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A Markov model analysis of problem-solving progress
and transfer

Terry Vendlinski
UCLA / IMMEX Lab
5601 W. Slauson Avenue #255, Culver City, CA 90230

Abstract: Valid formative assessment is essential to the advancement of student learning and the
development of pedagogical content knowledge in teachers (Nathan, Koedinger et al. 2001). Most currently
accepted pencil-and-paper standardized tests, however, are not designed as formative assessment tools
(Bransford, Brown et al. 1999; AERA 2000), and many performance-based assessments suffer from
validity (Barton 1999), pedagogical (Lowyck and Poysa 2001), logistic, time and cost problems
(Quellmalz, Schank et al. 1999). Moreover, recent thinking in the field of educational assessment suggests
that formative assessments must focus less on how closely student responses match a pre-determined model
and more on the competency of the performance as a whole (Pellegrino, Chudowsky et al. 2001). While the
unstructured nature of such responses makes the evaluation of these types of performances difficult, the
need for such evaluations is likely to increase. As computer hardware become cheaper, connectivity easier,
and software development more rapid, computerized learning and assessment simulations are likely to
become more ubiquitous throughout the American educational system. Consequently, methodologies to
analyze and exploit the rich source of data from such performances must be devised with an eye to
informing pedagogical interventions in a timely and valid manner.

This study used one such computerized simulation and problem-solving tool along with artificial neural
networks (ANN) as pattern recognizers to identify the common types of strategies high school and college
undergraduate chemistry students used to solve qualitative chemistry problems. Then, based on the
calculated probabilities that students would transition between these strategy types over time, hidden chain
Markov analysis allowed us to accomplish two objectives. First, we developed a model of the capacity of
the current curriculum to produce students able to apply chemistry content to real world problems. Second,
we used the model to both suggest the pedagogical interventions that might be most effective at promoting
better student understanding and also as a metric by which to evaluate the potential effectiveness of these
and other interventions.

Keywords: formative assessment, science education, markov modeling, artificial neural networks.

Background

The Interactive Multi-media Exercises (IMMEX™) software is a problem presentation,
learning, and assessment tool that allows teachers to develop and present domain specific
problems to their students. Because IMMEX software allows teachers to author their own
simulations, the content of each IMMEX problem-set can be tailored to meet specific
curricular objectives and to take account of specific classroom and student contextual
variables an educator feels are important. For example, teachers may delete certain
reference items for Advanced Placement (AP) students because students are required to
memorize these items for the AP test. In addition, the IMMEX environment also makes
the development of different versions (cases) of each problem easy and allows students
multiple opportunities to apply their knowledge in similar but not identical situations or
to attempt problems with different degrees of difficulty. Generally, the number of
informational items available to the student when solving cases in a particular problem-
set does not change from case to case, but the number of available items is often quite
different between problem-sets. While standard Item Response analysis has produced
good models of case difficulty both in the problem set discussed here as well as other
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problem-sets, most teachers currently choose the problem-sets and the specific cases their
students will attempt to solve more subjectively.

Students solve IMMEX cases by formulating hypothetical answers, accessing as much
information as they feel necessary to test such answers, and then selecting an answer
from a list of possible answers or by typing in their solution. As students proceed
through IMMEX cases, the software records a student’s every step as s)he attempts to
solve each case. This feature allows for both real-time and off-line analysis of how
students solve a particular case, as well as how student ability changes over time. Since
students access IMMEX problems using the World Wide Web, the IMMEX database
contains thousands of student performances on each of hundreds of problem-sets in
different knowledge domains. For this study, the teacher developed 23 cases of an
IMMEX qualitative chemistry problem-set as a tool to access how well her students
could apply the concepts taught in first year, high school chemistry.

Methods and Data Sources

One hundred thirty-four first year chemistry students at a suburban Southern California
high school were tasked to identify various unknown chemical compounds using the
IMMEX computer simulation software. Student grade point averages, first semester
grades, standardized test scores and student demographic data suggest this population of
students is typical of student populations at suburban American high schools with the
exception that African American students were under represented and Asian American
students were overrepresented in this group; however, we have found trends similar to
those reported here in student groups where African American students were
overrepresented and Asian American students were underrepresented in the study cohort.

The IMMEX problem-set used by the students in this study is called Hazmat (short for
Hazardous Materials). Hazmat is a qualitative chemistry problem-set in which students
are told that there has been an earthquake that has caused a number of chemicals, some of
which may be hazardous, to fall off stockroom shelves. As the labels have been
obliterated or mixed up with other compounds, water is beginning to flood the storeroom
and time is of the essence, the school has asked for student help in identifying the spilled
chemicals. In addition to general stockroom inventory information, there are three
physical tests and eight chemical tests the students can conduct on the unknown
substance. The students may also review any of eight general reference items in their
attempt to identify the unknown and students must identify the correct unknown from
among 57 possibilities on one of two tries at a solution. After the presentation of the
problem, students may proceed through the problem space in any manner they choose
before ultimately proposing the identity of the unknown. The number of menu items is
consistent across all 23 cases in the Hazmat problem-set. In this study, the students’
teacher decided to use only those Hazmat cases that produced positive results when
students chose to conduct a flame test. Both IRT analysis and the teachers experience
suggest these are the easiest of the Hazmat cases for this group of students to solve. Each
student received individual cases in random order.
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While a single student action is occasionally informative in IMMEX problem-solving
(such as when a student chooses to solve the problem as an initial move and without
viewing any information), experience suggests that the sequence of actions or the
presence of a group of individual actions are usually much more telling. The number of
possible information items in a problem-set and the degree of difficulty of the cases a
student must solve are generally good indicators of the number of menu items students
will choose to view before solving individual cases of a problem-set. The students in this
study typically chose to view 17 items before attempting a solution.

Experience also suggests that student performances on cases of IMMEX problem-sets are
seldom entirely random in nature. In fact, while students may eventually look at all the
information contained in a problem space, they will often view menu items sequentially
rather than follow a more haphazard strategy. Nevertheless, given the number of pieces
of information available to the student, the possible number of unique performances is
factorially large. This number is even larger when considering not just the items a student
chose, but the order in which the student chose them. The overwhelming nature of such a
task becomes especially apparent when the number of student performances increases
beyond one hundred or so. Consequently, as problem-spaces become large and student
performances multiply, some method must be used to help discern patterns in such data.
Nevertheless, cognitive scientists like Fischer and Bidell (1997) suggest one must
develop ways to analyze the patterns of stability and order within the variation of human
activity in order to simplify and understand that activity without discarding behavioral
complexity. However, the literature suggests that it is unwise to merely compare students
or other novices to their teacher or another expert. '

Novices treat problem solving differently than experts (Messick 1989; Glaser and Silver
1994; Baxter and Glaser 1997), and such comparisons are bound to limit the acceptable
student approaches or to discard important complexities of student problem solving.
Therefore, rather than develop a model of behavior and then fit subsequent student
performances to that static model, we have chosen to use the demonstrated pattern
recognition ability of artificial neural networks to identify groups of similar performances
in the data (Principe, Euliano et al. 2000). As described elsewhere (Stevens, Lopo et al.

1996; Vendlinski and Stevens 2000; Vendlinski 2001), the networks are able to cluster

the same performances together almost 90% of the time and researchers can easily
identify those aspect of the performance clusters which make the performances similar.

These descriptive aspects of student performances are useful both to validate the clusters
and as a general descriptive of the clustered performances. Mock performance analysis
was used to validate the meaning we ascribed to each cluster of student performances. In
this type of analysis, a mock performance is created to represent each of the different
clusters. Each of these mock performances is then, in turn, fed back through the
appropriately trained artificial neural network. Repeatedly, we have found that if more
than 60% of the performances in a cluster chose a particular menu item as part of their
strategy, that item will be an important descriptor of the performances in that cluster.
Using this technique, researchers have found that 100% of the mock performances cluster
where anticipated, if that cluster contained at least three performances. Not only does this
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technique validate the interpretation of each cluster, but, by using the important menu
items to describe each cluster, the differences between clusters become readily apparent.
Moreover, the sensitivity of the clustering network to variations in student performances
can be quantified by adding or subtracting menu items in a mock performance. We call
each cluster descriptive a strategy.

By assigning each student performance to a cluster, and then ordering these performances
chronologically, longitudinal models of student problem-solving emerge. In this study, a
student’s first performance strategy was compared to the most common strategy used by
the student to solve all the Hazmat cases the student attempted. When viewed
individually, this type of analysis addresses the progress individual students make over
time. When analyzed as a group, it describes students more generally, and becomes an
indicative of class progress or, with multiple classes, teachers and schools, of more
generalized learning trends. With these larger student groups, the likelihood students will
transition from using one strategy (the beginning state) to subsequently using the same or
another strategy is easy to calculate. When represented in condensed form these
likelihoods form a transition matrix.

By using the transition matrix and elementary matrix multiplication, the distribution of
students across clusters can be calculated. Moreover, with a large enough sample both
latent trait theory and our prior research suggest it is plausible to make the assumption
that without external intervention, the transition likelihoods for a group of students
remain constant over time. It then becomes possible to apply Hidden'Markov Chain
analysis to determine the distribution of students after each student works a number of
successive cases in a problem-set. Obviously, since multiple paths are usually possible,
the exact path a student follows to arrive at a particular cluster is not considered (hence
they are hidden Markov chains). Nevertheless, as students continue to work new cases,
the distribution of a group of student performances most often achieves a steady state. At
this point, unless the transition matrix changes, the overall distribution of student
performances within a group will no longer change between clusters, so an evaluation of
the group is possible. In other words, steady state diagrams provide a metric by which we
can evaluate the performances used by a teacher’s students. Although not a major focus
of this paper, the diagrams would allow comparisons of different classrooms to one
another even though different teachers taught and students used different means to solve
the cases in a problem-set. Moreover, these diagrams allow us to model not only the
predicted effect of proposed pedagogical interventions, but also how such an intervention
might ultimately affect the strategies used by these students. This technique is discussed
at the end of the next section.

Discussion

While the student strategies represented by each cluster can vary widely between clusters,
the strategies are often closely related and may only differ by one or two items of
information. In fact, in some recent performances, the major difference between two
strategies was whether a student viewed the problem summary (epilog). Another major
difference between strategies is the success students have solving a case using that
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particular strategy. For this research, we determined the effectiveness of student
strategies by calculating the odds a particular strategy would produce the correct answer
to Hazmat. Good strategies tended to produce a correct answer to the case, while poor
strategies did not. We use odds here to allow the comparison of solve rates between
different types of cases (as the cases were delivered randomly, not all cases were
delivered with the same frequency), and because the natural logarithm of the odds equals
student ability (8) in the one-parameter logistic model. Depending on the variability of
cases within a problem-set, the strategies students use to solve each case and the success
rate of each strategy may differ. In some IMMEX problem-sets, a single, well developed
strategy will allow a student to solve all the cases within a problem set. In other problem-
sets, students will have to adapt their strategies to account for changes in the cases. The
Hazmat problem-set is an example of the latter. For example, a student may be able to
identify the unknown compound Potassium Hydroxide using a flame test and Litmus
paper, but would have to modify this strategy to identify Potassium Nitrate. Nevertheless,
one might expect that a student who developed the ability to solve one case would
demonstrate the ability to effectively solve other, different cases, especially if the student
really understood the concepts required to solve these types of problems.

As expected, in IMMEX problem-sets where the cases require students to modify their
strategy as the unknown changes, students often do not duplicate a specific strategy
verbatim; rather the students adapt their strategy to the case they are trying to solve.
Nevertheless, there are enough similarities between the different strategies that suggest a
more general classification might be appropriate. In particular, a number of students use
strategies that investigate very few items of information before an attempt is made to
solve the case. In fact, none of these so called limited types of strategies investigate
enough information to conclusively solve the problem. At the other extreme, students
investigate more than enough information to solve the problem and often continue to
view items after they have sufficient information to reach a definitive answer. We have
termed these strategies prolific. Students using either limited or prolific types of
strategies are unlikely to solve the case being attempted. In other words, overall they had
less than even odds of correctly identifying the unknown. However, when students used
strategies that focus only on key pieces of information, they were more likely than not to
solve every case they attempted. These strategies were classified as efficient types of
strategies. Efficient strategies tend to be both case and contextually sensitive. For
example, one group of AP chemistry students was very successful in determining the
presence of unknown bases by using a strategy which involved the addition of an acid to
the unknown, whereas another group of first year chemistry students at the same school
were more successful using a strategy that involved using Litmus paper to identify the
presence of a base. While both strategies were effective for both groups of students and
were very focused, the specific information underlying the success of each strategy
differed. Anecdotally, the AP teacher indicated she had stressed the addition of acid,
whereas the teacher of first-year students had focused on the use of Litmus paper. It is
this characteristic of strategy types that makes comparisons between classes as well as
comparisons within a single class possible. The next section illustrates such a within class
comparison for use as a formative tool.
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Initially, approximately one-third of the students studied here chose to use limited types
of strategies, one-third chose prolific strategies and the final third, efficient strategies. As
expected, a significant number of students who solve the first Hazmat case presented to
them using an efficient type of strategy, use efficient types of strategies to solve most of
the other Hazmat cases presented to them. More surprisingly, students using limited or
prolific types of strategies will predominately continue to use limited or prolific strategy
types, respectively, in their attempts to solve future cases even though those strategies
seldom produce a correct answer. These relationships are shown in Table 1 and, as
indicated there, are significant.

Most Limited | Efficient | Prolific
Frequent
Strategy:
e
£ 2
o
oq
<
Limited 30 6 8
Efficient 5 23 9
Prolific 5 8 35

Table 1. This table shows the relationship between the type of strategy a student used to solve his or her
first Hazmat case and the strategy the same student use most often (the mode) to solve subsequent Hazmat
cases. Overwhelmingly, without pedagogical intervention, the strategy type used by a student in her or his
initial performance predicts the strategy type that student will continue to use most often on subsequent
Hazmat cases. The chi-square statistic suggests is relationship is not random. (3* = 70.5; d.f. = 4; p<.00D).

This same trend is evident in other classes, at other ability levels and on different
IMMEX problem sets. For example, Table 2 shows the relationship between the strategy
type first year undergraduate chemistry students used to solve their first case of a more
complex qualitative chemistry IMMEX problem-set and the strategy type used most often
by these same students to solve subsequent cases of this problem-set.
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Most Limited | Efficient | Prolific
Frequent
Strategy:
ey
5 2
(9
aQ
<
Limited 28 3 7
Efficient 2 4 1
Prolific 11 1 28

Table 2. This table shows the relationship between the type of strategy a first-year chemistry college
undergraduate used to solve his or her first qualitative chemistry case and the strategy the same student
used most often (the mode) to solve cases of the same problem-set. Overwhelmingly, the strategy type used
by a student in her or his initial performance correlates with the strategy type that student will continue to
use on subsequent cases.

The degree of difficulty of the cases or problem-set also seems to have an effect on the
strategy type students use to solve the cases of IMMEX problem-sets. Research suggests
that as a problem space becomes easier for students to manage (either because the ability
level of the students increases or the problem space become less complex), students are
less likely to use limited types of strategies. In fact when the college undergraduates just
described attempted to solve Hazmat cases, no student used a limited type of strategy to
solve the problem. On the other hand, when the first-year high school chemistry students
in this study were asked to solve the more complex qualitative chemistry problem
mentioned above, they used almost entirely limited types of strategies to do so. Table 3

shows this
Most Limited | Efficient | Prolific
Frequent
Strategy:
2T
s 2
9]
4]
=<
Limited 56 11 2
Efficient 10 14 3
Prolific 6 0 12

Table 3. The same relationship between the type of strategy a high school student used to solve the initial
case of a more complex IMMEX problem and the type of strategy s)he uses most often is evident in this
table. As the problem-space has become more complex, students begin to favor the use of limited types of

strategies.
(o =644;d.f.=4;p<.001).

The types of strategies used by a group of students, therefore, seems to suggest whether
cases of a particular problem-set like Hazmat are too easy or too difficult. When almost
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all students use limited types of strategies to solve presented cases (a type of “floor
effect”), the cases or the entire problem-set is probably too difficult. Likewise, when most
students use efficient or prolific types of strategies to solve cases in a problem-set (a type
of “ceiling effect”), those cases are probably not challenging enough for the students or
indicate that the students have mastered the material. When, however, student
performances demonstrate a range of strategy types, one may generally conclude a
problem-set or a group of cases is appropriate for that student group. Although such
considerations may be less important for summative assessment, they are critical when
using these results to formulate curricular interventions.

In fact, when the performances of a group of students represent diverse solution
strategies, Markov hidden chain analysis has proven to be an effective tool for evaluating
the pedagogical interventions suggested to improve student performances. For example,
Table 4 shows the probability that the first year high school chemistry students in this
study will start off with a particular type of strategy, then use another or repeatedly use
the same type of strategy on a subsequent performance.

To: | Start | Limited | Efficient | Prolific
From:
Start 00 | .34 29 .37
Limited | .00 | .56 .19 25
Efficient | .00 | .20 .54 26
Prolific | .00 | .17 .26 .57

Table 4. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column is given where that row and column
intersect. As students cannot return to the “Start” state once they solve their first case, the probability that
they move from any state back to the “Start” state is 0%. Note, however, that for this group, the likelihood
a student will use the same type of strategy to solve the very next problem (the diagonal cells) is more than
50% for each of the strategy types.

Assuming, as the research suggests, that these probabilities remain consistent over time,
one can use such a “transition matrix” to predict how many students will use a particular
type of strategy on their next case by multiplying the vector representing the number of
students using each strategy type on their present case by the transition matrix. As we
have found that even passive interventions leave this matrix unchanged over time, we
believe this assumption to be reasonable. Multiplying the resulting vector by the
transition matrix again will yield a prediction of the number of students using each
strategy type after two more cases, and so on. Although one cannot use this method to
trace how an individual student came to arrive at a particular strategy type (hence the
name ‘“‘hidden” chain analysis), repeatedly multiplying by the fixed transition matrix
generally produces a steady state.

o 8  AERA 2002
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To: | Start | Limited | Efficient | Prolific
From:
Start .00 |.30 33 37
Limited | .00 | .30 33 37
Efficient | .00 | .30 33 37
Prolific | .00 | .30 33 37

Table S. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column after attempting to solve seven cases of
Hazmat is given where that row and column intersect. Assuming that the probability a student will
transition from a given state to a subsequent state remains constant during these seven cases (Table 4), the
above steady state is reached. The analysis of this group of students suggests that 30% of the students will
settle into using Limited types of strategies, 33% will use efficient strategies, and 37% will use prolific
strategies when solving Hazmat cases.

As shown in Table 5, because students tend to adopt a single type of solution strategy
from the outset of solving Hazmat cases, approximately one third of the students will
eventually settle into each of the three strategy types. While such steady states allow

comparisons between classrooms or teachers, a more formative use is also suggested.

When a teacher analyzes how the strategies identified by artificial neural analysis differ,
and combines the insight of that analysis with the Markov technique just demonstrated,
various pedagogical interventions can be modeled and the predicted effectiveness of each
intervention compared. For example, when reviewing the student performances that
generated the data in Table 4, it becomes obvious that one of the efficient strategies
students use to identify part of the unknown is the use of red Litmus paper. Red Litmus
turns blue in the presence of hydroxide, so a successful red Litmus test, along with an
informative flame test, should allow the student to correctly identify these types of
unknowns. Consequently, the teacher may decide to revisit the use and meaning of red
Litmus in her curriculum. Markov hidden chain analysis allows us to model and predict
the outcomes of such an intervention. If we assume, for the moment, that 90% of the
students in this class developed an understanding of and could effectively use red Litmus
after the teacher’s intervention, this would imply a change in the types of strategies used
by those students when trying to solve Hazmat cases that involve hydroxides. More
specifically, because the red Litmus is now meaningful to the students currently using
limited or prolific strategies, these students would modify their existing strategy so it
became more efficient. This change in student behavior would produce the transition
matrix in Table 6 and the steady state matrix in Table 7.
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To: | Start | Limited | Efficient | Prolific
From:
Start .00 .21 47 .32
Limited | .00 | .39 41 20
Efficient | .00 | .24 49 27
Prolific | .00 |.12 44 44

Table 6. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column from their first to second case of Hazmat
after instruction on red Litmus paper is given where that row and column intersect.

To: | Start | Limited | Efficient | Prolific
From:
Start .00 |.24 46 .30
Limited | .00 | .24 46 .30
Efficient | .00 | .24 46 .30
Prolific | .00 | .24 46 .30

Table 7. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column after instruction on red Litmus paper and
after attempting to solve seven cases of Hazmat is given where that row and column intersect. Assuming
that the probability a student will transition from a given state to a subsequent state (Table 6) remains
constant during these seven cases, the above steady state is reached. The analysis of this group of students
suggests that almost half the students will use efficient strategies when solving Hazmat cases after this
specific intervention.

Other similar calculations could be made by reducing the percentage of students who
benefit from the instruction on red Litmus paper. Moreover, the effects of other
interventions can be modeled and compared with re-teaching this topic. For example,
students in this data set also use the strategy of adding acids to the unknown, and we have
also found this to be a common strategy among high school Advanced Placement
students. As most chemistry teachers would know, this strategy is particularly effective
because when an acid is added to a compound composed, in part, of hydroxide, it will
become hot. Moreover, the same addition will cause a compound containing a carbonate
to bubble. If the teacher of this group of students was to teach these students this concept
and 90% of the students effectively applied the new strategy on subsequent Hazmat
cases, the new transition matrix shown in Table 8 would result. Assuming that these
transitions remain constant, the steady state resulting from this new transition matrix is
shown in Table 9.
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To: | Start | Limited | Efficient { Prolific
From:
Start 00 |.19 .5 31
Limited | .00 | .36 5 .14
Efficient | .00 | .22 .53 25
Prolific | .00 |.10 A48 42

Table 8. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column from their first to second case of Hazmat
after instruction on acid reactions is given where that row and column intersect.

To: | Start | Limited | Efficient | Prolific
From:
Start 00 | .22 51 27
Limited | .00 | .22 S1 27
Efficient | .00 | .22 51 27
Prolific |.00 | .22 51 27

Table 9. The probability that a student in this group will transition from the strategy type given in the left
column to the strategy type identified at the top of each column after instruction on acid reactions and after
students attempt to solve seven cases of Hazmat is given where that row and column intersect. Assuming
that the probability a student will transition from a given state to a subsequent state (Table 8) remains
constant during these seven cases (Table 8), the above steady state is reached. The analysis of this group of
students suggests that almost half the students will use efficient strategies when solving Hazmat cases after
this specific intervention.

Here again, effectiveness rates lower than 90% could be applied, and different
effectiveness rates could be applied to each of the two interventions based on empirical or
a teacher’s anecdotal evidence about the ease students learn and apply each of the
interventions. Conversely, the difference between predicted and actual outcomes could be
used as a metric for the degree of difficulty specific students or students in general have
learning or applying various concepts.

The steady state tables resulting from this analysis provide at least three key insights.
First, comparing steady state tables suggest which intervention might produce the greatest
amount of positive change. Among this group of students, those using efficient strategy
types were more likely than not to correctly apply qualitative chemistry concepts to
correctly identify unknowns. Students using limited and prolific strategies were more
likely to misidentify unknowns. The two steady state tables above (Tables 7 and 9)
suggest that teaching these students about the interaction of red Litmus and solutions
containing hydroxide would result in slightly less than half the students adopting more
efficient strategies to solve these types of Hazmat cases (Table 7) if 90% of the students
effectively applied that instruction in problem-solving. On the other hand, if the student’s
teacher achieved the same degree of effectiveness in teaching her students how acids
react with carbonates and with hydroxides, we would expect more than 50% of the
students to adopt efficient strategies (Table 9).
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The second piece of information provided by this analysis is a quantitative measure of the
difference between predicted and actual outcomes. While the first intervention is
predicted to move almost 50% of the students to adopt more effective strategies, what
actually happens after such an intervention might be very different. Such discrepancies
could provide new insights into more effective teaching and learning paradigms based on
the past problem-solving performances of the actual students being instructed.

Finally, as can be seen in the variation between Tables 5, 7 and 9, these two interventions
produce smaller changes in students using limited strategies than in those using prolific
strategies. Because the cases were delivered entirely at random to the students, it is
unlikely that the order in which a student received the cases will affect strategy type
selection significantly before or after the teacher’s intervention. Consequently, Markov
analysis should allow us to predict what interventions might be most appropriate for
those students using each of the various types of problem-solving strategies.

Conclusion

Quantitative and qualitative analysis suggest that the strategy types identified by artificial
neural network analysis are both accurate and reliable. Moreover, this research suggests
that such an analysis could function as a valuable formative tool by suggesting teaching
interventions designed to benefit both individual students as well as larger, more diverse,
groups of students. This study used adaptive artificial neural network analysis to identify
the common strategies first year high school chemistry students used to solve qualitative
chemistry problems. It demonstrated that the strategies used by these students were of
three general types. Students adopting limited types of strategies did not have enough
information to proffer a conclusive answer before doing so. On the other hand, students
using prolific strategies had more than enough information to precisely identify the
unknown. In both cases, however, students adopting either strategy type were unlikely to
correctly identify the compound. Conversely, about one-third of the students in this study
adopted very efficient strategies that allowed them to focus only on information that was
pertinent to correctly identifying the unknown. Students adopting efficient strategies were
more likely than not to identify the unknown substance.

This study also found that no matter which type of strategy the student used to solve
Hazmat cases, students would adopt that strategy type beginning with the first case and
they would continue to use similar strategies on subsequent cases. This same trend has
also been documented in other high school science domains, and among chemistry
students of varying abilities (e.g. high school Advanced Placement, community college,
and first year undergraduates). Without pedagogical intervention, students appear highly
unlikely to change problem-solving strategies, even if those strategies seldom produce a
correct answer. Nevertheless, this research suggests that the analysis of strategies
combined with Markov hidden chain analysis could function as a valuable formative tool.

When combined with a teacher’s insight of how the strategy types of students differ,

Markov analysis not only suggests which interventions might be most effective for
students, but also provides a metric that allows us to compare the potential effectiveness
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of each intervention. In this case, the use of red Litmus and the addition of acid to an
unknown were two strategies repeatedly used by successful students. Consequently, we
chose to evaluate how re-teaching the concepts underlying these strategies (not just the
strategies themselves) would improve the problem-solving of the students. Markov
analysis suggests that both interventions are likely to improve student problem-solving,
but that teaching students the effects of adding an acid to an unknown is likely to result in
more of the students using better strategies.

Although time and curriculum limitations prevented the interventions described above
from being implemented, determining how closely the steady states predicted by Markov
analysis match reality is both necessary and planned. More importantly, research must
demonstrate how closely the effects of the suggested pedagogical interventions match
those predicted by the calculated steady states or if the relative differences between
interventions approximates the differences in student problem-solving behaviors actually
seen in chemistry classrooms. In the meantime, the methodology proposed here offers
investigators in the field and educators in the classroom a metric that allows each to
develop and to begin evaluating the effectiveness of such pedagogical interventions.
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