several
variables. To find out what these variables are and how they interact is an
important field of research for learning mathematics. Indeed, from a
mathematical point of view only one side matters, from a didactical point
of view the two sides are equally essential. In concrete terms, any task or
any problem that the students are asked to solve requires a double analysis,
mathematical and cognitive: the cognitive variables must be taken into
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account in the same way as the mathematical structure for "concept
construction" (Duval, 1996). But for that, teachers must know themselves
these variables and take them into account as didactical variables. They
must be able to analyze the function that each visualization can perform in
the context of a determined activity (Duval et al., 1999). We are here in
front of an important field of research. But it seems still often neglected
because most didactical studies are mainly centered on one side of the
mathematical activity, as if mathematical processes were natural and
cognitively transparent. There is no true understanding in mathematics for
students who do not "incorporate" into their "cognitive architecture" the
various registers of semiotic representations used to do mathematics, even
those of visualization.
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