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Abstract

One of the innovative insights in the hierarchical linear models (HLM) is to use it

for "Slopes-as-Outcomes" models. This implies that we consider that the regression

slopes vary from cluster to cluster randomly as well as systematically with certain

covariates at the cluster level. Among the covariates, group indicator variables at the

cluster level, which classify the cluster units into several groups, are often found to be

significant predictors. If this is the case, the average relationships between the outcome

and a key independent variable are different from group to group. Then, a question such

as "at what range of the independent variable the outcome is statistically significantly

different between groups?" naturally arises. Johnson-Neyman (J-N) technique answers

this kind of question in the analysis of covariance (ANCOVA) settings. In multilevel

modeling context, F-test, which is used in ANCOVA, can not be applied because the

assumption of homogeneity of variance within cluster units is violated in most cases of

the data that have multilevel structure. Instead, the approximate Walt test can be used to

determine the region of significance. Mathematica computer software package which is

capable of symbolic processing allows us to directly obtain the solution. Two examples

from education and child development are provided in order to illustrate the technique

and to show how to implement it by Mathematica.



In hierarchical linear models (HLM), it is conceived that each macro-unit has its

own regression parameters and that those parameters vary randomly from macro-unit to

macro-unit. This implies that each macro-unit has different regression slopes. At macro-

level, we try to explain why there is variability of the dependent variable among macro-

units using the macro-level independent variables, i.e., information about the

characteristics belonged to the macro units. Frequently, the information includes

qualitative variables which creates groups. For example, in the school-effectiveness study

such as the High School and Beyond Survey (Coleman, Hoffer, & Kilgore, 1982) where

the data have structure that students are nested within school, suppose one want to study

the relationship between student's socioeconomic status (SES) and achievement: If the

schools are grouped by the sectors such as private vs. public schools, then each sector has

its own average relationship. If these intercepts and slopes are different, then it would be

of interest to ask in which region of student's SES in fact the two sectors have significant

difference.

In growth modeling via hierarchical modeling framework, repeated measures are

conceived as nested within subjects and thus each subject has his/her own growth

trajectory characterized by a set of random regression coefficients at level-1. Thus, those

random coefficients vary from subject to subject. At level-2, those variability are tried to

explain by the individual characteristics. Frequently, among those individual

characteristics categorical variables such as gender, race/ethnicity that characterizes

individual are included (For example, Huttenlocher et al, 1991; Raudenbush & Chan,

1993). In this case, we can obtain the average growth trajectory for each group. Then, a
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question such as "In which age are there statistically significant group differences in

terms of expected values of the outcome?" can be interesting developmentally.

Thus, there are many instances that we are interested in the range of the covariates

where the expected outcome has significant differences among groups in multilevel

modeling. This is a natural consequence of multilevel modeling because it conceives that

each macro unit has its own regression lines. And if there are the grouping variables that

interact with independent variables, then, a question on which region of independent

variable is actually statistically significant naturally arises. This question can be answered

by the Johnson-Neyman procedure in Analysis of covariance (ANCOVA) context if the

linear model is appropriate. Clearly, multilevel model does not satisfy the i.i.d. error

assumption, the J-N technique can not be applied directly. However, the spirit of J-N

technique can be applied to the multilevel modeling by changing the test statistic to be

computed and the subsequently the reference distribution. That is, by casting the J-N

problem into a linear hypothesis, we can use the Wald statistic in stead of F statistic.

Though it is not exact as in the F-test in ANCOVA-linear model context, the Wald test is

a good approximation when the sample size for the cluster units is large enough, as

freqently the case for the settings to apply the multilevel models.

JohnsonNeyman Procedure in ANCOVA

The Johnson-Neyman technique, as it was originally formulated by Johnson and

Neyman (1936), solves the problems of identifying regions of significance of the

covariates in analysis of covariance (ANCOVA) when the regression lines are not

parallel. The idea behind the J-N procedure can be described as follows. If we know the
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points of the covariates, we can test whether the means for several groups at the points

are significantly different by constructing a F-statistic and then comparing the value to

the corresponding critical value of the F-distribution because the test statistic is

distributed as Fisher's F distribution if specification of the error distribution, which is

specified as normal, is correct. The decision rule of rejecting the null hypothesis, such as

group means are not different at the specified value of the covariates, provides the

inequality that the value of the test statistic must satisfy in order to reject the null

hypothesis. Since we don't know and actually we wish to know the points of the

covariates, we make the values of the covariates unknown x and then solve the inequality

with respect to the unknown value of the covariate, x. For the simple design such as two

groups, i.e., treatment and control groups, and one covarites, a simple formula which

basically solves a quadratic equation is appealing because it provides the insight on how

the terms in the formula influence the solution. A relatively simple formula for the

explicit solution is still available for several groups but only when the number of the

covariates is one (Huitema, 1980, Chap. 13). If the number of covariates gets two, the

formula gets complicated (Johnson and Fay, 1950), and if it is more than three, the

formula is almost intractable.

Recently, the advent of computational softwares such as Mathematica (Wolfram,

1999) which explicitly provide the symbolic processing capabilities changes the

formulation of Johnson-Neyman technique. That is, it can be phrased by general linear

model framework and the general from of the equation does not have any limitation in

terms of the number of covariates (Hunka, 1995; Hunka & Leighton, 1997). The
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disadvantage for this alternative formulation of the J-N technique was that it does not

provide the immediate solution. Mathematica can overcome this limitation.

In the linear model, the dependent variable is regressed on the set of independent

variables which include the qualitative grouping variables and the quantitative covariates.

Suppose we have g groups and p covariates and we formulate the linear model with

intercept. Then we have (g-1)p independent variables and 1 intercept. In equation, the

general linear model can be written as

Y = XP + E , (1)

where Y is the n x I vector of observations, and X is a nxP design matrix where

P = (g 1)p + 1 p out of P are continuous covariates and p is the P xl vector of

parameters, and e is the n x 1 vector of errors and N(0,a2I) where I is the n x n

identity matrix.

Whether the group differences are statistically significant at certain point of

covariates, we assign the value for the covariates at the point we want to test and create

contrast matrix KT of order dfk x P where rank(KT )= dfk and the hypothesis we test

can be expressed as:

Ho :KTP =0.

The degrees of freedom for the contrast matrix KT is the number of rows which are

constructed as independent and is dfk = g 1 if we want to compare for all the groups.

(2)

To test the hypothesis, we use the statistic
SS

k
I dfk

, which will be distributed as
SS, I df,

F-distribution with the numerator degrees of freedom of dfk and the denominator degrees
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of freedom of cif,. The quantity SSk in the numerator is the sum of squares of the

contrast and is expressed as:

SSk = T [KT
(X

)-I K]I KT pi

where )6 is the least square estimator of [3 and it is = (X T X)-1 X TY . The quantity

SS, is the sums of squares of residual and it is written as SS, = (Y )7. (V ) where

(3)

ss
is the predicted value and is written as = X/3 . The mean squared error MS, =--L is

df,

SS
the estimator of a 2 . The use of F distribution is justified because k 24 under H 0

SS
2and z and SS k and SS, are independent.

a 2 C

Thus, the quantity
SS

k
/ dfk

is compared to the critical value Fa of the a
SS, 1

level test:

SSk /dfk

sselcife

Therefore, for the test of hypothesis implied by KT to be significant at cx level the

following inequality must hold:

(4)

(KT /3)T [KT (X7 4)-1 K] KT (MS,)(dfkFa44,dh). 0 . (5)

The contrast matrix KT includes the unknown values of covariates. The region of

significance can be given by solving the above inequality with respect to the unknown

values. Thus, to obtain the root of the equation directly by solving the equation

(KT MT [KT (X7 4)-1 K]' KT (MS )(dfkFce,44;dh) = 0, (6)
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Mathematica is necessary since the computation requires symbolic algebra. For the case

of two groups and one covariate, (K T MT [KT T x yl K [-I KT p will be ratio of two

quadratic polynomials.

If we want to have simultaneous regions of significance, which can be defined as

a region such that, with confidence 1- a by a a-level test we can state that the groups

are different simultaneously for all points contained in it for all possible pair of groups

(Potthoff, 1964), we just replace the constant df kFa,dfk;(11, in the above inequality (2) by

(p +1)(g 1)Fa,o,,,x,_,),di where p is the number of predictor variables. The between

non-simultaneous and simultaneous region of significance is that the constant part

df kFa;dfk;df has larger value when we use the simultaneous region than the non-

simultaneous region of significance. For example, when g = 2 and p = 1 (this is typical

ANCOVA design where there are control and treatment group and there is a single

covariate), we use Fao;df for non-simultaneous case and 2Fa;2;df for the simultaneous

case.

Note that we could use a chi-square test based on the fact that the quantity
ss k

MS,

is approximately distributed as a chi-square with degrees of freedom dfk , and the

decision rule for testing Ho : KT f3 = 0 in (2) is:

2
Reject Hon

SSk
X df =dfk ,a

MS
(7)

where ey is the critical value for the a level test for the chi-square distribution with

the degrees of freedom dfk . The justification for this can be seen by reminding that
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SSk 2 and the MLE for a is MS,2

2
X r . However, note that the nice thing about a testdka

based on the F-distribution, unlike the test based on the chi-square distribution just

mentioned, is that there is no need to know the true value of a 2 because it cancels out in

numerator and denominator. Another advantage of the F-test is that this is the exact test

for any sample size as long as the model is correct. This creates the contrast with the

approximate chi-square test, which is only exact for the large samples because the test

relies on the asymptote of MS,.

Johnson-Neyman type procedure in Hierarchical Linear Model

As I have described in the context of school effectiveness study and growth

modelings, there are cases where the Johnson-Neyman type technique is required in

multilevel model. That is, when the cross-level interaction exists, i.e., interaction between

macro-level group membership and micro-level covariatest, we pose a question: In which

region of the covarites which group has the statistically significantly higher mean?

As in the J-N procedure for the linear model, the J-N type procedure in HLM can

be expressed as the linear hypothesis on the fixed effects. Since the linear hypothesis

testing is concerned about the fixed effects, the number of levels in the multilevel model

doesn't matter. That is, we can apply the same procedure to the three level or higher

hierarchical models. Here for the purpose of clarity of exposition, I present the two-level

HLM model, the simplest case.

Of course, the interactions which occur at the same level can be handled by the same way. But the cross-
level interaction is mentioned here because it is a feature of multilevel modeling and the example scenarios
were described by this cross-level interaction.
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A two-level HLM can be written as:

Let Yi , 1", are all independent and

111 = Auy + A2 ju E (= 1,2,...,J) (8)

where Y is the nj xl vector of dependent variable; Au is the n jxF matrix; Azi

is the nj xR matrix; y is the F xl vector of fixed effects parameters; u is the R xl

vector of level-2 random effects; and e is the ni xl vector of level-1 random effects.

The distribution of uj and e are assumed to be Li, NK (0,T. ) where z is a RxR

positive definite symmetric matrix; and si N(0,cr 21 ) where a 2 ia the level-1 error

variance and nj is the nj x nj identity matrix. The design matrix Au for the fixed effects

parameter y involves the qualitative grouping variable at level-2 and the covariates either

at level-1 or level-2.

In ANCOVA we can use F test. But in HLM we need to use the Wald test (Wald,

1943) to test about the hypothesis on the fixed effects because in HLM the errors are not

i.i.d., thus we cannot construct F. Since we use the Wald test, the test would be

asymptotically correct when J goes to infinity.

Thus, the statistical test for Johnson-Neymann type hypothesis in HLM is a Wald

test and has general form of linear hypothesis. Suppose we wish to test dK linearly

independent hypothesis on the fixed effect y . Then using a dK x F contrast matrix KT ,

the null hypothesis can be written as

Ho: KTy= 0 (9)

where rank(KT)= dK . And the statistic for testing the hypothesis (9) is



H = (KT )7)7.124 (KT ?)

where is the estimator of 1c1 and

VK Var(K T?) = KTVar(?)K .

5% is the MLE of y which is

where

Then, the variance of 5? is

JTI

j=I :1=1

(10)

(12)

= A2 Tiqj +a2In . (13)

T-Var() = (IAuv./ 1 Au) 1

.

J=1

The MLE of Var(?) is obtained by substituting 't and o- 2 in Vi (see (13)) by their

respective MLE. We denote it Var(1)). Thus 1'1K = Kr Var(?)K . Note that

(14)

Var(?) represented in Equation (14) is identical to the Fisher information obtained from

taking the inverse of negative of the expectation of the second derivative of the log-

A

likelihood2, and thus Var(?) is the fisher information evaluated at the MLE of o- 2 and

2 The log-likelihood for the

1= Iog[f (Y I o-2,1",y)]=

model (8) is

nj

log(2g) log l V) Aliy)T (Y Auy) and thus

the information with respect to y is 1 (y) _E[a21,42]=IAID,J7IAI
Then, as the sample size

i=1

increases, the MLE of 7 is consistent and asymptotically normally distributed with mean y and variance

[ 1 (y) If l, which is represented by writing 1? AN(y,[/(y)]' ).



Then the Wald statistic (Wald, 1941) H is constructed as H = (K?)T (KT ?) as in

(10), and the H will be distributed asymptotically, i.e., J -> 00, as chi-square with the

degree of freedom with the number of row in KT which was denoted as nic . Thus the

statistic H is compared to the chi-square critical value to test whether the null hypothesis

Ho can be rejected at the specified a -level. Explicitly, we would reject Ho : K T = 0 in

(9) if

(KT .?)7. Cci (KT l'1) elf=c1K;a (15)

To obtain the region of significance of the covariates, we use the following inequality

(10MT fisK'(KT`i') elf =d c ;a

and solve for the unknown values in KT .

It should be noted that the Wald test chosen for the J-N type technique in

multilevel models corresponds to the alternative J-N technique in linear models which is

represented by the decision rule (7). This method was also approximate and utilized a

statistic that is approximately distributed as the chi-square distribution.

(16)

Illustrative Examples

Example 1. High school & Beyond Survey

The first example is taken from the High School & Beyond data set. The model

seeks the relationship between mathematics achievement and the student's socio-

economic status. The model was used in Bryk and Raudenbush (1992).

Briefly speaking, the data are collected in 1984 and this data is the U.S.

representative sample. There are 7185 students in 160 schools. Out of 160, 70 schools are
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Catholic and 90 schools are public high schools. The target variable of our interest is the

student's mathematics achievement score and the mean for the students in public schools

is 11.4 and that for Catholic schools is 14.2. The difference is 2.8, which is statistically

significant. This difference is translated into 0.42 units of within-sector standard

deviation unit (the pooled standard deviation (s.d.) = 6.734). The individual student's

SES ranges from 3.76 to 2.69 with the mean of 0 and the standard deviation is 0.78, and

the school mean SES ranges from 1.19 to .83 with the mean of 0 and the standard

deviation of .41. Thus those variables have already been centered. In terms of sector

difference, in Catholic schools the student's SES ranges from 3.76 to 2.69 with the

mean of -0.15 and the standard deviation of 0.79, and in public schools, it ranges from

2.84 to 1.76 with the mean of 0.15 and the standard deviation of 0.74. Thus, on average

the SES is 0.38 (the pooled s.d. = 0.78) higher in Catholic schools than public schools.

For school SES, it ranges from 1.19 to 0.83 with the mean of 0 and the standard

deviation of 0.41. Thus, this variable is also already centered. In terms of group

differences based on the sector, the school SES ranges from 1.19 to 0.69 in public

schools with the mean of 0.13 and the standard deviation of 0.38, and 0.76 to 0.83 in

Catholic schools with the mean of 0.17 and the standard deviation of 0.40. Thus also in

school SES, which can be conceived as a proxy of school resources, Catholic schools are

more affluent by 0.76 standard deviation unit (0.389 for the pooled s.d.) than public

schools.

To summarize, the effect size of the sector on Math achievement is 0.42, 0.38 on

student's individual SES, and 0.76 on school SES. According to Cohen's definition of

size of the effect size, the first two is considered to be in between small to medium, and



the third one, the effect size of sector on school SES is considered to be large in social

science research (Cohen, 1988). Students in Catholic schools do better in mathematics

achievements than those in public schools; their parents are more educated and richer;

and the schools are more resourceful. These descriptive statistics are summarized in

Table I.

Insert Table 1 About Here

The model to describe the relationship between mathematics achievement and

SES for each sector, that was used in Bryk and Raudenbush (1992), is at level-1,

Model

Level-1:

iid

= SO j +131j (SES SESJ)+Eu,eij N(0,cr 2 ). (17)

Thus at level-1, the model seeks the relationship between mathematics achievement Yu

of the student i in school j and the his/her SES relative to the school mean SES. At level-

2, the intercept /30i and the SES slope f3li vary from school to school depending on the

school SES and the sector (public or Catholic), and those have random components,

uoj and

Level-2:

So, =700+701(SES.; SES..) + y02 SECTORi +uoi

13
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PI, = 710 711(SES SES .)+ y12 SECTOR./ + ,

where

N( ; and SECTOR./ = 1 if the school j is Catholic and 0 if it is
u I j 0 z 10 T11

public; SES is a measure of socio-economic status for student i in school j. It should be

noted that at level-1 student's SES was centered around the school (group) mean and at

level-2 school SES was centered around the grand mean. This specification decomposes

the SES effect on mathematics achievement directly into within-school and between-

school portions and thus makes the meanings of the parameters clear in terms of

contextual effects. Also, the group-mean centering specification of the model at level-1

focuses on the relationship between Mathematics achievement and the students SES

relative to the school mean SES. Thus, this specification creates that the regression

surface depends on not only student's SES but also the school mean SES of the school to

which the student belongs. The school SES, which is computed as the mean of the

students' SES in the school, is sometimes interpreted as a proxy measure of the school's

resources such as the number of teachers available, facilities, funding, and so forth.

The above model was fitted by the HLM software (Raudenbush, Bryk, Cheong,

and Congdon, 2000) to the data via Restricted Maximum Likelihood Method (REML).

The results are in the Table 2.

Insert Table 2 About Here

Note that in Table 2, the school SES was named as MEANSES.

14
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?Go = 12.10 indicates the average predicted score for the students in public school

whose SES is the school mean and the MEANSES is the grand mean; 'Pm = 2.94

indicates that on average one unit increase in student's SES increases the math

achievement by 2.94 controlling for SECTOR and MEANSES. In terms of the sector

effects, Catholic schools do better by 1.23 ( 02 = 1.23) when SES and MEANSES are

controlled, but have lower SES slope ( ?1 2 = -1.64). Thus, Catholic schools do better in

excellence and provide more egalitarian education. MEANSES works in a way to

increase both the intercept (?o, = 5.33), i.e., the mean score given student's SES and

SECTOR, and the SES slope (.? = 1.03). Since the mean mathematics achievement gap

between Catholic and public schools decreases as the individual SES increases, we

expect that from some point of individual SES to above, the public schools do better than

Catholic schools. That is, the SES slopes are different for Catholic schools and public

schools. In this context, naturally a question such as "In what range of SES, private and

public schools are statistically different and which sector does better in that range?"

arises and this question is especially important for prospective students and the parents

who seek the best possible outcomes. This is the same situation that Johnson-Neyman

procedure was called for.

In order to investigate the above question, we first need to know the expected

regression planes for Catholic and public schools. Those are obtained by taking

expectations over the distributions of both eu and ui ;

E(Y) = {Yoo Y01(SES SES ..) + yo2(SECTOR);}

+ {710 + y11(SES .1-- SES ..)+712(SECTOR) j}(SES u SES

15
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Then, the expected achievements for Catholic and public sector are:

Catholic:

E(Y) c = f(y 00 +702)+yol (SES .1 SES ..)}

+ {(y10 + 712) 711(SES .;-- SES..)}(SESu SES.;).

Public:

E(Y)p = {7oo 701(SES .; SES..)}

+17,0 + 71, (sEs sEs .))(sEs, sEs ).

The fact that SES = 0 simplifies (20) and (21) to:

Catholic:

(20)

(21)

E(Y) c = {(700 + 702)+701 SES + {(710 + 712)+ 711 SES }(SES, SES ]). (22)

Public:

E(Ydp = lroo yO VS./1+{710 yi SES .;}(SESu SES 4). (23)

Replacing the parameters to the estimates provides the predicted values as the function of

SES and SES .

Catholic:

= (13.32+ 5.33 SES ;)+ (1.30 +1.03 SES j)(SESu SES .;).

Public:

{?00 + SES } + { )710 + SES ..;}(SESu SES.;)

= (12.10 + 5.33 SES ,)+ (2.94 +1.03 SES 3)(SES11 SES.;)

16 18
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The predicted values are on the surface of the student's SES (SESU) and the school mean

SES (SES., ) axes. We see several sections of the surface by fixing either SESij or

SES. at three different values, i.e., one standard deviation above the mean, mean, and

one standard deviation below the mean. First, we fix the school mean SES (mean = 0, s.d.

= 0.41 as in Table 1) at 0.41, 0, and 0.41, and then see the relationship between Math

achievement and student's SES (Figure 1).

Insert Figure 1 About Here

As can be seen in (22) and (23), once SES.; is fixed, the relationship is linear.

The box lines represent schools whose school mean SES is one standard deviation above

the mean, i.e., SES.; = 0.41 (denoted as Catholic+ and public+ in the legend); the triangle

lines represent schools whose school mean SES is the grand mean, i.e., SES.; = 0.00

(denoted as Catholic and public in the legend); and the diamond-shape lines represent

schools whose school mean SES is one standard deviation below the mean, i.e., SES.,=

0.41 (denoted as Catholic and public in the legend). The graph shows that from low to

middle/high student's SES, going to Catholic school produces higher math achievement,

but the gap gets smaller and smaller as the student's SES increases. After passing the

certain student's SES, we expect that going to public schools will be a better choice. The

value of the student's SES at which public schools catch up to Catholic schools shifts to

the right as the school SES increases, i.e., for SES.;=- 0.41, SESi, = 0.34, for SES.;= 0,

SES = 0.75, and for SES ,= 0.41, SESti = 1.16. This means that the higher the SES of

17
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the school, the more students receive the benefits of achieving higher mathematics scores

by attending Catholic schools3.

Though the above description informs us a pattern on how mathematics

achievement differ in Catholic and public schools as a function of student's SES given a

certain school SES, we are not sure whether those differences are in fact statistically

significant. To answer this question, we need to use a statistical test that was described in

the previous section. The test, Johnson-Neyman type procedure, determines the sets of

the pairs of student's SES and school SES that produce the statistically significant and

non-significant differences between Catholic and public schools.

In order to perform the test, we first compute the expected difference between

Catholic and public schools. For the same student's SES and school mean SES scores, it

is obtained from taking the difference between (22) and (23):

E (Yu ) E (Y ) p = 702 + 2 (SESu SESi) . (26)

Thus, the expected difference is the linear function of the relative student's SES score,

relative to the school mean SES score. The predicted difference is

19ij C , p = 2 02 ? 12 (SESu SES

Replacing the parameter values by their estimates in Table 2 provides the numerical

relationship:

(27)

3 Of course, we can take a look at the Equations (24) and (25) by the other way around, i.e., mathematics

achievement as a function of school SES by fixing student's SES. As we can see, once the student's SES is

fixed, Equations (24) and (25) become a quadratic function of school SES. We, however, here restrict our

attention only on the above case, i.e., mathematics achievement as a function of student's SES given a

certain school SES, for the purpose of simplifying the presentation of the idea.

18
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fd,cf =1.23 1.64(SESu SES J) . (28)

Thus, the discrepancy decreases as the relative SES increases.

Let the relative student's SES be x, i.e., x = p q , where p is the student's SES

and q is the school mean SES. Then, the hypothesis that E(Yu) c E(Yu) p = 0 can be

cast into the form of linear hypothesis as:

Ho: KT y = (29)

where KT = (0,0,1,0,0, x) and 7T = (Y00,7011702,7101111,

Since KT has one row, the degrees of freedom for the reference chi-square

distribution is one. Thus, the individual SES region of significance is given by solving the

following inequality with respect to x:

(KT ?)T1211 (KT ?) 0 (30)

where 12K is the estimate of VK in Equation (11). If we choose 0.05 level, the critical

value is 3.84(4f=(,a=0 05 = 3.84), we have

(KT?)T12;i1(KT51) 3.84 0 (31)

where KT ?.= 1.23-1.64x . Since f21 is a six by six symmetric matrix and if we represent

12 by elements, i.e.,

=

(
div(?),,?(K0

div(??0,)
cf3v(?10 700

cOv(i%H,700)

cOv0712

cegq°040 ci5v(?m,&) cOv(7(m410) div(?(,,?H)
vaiWw) ci5v(2))1 ,&) alv(?01 ,i110) cov(?01 ,?,1)

div(&,?0,) vai(702) ci5v(?029&) ceiv(&,2 ,1)
? cOvQ,,?0, ) yak?), cOvQ10

c6v(5111 401) Co`011, 702) c6v(?1, ?lo ) val(11)
cOv0212 070 COV(?,2402) div(712,?m) cOv(712,?H)
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then 17K = KT127K = Var()702)+ 2x cOv()%02,'712 ) + x2Var(?12 . The actual values for

12 obtained from HLM is:

yr =

( 3.95*10-2 1.80*10-2 -4.24*10-2 2.30*10-3 1.05*10-3 -2.47*10-3
1.80*10-2 1.36*10-' -4.02*10-2 1.06*10-3 8.15*10-3 -2.41*10-3

-4.24*10-2 -4.02*10-2 9.38*10-2 2.47 *10-3 -2.40*10-3 5.63*10-3 (33)

2.30*10-3 1.06*10-3 2.47*10-3 2.47 *10-2 1.33*10-2 -2.65*10-2
1.05*10-3 8.15*10-3 -2.40*10-3 1.33*10-2 9.15*10-2 -2.58*10-2

-2.47*10-3 -2.41*10-3 5.63*10-3 -2.65*10-2 2.58*10-2 5.90*10-2

The contrast matrix KT involves an unknown value x and thus we use

Mathematica to do the symbolic computation.

Step 1: Obtain the estimate of the variance-covariance matrix for 51 when you run HLM

by using the keyword "Print variance-covariance". This command produces a text file

`gamvc.dar that contains the variance-covariance matrix of the fixed effects. The matrix

(33) is the one we obtained.

Step 2: Define the estimate of the variance-covariance matrix for 1% , 12ar(11): In

Mathematika, scientific notation is represented as 10^_. For example, 0.039488440 is

3.9488440 10^_002.

20
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Vg { {3.9488440 10 A- 002, 1.7959450 10 A- 002, -4.2425393 10 A- 002,

2.2987740 10 A- 003, 1.0537420 10 A- 003, -2.4745921 10 A- 003} ,

{1.7959450 10 A- 002, 1.3628002 10 A- 001, -4.0245690 10 A- 002,

1.0585086 10 A- 003, 8.1498270 10 A- 003, -2.4135827 10 A- 003} ,

{ -4 .2425393 10 A- 002, - 4.0245690 10A- 002, 9.3802256 10 A- 002,

-2.4743120 10 A- 003, - 2.4032180 10A- 003, 5.6273247 10 A- 003} ,

{2.2987740 10 A- 003, 1.0585086 10 4- 003, -2.4743120 10 A- 003,

2.4686438 10 A- 002, 1.3342234 10 A- 002, -2.6503914 10 A- 002}

{ 1.0537420 10 "- 003, 8.1498270 10 A- 003, -2.4032180 10 A- 003,

1.3342234 10 A- 002, 9.1546401 10 A- 002, -2.5814267 10 A- 002}

{ -2 .4745921 10 A- 003, - 2.4135827 10A- 003, 5.6273247 10 A- 003,

-2.6503914 10 A- 002, - 2.5814267 10 A- 002, 5.9003012 10 A-002} }

Step 3: Define the vector ? , the estimate of the fixed effects.

{ { 12.0950064} , {5.3330565} , { 1.2263840} , {2.9377875} , 1.0344270} , 1.6409540} }

Note that in order to define the column vector, we enclose each elemets by a blacket }.

Step 4: Define the contrast matrix:

= {{0, 0, 1, 0, 0, x}}

Step 5: Compute the variance-covariance matrix of KT ? .

VK = K ' .vg.Transgose(K ' j

The output provided by Mathematica for this operation is given below:

{ {0.0938023+ 0.00562732x+ (0.00562732 +0.059003x) x}}

Mathematica can simplify this result by using the command Simplify.

sirrplify[ yid

{ {0.0938023+ 0.0112546x+ 0.059003 x2}}
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Step 6: compute the statistics H.

H. Tzanspose[g] .Transrose[K'] .1averse[ Vic] .K °.g

1.22638 (1.22638 - 1.64095 x)
{{ 0.0938023 + 0.00562732 x+ (0.00562732 + 0.059003 x) x

1.64095 (1.22638 - 1.64095 x) x
0.0938023 + 0.00562732 x+ (0.00562732 + 0.059003 x) x }}

Again, a more concise representation of this equation can be obtained by asking

for a simplification:

Sinplify[H]

f 2.69273 (-0.74736 +x) (- 0.74736 + x)
11 0.0938023+ 0.0112546x+ 0.059003 x2 if

As can be seen from the above expression, Mathematica represents

H = (K ) 12:1 (KT I%) as the ratio of a quadratic polynomial both in the numerator and

in the denominator.

Step 7: Solve the equation H 3.84 = 0 for the unknown x.

Solve[H- 3.84 0, x]

and the results provided by Mathematica are as follows:

{x-) 0.359527} , (x-) 1.29004))

for which the two real roots 0.359527 and 1.29004 represent the solution of interest.

Step 8. Plot the function (H 3.84) over the range of 4 x 4 :

Plot [ H- 3.84, {x, -4, 3), koasiabel { "R. SES", "H-3.84"} ]

where 'R. SES' represents the student's SES relative to the school mean. The plot is

given in Fig. 2.
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Insert Figure 2 About Here

The axes labeled as H 3.84 represents the value of 1%7K1' ;' KT - 3.84 for

various values of x, the relative student's SES.

The above results analyzed via Mathematica package indicate that significance is

attained when the groups are equated to a value of the student's relative SES set to 0.36

or smallest and 1.29 or greater; i.e., the point at which the function crosses the horizontal

axis. Significant differences at a < 0.05 will be found for all values of x for which the

function plotted is above the horizontal axis. With 95 % confidence, we conclude that

when the student's relative SES is less than 0.36 the student will be expected to do better

in Catholic schools than public schools. On the other hand, if the student's relative SES is

greater than 1.29, the student will do better in public schools than in Catholic schools. If

the student's relative SES is between 0.36 and 1.29, there is no statistically significant

difference whether student chooses Catholic high school or public high school.

Another way of examining the student's relative SES range that produces either

significant or nonsignificant differences is to directly examine the expected difference

between Catholic and public schools, represented by Equation (26) or K y where

KT = (0,0,1,0,0,x) for x be the student's relative SES and = (Y00,701 702 710 711 712 )

Since a contrast KT in this case has one row, a 95 % confidence interval on KT y can be

consructed by a formula

23 25



KT 1"-± V3.8412K (34)

where 3.84 is critical value at the upper 0.05 cutoff of chi-square variate of one

degrees of freedom, K T? is the predicted difference as in Equation (27) or Equation

(28), and 12K is the estimate of the Var(KT ?), which is represented in Equation (11).

The predicted difference and its confidence interval can be best described by the

graph.

Insert Figure 3 About Here

The bold straight line in Figure 3 represents the predicted difference, expressed by

Equation (28), or symbolically, by KT ?. The upper curve represents the upper bound of

the 95 % confidence interval and the lower curve represents the corresponding lower

bound. From the figure, we find that the expected mathematics achievement of students

in Catholic schools is higher in the region of (-00, 0.75) in relative student's SES than

that in public schools, where 0.75 is the value of the relative student's SES at which the

bold line crosses the horizontal axis and this value was the same value that was observed

in Figure 1, and then the mean achievement of public schools gets higher in the region of

(0.75, 0.) than that of catholic schools. To see if the difference is statistically significant

or not, we focus on which values the lower bound line and the upper bound line cross the

abscissa. They are 0.36 for the line of lower bound and 1.29 for the upper bound line.

4 Note that, strictly speaking, this confidence interval is not simultaneous one. See the comments regarding

this in the Summary and Discussion section.
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Thus, we conclude that the expected mathematics achievement of students in Catholic

schools are statistically significantly higher in the region of (-00, 0.36) in relative

student's SES than that in public schools. On the other hand, the expected mathematics

achievement of students in public schools are statistically significantly higher in the

region of (1.29, +..) in relative student's SES than that in Catholic schools.

Out of all 7185 students in our sample, 4993 students (69.5 %) have their relative

SES lower than 0.36, 2064 students (28.7 %) have their SES between 0.36 and 1.29, and

128 students (1.8 %) has the relative SES higher than 1.29. Thus, it can be said that, on

average, about 70 % of the students will gain better math scores if they choose to go to a

Catholic school rather than a public school when two sectors have the same school SES.

If we classify those three groups of students by the sector (Table 3), then we find

that 2469 for Catholic schools and 2524 for public schools out of 4993 students whose

relative SES is lower than 0.36. Thus, it can be said that 69.6 % (2469/3543) of the

students in Catholic school made the right decision, and 69.3 % (2524/3642) of the

students in public schools could have obtained the better math scores if they went to

Catholic schools instead of public schools. For high relative SES students, 93 students

(2.6% of the all public school students) in public schools had their relative students SES

(RSES) greater than or equal to 1.29, and thus they benefited by having gone to public

schools; 35 students (1.0% of the all Catholic school students) in Catholic schools were

disadvantaged by having gone to Catholic schools. In overall, 2562 (35.7%) students

made a right choice in terms of the choice of the sector, and 2559 (35.6%) students could

have gained better math achievement if they have chosen the other sector of the high

schools. For the rest of the 2064 (28.7%) students, the Sector did not create the
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statistically significant difference. As a conclusion from the above analysis, we might

make the following comments if we were asked an advice from the students and the

parents who were considering the sector of the schools in order to achieve the highest

possible mathematics scores: Choose a school whose school SES is as high as possible. If

you find the schools that have the same school SES in both Catholic and public sectors,

then consider your family SES. Choose a Catholic school if your family SES is lower

than the school SES or is higher up to 0.36 than the school SES. On the other hand,

choose a public school if your family SES is extremely higher than the school SES,

specifically 1.29. If your family SES relative to the school SES is in between 0.36 and

1.29, then the sector does not matter. For more than two third of the students (69.5 %), it

would be more advantageous to choose a Catholic sector.

Though it's possible to interpret the results directly by the relative student's SES

as was done in the above, translating the relative student's SES back into the original

scales, i.e., student's SES and school mean SES, provides an extra insight. Since

x = p q and the non-significance region is represented by the inequality,

0.36 S. x 1.29 , the information is mapped into the two dimensional space, shown in

Figure 4.

Insert Figure 4 About Here

The large rectangle delineates the data points in the sample and the two parallel

lines, q = p 0.36 and q = p 1.29 divides the plane into three regions. The upper left

area in dark shadow represents the region that Catholic schools do better than public
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schools significantly. The area that lies between the parallel lines indicates the region that

there is no statistically significant difference between two sectors in this region. The right

below area is the region that public schools will produce better results than Catholic

schools. We can use this figure to answer some interesting questions. For example, let us

consider a student with certain SES and who is looking for which sector of high school

he/she should attend in order to achieve better in mathematics. Suppose his/her SES is

0.5, which is a little lower than the one standard deviation high above the mean (See the

vertical line at'SES = 0.5 in Fig. 4). The answer depends on what level of school SES is

available. The student does better in public school if he/she goes to a school whose

school SES is lower than ,-0.79; there would be no significant difference if the school

SES is between 0.79 and 0.14; and the student does better in Catholic school if he/she

goes to a school whose school SES is higher than 0.14. Of course, to maximize the math

achievement, higher the school SES, the better his/her math score will be5.

We can use Figure 4 by the other way around. That is, suppose a situation that an

local administrator of a school district whose high schools have the same school SES

ponders what kind of students can benefit by going to either Catholic or public sector.

Assume, for example, the school SES is fixed at the grand mean, 0. Then up to 0.36 of

student's SES, those students will do better if they are sent to Catholic schools. There

will be no statistical difference if the student's SES is between 0.36 and 1.29. And if

student's SES is higher than 1.29, then he/she will make better performance if he/she

goes to public school.

5 Since the predicted math achievement is the quadratic function with respect to school SES (see Equations
(24) and (25) with the coefficient for the quadratic term be negative), there is the school SES that



Now, let us consider a slightly different question. Suppose we want to know about

the range of student's SES that produces the significant difference between Catholic and

public sector in terms of mathematics achievement if the two students who have the same

individual SES are assigned to a typical Catholic school and a typical public school. The

"typical" indicates that the school SES is the mean SES of all the schools in the same

sector. Let the individual SES be denoted x, the mean school SES of all the Catholic

schools be sc. , and the mean school SES of all the public schools be sp. In our data,

those values are sc = 0.166 and sp = 0.130 for each. The expected values for those

students in each typical school are obtained from Equations (22) and (23) by setting

SES .1= sc for Catholic schools and SES ,= sp for public schools:

E(Yij)Typ. Curb. = {700 + Y02 + 701S CI 4- {Y10 + 712 +Ylisc}(x sc)
(34)

2
= {700 + (701 Y10 )SC + 702 11S C 12SC + (710 4- 711SC + 712 )-X.

E(Yij)Typ. Pub. = (700 + 701s p} + {710 +711s p}(x Sp)

=typo + (y01 ylo)sp 711sp2 1 + (710 +ysp)x
(35)

The predicted values for each sector are obtained by replacing the parameter values by

their estimates and sc = 0.1661 and sp = -0.1295:

and

'Typ. Cath. = th() Ci'01 ?10)S 'f102 17114 -1 /12S Cl (1/10 + I1S +12)x
=13.963+1.649x

?

iTyp. pub Of'00 + (i101 ?Os p p2 1+ (i 110 + fills p).X.

=11.768+ 2.804x

(36)

(37)

maximizes the student's math achievement. For the student whose SES is 0.5, it is 2.20. But there is no
school whose school SES is 2.20 in our data set.
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The relationships between the outcome (Math achievement score) and the individual SES

for each sector are depicted in Figure 5.

Insert Figure 5 About Here

From the figure, we see that at about SES = 1.9, the two average lines intersect each

other. The exact value is 1.900, obtained by equating Equations (36) and (37), and this

intersection point sifted to the right, compared to all of the three student's SES values of

the intersection points (0.34, 0.75, and 1.16) in Figure 1. In the region where SES < 1.9,

persons in the Catholic schools have higher math achievement on average and in the

region where SES > 1.9, persons in public schools have higher math achievement than

the person in Catholic school given the same individual SES. Since there are only two

students who have SES > 1.9 out of 7185 (0.0003 %), both of whom happened to be in

public schools, it is clear that, in general, it is more advantageous to go to typical

Catholic schools than typical public schools in order to obtain higher math achievement.

Now the question is, "In which region of SES two group means are statistically

significantly different and which group is higher in that range and in which region of SES

there is no difference statistically?" In order to answer the question, we use the Johnson-

Neyman type technique again. As before, we first obtain the expected difference from

Equation (35) and Equation (36), which is

2 2 \
r
,

E (Yu) Typ.Cath. WU) Typ. Pub.= {MI-710)(SC SP) Y02 711 (SC S P ) c (39)
fyll(sc sp )+1/121x



Thus the hypothesis that E(1;,)Ty, . Cuth. E(Yu ) Typ. Pub. = 0 can be expressed in the form of

Equation (9), i.e., a linear combination of the fixed effects paramters as:

Ho: KT)/ =

where KT =[0,,Sc spj,(sc sp),(sc sp)(X sc. p),X sc.] and

yT=rii
\ 1 00, 0 I1' 02, 10 / 11 / 12 / Since KT has one row, the degrees of freedom for the

reference chi-square distribution is one. Thus, the individual SES region of significance is

given by solving the following inequality with respect to x:

(KTI)T1'(KT?))Cd2f.1,«

If we choose 0.05 level, the critical value is 3.84(%d2f=1,12.0 05 = 3.84), and in our data,

since sc = 0.1661 and sp= -0.1295, we have

(KT ?)T (KT?) 3.84 0 where

(40)

KT = [0,0.2956,1,-0.2956,0.2956(x 0.0366),x 0.1661]. (41)

The contrast matrix KT involves an unknown value x and thus we use

Mathematica to do the symbolic computation. Following the same steps as in the

previous computation, we reach the solution for Equation (40):

x 1.07738 or 2.63906.

The results indicate that the significant region shifts more to the right, higher

student SES, compared to the case when two sectors have the same school SES. This

happens because the mean school SES is higher in Catholic schools than public schools,

i.e., sc = 0.166 and sp = 0.130, and the estimated effects of school SES ( llso, and ?II )

are positive both for the intercept ( po, ) and the student's SES slope (



The significance is attained when the groups are equated to a value of the

individual SES set to 1.08 or smallest and 2.64 or greater. With 95 % confidence, we can

say that when the student's SES is less than 1.08 the student will be expected to do better

in Catholic schools than public schools. On the other hand, if the student's SES is greater

than 2.64, the student will do better in public schools than in Catholic schools. If the

student's SES is between 1.077 and 2.639, whose interval includes 1.90, which is the

intersection point (Fig. 5), whether student chooses Catholic high school or public high

school makes no statistically significant difference. Out of all 7185 students, 6572

students (91.5 %) have their SES lower than 1.077, 612 students (8.5 %) have their SES

between 1.077 and 2.639, and only one student (0.014 %) has the SES higher than 2.639.

Thus, it can be said that, based on student's SES in the sample, more than 90 % of the

students will gain significantly better mathematics scores in typical Catholic schools than

in typical public schools.

Example 2. Early Child Cognitive Development

In a longitudinal growth study, there are repeated measures for the same subjects.

In multilevel modeling framework, we conceptualize the problem in a way that each

individual has his/her own growth trajectory. Suppose at level-1, a polynomial is

formulated to model each individual growth on an outcome measure over time. The level-

1 coefficients are supposed to vary from person to person. At level-2, we frequently try to

explain those variability by some individual characteristics such as gender, race, and so

forth. Those individual characteristics that have qualitative nature create the groups

whose members share the same characteristics. As a result, each group.has mean growth
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trajectory, which differ in terms of the intercepts and age-related slopes. In this context, a

question such as "In what age range, two groups are statistically different?" may be of the

interest. Let us consider an example.

The Greensboro early child cognitive development study (Chirstian, Bachman, &

Morrison, 2001) aims to study developmental trajectory and schooling effects on

cognitive ability on young children whose grades ranged from kindergarten to third

grade. In order to disentangle age-related and schooling-related influences on children's

cognitive growth, the study employs "cut-off' methods, a natural experiment to take

advantage of school cutoff. Most North American school district designate an arbitrary

"cutoff" date such that children whose birthdate precedes the date will be allowed to

entry to kindergarten or first-grade, whereas children whose birthdate just misses the date

will be denied entry. The former group of children who entered kindergarten and whose

age are younger than peers are called "Young" kindergartner and the latter group of

children are called "Old" kindergartner because their age are relatively older than peers.

Between the two groups above, there is another group called "Middle" kindergartner

whose chronological age was between "Young" and "Old". Other namings such as

"Young" 1st grader, "Middle" 1st grader, "Old" 1st grader "Young" 2nd grader,

"Middle" 2nd grader, "Old" 2nd grader, etc. were used in the same way. Thus, the design

of the study allows us to investigate the net effects of schooling by comparing, for

example, "Young" 1st grader and "Old" Kindergartner, because "Young" 1st grader

already received one year schooling and "Old" Kindergartner didn't receive it though

they have almost the same chronological age. In terms of age-related growth, we can use

repeated measures of children who are in the same group. For our analysis, there are 493
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children and 173 children (35.1 %) are from "Old" group, 187 (37.9 %) are from

"Middle" group, and 133 (27.0 %) are from "Young" group. In terms of race/ethnicity,

254 of them were Caucasians and 239 of them are African Americans. Thus, 48.5 % of

the children are African American and it was oversampled so that we can obtain the

precise estimates for this group. Also, there are three cohorts depending on the year of

entry to the study, i.e., 1990-91, 1991-92, and 1992-93 cohorts. Note that "Middle"

Kindergartner was employed to the study from the 1992-93 study, no observations were

available to the 1990-91 and 1991-92 cohorts6. There were five waves of observations

and the first observation was made at fall of kindergarten; the second observation was at

spring of kindergarten; the third was at spring of 1st grade; the fourth was at spring of

2nd grade; and the fifth was at spring of 3rd grade. At the time of 1998, this study was

continuing, so the observations for the spring of 3rd grade were not made yet for the

1992-93 cohorts. Also, there are missing observations because of attrition; at the spring

of 3rd grade, 39 % had complete observations for 1990-91 and 1991-92 cohorts. The

descriptive statistics for the key variables are provided in Table 4.

Insert Table 4 About Here

In order to study age-related cognitive growth, a two-level hierarchical linear

model was employed. The level-1 model was for child j at time:

6 Since no significant cohort and cohort-grade interaction effects were found, cohort indicators are
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L-1:

(Math)u = Poi + J3, (Grade)u + if.32./(Grade) + 133 j(DFall)u + e, (42)

iid

where Eu N (0, a 2) and Mathu is the mathematics score for child j at time i; Gradeu is

the child j's grade at time i and it is coded as 1.5 for fall of kindergarten, -1.0 for spring

of kindergarten, 0 for spring of lst grade, 1.0 for spring of 2"d grade, and 2.0 for spring of

3rd grade; Grade 2. is the square of Grade ; DFallu is the indicator of fall term

measurement and thus it is equal to 1 if the math score was measured at fall and 0 if not;

and Eu is the random within-child error. Note that the reason that the indicator of fall

measurement was included is that we wanted to capture yearly growth trajectory, which

includes summer term that doesn't have school, by adjusting the fall of kindergarten

measurement.

The level-2 model represents the variability of the level-1 random regression

coefficients.

L-2:

p0, =700 +70, (DBlack) + 702 (IQ, IQ )+ 703 (LIT/ LIT .)+ yo4 (DO) + 705 (DM) ;

+ 706 (MOMED, MOMED )+ uoi

PI; = Yio 711(DBlack) + 712(IQ IQ .) + y13(DO) + 714(DM) +141;

P2j = 720 + 721 (DBlack) + y22 (/Qi IQ .) + 723 (DO); + 724(DM) + u2j

/33j = 730

where

(43)

completely dropped from the subsequent analyses.
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DBlack is the indicator for African American and it is 1 if the child is African American

and 0 if not; IQ is the child IQ measured at the fall of the kindergarden and it is centered

around the grand mean; LIT is the child's home literacy environment measure and it is

centered around the grand mean; DO is the indicator for the children in the "Old" group;

DM is the indicator for the children in the "Middle" group ; and MOMED is the

mother's years of education and it is centered around the grand mean; y00 represents the

expected math achievement score at the spring of 1st grade for the white child in the

"Young".group whose IQ, home literacy and mother's years of education are the average;

710 represents the expected slope at the spring of 1st grade for the white child in the

"Young" group whose IQ, home literacy and mother's years of education are at their

averages; y20 represents the expected rate of acceleration for the white child in the

"Young" group whose IQ, home literacy and mother's years education are at their

averages; and y30 represents the mean discrepancy of the fall measurement from the

general growth trajectory.

In this model, since there are two groups for race/ethnicity (white and black

represented by DBLACK variable) and three levels of chronological groups ("Young",

"Middle", and "Old", represented by two dummy variables "DO" and "DM"), we have

six trajectories which represent the average growth of mathematics ability from fall of

kindergarten to spring of 3rd grade.

The results for the model in Equations (42) and (43) are in the Table 5.
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Insert Table 5 About Here

From Table 5, the average growth trajectories for six groups are all different even

after controlling for IQ, home literacy environment, and mother's years of education.

Now suppose we are interested in the growth trajectories of white Young children

and black Old children. The expected value for the children in those groups at the average

IQ, the average home literacy environment, and the average mother's years education are

for black Old children:

E(Yij)BO = (y00 + 701 4- 704 ) (yio + 711 + 713 )(Grade)u + (72o + 721 + 723 )(Grade)

+ 730 (DFall)u

and for white Young children:

E(Ki)wy = (y00 ) + (y10 )(Grade) + (720 )(Grade) + 730 (DFall)u

Therefore, at the same grade, the expected mean difference is

E(Y y) E(K1)WY = (y01 + yo4 ) + (y11 + y13 )(Grade)u + (y21 + y23 )(G rade) .

The predicted values can be computed by the following equations for the two

groups.

3:.;i1 WY

= ( ll 00 + 01 + 1104 ) (y10 ?II +1113 )(Grade) u + (1" 2c, +1 21+ 23)(Grade)

(44)

(45)

(46)

+1%30 (DFall)1)

=1%00 + )%, (G rade) + ')%20 (Grade) + 30(D Fall) (47)

Replacing the values of the parameters by their estimated values provided in Table 4, we

obtain the predicted trajectories for the two groups. Those are:

= 26.463 +8.284Gradei, +0.142Grade
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fuxy = 22.179 +10.115Gradeu + 2.004Grade2i 1.380DFallu . (48)

In Figure 6, the two predicted curves are depicted as the function of the grade.

Insert Figure 6 About Here

As can be seen from the figure, the two curves are crossing just before the spring

of the 2nd grade. Before that, the black children in the "old" group had higher math

scores than white children in the "young" group, but after the spring of 2nd grade, white

"young" children surpassed the black "old" children. Specifically, at fall of kindergarten,

black old group is 2.84 higher than white young group and this difference is statistically

significant (see Table 6). At the spring of kindergarten, the difference increases to 4.25,

and it stays'at the almost same value (4.28) until the spring of 1St grade. From this point,

the superiority of black old group starts diminishing. At the spring of the 2"d grade, the

difference goes down to 0.52, which is not statistically significant anymore. Finally, at

the spring of 3rd grade, white young children do significantly better than black old

children in mathematics by 6.83, which is the largest margin among the five time points.

Insert Table 6 About Here

Though we can test whether there is a statistically significant difference at each

time point, one at a time, by specifying the appropriate contrast as seen in Table 4, this

procedure is cumbersome, especially when the data have many time points. If we use the
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Johnson-Neyman type test developed in this article with the symbolic computation

capability of Mathematica, we can do all the tests at once. That is, to test the hypothesis

that E(Y,J), BOK E(Y,J)WYK = 0 at Grade t can be expressed in the form of Equation (9), i.e.,

a linear combination of the fixed effects paramters as:

Ho: KTy= 0

where Kr = [0,1,0,0,1,0,0,0, t,0, t,0,0, t2,0, t2,0,0] and

77..(
kt 00.101,/ 02,1 03,/ 0,1,/ OS,/ 060/10 5 /11)/12,/13,/14'/ 20 7/ 21)/ 22 5/ 23'/ 24)/ 30

(49)

Since Kr has one row, the degrees of freedom for the reference chi-square distribution is

one. Thus, the Grade region of significance is given by solving the following inequality

with respect to t:

1%7'1(12;1 ? X,21f=i 0 .

If we choose 0.05 level, the critical value is 3.84( xd2f.
10=0.05

= 3.84), we have

?T 3.84 0 .

The same steps can be used to decide the region of significance on grade. In Step 6

of the previous example, we computed the H KT ? statistic. Simplifying the

expression of H via Mathematica, we obtain

Sinplify[ 11]

10.4227 (2.08592 + t) (2.08592 + t) (1.21617 - 2.2056 t + t2)
(2.30517 - 1.73069 t+ t2) (2.06208+ 2.71154 t+ t2)

Mathematica represents H as the ratio of a quadraric polynomial both in the

numerator and in the denominator. In step 7, we solve the equation H 3.84 = 0 for the

unknown t.



Solve[H- 3.84 0, t]

and the results provided by Mathematica are as follows:

(t -3.26576), {t -1.71801} , 0.519488} , {t- 1.92323}}

for which the four real roots 3.27, -1.72, 0.52 and 1.92 represent the solution of interest.

Plotting the function (H 3.84) over the range of 5 t 5.. 3 makes clear on which region

of grade are really significant.

Plot [H- 3.84, {t, -5, 3), Alreelabel- "0:ded Grade", "H-3.84")

Insert Figure 7 About Here

The axes labeled as H 3.84 represents the value of rkl 21' KT'? 3.84 for

various values of t, the child's Grade.

The results indicate that significance is attained when the groups are equated to a

value of the grade set to 3.27 or smallest, between -1.72 and 0.52, and 1.92 or greatest.

Translating back to original grade, we identify that at the fall of kindergarten, spring of

kindergarten, spring of lst grade, and spring of 3"Igrade the expected mathematics scores

of the two groups are statistically different, and only at the spring of 2' grade, there is no

statistical difference on mathematics scores between the two groups.

An interesting observation can be made in Table 6. Comparison the chi-square

values of spring of kindergarten and spring of 1st grade, we find that even though the

predicted differences are about the same (4.25 vs. 4.28), the chi-squares have the large

difference (30.79 vs. 11.60). Also, at the spring of 3rd grade, though the predicted



difference is the largest among five time points (-6.83), the chi-square is rather small

(4.29) and it marginally achieved the significant (P-value = 0.036). These results were

occurred mainly because of the attrition of the samples. See Table 4-a) that the sample

size for the combined group of White Young and Black Old changes 119, 117, 89, 57,

and 27 as time goes from fall of kindergarten, spring of kindergarten, spring of 1st grade,

spring of 2"d grade, and spring of 3rd grade. We can find the sudden drop in sample size

from spring of kindergarten to spring of lst grade, and from spring of 2nd grade to spring

of 3' grade.

Actually, KT)/ in (49) represents the expected difference between White Young

and Black Old children and KT ? in H =?TK1 KT? represents the predicted difference

or we might say the effect size and IF, represents the estimated standard error for the

KT y, the expected difference. Then, since the estimated difference KT? and the

estimated variance 2K are the functions of GRADE, we can see how these changes with

GRADE by plotting via MATHEMATICA.

ES. K'.g

{ {4.28356 - 1.8307 t - 1.86214 t2}

where ES, K', and g represent the effect size KT?, the contrast K', and the estimates of

the fixed effects 1%. The letter t in the equation represents the coded grade. The plot of

this function over the range of 3 5_ t 5_ 3 gives Figure 8.

Insert Figure 8 About Here



We can see the value at fall of kindergarten by:

ES1. ES/ . -1.5

{{2.8398}}.

The symbol "I . >" is the MATHEMATICA function that provides the value at t =

1.5. Similarly, at other time points, we obtain:

ES2. ES/. t-, -1

{{4.25212}}.

MS. FS/ . t-, 0

{ {4.28356} }

E91. ES/. t-, 1

{0.590728} }

ES5 ES/. 2

{ (-6.82637} }

These agree with the values in Table 6.

Now, since 17K is a scalar in this example, we can rewrite H as

H =?TK1 KT =(KTT!)2
V K

Then we can investigate which part of the equation, i.e., numerator or denominator,

dominate the value of H, a chi-square test statistic. The investigation is performed in the

following:

The plot of the numerator, (KT 1%) 2 , the square of the effect size, over the range of

3 t 3 is:



Insert Figure 9 About Here

The plot of the denominator, 121c , the estimated variance or the square of the estimated

standard error is obtained by the following steps.

First, compute the estimated variance.

VK = K ' . Vg .Transpcse [ K ' ]

where Vg is Var() and the numeric values are provided by HLM software. The

MATHEMATICA output is:

( (1.58143 + 0.446094 t 0.346415 t2 +

t (0.237645+ 0.289965 t+ 0.0709167 t2) + t (0.20845 + 0.294547 t+ 0.0922432 t2) +
t2

( 0 . 1753 41 + 0.0702023 t+ 0.159011 t2) + t2 (-0.171074 + 0.0929576 t+ 0.173681 t2)
} )

We simplify this function as before.

Siztplify [ Vic]

{ { 0 . 332692 (2.30517 - 1.73069 t + t2) (2.06208 + 2.71154 t + t2) } )

The plot of 12g over the range of 3 t 3 is in Figure 10.

Insert Figure 10 About Here

Summary and Discussion

Johnson-Neyman technique was developed to determine the covariate's region of

significance when the parallel slopes assumption does not hold in an ANCOVA context.

Since, in the ANOCOVA context, the model can be formulated by a linear model, we can

define the Johnson-Neyman problem by an equation that F-statistic must satisfy, and the
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roots of the equation provide the solution. The practical problem to obtain the roots of the

equation was solved by using Mathematica's capability of symbolic computation. When

the model is multilevel, unfortunately the F-test, that is exact even for small samples for

the linear model, is inappropriate because the within group errors are not identical.

Instead, we can use the approximate Wald test which is asymptotically distributed as a

chi-square distribution and thus which would be valid when the sample size, especially

the number of clusters, is large enough.

In the first example, we illustrated how Johnson-Neyman type technique was

useful in organizational research where the key covariate is continuous. This example is a

straightforward extension of Johnson-Neyman technique to multilevel modeling settings.

Identifying the specific regions of the pairs of individual SES and school SES, which

produce the statistically significant difference, provides the more precise information on

which sector of schools is advantageous to achieve the higher math scores.

In the second example, the Johnson-Neyman type technique was applied to a

growth model where measurements were made at several discrete ages/grades, though

those can be theoretically considered as continuous variables. It showed that the

technique was useful to determine in which time points which group achieves

significantly higher math scores than the other group, all at once. This all-at-once

procedure reduces the amount of tasks required to test at each time point. Also, it should

be noted that the growth curves were quadratic curves, not linear, could be handled by the

exactly same way as the straight-line case just by changing the contrast matrix in the

linear hypothesis.



Finally, it should be mentioned that, in this article, simultaneous confidence

approach, as provided by Potthoff (1964, 1983) in the linear model scenario, was not

considered. The simultaneous confidence approach will be required when we want to

hold the probability of making a Type I error at a for all statements simultaneously.

Then, either the Bonferroni or the Scheffd's multiple comparison procedure should be

considered. In either way, the simultaneous inference will put a larger critical value of the

chi-square distribution to protect the test from inflated Type-I error. The detailed study

will be left to the future study.
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Figure 1.

Relationship between Math Achievement and
Student's SES by Sector (For High, Middle, and

Low School SES)
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Figure 2. A Plot of H 3.84 as the Function of Relative Student SES
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Figure 3. A 95 % Confidence Interval on the Difference in Math

Achievement as the function of Relative Student's SES
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Figure 4. Region of Significant Difference on the Plane of Student's SES

and School SES
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Figure 5.
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Figure 6.
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Figure 7. A Plot of H - 3.84 as the Function of Coded Grade
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Figure 8. A Plot of the effect size KT 7 as the Function of Coded Grade
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Figure 9. A Plot of the squae of the effect size KT ? as the Function of

Coded Grade
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Figure 10. A Plot of the estimated Variance 12, as the Function of Coded

Grade
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Table 1. Descriptive Statistics for High School & Beyond Data

Overall:

Level-1 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MATHACH
SES
RSES

7185
7185
7185

12.748 6.878
0.000 0.779
0.000 0.661

-2.832
-3.758
-3.657

24.993
2.692
2.850

Level-2 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MEANSES
SECTOR

160
160

0.000 0.414
0.438 0.498

-1.190
0

0.830
1

Note: 1. SECTOR = 1 if Catholic and = 0 if Public.
2. RSES is the relative student's SES, relative to the school mean SES.

Classified by SECTOR:
Catholic:

Level-1 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MATHACH
SES
RSES

3543
3543
3543

14.170 6.359
0.150 0.741
0.000 0.623

-2.832
-2.838
-3.373

24.993
1.762
2.518

Level-2 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MEANSES 70 0.166 0.396 -0.760 0.830

Public:

Level-1 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MATHACH
SES
RSES

3642
3642
3642

11.364 7.080
-0.146 0.788
0.000 0.696

-2.832
-3.758
-3.657

24.993
2.692
2.857

Level-2 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MEANSES 90 -0.130 0.383 -1.190 0.690
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Table 2. Effect of Student and School SES on Mathematics Achievement

The outcome variable is MATHACH

Final estimation of fixed effects:

Fixed Effect

For INTRCPT1,
)60j

Coefficient
Standard
Error T-ratio

Approx.
d.f. P-value

INTRCPT2,

MEANSES,

SECTOR,

700

701

702

12.095

5.333

1.226

0.199

0.369

0.306

60.865

14.446

4.004

157

157

157

0.000

0.000

0.000

For SES slope, Plj
INTRCPT2,

MEANSES,

SECTOR,

710

711

712

2.938

1.034

-1.641

0.157

0.303

0.243

18.698

3.419

-6.756

157

157

157

0.000

0.001

0.000

Final estimation of variance components:

Random Effect Standard Variance df Chi-square P-value
Deviation Component

INTRCPT1, Uoi 1.543 2.380 157 605.295 0.000

SES slope,

level-1,

1211

Eu

0.386

6.058

0.149

36.703

157 162.309 0.369
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Table 3. Classification of the students by sector and level of their SES

RSES < 0.36 0.36 5_ RSES < 1.29 1.29 RSES Total
Catholic 2469 1039 35 3543

(69.6%) (29.3%) (1.0%) (100%)
Public 2524 1025 93 3642

(69.3%) (28.1%) (2.6%) (100%)
Total 4993 2064 128 7185
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Table 4. Descriptive Statistics for Early Child Cognitive Development
Data

a) Mathematics Score (Outcome Variable)
Overall:

N Mean Std. Deviation Minimum Maximum
MATH1

_

493 11.67 5.53 1 30

MATH2 484 16.44 6.69 3 42
MATH3 372 25.57 10.11 4 58

MATH4 284 38.13 12.83 9 71

MATH5 92 50.86 13.01 19 74

Classified by 6 Groups:

Descriptives

N Mean Std. Deviation Minimum Maximum
MATH1 White_Old 104 16.35 5.84 6 30

White_Middle 100 12.95 4.85 4 25
White_Young 50 11.74 4.69 1 25
Balck_Old 69 10.39 4.91 1 28
Black_Middle 87 8.95 3.94 3 23
Black_Young 83 8.14 3.35 2 18

Total 493 11.67 5.53 1 30
MATH2 White_Old 101 22.18 6.46 7 42

White_Middle 100 18.03 5.65 6 30
White_Young 49 16.39 5.39 5 29
Balck_Old 68 14.57 5.00 3 26
Black_Middle 87 13.75 6.07 4 28
Black_Young 79 11.67 4.82 3 34
Total 484 16.44 6.69 3 42

MATH3 White_Old 95 32.37 10.29 7 58
White_Middle 77 27.65 9.00 9 55
White_Young 40 26.03 10.62 9 55
Balck_Old 49 22.14 9.25 7 53
Black_Middle 53 20.98 5.77 8 34
Black_Young 58 18.45 6.23 4 39
Total 372 25.57 10.11 4 58

MATH4 White_Old 81 45.44 10.62 20 71

White_Middle 65 42.66 12.05 17 66
White_Young 30 37.80 11.84 19 64
Balck_Old 27 32.52 14.38 9 61

Black_Middle 39 30.51 9.68 15 59
Black_Young 42 27.93 7.16 13 45
Total 284 38.13 12.83 9 71

MATH5 White_Old 42 57.71 8.66 39 74
White_Middle 0 . . .

White_Young 14 54.71 8.29 40 74
Balck_Old 13 41.77 13.24 22 59
Black_Middle 0 . . . .

Black_Young 23 41.13 13.30 19 63
Total 92 50.86 13.01 19 74
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b) Covariates:

Overall:

N Mean Std. Deviation Minimum Maximum
10

.
493 97.50 15.27 52 141

LIT 493 9.96 3.78 .00 17.00

MOMED 493 13.64 2.39 6 23

DO 493 .35 .48 0 1

DM 493 .38 .49 0 1

Classified by 6 groups:

Descriptives

N Mean Std. Deviation Minimum Maximum
10 White_Old 104 106.95 14.85 72 134

White_Middle 100 103.90 12.89 75 134

White_Young 50 107.24 12.61 82 141

Balck_Old 69 88.90 13.16 52 126

Black_Middle 87 87.18 11.04 53 121

Black_Young 83 90.05 10.10 66 122

Total 493 97.50 15.27 52 141

LIT White_Old 104 12.90 2.58 5.00 17.00
White_Middle 100 12.11 2.89 2.00 17.00
White_Young 50 11.99 2.26 6.00 15.00
Balck_Old 69 7.34 2.90 .00 17.00

Black_Middle 87 6.85 2.75 1.18 15.00

Black_Young 83 7.88 3.13 2.61 16.00
Total 493 9.96 3.78 .00 17.00

MOMED White_Old 104 14.93 2.32 10 21

White_Middle 100 14.39 2.40 8 18

White_Young 50 14.02 2.36 8 20
Balck_Old 69 12.48 2.17 6 18

Black_Middle 87 12.70 1.71 6 18

Black_Young 83 12.86 2.20 8 23
Total 493 13.64 2.39 6 23
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c) HLM Data Set Information

Level-1 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
MATH 1725 22.45 14.43 1.00 74.00
GRADE 1725 -0.44 1.05 -1.50 2.00
GRADESQ 1725 1.30 1.03 0.00 4.00
DFALL 1725 0.29 0.45 0.00 1.00

Level-2 Descriptive Statistics
Variable Name N Mean SD Minimum Maximum
DBLACK 493 0.48 0.50 0.00 1.00
IQ 493 97.50 15.27 52.00 141.00
LIT 493 9.96 3.78 0.00 17.00
MOMED 493 13.64 2.39 6.00 23.00
DO 493 0.35 0.48 0.00 1.00
DM 493 0.38 0.49 0.00 1.00
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Table 5. Child Cognitive Development

The outcome variable is mATH

Final estimation of fixed effects:

Fixed Effect

For INTRCPT1, /301

Coefficient
Standard
Error T-ratio

Approx.
d.f. P-value

INTRCPT2, 7. 22.179 0.795 27.903 486 0.000

DBLACK, 701 -1.410 0.825 -1.710 486 0.087

IQ, 702 0.346 0.026 13.288 486 0.000

LIT, 703 0.153 0.069 2.208 486 0.027

DO, 704 5.694 0.826 6.894 486 0.000

DM, 705 3.404 0.834 4.079 486 0.000

MOMED, 706 0.215 0.087 2.458 486 0.014

For GRADE slope, flu

INTRCPT2, 710 10.115 0.481 21.034 488 0.000

DBLACK, 711 -1.860 0.486 -3.825 488 0.000

IQ, 712 0.077 0.015 5.059 488 0.000

DO, yu 0.029 0.481 0.060 488 0.953

DM, 714 0.980 0.527 1.861 488 0.062

For GRADESQ slope, /32j

INTRCPT2, 720 2.004 0.370 5.413 488 0.000

DBLACK, 721 -0.811 0.374 -2.169 488 0.030

IQ, )122 -0.029 0.012 -2.492 488 0.013

DO, 723 -1.051 0.354 -2.969 488 0.003

DM, 724 -0.157 0.425 -0.370 488 0.711

For DFALL slope, /33j

INTRCPT2, 730 -1.380 0.473 -2.915 1707 0.004

Final estimation of variance components:

Random Effect Standard Variance df Chi-square P-value
Deviation Component

INTRCPT1, Uoi 5.416 29.330 363 1135.791 0.000

GRADE slope, Ulj 2.503 6.265 365 729.976 0.000

GRADESQ slope, U21 1.275 1.626 365 442.752 0.003

level-1, Eij 4.437 19.690



Table 6. Predicted Differences between Black "Old" and White
"Young" Groups at each Grade and their Chi-Square Tests

Grade Code Black Old White_Young Difference Chi-Square P-Value

Fall, K -1.5 12.98 10.14 2.84 13.85 0.0004

Spring, K -1.0 18.32 14.07 4.25 30.79 0.000006

Spring, 1st 0.0 26.46 22.18 4.28 11.60 0.001

Spring, 2nd 1.0 34.89 34.30 0.59 0.12 >0.5

Spring, 3rd 2.0 43.60 50.43 -6.83 4.29 0.036
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