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The Consistency between the Empirical and the Analytical Standard Errors
of Multidimensional IRT Item Estimates

ABS TRACT

An evaluation of the variation of item estimates was conducted for the

multidimensional extension of the logistic IRT (MIRT) model. The empirically

dete-4-ed SEs of MMLE (marginal maximum likelihood estimation)/Bayesian

item estimates from the forty items (ACT-Form 24b, 1985) were obtained when

the same set of items is repeatedly estimated from test data. They seemed to be

reasonably small (all less .2) and ready to be used in real testing programs.

These empirically determined SEs were then compared with their corresponding

analytical (or formula-based) ones. Both approaches, in general, resulted in

similar SE estimates for the same set of items. This empirical comparison

implies that the analytical approach has the potential of being used for

approximately estimating the magnitudes of SEs of the MMLE/Bayesian item

estimates.

Tabulation of the analytical SEs for several combinations of item

parameters (e.g., low d, high al and low a2) was provided as a reference. In

addition, the graphically 3-D presentation to the SEs of item estimates as the

bivariate function of item difficulty together with item discrimination were

displayed. Finally, an example of how to apply the analytical SEs of MIRT item

estimates on a MIRT item linking study was illustrated.

Key Words: Standard Errors, Parameter Estimates, Multidimensional Item Response Theory
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I. Introduction

A. Background

When a test is administered to a group of examinees, the interaction of a sample of

examinees with a set of test tasks might result in test data that appear to be unidimensional in

some instances but multidimensional in other instances (Ackerman, 1992) because this set of

test items can be sensitive to several traits. Furthermore, this group of examinees may vary in

several latent abilities (Ackerman, 1992). A presumed single trait dimension for test data that

are actually multidimensional might jeopardize the invariant feature of item response theory

(IRT) models (Ackerman, 1994; Reckase, 1985). The results from the Li and Lissitz's study

(2000a) suggested that multidimensional IRT (MIRT) models can be applied to not only

multidimensional data but also to unidimensional test data as well. The fit of MIRT MIRT

models to unidimensional data will generate item discrimination estimates (or factor loadings)

that approach zero for the overidentified dimensions but does little harm in terms of the IRT

invariant feature. In order to avoid obtaining unbiased parameter estimates, it seems apparent

that overestimating the number of dimensions of a set of test data would be a better choice than

underestimating the number of dimensions (Reckase & Hirsch, 1991).

MIRT modeling takes advantage of more flexibility of fitting test data than

unidimentional models, but requires that more model parameters be estimated. This latter factor

might result in parameters that are less accurate and stable when sample sizes are not large

enough. The practical utility of MIRT models relies on the capability of obtaining reasonably

accurate item estimates (Miller, 1991). The magnitude of a standard error (SE) of an item

parameter is used to measure the precision of an item estimate and will become a critical

criterion to gauge MIRT's feasibility for future practical uses.
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The estimated SE for an item estimate is strongly associated with the parameter

estimation method. The joint maximum likelihood method (JMLE) was one of the estimation

methods. During the process of JMLE, the asymptotic variances and covariances of MIRT item

estimates can be approximately estimated by inverting the associated information matrix for the

item estimates at the last iteration when we treat ability estimates as true values (Carlson,

1987). The diagonal of the inverse of the information matrix contains the corresponding error

variances of item estimates. And the square roots of these elements in diagonal are the

approximate asymptotic SEs of item estimates. The MIRT program (Carlson, 1987),

implementing the JMLE estimation method, has options for users to obtain this type of

information. One estimation problem for the JMLE item estimates is that they are not

statistically consistent as the number of examinees increases (Baker, 1992). That is why this

approach has become less widely used than the MMLE (marginal maximum likelihood

estimation) /Bayesian approach that generally produces better estimates with small sample

sizes. The MMLE/Bayesian estimation involves the incorporation of the additional information

of the priors of item estimates into the MMLE likelihood function.

The MMLE /Bayesian approach similar to the JMLE procedure is capable of

approximating the asymptotic SEs of MIRT item estimates when the distribution of examinee

abilities is exactly specified in the likelihood function. As a matter of fact, the published and

accessible MIRT software, TESTFACT (Wilson, Wood & Gibbons, 1991) using the

MMLE/Bayesian, does not provide this type of information. Instead, the analytical approach

(or formula-based, Thissen & Wainer, 1982, will be introduced later) fills this gap by

predicting SE's values without real test data when a set of MIRT item estimates (e.g., yielded

from TESTFACT) are given. The fundamental assumption used for deriving the formula for
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computing the analytical SEs is that item parameters are estimated by the maximum likelihood

(ML) rather than the MMLE/Bayesian approach. Does this assumption have any significant

impact on approximating the SEs of MMLE/Bayesian item estimates? The accuracy of the SE

estimates for unidimenstional IRT items through the analytical approach has been examined by

the Li and Lissitz's study (2000b). Their study demonstrated the analytical approach is

suitable to approximate the SE estimates for the two-parameter model and the generalized

partial credit model (Muraki, 1992). Their findings encourage test practitioners to further

explore the possibility of using the analytical approach for predicting the SEs of item estimates

for the MIRT models as well.

Another method, the least squares approach implemented in NOHARM (1988, Fraser &

McDonald), has been used in several studies (e.g., Miller, 1991; Reckase, 1985) for estimating

MIRT parameter estimates, but the least squares approach is not directly available to

approximate the SEs of MIRT item estimates as do the JMLE and MMLE/Bayesian. Miller

(1991) attempted the empirically determined approach by repeated samplings to obtain the

SEs of the least-squares based MIRT estimates. In Miller's study (1991), a population sample

of 30,000 examinees were drawn at random from 140,000 cases. Ten replication samples of

n=2000 each were then drawn at random, with replacement from the presumed population. The

average of the empirical SEs for item difficulty (d) was 0.15, and for the first (ai), second (a2 )

and third (a3) discrimination parameters were 0.12, 0.14 and 0.15, respectively. The results

from Miller's study provided test practitioners with valuable information about how large the

empirical SEs of item parameter estimates from a real dataset could be, although the

magnitudes of SE estimates from that study could be unstable due to the small number of

replications in that study.
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B. Research Purposes

MIRT modes have not currently been employed in real testing programs. It is so

essential that test practitioners know how reliable a set of MIRT item estimates are before

employing them in practical testing situations. The empirically determined approach is very

tedious for obtaining the SEs of parameter estimates, but it will produce rather stable and

accurate SE estimates for a set of item estimates as the number of replications increases.

Accordingly, the empirically determined approach was adopted in this study for serving two

purposes. One is that the empirically determined SE results would provide test practitioners

with a sense of how large the SEs of MIRT parameter estimates might be when the

MMLE/Bayesian approach is applied. The other is that they will be used as a comparison base

with those obtained from the analytical approach.

The level of consistency of SEs yielded from both the empirically determined and the

analytical methods was used to evaluate the feasibility of using the analytical method for

predicting the SEs of MIRT item estimates. If the level of consistency between two measures

for SE estimates is relatively high, the analytical-based SEs of MIRT item estimates would

be tabulated under some common testing situations for reference purposes as has been done by

Thissen & Wainer (1982) for unidimentional TRT item estimates.

Without real test data the three-D graphical presentation for analytical SEs of item

estimates has been used for detecting the possible problems of applying the ML estimation

method to the Three-PL model (Thissen & Wainer, 1982) and to the GPCM model (Li &

Lissitz, 2000b). As the MIRT model (Reckase,1985) has been increasingly used in research

studies, the extension of this graphical procedure to the MIRT model will provide test
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practitioners with a better understanding of this model. The three-D graphical presentation for

the two-dimensional case is included in this study.

II. Methods for Approximating the SEs of MIRT Item Estimates

A. Multidimensional Logistic IRT Models

111OLICI IIILISLI4LCU UC1UW IS CL IIIUILIUIIIItIISIUII4I VALVIISIVII UI LUG Lnicc-pcuaniuLci

logistic model (M3PL). This model hypothesizes that the probability of a correct response,

14..1=1, by person j to item i, given an individual's m-dimensional latent abilities, O, is (refer to

Reckase, 1985): P(u13 =

where,

,c,,O ) = + (1 (1)

ZjJ = D(E aik0A) + di (2)

a, is a m-dimensional vector of item discrimination parameters,

d, is a location parameter related to item difficulty

c, is a pseudo-guessing parameter and

D is a scaling constant (1.702).

The scaling factor D is included in the model to make the logistic function as close as

possible to the normal ogive function (Baker, 1992). Since the terms in Equation 2 are additive,

being low on one latent trait can be compensated for by being high on the other latent traits.

Thus, this model is called a compensatory model (Reckase, 1985) because the terms are

additive in the logit. A multidimensional extension of the two-parameter logistic model

7 8



(M2PL) is obtained if the guessing parameter c, is constrained to zero for all items in Equation

1 above.

B. The Empirically Determined SEs of MMLE/Bayesian MIRT Item Estimates

The empirically determined SEs of item estimates can be calculated from the real test

data as described by Miller (1991) or can be obtained through repeated data generations as

illustrated below. When the MMLE/Bayesian estimation approach was used for item estimates,

the empirically determined SEs of MMLE/Bayesian MIRT item estimates are obtained in the

following manner:

(1). Generate a test dataset by using the known MIRT item parameters and a set of simulees's

ability parameters;

(2). Calibrate item parameter estimates, using the MMLE/Bayesian estimation method;

(3). Transform the metric of the estimated parameters to the one defined by the true parameters

(for detailed procedures on MIRT item linking, see Li and Lissitz, 2000a);

(4). Repeat steps 1 through 3 numerous times (e.g., 100 times), resulting in a large number of

estimates for each individual parameter.

The SE of an item estimate is obtained by computing the standard deviation of the

replicated (e.g. 100) item estimates. In addition, the SE of an item estimate can be calculated

through the values of BIAS and RMSE, defined below, if both variables are available. The

latter method is preferred, if available, because the relationship to BIASs and SEs for item

estimates can also be evaluated when needed.
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(5). Calculate the BIAS and RMSE (root mean squared error) for each of the parameter

estimates by the formulas shown below.

r

E(HiHi)
BIAS(H1) = i='

RMSE(Hi )

r A

E(HiIii) 2
i=1

(3)

and (4)

A

where Hi is the true item parameter, Hi is the corresponding estimated item parameter, and r is

the number of replications, in which r equals 100 in this study.

RMSE is a measure of total error of estimation that consists of the systematic error

(BIAS) and random error (SE). These three indices are related to each other as follows (De

Ayala & Sava-Bolesta,1999):

RMSE(Hi)2 SE(H1)2 +BIAS(H1)2 (5)

The empirical MMLE/Bayesian SE of an item estimate is approximately calculated by:

SE(Hi ) VRMSE(Hi ) 2 BIAS(Hi ) 2 (6)

C. The Analytical SEs of MIRT ML Item Estimates

Sample size, the shape of examinees' abilities and the characteristic of test items can

cause errors in the parameter estimates (Hambleton, Jones & Rogers, 1993; Stocking, 1990;

Thissen & Wainer, 1982). A mathematical expression for this relationship has been developed

by Thissen and Wainer (1982) for unidimensionally dichotomous IRT models and was

modified for multidimensionally dichotomous IRT models (Li & Lissitz, 2000a). The



procedures illustrated below were used in this study for predicting the SEs of MIRT item

estimates.

For an item i, the likelihood of the observed responses for N independent examinees is:

=111r0.-121-11
J J

j=1

where P can be calculated from a M2PL model, u=1 for correct response; u=0 for incorrect

response. The log likelihood of Equation 7 is

(7)

logL = [u log(Pi ) + (1 u) log(1 Pi )] (8)

The maximum likelihood estimates of each parameter (ai, di, ) are located where the partial

derivatives of Equation 8 are zero. Let E represents the M2PL item parameters (ai, d ). Given a

density of 0 (e.g. multivariate Gaussian with MVN(0, I)), for any parameter 4, and 4t the

negative expected value of the second derivative of the log likelihood function in Equation 8

has the form (refer to Thissen, Wainer, 1982),

Er 0,2 logq )0)(0) ol)(0))
) [pQ)L gs gt ) (I); (0)d O, dB., (9)

where E is the expectation and Q=1-P. Equation 9 requires the derivatives of P(0) with respect

to its parameters. These derivatives of P(0) can be substituted in Equation 9 to give a 3 x 3

(for the M2PL model) information matrix corresponding to the triplet item parameters (d, al

and a2). The inverse of that information matrix is the asymptotic variance-covariance matrix of

the three parameters. The square roots of the diagonal elements of the variance-covariance

matrix are the asymptotic standard errors of the parameters.
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The numerical approximation of the multiple integral in Equation 9 can be calculated

by the multiple-dimensional Gauss-Hermite quadrature (Baker, 1992). Equation 10 is presented

for the two-dimensional case,

cP(X) 613(X)N
±( (131Q) A(Xq, )A(Xq, )

q2=1q1=1

(10)

where X is a quadrature point in one of two ability dimenqinnQ, q is the number of quadratures

in this ability dimension and A(X) is the corresponding weight of the quadrature. The number

of quadrature points for numerical integration is set at forty for each dimension in this study.

To summarize, the analytical SEs of a set of ML item estimates for an item are a

function of the IRT model, the sample size and the shape of the examinees' abilities.

III. Methodology

A. The Empirically determined SEs of MIRT MMLE/Bayesian Item Estimates

The M2PL model (Reckase, 1985) was used in this study. MIRT item estimates for the

40 items were from ACT Form 24B (Reckase, 1985). The RMSEs and BIASs of

MMLE/Bayesian item estimates were calculated when the 40 items were repeatedly calibrated

by TESTFACT from 100 simulation test data (for details, see Li's study, 1997; Li & Lissitz,

2000a). The empirically determined SEs of MIRT item estimates were calculated by Equation

6, using the RMSE and BIAS information.

B. The Analytical SEs of MIRT ML Item Estimates

The same 40 sets of item estimates were also used to calculate the analytical SEs of

item estimates. The weights (A(Xs)) for all quadrature points used for the analytical SE



estimates came from the estimated posterior distribution of abilities reported from the

TESTFACT output when the item parameters were estimated by the MMLE/Bayesian

approach. The same sample size, 2000, used to generate item response data in Li and Lissitz's

study (2000a), was used here.

C. Data Analysis

Descriptive statistics of the SE Index of item parameter estimates for the analytical and

the empirically determined data were calculated. A t-test for dependent observations was then

conducted to compare the impact of the estimation method on the precision of SE estimates for

item parameters. The dependent t-test was chosen because the values of SEs for the same set of

item parameters were repeatedly calculated by the two methods so that the Log[SE] (the log

transformation of SE, refers to Harwell, Stone, Hsu & ICirisci, 1996) of each of various item

parameter estimates was treated as a repeated- measure across two methods.

The Pearson correlation coefficient between two measures, across test items, was

calculated for each of the various item estimates. The plots of SEs of item estimates as a

function of true item parameters for these two approaches were graphed.

IV. Results and Discussions:

A. The SEs of MIRT Item Estimates

The SEs of the set of item parameters (from ACT Form-24B, Reckase, 1985) were

calculated by the empirically determined and analytical approaches with a sample size 2000

and are tabulated in Table 1.
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In Table 1, the values of the second column are d-parameters, the next two colunms

used for showing their corresponding SEs separately calculated by the empirically determined

(labeled EMB) and the analytical (labeled ANA) approaches, respectively. The values of al-

parameters are in the fifth colunm and their corresponding SEs computed from the two

approaches are presented in the next two columns. The values of the eighth colunm are a2-

parameters, and the next two columns are used to show their corresponding SEs for the two

approaches. For example, Item 2 has MIRT parameters of d =0.17, a1=1.22 and a2=0.02; the

corresponding empirically determined SEs for this set of item parameters are 0.032, 0.034 and

0.047. They are quite similar to those calculated from the analytical approach that resulted in

0.055, 0.040 and 0.036 for the same item. The average value of each parameter and its

corresponding SE is presented in the last row of Table 1.

The magnitudes of SEs for the 40 sets of item estimates in Table 1 from the empirically

determined approach were the empirical SEs of MIRT MMLE/Bayesian item estimates and ,in

general, are rather small (less than .2). The question of whether the complex MIRT models

have the capability of obtaining reasonably accurate item estimates might have been addressed

based on this result. MIRT models, essentially, have more slope (discrimination) parameters to

be estimated than the unidimentional IRT models do and this may cause greater variation of

item estimates. The risk of obtaining unreliable MIRT item estimates did not occur in the data

examined in this study. The theoretically sound estimator of MMLE/Bayesian and an

appropriate method used for item metric conversion (or MIRT item linking, see Li and Lissitz,

2000a) could be two key factors affecting this result.



Table 1:
The SEs of MIRT Item Estimates from ACT-Form 24b (Reckase, 1985) by the Empirically
Determined and Analytical Approaches (N = 2000, Replications =100, for the Empirically
determined Airnroach
Item
# d

SE of d
al

SE of al
a2

SE of a2
EMB ANA EMB ANA EMB ANA

01 0.170 0.037 0.058 1.220 0.075 0.055 0.020 0.057 0.034
02 0.440 0.032 0.055 0.710 0.034 0.040 0.530 0.047 0.036
03 0.440 0.044 0.067 1.720 0.094 0.077 0.180 0.072 0.039
04 0.690 0.035 0.064 1.330 0.066 0.061 0.340 0.049 0.038
05 0.380 0.045 0.071 2.000 0.120 0.091 0.000 0.079 0.041

Or 0.910 0.047 0.081 9.000 0.091 0.095 0.980 0.064 0.060

07 0.540 0.038 0.061 1.220 0.074 0.056 0.140 0.047 0.035

08 -0.210 0.043 0.067 1.350 0.056 0.066 1.150 0.054 0.059

09 0.120 0.039 0.068 1.920 0.111 0.087 0.000 0.081 0.040

10 -0.280 0.035 0.058 1.200 0.068 0.055 0.120 0.052 0.034
11 0.020 0.042 0.074 1.540 0.090 0.079 1.790 0.106 0.088

12 -0.830 0.039 0.070 1.530 0.076 0.070 0.480 0.052 0.042
13 -0.490 0.031 0.054 0.510 0.040 0.036 0.650 0.050 0.038
14 -0.680 0.029 0.054 0.690 0.043 0.038 0.190 0.038 0.031

15 -1.080 0.045 0.071 0.680 0.060 0.045 1.210 0.076 0.058

16 -1.000 0.048 0.068 0.510 0.063 0.041 1.210 0.092 0.057

17 -1.920 0.070 0.102 0.010 0.123 0.043 1.940 0.174 0.093

18 -1.360 0.048 0.074 0.760 0.049 0.046 0.990 0.078 0.052

19 -0.990 0.042 0.065 0.090 0.053

20 -1.610 0.047 0.073 0.420 0.045 0.039 0.750 0.055 0.045

21 1.460 0.045 0.090 1.810 0.073 0.087 0.860 0.061 0.056
22 0.670 0.043 0.068 1.570 0.080 0.071 0.360 0.051 0.040
23 0.100 0.034 0.053 0.860 0.050 0.043 0.190 0.043 0.032

24 0.380 0.046 0.069 1.860 0.102 0.084 0.290 0.076 0.041

25 0.170 0.050 0.069 1.190 0.086 0.063 1.570 0.092 0.075

26 0.030 0.034 0.053 0.870 0.051 0.043 0.000 0.046 0.031

27 -0.490 0.040 0.062 1.000 0.055 0.051 0.890 0.061 0.048

28 0.290 0.037 0.061 1.270 0.069 0.058 0.470 0.047 0.039

29 0.080 0.036 0.057 1.060 0.054 0.050 0.450 0.041 0.037

30 -0.300 0.033 0.055 0.960 0.053 0.046 0.220 0.036 0.033

31 -0.210 0.037 0.061 1.410 0.074 0.063 0.040 0.060 0.036
32 -0.690 0.033 0.053 0.540 0.043 0.035 0.230 0.039 0.031
33 -0.560 0.034 0.056 0.720 0.045 0.040 0.550 0.043 0.037
34 -0.380 0.050 0.076 1.660 0.099 0.084 1.720 0.093 0.086

35 -0.910 0.049 0.069 0.880 0.057 0.049 1.120 0.075 0.056

36 -0.950 0.052 0.065 0.240 0.063 0.036 1.140 0.095 0.054

37 -0.960 0.034 0.062 0.760 0.045 0.043 0.590 0.043 0.039

38 -1.570 0.084 0.089 0.390 0.079 0.044 1.770 0.149 0.083

39 -0.810 0.049 0.063 0.490 0.060 0.039 1.100 0.087 0.053

40 -1.560 0.055 0.076 0.480 0.048 0.041 1.000 0.077 0.052

Mean -0.324 0.043 0.067 1.041 0.068 0.056 0.708 0.068 0.048
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B. Comparisons Between the Analytical SEs and the Empirically determined SEs

Figure 1 presents plots of the SEs as a function of true parameters (item difficulty, d,

together with the item discriminations, al and a2) for the analytical (labeled ANA) and the

empirically determined (labeled EMB) methods. Table 2 shows summary descriptive statistics

for the SE, computed across 40 items, for each method.

0.5

0.4

0.3
-a

0.1

0
-3 -2 -1 0 1

True d Parameter
2 3

Figure la. SE of d as a function of the true d-parameter for the two-dimensional MIRT model.



0.5 1 1.5 2 2.5
True al Parameter

Figure lb. SE of al as a function of the true al-parameter for the two-dimensional MIRT model.

The results from Figure 1 and Table 2 indicated that both methods yielded quite similar

SEs of item estimates. The dependent-t statistics (see Table 2) for the log transformation of the

parameters (d, al, and a2) showed statistically significant differences between the two methods.

It seems likely that there is no practical meaning for these statistically significant differences,

since these differences (.03 for d, .01 for al, and .02 for a2) are so small.

The correlation coefficients (Table 2) between analytical and empirically determined

measures, across 40 items, were .83, .63 and .79 for the parameters, d, al and a2, respectively.

To summarize, the magnitudes of the analytical SEs of ML item estimates were highly

consistent with those obtained from the empirically determined SEs of MMLE/Bayesian item

estimates. This finding implies that although the analytical SEs of MIRT item estimates was
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derived on the assumption that items are estimated by the ML estimation method, they can be

substituted for those from MMLE/Bayesian item estimates when the latter are unavailable,

difficult to calculate exactly or needed at some other purposes (discussed later).

0.5

0 .4

o EMB
4- AEA

0.1

611111'04111)

0.5 1 1.5
True a

2
Parameter

Figure lc. SE of a2 as a function of the true a2-parameter for the two-dimensional MIRT model.

2.5

Table 2
Descriptive Statistics of SE Index of MIRT Item Parameter Estimates, dependent t Tests, and
Pearson Correlation Coefficients, for the AEA and EMB methods (N=2000, Replications for
EMB = 1000)

Method and Number AEA EMB t r
Parameter Mean of Items Mean Min Max Mean Min Max

Two-Dim
-.32 40 .07 .05 .11 .04 .03 .08 25.17*** .83d

al 1.04 40 .06 .04 .10 .07 .03 .12 -5.88*** .63

a2 .71 40 .05 .03 .10 .07 .04 .17 -10.50*** .79

* P < .05; ** P< .01; *** P< .001
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C. Tabulate and Graph the Analytical SEs of MIRT Item Estimates

There were few studies related to the evaluation of the magnitude of SEs for MIRT

item estimates. This could result in the test practitioners inability to realize how small the SEs

of MIRT parameter estimates are that are obtained under a specific condition. Tabulating the

analytical SEs by the different combinations of item parameters (e.g., low d, low al with high

a) is an alternative method to help test practitioners better comprehend the possible values of

the estimated SEs of item parameters.

Table 3 provides the SEs of item difficulty (d) as a three-variable (d, al and a) function

for the two-dimensional M2PL Model with a sample size, N=1000. For example, given a set of

MIRT item estimates of d=0, a1=1 and a2=1, the SE of d is .073. The SEs in this table can be

applied to other sample sizes. For instance, for N=2000, the corresponding SEs will be the

1current SEs presented in this table multiplied by a constant that equals
V2000

1000

Similarly, for N=3000, the constant equals 1

V3000
1000

The procedure for computing the constant is (refer to Thissen & Wainer, 1982): first, compute

the ratio of the new sample size to 1000, second, take the square root of this ratio, finally,

take reciprocal of this ratio.

Table 4 provides the SEs of the first-dimensional item discrimination (ai) as a three-

variable (d, al and a2) function for the two-dimensional M2PL Model under N=1000.

Similarly, the SEs in Table 4 can be used for the SEs of a2 and be applied to other sample sizes

using the same method of calculation.
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Table 3:
SE of Item Difficulty (d) as a Three-variable Function of Item Difficulty (d) together with the
Two Item discriminations (ai and a for the Two-dimensional M2PL Model with N=1000.
Item Dis-
crimination

. _.

Item Difficulty d

az al
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5 0.5 .171 .139 .114 .095 .082 .074 .072 .074 .082 .095 .113 .139 .171

1.0 .183 .151 .126 .106 .092 .083 .080 .083 .092 .106 .126 .151 .183

1.5 .195 .164 .139 .118 .103 .093 .089 .093 .103 .118 .139 .165 .196

2.0 .209 .178 .152 .130 .113 .103 .099 .103 .113 .130 .152 .179 .210

2.5 .223 .192 .165 .142 .124 .112 .108 .112 .124 .142 .165 .192 .224

1.0 0.5 .183 .151 .126 .106 .092 .083 .080 .083 .092 .106 .126 .151 .183

1.0 .191 .160 .134 .114 .099 .089 .086 .089 .099 .114 .134 .160 .192

1.5 .202 .171 .145 .124 .108 .098 .094 .098 .108 .124 .145 .171 .203

2.0 .214 .183 .157 .134 .117 .106 .102 .106 .117 .134 .157 .184 .215

2.5 .228 .196 .168 .145 .127 .115 .111 .115 .127 .145 .169 .196 .228

1.5 0.5 .195 .164 .139 .118 .103 .093 .089 .093 .103 .118 .139 .165 .196

1.0 .202 .171 .145 .124 .108 .098 .094 .098 .108 .124 .145 .171 .203

1.5 .211 .180 .154 .132 .115 .104 .100 .104 .115 .132 .154 .181 .212

2.0 .222 .191 .164 .141 .123 .111 .107 .111 .123 .141 .164 .191 .223

2.5 .234 .202 .174 .150 .131 .119 .115 .119 .131 .150 .174 .203 .235

2.0 0.5 .209 .178 .152 .130 .113 .103 .099 .103 .113 .130 .152 .179 .210

1.0 .214 .183 .157 .134 .117 .106 .102 .106 .117 .134 .157 .184 .215

1.5 .222 .191 .164 .141 .123 .111 .107 .111 .123 .141 .164 .191 .223

2.0 .232 .200 .172 .148 .130 .118 .113 .118 .130 .148 .172 .200 .233

2.5 .243 .210 .181 .157 .137 .124 .120 .124 .137 .157 .181 .210 .243

2.5 0.5 .223 .192 .165 .142 .124 .112 .108 .112 .124 .142 .165 .192 .224

1.0 .228 .196 .168 .145 .127 .115 .111 .115 .127 .145 .169 .196 .228

1.5 .234 .202 .174 .150 .131 .119 .115 .119 .131 .150 .174 .203 .235

2.0 .243 .210 .181 .157 .137 .124 .120 .124 .137 .157 .181 .210 .243

2.5 .252 .219 .189 .164 .143 .130 .125 .130 .143 .164 .189 .219 *

*: Unavailable due to inappropriate combination for a set of item parameters (d=3.0 a1=2.5
and a2=2.5).



Table 4:
SE of Item Discrimination (ai) as a Three-variable Function of Item Difficulty (d) together
with the Two Item discriminations (al and a2) for the Two-dimensional M2PL Model with
N=1000.
Item Dis-
crimination

Item Difficulty d

a2 al
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5 0.5 .078 .068 .060 .054 .051 .049 .048 .049 .051 .055 .061 .069 .079

1.0 .090 .083 .077 .073 .070 .069 .068 .069 .071 .074 .078 .084 .092

1.5 .114 .108 .104 .100 .098 .097 .096 .097 .098 .101 .105 .109 .116

2.0 .146 .141 .137 .134 .131 .130 .130 .130 .132 .134 .137 .142 .147

2.5 .184 .179 .175 .172 .170 .169 .168 .169 .170 .172 .175 .179 .185

1.0 0.5 .073 .066 .061 .058 .055 .054 .053 .054 .055 .058 .062 .067 .074

1.0 .090 .084 .080 .077 .074 .073 .073 .073 .075 .077 .081 .085 .091

1.5 .116 .111 .107 .104 .102 .100 .100 .101 .102 .104 .108 .112 .117

2.0 .148 .144 .140 .137 .135 .134 .133 .134 .135 .137 .140 .145 .150

2.5 .186 .182 .178 .175 .173 .172 .172 .172 .173 .176 .179 .182 .187

1.5 0.5 .073 .068 .065 .062 .060 .059 .059 .059 .060 .062 .065 .069 .073

1.0 .092 .087 .084 .081 .080 .079 .078 .079 .080 .082 .085 .088 .093

1.5 .119 .115 .111 .109 .107 .106 .106 .106 .107 .109 .112 .116 .120

2.0 .152 .148 .145 .142 .140 .139 .139 .139 .141 .143 .145 .149 .153

2.5 .190 .186 .183 .180 .179 .178 .177 .178 .179 .181 .184 .187 .191

2.0 0.5 .075 .072 .069 .067 .066 .065 .065 .065 .066 .067 .069 .072 .075

1.0 .095 .092 .089 .087 .086 .085 .085 .085 .086 .087 .089 .092 .096

1.5 .123 .120 .117 .115 .113 .112 .112 .113 .114 .115 .117 .120 .124

2.0 .157 .153 .151 .148 .147 .146 .146 .146 .147 .149 .151 .154 .158

2.5 .196 .192 .189 .187 .185 .184 .184 .185 .186 .187 .190 .193 .197

2.5 0.5 .078 .076 .074 .072 .071 .071 .071 .071 .072 .073 .074 .076 .079

1.0 .099 .097 .094 .093 .092 .091 .091 .091 .092 .093 .095 .097 .100

1.5 .128 .125 .123 .121 .120 .119 .119 .119 .120 .122 .123 .126 .129

2.0 .163 .160 .157 .155 .154 .153 .153 .154 .154 .156 .158 .161 .164

2.5 .202 .199 .196 .194 .193 .192 .192 .192 .193 .195 .197 .200 *

*: Unavailable due to inappropriate combination for a set of item parameters (d=3.0 a1=2.5
and a2=2.5).

When test practitioners are working with the two-dimensional logistic MIRT model,

Tables 3 and 4 are useful references for predicting the SEs of MIRT item estimates. In addition,

similar tables like Tables 3 and 4 can be made for different conditions (e.g., for the three-

dimensional MIRT models) if needed. Without real test data, we are able to explore the SE's
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characteristics of item parameters for all commonly used testing conditions using the analytical

approach. This is almost impossible when employing the empirically determined method. The

SEs of d in Table 3 can be graphically presented in a 3-D display when the second-

dimensional discrimination parameter is set at a constant, such as 1 used in Figure 2. Figure 2a

is the 3-D plot for the SEs of in Table 3. This presents plots of SEs of item difficulty as the

a
1

Parameter d Parameter

Figure 2a. The SEs of ds shown as the bivariate function of both d and al parameters for the
two-dimensional MIRT model when the a2 is set to 1.

bivariate function of both item difficulty and the first-dimensional discrimination parameters.

This diagram demonstrates that an extreme item (hard or easy) is more likely to have more

measurement error. Figure 2b turns its focus on the SEs of al-parameters, where SEs of al



were from Table 4. This plot raises an interesting issue in that the SE of the al-parameter is

continuing to increase as the al-parameters is increasing.

a
1

Parameter d Parameter

Figure 2b. The SEs of al shown as the bivariate function of both d and al parameters for the
two-dimensional MIRT model when the a2 is set to I.

D. Application of the Analytical SEs of Item Estimates on MIRT Item-Linking Studies

This section discusses the application of the analytical SEs of item estimates to item-

linking studies. Given a set of known (or true) item parameters, the analytical SEs of item

estimates can help researchers generate the set of observed item estimates without the process

of data generation that is often needed in the simulation studies.
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Conceptually, a numerical value of an item parameter estimate can be decomposed into

three components: true item parameter value, a random error and bias. When bias is assumed to

be zero and a set of true item parameters for an item is given, the procedure of adding

"reasonable numerical values as random errors" to this set of true parameters to create a set of

observed item estimates is illustrated below.

When the latent trait distribution of 2000 examinees' abilities is multidimenstionally

distributed as MVN(0,I), the variance-covariance matrix V shown below for a set of item

parameters, d=0.44, a1=0.71 and a2=0.53 (refer to Item 2 in Table 1) can be predicted using

Equation 10 :

al a2

V=
.0030 .0003 .0003

.0003 .0016 .0004

.0003 .0004 .0013_

The square root of the diagonal elements of the matrix V are the asymptotic standard

errors of the parameters. They are .547, .040 and .036 for the parameters, d, al and az.

When a matrix E shown below is randomly generated from MVN(0, V) using the

computer software, MATLAB (The MathWorks, Inc, 1999), random errors for the parameter

estimates, a, b and c, are the diagonal elements of matrix E.

al a2

..0731 .0129 .0137
E = .0129 .0285 .0260

.0137 .0260 .0590_
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The simulated (or observed) item estimates for the set of true parameters d=0.44 ,

a1=0.71 and a2=0.53 are: d= 0.44+ (-0.0731), ai=0.71+(0.0285)., and a2=00.53+0.0590.

It should be noted that matrix E is randomly generated from the MVN(0, V) so that the

values of its elements vary across replications. Therefore, the simulated item estimates for the

set of true parameters d=0.44 , a1=0.71 and a2=0.53 will be changed, along with the changes of

the error matrix E. Theoretically, when a large number of replications is conducted, the

standard deviations of the simulated item estimates, d, al and a2, will be close to the expected

SEs of parameters , d, al and a2. They are .055, .040 and .036.

The above procedures of modeling measurement errors of item estimates is much easier

to employ for some item-linking studies. In a research example conducted by Li and Lissitz

(2000a) involving the existence of several multidimensional IRT item-linking methods, they

attempted to examine which MIRT item-linking method is relatively less sensitive to the

random (or sampling) errors of item parameter estimates. The above procedures for modeling

random errors can be incorporated in the following procedures for this type of study.

1.Create the base test: Choose a set of item parameters for the base test. We treat these item

parameters as known parameters.

2. Create the linked test: Assume item linking coefficients are known and generate a set of

item parameters for the linked test by using these known linking coefficients.

3.1. Model random errors for the base-test item parameters: Each simulated item estimate from

a set of parameters of an item is computed by summing the expected random error and

the corresponding known (or true) item parameter. Expected random error was

generated as a random value using the method outlined above.
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3.2. Model measurement errors for the linked-test item parameters: Use the same method

outlined in Step 3.1.

4. Estimate the equating coefficients: Estimate the equating coefficients based on two sets (base

and linked) of item parameter estimates.

(5) Replication: Repeat Steps 3.1. 3.2 and 4 many times, which results in a large number of

estimates for each individual item-linking coefficient; and calculate the BIAS (average

difference between estimated and true values and RMSE (root mean squared error) of

the item-linking coefficient estimate.

It should be noted that Step 3 is an alternative method of predicting the random errors of

item estimates. Comparing the analytical approach with the replication approach to modeling

measurement errors of item estimates, the analytical approach will save an enormous amount

of time and energy in test data generation and item calibration for some types of research.

Using the analytical approach for modeling random errors of item estimates has its

theoretical limitations. As indicated, measurement errors of item estimates are assumed to be

distributed as MVN (S, V). The analytical approach is used to model the "units of measurement

errors for item estimates" (known as SEs of item estimates, associated with the matrix V). In

addition, modeling the "points of origin of measurement error for item estimates" (known as

the BIAS of item estimates, indicated by the vector S) is another key issue to be considered.

Although we might assume S to be 0, for simplicity, ML is a biased estimator (Anderson &

Richardson, 1979) and the degree of bias depends upon the sample size. This issue of modeling

S needs to be further explored in the future for better prediction of measurement errors of item
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estimates. If the bias of item estimates has a strong effect on the research being investigated,

the analytical approach to modeling measurement error may not be appropriate.

V. Summary and Conclusions

The empirically determined SEs of MIRT MMLE/Bayesian item estimates for the

forty itemq (ACT-Form 94h, 1985) were calculated for gauging the feasibility of utilizing

MIRT models in real testing programs. Their magnitudes of SEs were all less than .2 and

seemed to be reasonably small. This empirical finding connotes that MIRT 's item estimates

can be reasonably stable so that the use of MIRT models will gradually become accessible in

practice.

The analytical SEs of MIRT ML item estimates for those forty items were also

calculated and compared with those empirically determined ones. The SEs of MIRT item

estimates, in general, were quite similar when the two approaches were employed. This

empirical comparison indicated that the analytical SEs of MIRT can approximately estimate

the magnitudes of SEs for the MMLE/Bayesian item estimates. Accordingly, using the

analytical approach to approximate SEs for the given item estimates and then tabulating them

by the different combinations of item parameters (e.g., low d, low al and high a2) have been

the subject of this paper. The tables associated with SEs of MIRT estimates provides a useful

reference for test practitioners. Additionally, the 3-D diagrams that depicted the relationship

between SEs for various item estimates demonstrate that extreme items (hard or easy) are more

likely to have more measurement errors. In addition, an interesting issue was raised, namely,

that the SE of the discrimination parameter is increasing as the discrimination parameters are
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getting larger. These findings deserve careful attention when using extreme items because they

are more likely to be inaccurately calibrated.

The analytical approach can facilitate the simulation study of investigating which item-

linking methods can better tolerate the random (or sampling) errors of item estimates. An

example of how to utilize the analytical SEs of MIRT item estimates for this type of linking

study was provided. Another application is that when researchers or test practitioners are

interested in a set of item parameters that may be found in literature, in which the

corresponding SEs of item estimates were not reported, the analytic approach provides them

with a sense of how large standard errors of this set of item estimates might be under

commonly-used situations.

Together the findings of this study support the use of MIRT models in practical

applications as pointed out by (Miller, 1991) as well as the use of the analytical approach for

approximating the SEs of MIRT MMLE/Bayesian item estimates when their SE estimates are

practically unavailable or needed for simulation studies.

Further research is needed in several areas. As noted earlier, the SEs of MIRT item

estimates evaluated in this study were based on a simpler two-dimensional MIRT model. The

issue of whether the results found in this study can be generalized to more complex models

(e.g., more than the two-dimensional MIRT models) needs to be explored. Also, with the

sample size of 2000, we obtained quite a high degree of consistency of SE estimates between

analytical and empirically determined approaches. Different sample sizes should be considered

in future research for better understanding the effect of this factor on the consistency of SE

estimates of item estimates as obtained between the two approaches. The findings obtained

from this study were based on simulation test data that perfectly fit the presumed known model.



This ideal data-model-fit condition can not be realized in real testing data and therefore similar

research conducted by using real test data is necessary.
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