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Abstract

A Monte Carlo simulation study was conducted to determine the
bootstrap correction formula yielding the most accurate
confidence intervals for robust measures of association.
Confidence intervals were generated via the percentile,
adjusted, BC, and BCa bootstrap procedures and applied to the
Winsorized, percentage bend, and Pearson correlation
coefficients. Type I error, bias, efficiency, and interval
length were compared across correlational and bootstrap methods.
Results revealed the superior resiliency of the robust measures
over the Pearson r, though neither robust correlation
outperformed the other. Unexpectedly, the four bootstrap
techniques achieved roughly equivalent outcomes. Based on the
these results, it appears that the more complex bootstrapping
procedures may not be worth the additional computational
expenditures.
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Bootstrapping Confidence Intervals for
Robust Measures of Association

The purpose of this study was to compare bootstrapping
approaches to estimating confidence intervals for various
correlation coefficients. The paper initially describes the
concept of robustness, robust and non-robust measures of
association, and bootstrapping procedures. Next, the simulation
method is detailed, including a discussion of indices used to
compare the various measures and procedures. Finally, results
conclusions, and recommendations are offered.

The Concept of Robustness

Classical statistical procedures are often inadequate due
to their sensitivity to departures from distributional
assumptions. The extent to which an estimator is able to
withstand such deviations has been dubbed robustness (Box,
1953). The term robustness is here used in the narrow sense as
applied only to distributional assumptions, though other
standard assumptions could be invoked. Although conceptually
distinct, distributional robustness and outlier resistance are
essentially synonymous notions (Huber, 1981).

Robustness, or resistance as it was initially termed, was
generally understood from the inception of the major statistical
advances that occurred during the 19th and early 20th centuries
but was not seriously examined until the 1950s (Staudte &
Sheather, 1990; Stigler, 1973) . While some earlier theorists
assessed the consequences of distributional nonnormality for
hypothesis testing (viz., the robustness of validity), few
explored the stability of power or of the length of confidence
intervals (viz., the robustness of performance), though the
latter "usually [brings] for free a satisfactory robustness of
validity (but not vice versa)" (Huber, 1972, p. 1046). Tukey
counseled against the then-prevailing habit of "sweeping the
dirt under the rug" (1960, p. 450) and ignoring comparisons of
the relative efficiency of various point estimates. He
admonished, "nearly imperceptible_non-normalities may make
conventional relative efficiencies of estimates of scale and
location entirely useless" (p. 474).

Partly as a result of such admonitions, a number of robust
analogs to traditional estimators, population parameters, and
hypothesis-testing methods have been developed during the past
40 years. Robust procedures typically retain the statistical
interpretations associated with classical procedures but are
more resistant to data nonnormality.
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Nevertheless, applied researchers have been slow to adopt
the newer methods. The hesitancy is due in part to a lack of
knowledge. Over two decades ago, Bradley (1978) bemoaned the
general poor treatment of assumption violation in elementary
statistics textbooks noting that "reassuring complacency of
tone, depreciating the consequences of assumption-violation, or
using overly exuberant language to exult over claimed robustness
seems to be endemic in statements about robustness" (p. 145). It
is no wonder that "most [modern] psychologists believe that all
practical problems associated with statistical methods were
solved by the year 1955" (Wilcox, 1998b, p. 60) . In spite of
this widespread misconception, several have recently asserted
the need for newer methods (e.g., Wilcox, 1996, 1998a; on the
debate in general, see the May 1998 issue of the British Journal
of Mathematical & Statistical Psychology, as well as Hampel's
[1998] depiction of the current state of affairs).

The Pearson Product-Moment Correlation

One common misconception involves the robustness of the
product-moment correlation coefficient. The classical functional
for measuring linear association between two continuously-scaled
variables is defined as

p.x) (y [1.3,)

13,0, =
xcry

(1)

where pt and are the population means of the population

variables x and y, respectively, and a, and ay are the population
standard deviations of x and y, respectively. The maximum
likelihood sample estimator of rho, is estimated by r:

17)
13XY = rxy = ns sX Y

(2)

where X, Y, sx, and sy are the sample means and standard
deviations of the sample variables X and Y, respectively.

Sir Ronald A. Fisher defined the normal theory sampling
distribution of r in samples of size n (1915, p. 508) to be

f (rxy) =
1 [(X-gx)2 2p(X-px) (Y-gy)4. (Y-11021

2axcry 2a 12 dxdy . (3)1 2axa

27caxay1/1 p2

5



Bootstrapping 5

With "large samples and moderate or small correlations" (Fisher,
1958, p. 192) the sample correlation coefficient is distributed

normally around p with variance

(1 p2)2
var(r) =

n 1
(4)

The standard (1 a) 100% confidence interval limits for p,
again assuming sampling distribution normality, are calculated
by

and

Lower = r z 2* Vvar (r) (5)

Upper = r z, 2* Vvar (r) , (6)

where a is the inclusion probability. Here, zi12 and Za/2 are

quantiles from the standard normal distribution.

Fisher's z Transformation

Because the sampling distribution of r is complicated when

pxy 0, a transformation of r was proposed by Fisher (1915,
1921):

13, = r, = = tanh-1 r ,

or equivalently

ln(1 + r)= .5
ln(1

pz = = tanh-1 p (7)

ln (1 + p)= 5
ln (1 p)

(8)

This inverse hyperbolic tangent transformation compensates for
the nonnormality of the sampling distribution of r and
approaches a normal distribution.

A (1 a) 100% confidence interval for z' is formed as

Lower = (z

and

.513

n 1) z a(11 3)

6
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+ za(n 3) (10)

where za is the a quantile of the standard normal distribution
and a the inclusion probability. The intervals can be reverse-
transformed to the metric of r for ease of interpretation.

Studies on the Robustness of r
An extensive literature review of the robustness of r was

conducted, but will not be presented here due to space
limitations (for details, see King, 2000) . To summarize,
approximately two-thirds of the reviewed studies expressed
reservations for the use of r under some nonnormal conditions.
That percentage was even higher when only more recent studies
were considered. Due to the availability of more powerful
simulation capabilities beginning around 1960, studies conducted
after that date should be weighed more heavily.

Under independence (i.e., p = 0) most reported the sampling
distribution of r to be robust to bivariate nonnormality (Duncan
& Layard, 1973; Dunlap, 1931; Gayen, 1951; Havlicek & Peterson,
1976, 1977; Nair, 1941; Norris & Hjelm, 1961; Pearson, 1931,
1932), unless mixed or contaminated distributions were under
review (Devlin, Gnanadesikan, & Kettenring, 1975; Duncan &
Layard, 1973; Edgell & Noon, 1984; Kowalski, 1972; but cf.
Pearson, 1929; Srivastava & Awan, 1984). However, the majority
of studies employed distributions that diverged minimally from
the bivariate normal condition, especially the earlier studies
(e.g., Pearson, 1931, reported skewness = .99 and kurtosis
3.83 for his most excessive condition!). For more extreme
departures like severe skewness (Baker, 1930), the L
distribution (Blair & Lawson, 1982), or the Cauchy distribution
(Edgell & Noon, 1984), r was not found to be robust.

When p does not equal zero and the bivariate surface is
nonnormal, r is likely biased, sometimes inordinately so. Of all
the reviewed studies which included a dependence condition, only
two (Pearson, 1929; Zeller & Levin, 1974) found r to be
completely robust; the majority expressed reservations for at
least some situations (Cheriyan, 1945; Chesire et al., 1932;
Devlin et al., 1975; Duncan & Layard, 1973; Gayen, 1951;
Haldane, 1949; Hey, 1938; Kowalski, 1972; Norris & Hjelm, 1961;
Rider's [1932] results, though not his comments).

Numerous researchers hold that all uses of r are completely
robust to distributional assumptions. This misunderstanding may
have arisen due to the selective literature reviews conducted in
some prominent studies. For example, Edgell and Noon (1984)
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failed to survey robustness studies conducted by Baker (1930)
and Blair and Lawson (1982). Both established the inadequacy of
r under certain nonnormal conditions, including the case of p ._
0. In addition, certain literature reviews neglected to cite any_
studies demonstrating the non-robustness of r (e.g., Zeller &
Levine, 1974) or failed to accurately represent such findings in
summarizing their literature reviews (e.g., Havlicek & Peterson,
1976, p. 1321).

Further, when quantitative measures of resistance are
applied to p, additional problems surface. For example, the
influence function and breakdown point of p suggest that even a
single pair of outlying scores can render the parameter
virtually meaningless for quantifying the bivariate relationship
underlying the majority of data points (Devlin, et al., 1975;
Wilcox, 1993).

Robust Measures of Correlation

The literature on robust correlations is scattered and
scarce, especially regarding comparative simulation studies.
Though the quadrant correlation has been available for a century
(Blomqvist, 1950; Sheppard, 1899), the majority of resilient
measures of association have been introduced only recently. Of
these, two appear particularly promising. Along with possessing
properties that curb the influence of distributional anomalies,
both the Winsorized correlation (Devlin et al., 1975;
Gnanadesikan & Kettenring, 1972; Wilcox, 1993) and the
percentage bend correlation (Wilcox, 1994) yield interpretations
analogous to the popular Pearson r. Yet few have explored these
newer correlation coefficients, notably with respect to
generating accurate confidence intervals. Likewise, little is
known about the latent sampling distribution of each index.

The Winsorized Correlation

Winsorization involves ordering the scores in a
distribution and then deleting the y smallest values and setting

them equal to X(1, + 1), and deleting the y largest values and

setting them equal to X(r, - y). In other words, potential outliers
are removed from each tail of the distribution and replaced with
the most extreme score remaining in that tail. Delvin et al.
(1975) present the equations and proofs for calculating a sample
Winsorized correlation coefficient (r,) based on the Winsorized
sample mean and the Winsorized sample variance. This statistic
can be conceptualized as the application of the ordinary Pearson
formula to two Winsorized score distributions.

8
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Wilcox (1993) evaluated Type I error probabilities and
power calculations for the ordinary r versus rw via computer
simulations. The Winsorized correlation bettered r in terms of
error rates across a range of conditions. For the bivariate
normal case r evidenced superior power; however, rw demonstrated
greater power when nonnormal conditions were explored. Wilcox
could not determine an optimal method for generating accurate
confidence intervals for the dependence condition, including
application of the bootstrap (though no results were offered),
but some success was had in transforming rw to a regression
coefficient.

The Percentage Bend Correlation

Wilcox (1994) suggested a percentage bend correlation as a
robust measure of association. This correlation is based on the
percentage bend measure of location and the percentage bend
midvariance. Computational details and proofs are discussed in
Wilcox (see also King, 2000). Outlying scores are defined via a
constant labeled p. As with the Pearson and Winsorized
correlations, the percentage bend correlation will equal zero
(or come very close) under independence and fall between -1 and
+1. Many alternative robust correlations do not meet these
criteria.

Few studies have investigated this new correlation
coefficient. Wilcox (1994) defined the measure and provided a
test for independence. He also compared tests of statistical
significance for r, rw, and Epb. In comparison with r, tests of

Pb more closely mirrored expected Type I error rates for samples

of size 10 and 20 with anominai = .05, except under bivariate
normality. In terms of power evaluations, tests of rpb compared
favorably with tests of r and generally outperformed tests of rw
under nonnormal conditions, so long as p = .1 was used to compute

..p1D However, the Pearson correlation edged out the others under
distributional normality.

Bootstrapping Confidence Intervals

For statistics with nco known sampling distribution, Efron's
(1979, 1982) bootstrap has proven to be effective in a variety
of contexts. The conjecture is that the sampling distribution of
a statistic can be approximated by the distribution of a large
number of resampled estimates of the statistic obtained from a
single sample of observations. The distribution of resampled
estimates forms an empirically-derived sampling distribution
from which confidence intervals or other indices may be
estimated.
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Efron settled on the name from the mythical Baron von
Munchausen's unique manner of escape from a deep lake: He pulled
himself up by his bootstraps (Efron & Tibshirani, 1993). Tukey's
suggested nomenclature was equally descriptive. According to
Efron (1979, p. 25), Tukey favored the term shot un because the
method "can blow the head off any problem if the statistician
can stand the resulting mess."

The bootstrap sampling distribution may be employed either
for inferential purposes (e.g., testing hypotheses about
parameters) or for description (e.g., estimating a likely range
for some parameter at a given confidence level or result
stability or replicability) (Thompson, 1993). The technique is
especially valuable when confronted with statistics having no
known sampling distribution.

Due to its efficacy, bootstrapping has become fashionable
in many fields. Wilcox (1997a, p. 45) stated that over 1,000
journal articles on bootstrapping have already seen publication!
Further, "an almost bewildering array" of variants of bootstrap
confidence intervals have been advanced (Hall, 1988, p. 927).
These vary in the accuracy with which the bootstrap-generated
interval spans the true interval. Accuracy is also contingent on
the statistic under examination: No single bootstrapping routine

is optimal across all statistical techniques.
The present investigation considered four of the more

popular, well-studied procedures: the percentile bootstrap, the
adjusted bootstrap, the bias-corrected bootstrap, and the bias-
corrected and accelerated bootstrap.' Though some of the newer,
more complex methods appear promising, it seems that most remain
largely in the developmental stage or require unreasonable
execution time. Additional research into the theoretical
properties and practical usage of these newer approaches is
still needed.

Description of the Bootstrap

Let x be a population of observations and X a random sample

of n observations drawn from population x. A parameter
summarizing the population will be denoted as 0, and the sample

estimate as O. The symbol F(0) will represent the theoretical

sampling distribution for the population.
In Monte Carlo bootstrapping experiments, each of m

simulated data sets (samples) are resampled B times, with each
resample being of size n (Lunneborg, 2000). Resampling involves
repeatedly drawing observations from a sample with replacement
until n is reached. Next, a bootstrap estimate of the parameter
is acquired for each resample. The bootstrap estimate is
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represented by 6*. The process is then repeated B times yielding
a bootstrap sampling distribution of estimated parameters

(denoted POO) from which confidence intervals and other
information can be derived. In theory the bootstrap sampling
distribution should mimic the true sampling distribution of the
statistic.2

Types of Bootstrapped Confidence Intervals

The percentile bootstrap (Efron, 1979) ranks as the most
popular bootstrap procedure (according to Hall's, 1988, informal
inquiries), although "the great majority of non-technical
statistical work...does not make it clear which...[technique] is
employed" (Hall, p. 927). This "arch" bootstrap (Sievers, 1996,

p. 381) entails first calculating 8* for each resample. The

distribution of conditionally independent statistics,

are then ordered by value. An a-level confidence interval

includes all the values of between the a/2 and the 1 a/2

percentiles of the (ordered) bootstrap sampling distribution,

Another option is to widen the traditional bootstrap
confidence band by the factor ((n+2)/(n-1)]1/2 (Efron, 1982).
Both endpoints of the confidence interval are adjusted an equal
amount. Following Strube (1988), this approach will be here

referred to as the adjusted bootstrap.
Third, Efron (1981, 1982, 1985) offered the bias-corrected

(BC) bootstrap to correct for problems with the percentile
bootstrap. The BC method allows for the possibility that the

distribution of 8* 0 is not centered on zero but is distributed

around a constant zoao, where ati is the standard error of o. In

other words, the procedure rests on the assumption that there

exists some monotonic transformation of F(0) whose differences are

distributed in some known way, usually as a normal variate
(hence the constant being labeled zo). The constant must next be
estimated and applied to the bootstrap sampling distribution.
Because the method is transformation invariant, it is not
required that the specific transformation function be known,
only that one exists (Mooney & Duval, 1993).

Efron (1987) proposed the bias corrected and accelerated
(BCa) bootstrap to stabilize the variance of the bootstrap
distribution (i.e., remove the tendency for the variance to
accelerate across values in the sampling distribution), in
addition to incorporating the bias correction described above
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Extensive calculations are involved with this procedure (but see
Lunneborg [2000, pp. 164-165] for a readable description).

In spite of the involved computational demands, the BCa
holds much promise as a bootstrap correction procedure for
several reasons. In terms of coverage error, Efron (1987) and
Hall (1988) proved that the BCa method yields second-order
correctness under a wider class of problems than the BC
bootstrap. Second, the BCa bootstrap is transformation invariant.
Moreover, the specific transformation may remain unknown while
employing the BCa.

However, there are potential drawbacks to the method.
First, it is assumed that a transformation exists that yields a
distribution of differences with a known shape (Mooney & Duval,
1993). Second, Hall (1988) lamented the fact that standard
normal tables must be consulted in applying the method. But with
the advent of more complex statistical computer programs, this
deterrence is soon becoming obsolete. Third, the acceleration
constant proves troublesome to calculate in many cases (DiCiccio
& Romano, 1989). Finally, simulations conducted by Hall suggest
that the BCa bootstrap may produce abnormally short intervals
with small samples when wide nominal coverage is of interest.

Research on Bootstrapping r

A thorough literature review was conducted of studies that
applied bootstrapping to the Pearson correlation. These results
will be briefly summarized (for details, see King, 2000).
Although results were somewhat mixed, bootstrapping appears to
improve upon the normal theory intervals both in terms of
probability coverage and interval accuracy for most mixed normal
and nonnormal distributional conditions (Efron, 1988; Hall,
Martin, & Schucany, 1989; Lunneborg, 1985; Rasmussen, 1988,
1989; Sievers, 1996; Strube, 1988) . But under bivariate
normality the standard intervals may be preferable (Rasmussen,
1987). While some studies reported problems with statistical
significance levels when stringent nominal alphas were employed,
others found the opposite effect (cf. the 1987 and 1989
experiments both conducted by Rasmussen!). Methodological
variations may be the source of such discrepancies.

In comparing the various bootstrapping procedures, it seems
that the adjusted intervals (i.e., adjusted, BC, and iterated
bootstrap3) formed more accurate confidence intervals and
probability levels than did the percentile and percentile-t3
methods (e.g., Hall et al., 1989; Strube, 1988). Results for the
latter two techniques differed in that the percentile tended to
undercover while the percentile-t tended to overcover (Hall et
al., 1989; Rasmussen, 1987; Sievers, 1996). The ordinary

12
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percentile-t was found to effect relatively large standard
errors (Hall et al., 1989; Sievers, 1996), though a modified
version performed well. Finally, a study by Wilcox (1991) in
which no bootstrap method achieved accurate intervals under
variable dependence seems to be somewhat of an anomaly.

While it seems that at least some problems with testing and

estimating p can be alleviated by applying the bootstrap, others
cannot. Even if a bootstrap method proves valuable in obtaining

proper confidence intervals for p, one may not wish to use a
correlation coefficient that is so affected by outliers and
related distributional departures from normality.

Research on Bootstrapping Robust Correlations

Little research has been done on the application of the
bootstrap to robust correlations. Wilcox (1997b) proposed a test
for the independence of p > 2 random variables using the
percentage bend correlation. Although this multivariate
application is not germane to our study, he also examined the
computation of confidence intervals for ppb in the bivariate
case. A percentile bootstrap method was employed in which B
399 resamples were simulated from theoretical distributions
demonstrating varying levels of skewness and kurtosis (in some
cases reaching very extreme conditions) . One thousand samples

were acquired per condition. Population correlations of p = 0,
.3, .6, and .9 were examined. Bootstrapping was also applied to p
for comparative purposes.

Because the percentage bend correlation does not exactly
equal p under dependence, approximate populations were generated

by drawing 100,000 pairs of samples and then calculating NI, for
each. The bootstrap confidence intervals for ppb more closely
spanned the desired interval for practically all conditions and
sample sizes than did those computed for p. The latter diverged
considerably under extreme nonnormality. For example, with n

50, p = .9, a = .05, and high kurtosis, the confidence interval
for ppb yielded an interval with probability coverage of 1 a

.966, while the interval for p only covered at .253. Though
results were not provided, Wilcox assessed conditions in which
one or both marginal distributions were skewed, sometimes in
opposite directions. These outcomes were (reportedly) promising
as well.

Wilcox (2001) applied the percentile bootstrap, using B =
599, to two measures of association: p and Spearman's rank
correlation (ps). He also examined a modified percentile method
in conjunction with p, and a nested bootstrap applied to all
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three correlation coefficients. As regards Type I error, Wilcox

found that the nested bootstrap with p produced acceptable error
probabilities, and either bootstrap method worked well with the
robust correlations. However, none of the methods resulted in

satisfactory confidence intervals.

Importance and Purpose of the Study

Given the current emphasis in many fields on reporting
effect size measures and confidence intervals for point
estimates (Thompson, 2001; Vacha-Haase, T., Nilsson, J.E.,
Reetz, D.R., Lance, T.S., & Thompson, B., 2000; Wilkinson & APA

Task Force on Statistical Inference, 1999), estimation is

clearly an important issue to consider in addition to
inferential testing. But at the current level of research, it is

unknown which bootstrap technique should be exercised in
constructing confidence intervals for robust measures of linear

relationship.
Although the Winsorized and percentage bend correlations

have been compared with each other and with the ordinary
correlation in terms of committing Type I errors (Wilcox, 1993,
1994, 1997b) , only Wilcox (1997b, 2001) has examined the
accuracy of bootstrapped confidence intervals for robust
measures. Clearly, more research is needed in this area. So the
primary purpose of the present study was to compare various
methods of bootstrapping confidence intervals for each of the

above-mentioned robust correlations and p. For completeness, the
Fisher-transformed correlation will be included, although it
frequently fails to produce even asymptotically correct results
(Duncan & Layard, 1973).

Research Questions

1. How do confidence intervals for the robust correlations

pw and ppb compare with those for p and its transform in terms of
accuracy and stability?

2. Which bootstrap method provides the most accurate and
stable confidence intervals for pw? for Ppb?

3. With small samples which bootstrap method provides the

most accurate and stable confidence intervals for pw? for ppb?

4. Under extreme distributional conditions which bootstrap
method provides the most accurate and stable confidence

intervals for pw? for ppb?
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Due to its computational efficiency in bootstrapping
(Wilcox, 1997b), all computer simulations were conducted using
the S-Plus statistical package running on a 600 MHz Pentium III
computer with 256 Mb RAM. The procedure for the simulations was
as follows:

1. Randomly generate N = 1,000,000 observations from a
population with known characteristics (i.e., constrained through
the simulation procedure to have certain parametric properties).
This is the derived population. The step is necessary because
the Winsorized and percentage bend correlations will not usually

exactly equal p when dependence exists, and a simulated
population allows comparisons between p and the robust
correlations.

2. Calculate the parameters p, pz, pw, and ppb for the

population.
3. Randomly select without replacement a sample of size n

from the population.
4. Calculate the statistics r, rz, rw, and rpb for the

sample.
5. Randomly select with replacement a resample of size n

from the sample. This is one bootstrap sample.
6. Calculate the statistics r*, rz*, rw*, and ripb* for the

resample, where the asterisk denotes a bootstrap estimate.
7. Repeat Steps 5 and 6 a total of B = 500 times forming

500 bootstrap samples.
8. Calculate 95% confidence intervals for p, pz, Pw, and pplo

using each of the four bootstrap procedures.
9. Repeat Steps 3 through 8 a total of m = 100 times

forming 100 samples.
10. Repeat Steps 1 through 9 for each condition of interest

(described below).
While one would normally wish to secure at least 1,000

bootstrap samples (for a fuller discussion, see King, 2000), the
extensive computations required for the present study (i.e.,
estimation of confidence intervals via four bootstrap methods
for each of four correlation coefficients per sample) precluded
this as a possibility. With B set to 3,000, for example, results
from only about 25 samples were acquired in eight hours time.
With 100 samples needed per condition and around 150 total
conditions to be evaluated, employing such a large number of
resamples became impractical.

2.5
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Instead, it was decided that 500 resamples would yield
relatively accurate confidence intervals, at least for
comparative purposes. Each bootstrap method should "suffer"
equally due to the small value of B, assuming that the accuracy
of each is dependent on sample size to the same extent.
Similarly, it would have been desirable to generate 1,000
samples, but m = 100 was settled upon due to computational time
restraints.

Population Characteristics

Real data often demonstrate excessive distributional
nonnormality (Bradley, 1977; Micceri, 1989; Rasmussen, 1986;
Stigler, 1973; Wilcox, 1990) . In fact, after reviewing 440
empirical studies, Micceri (1989) encountered only 15.2% of the
score distributions with both tails having weights at or about
those for the Gaussian distribution. Various distributional
abnormalities can moderate the accuracy of a bootstrap procedure
for a given statistic (Hall, 1988; Wilcox, 1997b) . Thus for the
present study it was decided to vary distributional shape,
strength of correlation, and sample size in evaluating bootstrap
approaches. Contaminated and mixed distributions were also
investigated.

Following Wilcox (1997b) the 2 and h distribution (Hoaglin,
1985) was adopted to alter the skewness and kurtosis of each
population. Hoaglin's distributions allow one to construct
marginals according to four general shapes: normal, symmetric
with a heavy tail, asymmetric with a light tail, and asymmetric
with a heavy tail. Increasing 2 skews X, and h influences
kurtosis. When both a and h are set to zero, X has a standard
normal distribution.

The method consists of initially generating observations
from a standard normal distribution, Z, for each variable. X is
then set to

for g > 0; otherwise

(egz= en22/ 2X (82)

= Ze1z2/2 (83)

to prevent division by zero.
Table 1 lists summary statistics using several illustrative

populations each having 1,000,000 observations for the values of

.16
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2 and h that were employed in the present study. A wide range of
marginal distributional shapes were investigated.

Several sample sizes were examined: n = 20, 50, 100, and
250. The larger ns represent sample sizes greater than are
typically available to most social scientists (cf. Thompson,
1999; Thompson & Snyder, 1997), and samples smaller than n = 20
should probably not be employed with robust correlations.

Strength of linear relationship was also varied. Population
rhos took on values of 0, .4, or 8. However, these values will
only be met for the Pearson correlation because the Winsorized
and percentage bend correlations will not necessarily equal p
under dependence.

In addition, the effect of mixed and contaminated
distributions was investigated. Three mixed distributions were
created for each of two nonnormal distributional conditions.

Various population correlations (i.e., p 0, .3, .5, .7) were

constructed under two distributional conditions (slight
kurtosis: marginal distributions set to 2 0, h = .1; extreme
nonnormality: marginals set to a = .5, h = .3) . The classic case
of contamination is formed by combining a normal marginal
distribution (X) and its square (X2). This is a stringent test of
any index because the distributions are completely dependent but
also uncorrelated (Edgell & Noon, 1984). This condition was
evaluated with n set to 100.

Comparative Criteria

Type I error. Type I error rate, interval ratio, bias, and
standard error estimates were used for comparing the performance
of the bootstrap methods. Observed Type I error rates were

recorded using the equation D obs 111-10 Olower kipper) / where m

the number of samples drawn, and the es are the estimated
lower and upper limits of the confidence interval (Sievers,
1996) . The standard error of each alpha rate is equal to

Vs(1 s)/m, where s is the statistical significance level and m
the number of samples drawn from the simulated population
(Rasmussen, 1989). Values within ±2SE (i.e.,

V.05(1 -.05)/100 = .02 *2 = .044) may be considered within
sampling error, though the discrepancy between a given error
rate and the nominal value is not especially relevant to our
purposes because the present concern is in locating the
bootstrap method yielding the most accurate error rate per
correlation type, regardless of the value's distance from the
nominal rate. Nevertheless, the demarcation is useful in
revealing bootstrap methods that be particularly inaccurate.
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Interval ratio. Interval accuracy is determined by
comparing the bootstrap confidence intervals to "true"
confidence intervals. However, the distribution of m sample
statistics obtained from Step 9 is not sufficient to constitute
a Monte Carlo estimate of the true confidence intervals.
Therefore, 10,000 samples were drawn from each derived
population. This process was repeated for each sample size
condition. The distribution of correlation coefficients
calculated form each sample serves as an estimated "true"
sampling distribution from which the quantiles Qa/2 and 21- a/2 can
be obtained. These quantiles are empirical estimates of the
"true" limits of the sampling distribution of 0 and were used as
a standard against which to compare several indices to be
described next (see King, 2000, for details).

A modification of a ratio proposed by Efron (1988) was
applied to compare interval lengths. Efron's index entailed
dividing the length of the parametric interval of r by a
bootstrap interval (see Equation 52). As it was not the aim of
the present study to compare bootstrap to parametric intervals,
the length of each bootstrap interval was divided by the length
of the "true" (Monte Carlo-estimated) confidence interval. While
this ratio indexes the extent to which the intervals span an
equal distance, it does not necessarily quantify the discrepancy
between bootstrap endpoints and those of the "true" interval.
Two intervals could conceivably have identical lengths but no
overlap at all.

Bias. An even more useful gauge is bias. Bias quantifies
the average discrepancy between the sample estimates and the
parameter. If a negative value is obtained, the estimator

underestimates the parameter on average. If BIAS (E.) = 0, the

estimator 0 is unbiased and the sampling distribution of 0 is
centered on 0. Because the present study was primarily designed
to compare confidence intervals and not point estimates, the
ordinary bias formula was modified such that each "true"
endpoint was compared with the bootstrap-estimated endpoint:

±kower(i) + leupper upper l)

Interval Bias = i=1

where Elow and Supper are the "true" (1 a) 100% lower and upper

confidence intervals for 0, and tio and kmer are the bootstrap-

estimated intervals. Because the parameter of interest in this
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case is not the population correlation coefficient but the
endpoints of the "true" interval, a new symbol is needed for
referencing the theoretical endpoints. This was arbitrarily set

to be E (Xi) so that theta may be reserved for the usual
population correlation coefficient.

Equation 11 computes the average of the absolute value of
the differences between each bootstrap-estimated endpoint from
the corresponding Monte Carlo-generated "true" endpoint. Such a
bias indicator would seem to be particularly relevant in
evaluating confidence intervals. While the distinction between
upper and lower endpoint bias is obscured due to the sumation
performed in the equation, such is rarely of interest.

Efficiency. The standard error (SE) of a statistic is
defined as

2

SE I X, /1) = = [6, _ oi]
i=1

(12)

and measures the spread of the estimates. This index is often
referred to as a measure of efficiency. Equation 12 was modified
similarly to that described for the bias measure.

Comparative Procedures

Correlational analysis. Although not typically reported in
simulation studies, Type I error rates for the four bootstrap
methods could be correlated to further explore the variable
relationships. These correlations measure the consistency with
which error rates for any two bootstrap methods covary across
the range of simulation conditions. However, one should not
infer from a large correlation that error rates for the two
methods are identical. In fact, rates for one bootstrap
procedure may run systematically higher or lower than another,
but if the rates for each rise and fall monotonically in the
same fashion across simulation conditions, then the correlation
coefficient will fall near 1.0. Incidentally, this use of the
Pearson r illustrates the value of the ordinary correlation for
situatioiis in which one does not wish to remove outliers.

Analysis of Variance. Although previous studies have
usually compared error rates in an informal manner, a more
formal statistical analysis was needed to process the large
number of indices obtained. Analysis of Variance (ANOVA) was
proposed as a means of quantifying the sources of variation
affecting error rates. There are five systematic (nonrandom)

9
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variance components that could influence error rate: correlation
type, bootstrap method, distributional shape (2/h combination),

sample size (n), and strength of population bivariate

relationship (p).
One might be tempted to incorporate all of these factors in

a five-way ANOVA as independent variables. Ignoring the
interpretive difficulties inherent in such a proposal, such a
partitioning is not possible because there is only one
observation (error rate value) per cell of the balanced design.
Instead, separate ANOVAs were computed in hopes of untangling
the variable relationships. In particular, ANOVAs were computed
in which (a) bootstrap method and correlation type served as
predictors; (b) the distributional indicator (9/h combination)
was added to the variables listed in (a); (c) strength of

population correlation (p) was added to (a); and (d) sample size
was added to (a). The drawback to such a course is that higher-
order interactions cannot be assessed and quantified.

Results

1. How do confidence intervals for the robust correlations p, and

Ppb compare with those for p and its transform in terms of
accuracy and stability?

Tables depicting alpha rates, bias, and interval ratios
were constructed by averaging across the m samples for each
combination of correlation type and bootstrap method and were
broken down by distributional condition, sample size, and
strength of population correlation. The data were also collapsed
across the nine distributional conditions for easier viewing,
but any performance attributable to distributional shape is
masked by such a summary table. Tables 2-6 and Figures 1-2
display representative results. Disaggregated data and fuller
explanations can be found in King (2000).

Confidence intervals formed for the robust correlations
outperformed those for r and r, across most of the specified
criteria. Type I error rates generally fell closer to the
nominal value, bias and efficiency were minimal, and "true"
interval lengths were more faithfully reproduced by r, and b.
Specifically, with nonnormal marginal distributions the robust
rs frequently provided increased accuracy in error and bias
rates. With normal distributions all four correlations
functioned similarly in terms of Type I probability, though r
and r, bettered r, and _1,}, according to bias, at least when small

samples were involved.
These findings for bias are not unanticipated because the

robust calculations are intended to act as correctives when

4.0
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nonnormal conditions arise. But the same trend should have
emerged for Type I error rates.

The robust measures clearly surpassed r for both error
probability and bias rate when contaminated and mixed
distributions were examined. The divergence between robust and
nonrobust methods was most noticeable under the extremely
nonnormal 2 = .5, h = .3 distributional conditions. The
differential performance was particularly evident in the bias
index.

It should also be noted that neater, more consistent
results were realized with the bias criterion than with Type I
error rate, in general. This is probably due to the dichotomous
nature of the latter (i.e., a given interval either does or does

not enclose the parameter), in contrast to the ratio-scaled bias
index. These dynamics may be responsible for some of the
unexpected outcomes involving Type I error.

Efficiency rates varied little across correlational
measures; all four evidenced similar stability. But when
disparities arose, the robust correlations were more efficient.

In terms of interval length the Pearson statistics
consistently underestimated the "true" (Monte Carlo simulated)
endpoints, more so under nonnormal conditions. At times, such
intervals were little more than half the "true" length. Interval
lengths for the Winsorized correlation were a bit longer than
desired, while the percentage bend correlation closely mimicked
the "true" intervals in almost every instance.

2. Which bootstrap method provides the most accurate and stable

confidence intervals for pw? for ppb?

No bootstrap technique emerged as unmistakably superior
across a majority of conditions, though the BC and ordinary
percentile methods yielded slightly more accurate intervals in
some cases. The BCa yielded results similar to the percentile and
BC procedures in all but a few situations, while the adjusted
bootstrap intervals were, by and large, unacceptable.

3. With small samples which bootstrap method provides the most
accurate and stable confidence intervals for pw? for ppb?

Bootstrap procedures were not found to differ appreciably
in terms of Type I error rate or bias for the majority of the
simulation experiments. Consequently, one method cannot be
selected as optimal for any specific condition, including sample
size. Nonetheless, the adjusted bootstrap can be ruled out as a
contender due to its relative inaccuracy, especially in terms of
error probabilities. In addition, the BCa frequently evidenced

21
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slightly elevated bias and error rates with r and rz and thus
should probably not be applied to the ordinary correlation.

A minor trend in stability emerged at small sample sizes as
interval lengths for the adjusted bootstrap ran wide, next was
the BCa, then the BC, and finally the ordinary percentile. These
differences subsided with large samples in place. This trend was
at least partly unexpected in that the BC and BCa techniques
should not fall systematically shorter or longer than the
percentile method: The bias and variance inflation corrections
may alter the intervals in either direction. But the adjusted
bootstrap would be expected to form wider intervals than the
ordinary bootstrap because the calculations involve a sample
size correction. These dynamics account for the similarity
between the adjusted and percentile ratios when large ns were
involved.

Theory predicts that the bootstrap modifications should
diverge in accuracy for each of the three indicators (error,
bias, and interval ratio). The BCa should stand as the most
accurate approach, then the BC, and, lastly, the percentile
method. The sample size adjustment would likely fall between the
BC and percentile techniques. But no such orderly progression
was observed for the first two criteria, other than the
unacceptable confidence intervals produced by the adjusted
bootstrap.

4. Under extreme distributional conditions which bootstrap
method provides the most accurate and stable confidence

intervals for IN,? for NO

With skewness and kurtosis elevated no systematic
relationships were observed, beyond those just discussed,
between distributional shape and bootstrap method with reference
to accuracy or stability. This was true for both correlation
coefficients.

Under contaminated and mixed distributions unstable error
rates arose when BCa intervals were combined with r, but no
substantial problems surfaced with the technique applied to
robust correlations. Minor peaks in bias were similarly noted
for the BCa, but only when joined with r or rz. Surprisingly, the
adjusted bootstrap was as accurate as the percentile and BC
techniques for these atypical conditions.

Concluding Remarks

Wilcox (2001, p.46) summarized his bootstrapping results
thusly, "These results paint a rather complicated picture about
which method...to use." The same could be said of results from

22



Bootstrapping 22

the present study. However, three conclusions can be drawn from
this fairly extensive simulation study. First, as regards the

bootstrap procedures, the four methods under investigation
performed comparably. The sample size adjustment to the
percentile bootstrap did not help matters and may have actually
inflated Type I error, bias, and efficiency rates, while the

more complex BC and BCa procedures failed to offer sizeable
improvements in interval accuracy and thus are probably not
worth the involved calculations.

These findings are disappointing, in one sense, because the
adjustments were expected to generate greater accuracy in

forming confidence intervals. On the other hand, researchers can
be more confident that the ordinary percentile method is capable

of delivering relatively precise confidence intervals, at least

as applied to the four correlational measures under review and
assuming these results are generalizable. Of course there are

numerous bootstrap procedures that have recently seen
development, and it is always possible that one of these may

yield more accurate intervals.
One reason that the more complicated procedures did not

surpass the percentile bootstrap may be due to the technical
specifications of the simulation experiments. It was originally
intended that 1,000 samples be drawn for each condition, but

this number was reduced to 100 given excessive computational
demands. While the goal here is not to fully reproduce a
sampling distribution, more samples may be necessary to achieve

stable asymptotic dynamics.
For the same reason, the number of bootstrap samples was

reduced from 2,000 to 500. However, in this case the objective

is to model the sampling distribution F(0) by means of POO. Five

hundred resamples are more than sufficient for estimating
standard errors but too low to form tight confidence intervals.

It was hoped that the sampling inaccuracy would influence all
bootstrap procedures in an identical fashion. But if some

methods are more dependent than others on the number of

resamples necessary to form correct intervals (e.g., the BCa),

then results will be biased against the technique.
For example, a modest number of resamples may give rise to

inadequate score representation in the tails of the sampling
distribution. The tails are needed in developing accurate
intervals, particularly when greater coverage probability is

desired. A nominal alpha rate of .05 was employed throughout
this experiment due to its popularity in social science

research, but Efron (1988) warned against testing hypotheses
using bootstrap resampling at such a strict probability level

unless 1,000 or more bootstrap samples were acquired. This may

be the cause of the Type I error rates not stabilizing at larger
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sample sizes. Future studies should increase both m and B to
larger sizes, possibly through the use of more efficient
algorithms.

A second conclusion involves the similarity between the
Winsorized and percentage bend correlations in interval
accuracy. While neither robust correlation outperformed the
other, both were shown to be more resilient than r (and rz) to
distributional abnormalities. In fact, the robust measures
compared favorably to r even under the bivariate normal
conditions. Wilcox (1993, 1997b) reported findings very similar
to these for both the Winsorized and percentage bend
correlations, respectively.

Third, Fisher's transformation did not appreciably improve
either Type I error rate or bias associated with r, especially
when averaged across all distributional conditions. It would
seem that when bootstrapping the Pearson correlation, the
transformation merely increases computational time without
concomitantly affecting accuracy. But these results are in
keeping with Seivers' (1996) conclusions about rz.

In summary, the two robust correlations are to be preferred
over the ordinary Pearson equations when resilience to outliers
is needed. These new measures also compared favorably across
normal distributional conditions and can be recommended for
general use in cases where it is desired to obtain a measure of
linear association reflecting the majority of the sample
observations. None of the bootstrap methods under review were
differentially accurate; each can be similarly endorsed,
excepting the adjusted bootstrap. Perhaps future studies will
produce interval-estimation techniques that afford heightened
precision when applied to robust measures of correlation.
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Footnotes

'These terms are not uniformly used in the literature.
2Actually, it is assumed that the difference distributions,

FO 0) and po. 49, are equivalent.
31\Tot described in the present paper.
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Table 1

Illustrative Parameter Values for the g and h Distribution

2 h M SD Skewness Kurtosis

0 0 0.000 1.000 0.001 0.000

0 .1 0.000 1.182 0.004 2.572

0 .3 0.000 1.966 1.082 218.827

.2 0 0.102 1.030 0.613 0.666

.2 .1 0.119 1.227 1.049 4.871

.2 .3 0.171 2.152 11.955 1,151.082

.5 0 0.268 1.211 1.758 5.918

.5 .1 0.313 1.505 3.391 38.287

.5 .3 0.465 3.035 21.175 1,413.162

Note. Entries based on 1,000,000 simulated observations.

Skewness and kurtosis were computed as: skewness = m3 / m2 (m2)1/2,_ _
N

kurtosis = (m4 / m22) 3, where ma = 1 (xi Oa .
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Table 3

Analysis of Variance for Type I Error Rate by Correlation Type and Bootstrap

Method

Source df

Model

CORR

BOOT

CORR * BOOT

Error

Total

15 11.028 <.001

3 50.511 <.001

3 2.735 .042

9 .631 .772

1712 (.002)

1727

.088

.081

.004

.003

Note. Value enclosed in parentheses represents mean square error.
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Table 5

Analysis of Variance for Bias by Correlation Type and Bootstrap Method

Source df

Model

CORR

BOOT

CORR * BOOT

Error

Total

15 3.497 <.001 .030

3 15.558 <.001 .026

3 1.551 .199 .003

9 .125 .999 .001

1712 (.010)

1727

Note. Value enclosed in parentheses represents mean square error.
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Figure 1. Mean Type I error rate by correlation type and

bootstrap method. Reference line indicates the nominal alpha

rate of .05.
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Figure 2. Mean bias by correlation type and bootstrap method.
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