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Abstract

When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests.
However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for
complex experimental designs and analyses, such as factorial designs and multiple regression analyses, and limited
information about the properties of these tests for realistic data conditions. Efforts to remedy this deficiency have begun
with the introduction of general linear model-based nonparametric tests. The results of a computer simulation of the
properties of several of these tests in hierarchial regression analysis indicated that, on balance, the top-performing test for the
nonnormal distributions studied was the McKean-Hettmansperger F-test using a confidence interval estimate of the scale
parameter 7 . The Serlin-Harwell aligned-rank chi-square test performed almost as well, which, combined with the fact that

it is easier to compute, makes it an attractive competitor to the McKean-Hettmansperger test.




Educational researchers commonly examine their data for evidence of problems, nonnormality for example, that can
threaten statistical conclusion validity. When scores are independently and identically (normally)-distributed with common
variance o °, parametric tests are optimal for testing general linear model-based hypotheses. When normality does not hold,
nonparametric tests represent an important data-analytic alternative to parametric tests (e.g., Lehmann, 1975, pp. 171-175;
Marascuilo & McSweeney, 1977, p. 89; Zimmerman & Zumbo, 1993). (Other criteria for distinguishing between parametric
and nonparametric tests have been formulated, see, e.g., Kendall & Stuart, 1979, pp. 497-498; Marascuilo & McSweeney,
1977, pp. 3-6). Comparisons of parametric and nonparametric estimators and tests under realistic data conditions, such as
small sample sizes and nonnormal data, have spawned a considerable research literature. Despite its size, this literature is
rather narrow in that its focus has been on relatively simple experimental designs and analyses (e.g., two groups).

Serlin and Harwell (2001) argued that nonparametric methods are under-used in educational research, in pért because
educational researchers are not aware of nonparametric tests that are available for complex experimental designs and
analyses, such as factorial designs and multiple regression analyses. They also suggested that many educational researchers
are not aware that such analyses can be performed using existing computer programs, such as SPSS (SPSS Inc., 1999) or
Minitab (Minitab Inc., 2000). Sérlin and Harwell concluded that the development of general linear model-based
nonparametric procedures holds great promise for increasing the use of these nonparametric methods in educational
research. They also pointed out that little is known about the behavior of these tests for realistic data conditions.

Serlin and Harwell indicated that three general linear model-based nonparametric procedures are especially promising.
The aligned-rank procedure of Puri and Sen (1971, 1985) tests hypotheses about parameters of interest after éliminating so-
called nuisance parameters. This involves aligning the raw scores using estimates of the nuisance parameters, ranking the
aligned values (residuals)l, and computing a test statistic that follows a chi-square distribution. The rank-based procedure of
McKean and Hettsmansper (1976) and Hettmansperger and McKean (1977) involves comparing two models (i) a reduced
model containing nuisance parameters is fitted to the raw data and the residuals obtained and ranked (ii) the ranked and
unranked residuals are used to compute a measure of dispersion (iii) steps (i) and (ii) are fepeated for a full model containing
the nuisance parameters and the parameters of interest (iv) a test statistic is computed based on the difference in the
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dispersion ﬁleasures for the reduced and full models. Another promising p.rocedure is the aligned-rank-transform described
in Fawcett and Salter (1984), in which the rank-transform procedure of Conover and Iman (1976) is applied to data that have
been aligned for nuisance parameters. Fawcett and Salter did not consider the aligned-rank-transform in a general linear
model context, but doing so greatly extends the use of this method.

Theoretically, these procedures allow educational researchers to perform nonparametric tests for data obtained from
complex experimental designs and data-analytic models using existing data analysis software. Estimators and tests
associated with the Puri and Sen (1971, 1985) and McKean and Hettmansperger (1976) procedures have similar or identical
pfoperties asymptotically, and there is some evidence that the asymptotic properties of the aligned-rank-transform are similar
to those of Puri and Sen and McKean and Hettmansperger. In any event, the literature on their performance for the less-
than-asymptotic case is quite sparse. For example, available evidence that aligned-rank tests are excellent competitors to
their parametric counterparts for controlling Type I errors at & and showing good statistical power (e.g., Adiche, 1978;
Gorham, 1998; Puri & Sen, 1985) is limited to a small number of designs (e.g., randomized-block) and data analyses.
Similarly, there is evidence that the McKean and Hettmansperger procedure performs reasonably well except when sample
sizes are small, but available work has focused almost exclusively on factorial models and a few distributions. There has
been even less study of the aligned-rank-transform procedure. In short, there is a substantial gap in the nonparametric
literature of the behavior of these nonparametric tests for realistic data conditions. This paper reports the results of a
computer simulation study of their behavior.

We first describe the three procedures and available théoretical and empirical evidence of their behavior. Next we
introduce additional tests suggested by these procedures, and then report the results of a computer simulation study that
investigated the behavior of the tests. We conclude by describing areas in which additional research is needed.

Puri and Sen’s Aligned-Rank Test

Puri and Sen (1985, pp. 238-287) described a general linear model-based aligned-rank procedure, originally
introduced by Mehra and Sarangi (1967) for main effects in additive models and extended by Sen (1968), that has several
desirable properties. This procedure, which has its roots in the work of Hodges and Lehmann (1962), assumes that

Fi(y)=F(yi-Bo-B’(x;- X)),i=1,2,...,N - 1)




underlies the data, whére Fi(y) is a continuous distribution function for the ith subject, y represents the dependent variable,
By is an intercept, B is a q x 1 vector of partial regression parameters consisting of q; nuisance parameters in the vector B,
and q, parameters of interest in B, (B = B;,B,, q = q + qu), Xi is a q x 1 vector of fixed and known predictor values for the ith
subject, and X is a q x 1 vector of means for the predictor variables.

The Puri and Sen model applies equally to data fitting the correlation model
Fi(y|x) =F(yi- Bo—B’(xi - X)) | )
in which the predictors are random and Fi(y|y§) represents the conditional distribution of y given x (Sampson, 1974). The
assumption of continuity of the F; théoretically eliminates the problem of tied scores, but when these occur conventional
practice is to assign midranks. As long as the proportion of ties in the raw data is relatively small the midranks will have a
negligible effect on the test (Lehmann, 1975, p. 18).

To test the hypothesis Ho: B, = 0, a regression of y on the q, predictors associated with the nuisance parameters is
performed and the resulting residuals are computed using y; — x;b;, where b, is a vector of estimated slopes. Either ordinary
least squares (OLS) parameter estimates or rank estimates can be used to generate these residuals. Aubuchon and
Hettmansperger (1984) pointed out that the impact of OLS versus rank estimates on tests in small samples is unknown, but
most authors (e.g., Hettmansperger & McKean, 1998; Puri & Sen, 1985; Adiche, 1984) employ OLS estimates.

Under model assumptions the residuals are free of the effects of the q; nuisance parameters. They are then ranked

(say, R;). Next, the linear rank statistics L « (Puri & Sen, 1985, p. 247) are computed for each predictor/dependent variable

pairing for the q, predictors associated with the regression parameters of interest:

~ N .
L= Z (- XW[R], k=12, ..,q 3)

i=| d
Using the original xy values in equation (3) is an application of what Puri and Sen call the mixed-rank model; ranking the x;
and using these ranks in the analysis is an application of the pure-rank model. These models lead to estimators and tests with

the same properties, and we focus on the mixed-rank model.

It is clear in equation (3) that the L « are proportional to the slopes, and that centering the predictors produces a




nonparametric analogue of the least squares normal equations. This proportionality means that researchers do not need to

compute the L « and can instead simply compute slopes with the usual OLS expressions. The L i (or slopes) are highly
efficient compared to the usual least-squares estimators for a normal distribution and are asymptotically normal, clearing the

way for an omnibus test statistic that follows a chi-square distribution (Puri & Sen, 1985, chpt. 7). Another advantage of
the L « is that they are robust compared to the usual least squares estimators that minimize z (yi — x;b)’(yi — x;b), because
the effect of outliers enters in a linear rather than a quadratic fashion (Draper, 1988).

Puri and Sen (1985, p. 247) proposed an aligned-rank test (PSAR) based on the L « and their asymptotic variances that
can be written in the form
PSAR =(N-1) 6 ~ 7 2o(l-a) | )
where 6 represents a measure of explained variation. The PSAR test is asymptotically distribution-free and is
asymptotically distributed as a chi-square variable with q, degrees of freedom. (The PSAR test is identical to the test
proposed by Adichie (1978) for the single predictor case). In a regression model & equals SSRegression/SSTotal, where

SSRegression = b’;s8x;b,, b; is a q, X1 vector of estimated slopes for the parameters of intérest, $SX; is a g, X q; sum of cross-

N
products matrix for the predictors associated with the parameters of interest, and SSTotal = z (Ri-R )’, where R is the

i=l
overall mean of the ranks. As illustrated in Serlin and Harwell (2001), the PSAR test can easily be computed using existing
software.

The assumptions ur;derlying the PSAR test are that the y; are continuous, independently and identically distributed,
and that the sample size is large enough to ensure the validity of probabilistic inference based on a chi-square distribution.
Under the assumption that the y; follow a normal distribution, the A.R.E. of the PSAR test using ranks compared to the
normal-theory likelihood ratio test is approximately .96, and the A.R.E. of the PSAR test for normally-distributed data with a
normal-scores transformation compared to the likelihood ratio test is one (Puri & Sen, 1985, pp. 251-252).

Although contrasts for the By, are available (Puri & Sen, 1985, chpt. 6), the PSAR procedure does not permit model-

checking that is common in regression (e.g., studentized statistics). Aligned-rank procedures like PSAR have also been




criticized on the grounds that their performance is suboptimal in certain settings. For example, Hettmansperger and McKean
(1983) described computer simulation results for a test of parallel slopes in which an aligned=rank test showed inflated Type
I error rates.

Research for the PSAR Test

Studies of the PSAR test have overwhelmingly focused on thle factorial case. Akritas (1990) provided some A.R.E.
comparisons between a rank-transform test and the PSAR test for a completely between-subjects factorial design. These
results demonstrated that the A.R.E. of the usual rank-transform F-test was higher than the PSAR test for a normal.
distribution, but the A.R.E. of PSAR exceeded that of the rank-transform F-test for logistic and double exponential
distributions. However, Brunner and Dette (1992) argued that the rank transform test considered by Akritas (1990) was not
really a rank- transform test, but instead was a test in which the lranks are divided by an estimated standard deviation and
then substituted into the usual F-test.

Harwell (1991) used a simulation study to examine the behavior of the PSAR test. For a3 x 2 design with various cell
sizes and di;tributions, Harwell found that as long as cell sample sizes were at least 8 the PSAR test controlled its Type |
error rate and showed good power compared to the F-test and some nonparametric competitors; for smaller cell sample sizes
the Type I error rates were frequently inflated. Toothaker and Newman (1994) also used a factorial ciesign and found that
fhe PSAR test had inflated Type I error rates for cell sample sizes of 5; for larger samples sizes the test controlled its error
rate at the nominal level. Other simulation studies investigating the PSAR test include Conover and Iman (1976), Harwell
and Serlin (1994), McSweeney (1967), Salter and Fawcett (1993), and Yohai and Ferretti (1987). The general result of these
studies is that the Type I error rate differed noticeably from the nominal value for small sample sizes, for example, 3-5 cases
per cell in a factorial design, with the test sometimes performing better for certain distributions. For larger sample sizes, the
PSAR test generally did a good job of controlling its Type I error rate and showed good power.

McKean and Hettmansperger’s Rank-Based Test

Building on the work of Jaeckel (1972), McKean and Hettmansperger (1976, 1977) described a two-step modeling
procedure in which a sum of products of the ranked and unranked residuals for a reduced model containing nuisance
parameters are compared to a sum of products for the ranked and unranked residuals for a full model containing the
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parameters of interest plus the nuisance parameters. The McKean-Hettmansperger method is similar to the usual least-
squares model-fitting procedure, and supports model-checking procedures and contrasts for the B, (McKean, Sheather, &
Hettmansperger, 1990).

The test is based on a reduction in.residual dispersion (RD) assuming that the model in equation (1) or (2) underlies

the data. McKean and Hettmansperger defined the linear rank statistic

N w
D{y;i-xb) =D (vi—xb)[R*(yi-xb)], (5)
where R;" represents Wilcoxon scores generated from the score function ¢ = (12)”2(Ri /(N+1) -1/2). Use of the Wilcoxon

scores ensures that Di(y; — x;b) in equation (5) does not depend on the intercept (Draper, 1988). Hettmansperger and
McKean (1998, p. 163) showed that the statistic in equation (5) is asymptotically unbiased, and if the population distribution
is symmetric it is unbiased for any sample size. Th.ey also claimed that their statistic was resistant to the effects of outliers.
However, Puri and Sen (1985, p. 282) noted that the statistic in equation (5) is more su.sceptible to outliers than the statistic
in equation (2) because of the use of the residuals (y; — xib).

Solving equation (5) for the slopes produces a rank analogue of the normal equations, which do not have a closed
solution except in the case of q = 1. Thus, estimating the slopes requires an iterative technique and specialized software
(Hettmansger & McKean, 1998, pp. 184-189). Draper (1988) pointed out that the estimated slopes are not necessarily
unique because they may reflect one of several minima, but indicated that experience has suggested this is rarely a problem.
The result is a fitted rank-based regression model with q slopes that are highly efficient compared to the usual least-squares
estimators for a normal distribution.

The RREGRESS command in Minitab (Minitab Inc., 2000) will estimate the slopes that minimize the expression in
equation (5), as will the interactive RANOVA program maintained by J. McKean at the web address
http://www stat.wmich.edu/slab/RGLM/index.htm. These slopes have an approximate distribution of N(By, 7 2(xx)™"),
permitting conﬁdénce intervals to be constructed about the By (Hettmansperger & McKean, 1998, p. 189). If a sample
intercept is desired Aubuchon and Hettmansperger (1984) recommended using the median of the residuals, although if the

distribution of residuals is assumed to be symmetric the median can be estimated using ranks along with the slopes (McKean




& Hettmansperger, 1978).
To adapt the statistic in equation (5) to test hypotheses McKean and Hettmansperger (1976) employed the following,
strategy: Suppose we wish to examine the contribution of x; to explaining variation in 'y after taking into account the

contribution of x;. The McKean-Hettmansperger procedure begins by ﬁttihg a reduced model of the form J ;= by, + x b; to
the y;, where by, is an estimated intercept and J ; represents fitted values. Then Di(y; — x;b) in equation (5) is computed for

the reduced model. Next a full model of the form y ;= bg, + x;b; + X,b; is fitted to the data and the statistic in equation (5) is

computed a second time. |
McKean and Hettmansperger (1976) suggested that the rank-based statistic,

MHCHI =  RD/7/2) ‘ (6)

be used to test Ho: B, = 0. In equation (6), RD = Di(y: — Xib1 )reduced modet = Di(Yi —X1ib1= X2ib2))u moder and 7 isan éstimate of a

scale parameter 7 , similar to the least squares parameter o . The MéKean-Hettmansperger chi-square test (MHCHI) is then

compared to a chi-square value with q, degrees of f;reedom. Computer simulation studies by Hettmansperger and McKean

(1977) and Draper (1981) suggested that the test statistic in equation (6) be modified to the form

MHF = (RD/q,)/(7 /2) ' (7

and compared to a F critical value with q; and N — q -1 degrees of freedom. The McKean-Hettmansperger F (MHF) and

A MHCHI tests are consistent, asymptotically distribution-free, and have the same A.R.E. under normality as the PSAR test

(McKean & Hettmansperger, 1998, pp. 175-178).

A key feature of the tests in equations (6) and (7) is that they require estimates of 7. The parameter 7 is used in
several settings in nonparametric procedures, for example, in efficiency evaluations and to rescale tests so that they follow a
known distribution (Hettmansperger, 1984, p. 244)). There are various ways to estimate 7 (Revesz, 1984), but we focus on
the two t‘hat are available in the RREGRESS command in Minitab (Minitab Inc., 2000). One is a Lehmann-type estimator
based on the standardized length of a 90% Wilcoxon confidence interval (McKean & Hettmansperger, 1976). The other
method used to estimate 7 in RREGRESS is based on kernel estimation. (Details of how 7 was estimated in our simulation

study appear in Appendix A). Unfortunately, there is currently no widely available software that will perform the MHCHI or

9

10




MHEF tests, but the RD statistic can be calculated with existing regression software in programs such as Minitab (Minitab
Inc., 2000) and SPSS (SPSS Inc., 1999).
Research for the McKean-Hettmansperger Tésts

Several computer simulation studies of the behavior of the MHF test have been done but apparently all have been
quite limited in scope, almost always involving a focus on Type I error rates for a few conditions in a two-factor design.
McKean and Sievers (1989) repoﬁed that the MHF test maintained its Type I error rate near the nominal value (with one
exception) in an unbalanced 3x3 design with interaction for two heavy-tailed distributions (logistic, log-Pareto).
Hettmansperger and McKean (1977) examined the MHF test for a balanced 3x3 design, small cell sample sizes (3, 5), and a
double-exponential distribution, and reported that the estimated Type I error rates were consistently inflated for small
samples (5-10). Hettmansperger and McKean (1983) performed a computer simulationlstudy that used MHF to test for
parallelism of slopes for three groups, sample sizes of 5 or 10, and doﬁble-éxponential and Cauchy distributions. The MHF
test maintained its Type I error rate near the nominal value for all conditions exarnined, and showed good power compared to
some nonparametric competitors. Other studies of the MHF test include McKean and Hettmansperger (1978), Sievers and
McKean (1986), McKean and Sheather (1991), McKean, Vidmar, and Sievers, (1989), Sievers and McKean, (1986), and
Hettmansperger and McKean (1977). The general finding from these studies was that the MHF test maintained its Type I
error rate upless cell sample sizes were quite small, and that the test frequently performed well for heavy-tailed distributions.

Aligned-Rank-Transform Test

The rank-transform procedure introduced by Conover and Iman (1976) requires that scores be ranked and submitted to
a parametric test. This procedure is known to work well for tests in simple designs but less well for many complex designs,
for example, factorial designs (Akritas, 1990). Salter and Fawcett (1984) provided a possible solution to this problem for a
randomized block design by suggesting that the rank-transform be applied to data that have been aligned for nuisance
parameters, producing an aligned-rank-transform test. Akritas (1991) pushed this notion further by suggesting that an
aligned-rank-transform test could be applied to subhypotheses of the general linear model. The aligned-rank-tfansfonn test
is the same as the PSAR test except that the test statistic is divided by q to produce an (approximate) F that is then compared
to a critical F value with q; and N — q — 1 degrees of freedom. The test is easily computed with avéilable data analysis
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software.
Research for the Aligned-Rank-Transform Test

Mansouri and Chang (1995) provided theoretical results for the ART test and also reported simulation results for a
factorial design that showed the test controlled its Type I error rate at & . Mansouri (1998) provided the limiting distribution
and A.R.E. of an ART test for a balanced incomplete blocks design. Kepner and Wackerly (1996) provided A.R.E.
comparisons for an ART test for a balanced incomplete repeated measures design using Wilcoxon rank scores, and showed
that the test was particularily attractive for heavy-tailed distributions. Akritas (1993) presented an aligned-rank-transform
test that can be used when data are heteroscedastic.

Salter and Fawcett (1984) performed a computer simulation study that provided evidence that the F distribution could
provide a satisfactory approximation to the distribution of their aligned-rank-transform (ART) test in a randomized block
design. Salter and Fawcett (1993) studied the ART test for a completely between-subjects factorial design with varying
sample sizes and distributions, and found that the test controlled its Type I error rate and showed good power for cell sample
sizeslgreater than 10. Other studies of the ART test have been reported by Groggel (1987), Harwell and Serlin (1994), and
Gorham (1998). The ART test frequently produced conservative Type I error rates for small samples, with corresponding
low power; for larger sample sizes, however, the test typically pe?formed well.

These results suggest that an ART test may be an important competitor to the PSAR and MHCHI/MHEF tests.
However, there do not appear to be any studies available of an ART test in hierarchical regression.

Before continuing, it is importént to point out that the statistical hypotheses tested by the various nonparametric tests
may differ from one data aﬁalysis to another. Recall that the PSAR and MHCHI/MHF tests test the hypothesis Ho: B, = 0.
Akritas and Arnold (1994) pointed out that rejection of this Ho does not necessarily imply that the slopes do not equal zero
unless additional assumptions are imposed on the data to ensure that rejection is attributable to nonzero slopes and not to
other distributional characteristics such as scale, skewness, and/or kurtosis.

Akritas and Arnold argued that nonparametric hypotheses should be defined in a way that does not place additional

assumptions on the data, such as by writing Ho in terms of distribution functions. For example, they would replace
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Ho: B, =0 with Ho: Fi(y) = F(yi/(x; - X ), with the latter Ho described as fully nonparametric because it does not directly
depend on any parameters (Akritas & Arnold, 1994). Under the null hypothesis, Ho: B, = 0 and Ho: Fi(y) = F(yi|(x; - X ) are
identical but under H; they differ because the fully nonparametric version does not directly attribute the reje_i:tion to nonzero
slope parameters. Following the lead of Puri and Sen (1971, 1985), Adiche (1978), Hettmansperger (1984), and others we
assume that all of the nonparametric tests test Ho: B, = 0. Clearly, the data must be examined for evidence supporting the
additiona] assumptions associated with writing Ho in this fashion (Hettmansperger & McKean, 1998, p. 234).

Serlin-Harwell Aligned-Rank Procedure (SHARP)

An examination of the strategies behind the PSAR, MHCHI, MHF, and ART tests suggests other nonparlametric tests
that can be constructed to examine the effects of a set of variables after the contribution of other variables has been removed.
Recall that in the PSAR test the first step is to create residuals, which are free of the effects of the nuisance variables, and in
the McKean-Hettmansperger procedure a function of the ranks of residuals from the full and reduced models are compared.
We consider a marriage of these strategies.

Suppose we wish to examine the effects of the predictors x3-x4 on y after the effects of x;-x, were taken into account.
Suppose also that x,-x; were used to predict y, the residuals obtained and ranked, and a sum of squares regression
(SSReg reduced modet) Obtained by using x;-x, to predict the ranked residuals. Computing SSRegreguced mode/SSTotal then
produces R educed mo;ie]. Next we predict the ran_ked residuals using x;-x4 and compute R%uiimode- The hypothesis Ho: B, =0
can be tested using

SHARPCI{I = (N'ql'l)[(szull model™ Rzreduced model)/ ( l - Rzreduced model)] ~ Z 2q2 (8)

The (N-q;-1) are the degrees of freedom associated with the sum of squares left over after the ranked residuals are predicted

from the reduced model. Dividing SHARPCHI by g, produces a statistic with an F distribution with q, and N-q-1 degrees of

freedom (SHARPF). We note that Mansouri (1996) proposed a similar test of the form

Q2[(SSErrofieguced modet — SSErrorg model)/l\/ISErrorﬁ'm model), Which follows a chi-square distribution with q, degrees of freedom.
The various tests have many simil:clrities. The PSAR, MHCHI, and SHARPCHI tests are based on a quadratic form in

the ranks that are asymptotically distributed as a chi-square variable, and can easily be converted to F-tests. In addition, the
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tests produce the same or similar results when applied to data from simpler experimental designs (e.g., a single-factor
design); however, for more complex designs there may be sharp differences in their behavior. There may also be differences
in their behavior for small sample sizes and particular distributional forms.

Simulation Study

As indicated previously, literature on the performance of general linear model-based nonparametric tests has largely
been limited to analyses based on factorial designs. The Type I error and power performance of the PSAR, MHCHI, MHF,
ART, SHARPCHI, and SHARPF tests were examined for realistic data conditions for the hierarchial regression model. We
chose hierarchial regression to compare the nonparametric tests for two reasons. First, this procedure has been regularly
used in educational research, and, second, this study will add to the nonparametrics literature because there is apparently no
evidence of the behavior of these tests for the hierarchial regression model.

We used a computer simulation study to generate data for a hierarchial regression model, which in turn were used to
examine the Type I error and power behavior of the various tests. Although an analytic approach to the behavior of these
tests is preferred because of its generalizability, avéilable theoretical work for the nonparametric general linear model-based
tests investigated in this study, when such results exist, assumes that quite large sample sizes are present. Since large sample
sizes may not occur in practice, it is important to study a test’s behavior under realistic conditions, such as small sample sizes
and different distributions (Draper, 1988). We used traditional rank and Wilcoxon scores for the various nonparametric
tests, although we acknowledge that choice of scoring functions is important because different score functions give rise to
estimators and tests with different properties (Draper, 1988; Naranjo & McKean, 1997; Policello & Hettmansperger, 1976).

The hierarchial regression model in the simulation had a total of four predictors: x,-X; represented the reduced model
and x;-X4 the full model. The statistical null hypothesis tested was Ho: B, = 0. The design factors of the simulation study

were (a) Distribution of the residuals (normal with skewness (7 1) and kurtosis (¥ ;) of 0; chi-square with8 df (¥ 1 =1, y,=
1.5); chi-square with 4 df (¥, =141, y,=3); approximate Cauchy (¥ =0, ¥, =25)), (b) Sample size (N = 20, 40, 60, or

80 representing sample size to number of predictor ratios of 5:1, 10:1, 15:1, and 20:1, respectively, for Type I error rate runs;

N=20, 60 for power runs); () £ xa= 2 xx4 = 0.0 or 0.3. In all cases the residuals were homoscedastic and the p .
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=Pxu= Pax=Pau=03.

The selection of sample sizes and distributions was made based on conditions observed in the educational research
literature. The chi-square distributions with 8 and 4 degrees of freedom represent increasingly skewed and kurtic data,
whereas the approximate Cauchy represents an extremely heavily-tailed distribution and is important to examine because of
theoretical and empirical evidence that rank-based tests are often superior to parametric tests for such distributions. The

P xia= P correlation of 0 represents the ideal case of no overlapping variation among predictors, whereas 0 xix3 = 0 xixa
= P20 = P xax = -30 means there was some shared variation among predictors but not enough to raise concerns about
collinearity. (The same logic guided our selection of Pxixa =P xixa = Praxs =P xaxs = -30). Assuming a normal distribution,

the data were generated such that the x;-x, predictors accounted for 20% of the variance in y; the remaining predictors (x3-x4)
were added to the model and accounted for differing amounts of additional variance in y (expressed through correlations -

P ya= P yxa) needed to achieve a theoretical power of .70 for varying sample sizes. When the partial correlation Ry xix

equaled 0, rejections of Ho: B, = 0 counted toward the estimated Type I error rate; for the non-zero case rejections counted
towards the estimated power.
Data Generation
The following step§ were taken to generate data with the desired characteristics (1) 5*N scores following a

multivariate-normal distribution were generatedv using the Kaiser and Dickman (1962) procedure. These values were then
transformed to the various nonnormal distributions following the Vale and Maurelli (1983) procedure, which combines the
Kaiser and Dickman (1962) and Fleishman (1978) procedures. Evidence of the success of the data generation for various
distributions is provided in Table 1 for two representative same sizes (N = 20, 60). Details on the computation of
correlations among the x, and y variables used to generate estimated Type I error rates and power values is given in
Appendix B.

Overall, the design of the simulation involved 4 (distribution) x 4 (sample sizes for Type I error rate runs) x 2
(correlations with pairs of predictors) + 4 (distribution) x 2 (sample sizes for power runs) x 2 (correlations with pairs of

predictors) = 48 conditions. Twenty-thousand replications per condition were used to estimate the Type I error rate and
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power of the tests, ensﬁring that estimates showed little sampling error. For each simulated dataset, the PSAR, MHCHI,
MHF, ART, SHARPCHI, SHARPF, and parametric F-tests were calculated and compared to the appropriate critical value
for the null case, producing a proportion of rejections (& ) for each condition studied (In all cases the nominal Type I error
rate was .05). Both the confidence interval and window methods for estimating 7 described in Appendix B were used. Asa

result, each McK ean-Hettmansperger test was computed using a confidence interval-based estimate as well as a window-
based estimate. A similar process was followed for the power case (1- ). The simulation program was written in

Microsoft Fortran 4.0.
Results |
Type I Error Results

Summaries of the Type I error performance of the tests are displayed in Table 2. The estimated Type I error rates of
the McKean-Hettmansperger tests using window estimates of 7 were very similar to those produced by the tests based on
confidence interval estimates, and only the latter are presented. Table 2 shows that the MHF test using a confidence interval
estimate for 7 (MHFCI) produced an average estimated Type I error rate closest to the nominal value of .05 (.0517). Next
closest is the SHARPCHI test with an estimated error rate of .0535, followed, in order, by PSAR (.0449), SHARPF (.0392),
MHCHI chi-square test using a confidence interval estimate for 7 (MHCHICI, .0662), ART (.0334), and the parametric F-
test (.0675). The MHFCI, SHARPCHI, and the PSAR tests overall provided satisfactory control of Type I error rates, with
the remaining tests providing somewhat less control. As expected, for a normal distribution the average Type I error rate of
the parametric F-test was closest to the nominal value (.0502), followed by the MHFCI (.0468), SHARPCHI (.0450),
MHCHICI (.0612), SHARPF (.0329), PSAR (.0304), and ART (.0212) tests.

Table 3 reports the estimated Type I error rates for each test by distribution and sample size (Evidence described
below indicated that the correlation within pairs of predictors of 0.0 or .30 did not have much effect on error rétes and this
variable was not included in Table 3). Many of the estimated error rates were reasonably close to .05 and indicated that
several tests often showed adequate control of error rates. However, for purposes of recommending one or more of these

tests, we further characterized their control of Type I error rates through the use of four categories: Estimated & values
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within the rar;ge 05£2SD[SD={a(l-& )/20,000)]"} = .0470 to .0530 were considered to represent excellent control;
values between .05+ 2-3SD (.0453 t0 .0469, .0531 to .0546) were characterized as mildly inflated or conservative error .
rates that represented good error rate control (identified in Table 3 with an *); values between .05 + 3-4 SD (.0438 to .0452,
.0547 to .0561) were characterized as mildly to moderately inflated or conservative error rates that represented adequate
control and are indicated by a +; values outside .05+ 4SDs (< .0438 or > .0561) represented more pronounced inflation or
overly conservative values that reflected unsatisfactory control of error rates and are indicated by a &. These categories
allowed us to further discriminate tests showing excellent control of Type I error rates from those showing less satisfactory
control (Recall that the use of 20,000 replications means that each estimated error rate in Table 3 should be close to that

3 [14

test’s “true” a for the conditions studied).

An examination of Table 3 shows that for a normal distribution the F-test, as expected, produced & values close to .05
regardless of sample size, providing further evidence of the credibility of the simulation. Across the full set of conditions
reported in Table 3, the PSAR, ART, MHCHICI, F, and SHARPF tests showed uﬁsatisfactory control of error rates for more
than héllf of the conditions studied, with the ART and PSAR tests consistently producing overly conservative values and the
others inflated values. Unlike some previous simulation studies, the McKean-Hettmansperger tests were sensitive to the
Cauchy distribution. The MHFCI test, on the other hand, did a good job of controlling Type I error rates, followed by the
SHARPCHI test which showed adequate control except for the Cauchy distribution. Still, the number of independent
variables in the simulation design means that complex effects in the estimated error rates, such as whether the relationsi)ip
between error rates and distribution depends on sample size, may be present but are not immediateiy discernible in these
data. We next attempted to tease out this information.

Following the advice of Hoaglin and Andrews (1975) to analyze data from simulation studies for evidence of
important patterns, we fitted three-way ANOV A models to the estimated Type I error rates for each test to determine which
effects appeared to be the largest and whether interactions needed to be considered in the interpretation. We first

transformed the & using an arcsin transformation described in Marascuilo and McSweeney (1977, pp. 147-148) that

produces values whose mean and variance are independent of one another, and whose sampling distribution is quickly
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approximated by a normal distribution. Because the design was unreplicated we did not model the three-way interaction,
which allowed within-cell variance estimates to be obtained. Model-checking revealed no strong departures from normality
or homogeneity of variance. Each effect was tested using a nominal Type error rate of .05.

The ANOVA results are summarized in Table 4 in the form of 7} statistics, defined as the sum of squares of a
statistically significant effect over the sum of squares total. We also computed @ ? statistics (Hays, 1973), which are less
biased than ﬁ2 statistics as measures of effect size. The @ ° statistics were similar to the ﬁ2 values, however, and only the

latter are reported in Table 4. The majority of the two-way interactions were not statistically significant, and among the

handful that were the associated ﬁ2 never exceeded .048. As a result, our focus was on the main effects, and Table 4 reports
ﬁ2 values for the Distribution, Correlation Within Pairs of Predictors (x;-X, X3-X4), and Sample Size effects. The small
ﬁzwiﬂﬁn.pair values provide a rationale for not including this factor in reporting.the estimated Type I error rates in Table 3.

Table 4 indicates that the MHFCI (.83) test was quite sensitive to the underlying distribution, along with the PSAR
. test (.47). The SHARPF (.08) test, on the other hand, showed noticeably less sensitivity to distribution. The estimated error
rates of several tests (SHARPF, MHCHICI, ART, SHARPCHI) were also sensitive to sample size, which was expected
because several of the tests have been shown to have an asymptotic error rate of & . The facf that the PSAR (.20) test was
less sensitive to sample size was unexpected.,
The sensitivity of the tests to sample size was explored further by re-running the ANOV As with Sample Size
restricted to the N = 60 or 80 cases, which should reflect the asymptotic behavior of & more than N =20 or 40. That is, re-

running the ANOV As with N = 60 or 80 should shrink the ﬁzsample size Values of the tests. The values in parentheses in Table
4 for ﬁzsample size are for the N = 60 or 80 case and provide evidence that the tests behaved as expected theoretically, with all
nonparametric tests showing substantial to huge decreases in ﬁ2 when using larger sample sizes.

In sum, the results reported in Tables 2-4 suggest that the parametric F-test be used for normally-distributed data, as
predicted by theory. For the nonnormal distributions studied the performance of the MHFCI test was superior to the others,
followed by the SHARPCHI test. The PSAR and ART tests, on the other hand, performed poorly for most conditions
studied. The remaining tests showed a mixed Type I error rate pattern, doing well for some conditions and less well for
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others.
Power Results

Summaries of the overall power performance of the nine tests are displayed in Table 2. For a normal distribution the
average power values were MHCHICI (.7094), F (.6985), MHFCI (.6588), SHARPCHI (.6617), and SHARPF (.5653).
Because of the difficulty of interpreting power values when Type I error rates stray from the nominal value (.05), we focus
on conditions in which the tests did not show pronounced inflation (& < .0562).

Table S reports individual power values (Power rates associated with & > .0562 are indicated with a &). For a normal
distribution; the estimated power values of .6984 and .6909 for the F-test for N = 20 and 60, respectively, provided further
evidence of thé credibility of the simulation. For the moderately and strongly skewed/kurtic chi-square distributions the
MHEFCI produced the highest power, with values fairly close to .70, followed by the SHARPCHI and SHARPF tests. The
ART and PSAR tests performed poorly, which is not surprising given their conservative Type I error rates for most
conditions. Factorial ANOV As were not run for the power values because removing those values associated with an inflated
a l.eaves a substantially unbalanced design.

Summary

The simulation results suggest the following conclusions (1) As predicted by theory, the parametric F-test should be

used for normally-distributed data regardless of sample size. (2) For the nonnormal distributions studied, the McKean-

Hettmansperger F-test using a confidence interval estimate of 7 produced Type I error rates close to .05 and showed good
power even for smaller sample sizes, followed by the Serlin-Harwell aligned-rank chi-square test. (3) The performance of the
Serlin-Harwell aligned-rank F-test was mixed, while those of the Puri and Sen, aligned-rank-transform, and McKean-
Hettmansperger chi-square test with a confidence interval estimate were generally poor.

On balance, the top-performing test for the nonnormal distributions studied was the McKean-Hettmansperger F-test
using a confidence interval estimate. The Serlin-Harwell aligned-rank chi-square test performed almost as well for many of
the conditions studied, which, combined with the fact that it is easier to compute, makes it an attractive competitor to the

McKean-Hettmansperger test.
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Future Research

This study provides evidence of the behavior of several general linear model-based nonparametric tests in a
hierarchial regression analysis under realistic conditions. Future work might include studying the behavior of the tests for
other statistical procedures and conditions, such as factorial designs with heteroscedastic and nonnormal data. The result of
this work will be the development of a literature that will provide educational researchers with credible nonparametric

alternatives when analyzing data from complex research designs and data analyses.
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Table 1

Evidence of the Success of the Data Generation

SamPle (pxlx2= 0) (px1x3= 3)
Size Distribution Mean | Variance Skewness Kurtosis F F a3
Normal -.0005 | 1.0006 .0007 .0018 .0001 3011
(7 1=0: Y 2=0) » )
7 1 (df=8) -0001 | 1.0007 1.002 1.515 -.0022 3000
N=20 (7 1=1,7,=15) .
x F(df=4) -.0001 | .9988 1.412 2.984 -.0062 2981
(71=1.41,7,=3)
Cauchy -0006 | .9985 -.0053 25.144 -.0017 2998
(71=0,y2=25)
Normal -.0004 | .9999 .0008 -.0019 .0003 3001
7 1 (df=8) -0001 | 1.001 1.000 1.503 .0011 .3005
N=60
x 1 (df=4) -0003 |.9990 1.412 2985 .0001 2991
Cauchy -0017 | 1.001 -.0168 24.794 .0002 3005

Each tabled value represents an average. The mean, variance, skewness, and kurtosis are based on data for N cases for 5
variables (4 predictors and y) across 20,000 replications for both Type I error rate and power conditions. For example, the
first entry in the table of -.00054 is based on 20*5*20,000*2 = 4,000,000 scores. The results for the average correlation

F 3xa Were similar to those for 7 ,1x, and the results for 7 4144 and 7 5 Were similar to those for 7 3.
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Table 4

Effect Size Estimates for ANOV As of Estimated Type I Error Rates

Test 77 *Distituion 77 Wit Pai 17" Sample Size

F 95 / .02 <.01 (not sig.)

PSAR A7 not sig. .20 (not sig.)

MHCHICI 29 .05 .63 (.09) ,
MHFCI - .83 l .04 not sig. (not sig.)

ART .28 not sig. 49 (.02)

SHARPCHI 46 .04 .40 (not sig.)

SHARPF .08 .01 .88 (not sig.)

F = parametric F-test, PSAR = Puri and Sen aligned-rank test, MHCHICI = McKean-Hettmansperger chi-square
test with confidence interval estimate of 7 , MHFCI = McKean-Hettmansperger F test with confidence interval
estimate, ART=Aligned-rank transform, SHARPCHI=Serlin-Harwell modified aligned-rank chi-square test,
SHARPF = Serlin-Harwell modified aligned-rank F-test. Values in parentheses for ﬁ 25mp|c size are based on

restricting the sample size to N = 60 or 80.
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Appendix A
Estimating 7

In this section we briefly describe the 7 scale parameter, its use in the McKean-Hettmansperger tests, and how it was
estimated in our simulation. Initially it was assumed that the residuals had density f( £ ) and that 7 was the scale parameter
of this density. Unfortunately, 7 cannot typically be estimated in a simple fashion because f( £ ) is unknown.

The essence of the method using the standardized length of a 90% confidence interval to estimate is 7 is to create a
family of confidence intervals about a point in the center of the density. These confidence levels depend only on the large-
sample Wilcoxon signed-rank null distribution and not on the underlying distribution of the residuals. The lengths of these
confidence intervals are then used to estimate this parameter, say 7 ;. The choice of 1- & is crucial in estimating 7 c.
Hettmansperger and McKean (1983) reported that .90 was a suitable choice, McKean and Sievers (1989) suggested that .98
was a suitable choice, and McKean and Sheather (1991) indicated that Ia;ger 1-a values are needed when the ratio of
sample size to the number of parameters is less than 5; for ratios greater than 5, a 1-& of .80 appears to be sufficient.
RREGRESS uses .90 by default.

Following Aubuchon and Hettmansperger (1984), f a=N"(Lgs- L os)/(2* tl_a) where L ¢-is a cutpoint (described
below) and t is a critical t-value. First, obtain N residuals after fitting a full model and then compute the N(N+1)/2 pairwise
(Walsh) averages among the residuals. For the Wilcoxon signed-rank statistic T, 2 1=N(N+1)/4 and

lo3 2T =N(N+1)(2N+1)/24. Next, find Cos= p1-1.6450 1, rounded down to the next lower integer. After sorting the
Walsh averages the (Cgs +1)st = Los and (N(N+1)/2-C gs)th = L g5 values are the confidence interval limits, and the
 difference between the limits is the estimated confidence interval length, say 5. Hettmansperger and-McKean (1977)
suggested an estimator of the form:
fa =[N S RVIN-G1)"ts] (A1)
where t s is a t-value corresponding to the 95" percentile of a t-distribution with N-q-1 degrees of freedom and
[N/(N-g-1)]"? is an adjustment factor. The rationale for the adjustment;is that the statistic in equation (A1) is biased because
the residuals are correlated, shrinking their variance. A drawback of 7 ¢ is that this estimator is only consistent if the

residual distribution is symmetric.




A second method to estimate 7 uses the kernel density estimation method described in Tapia and Thompson (1978),
Maritz (1995), and Hettmansperger (1984). Once again 7 is estimated (say, 7 win) from the density f(£ ). The asymptotic

formula for 7 wmy is

Tuw =112 [ fe)de | ' (A2)
=102 [ f(e)dF(e)
where f /(&) de = mean density and F( &) is a cumulative distribution function (cdf). Kernel estimation essentially uses

a histogram to estimate the density and requires that we use the data twice, once to estimate f{( ¢ i), say, f (&3), and once to
estimate an empirical cdf, say F (&).

Based on the formula J. f( £ YdF(¢& ) in equation (A2), Hettmansperger (1984) proposed replacing f( & ) by a kernel

estimate and estimating F( & ) with F (&;). Letting 7 =1/[(12)"* 7 *] ((12)"” comes from McKean and Hettmansperger’s

use of Wilcoxon scores), define
pr={ F(e)dF(e) (A3)

The density' f" (&) is estimated és
. | N N , -

fe)=N2hy' D > Wil-r)hy], i #] (A4)

i=l =l

where w is a density that is symmetric about 0, w( ) is a window, and hy is the window width. This method requires that the

window function and the window width be selected. Many authors have pointed out that the choice of window function has

little impact on the results (e.g., Bean & Tsokos, 1980), and Minitab’s RREGRESS command uses a uniform density. The

choice of the window width hy, on the other hand, is crucial, and is similar to the chéice of the confidence level in the

confidence interval method. Large window widths lead to density estimates with small variance but substantial bias,

whereas small window widths lead to density estimates with larger variance but smaller bias (Maritz, 1995, p. 28). Several

authors have argued that minimizing bias is the more important of the two (e.g., Aubuchon & Hettmansperger, 1984; Bean &
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Tsokos, 1980).

Aubuchon and Hettmansperger (1984) modified equation (A4) to reduce bias, producing

§*=UNK I+ VINQN-1) ha] 3 W= 1)/ | (A5)

i#J
where K =4.1078 5 (5’ = sample interquartile range computed on the full model residuals), hy = K N2 and

Z w[(r;—r;)/hy] requires that we compute the N(N-1) possible pairwise differences among the full model residuals and
i#J

assign 1 if a pairwise difference divided by hy is between -.50 and -.50, and 0 otherwise. (Aubuchon and Hettmansperger
(1984) showed that using equation (A5) rather than (A4) reduces the bias in estimating 7 from ON?)to O(N")). The use
of equation (A5) requires specifying the .scale of the underlying distribution as well as its shape. RREGRESS assumes that
the distribution is normal, which'is where 4.1078 comes from (see Hettmansperger, 1984, p. 249). Finally,
far =1[(12)7 %] : (A6)
An advantage of this method is that estimates of 7 wiy are consistent without assuming symmetry of the underlying
distribution. However, the statistic in equation (A6) is still biased because the residuals are correlated. Various corrections
have been proposed, and the RREGRESS command uses [N/(N-q-l)]”z. The confidence interval (CI) and window (WIN)
estimators ére (asymptotically) equally accurate but show differences in small sample performance (Draper, 1988). We

computed both in our simulation study for each McKean and Hettmansperger test.
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Appendix B
Generating Data To Satisfy the Type I Error and Power Conditions
Ho True

The calculations were based on inverting the general correlation matrix

y Xy X2 X3 X4
y G P );xl P ye P ys3 P yX4\
X 1 P xix P xix P xixa
p= X 1 P xx3 P xx
X3 1 P x3x4
X4 1

\ . _

Here correlations with y appear in the first row and column, correlations for the reduced set of predictors (x;-x,) in rows and
columns 2 and 3, and correlations for the x3-x4 predictors in rows and columns 4 and 5. Inverting this matrix results in the
element in the first row and column, R™;=1/(1-R?) in predicting y from the other variables in the matrix. We began with the

reduced model matrix with p x10 = P x34 =0,

—
1 Py Py
ﬁreduced = P yx1 1 0
P ya 0 1
/ .

and the element R, is 1/(1-2 p zyxl). Solving for p zyxl yields p zyx1=.] and p y,<1=(.1)”2 (we drop the subscripts on p
involving x from here on since, forexample, p =0 y2). Thus, the correlation between y and x; and between y and x,

when the correlation between x; and x, (and between x; and x4) equals zero was (.1)"?=.3162. Repeating this process for
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P xix2 = P x3xa = -3, the element R'lu is 91/(91-14 p zyxl). Solving, we get o v = (.13)1’2, so the correlation between y and
x; and between y and x; when the correlation between x; and X, (and between x; and X4) equals 0.3 was (.13)”2=.3605.

When the correlation between x; and x, (and between x; and x,4) equals zero and the reduced model accounts for

R>=2, under the null hypothesis, the full model must also account for R?=2. For the matrix (assuming 0 xix2 = 2 x3x¢ = 0),

y X X2 X3 X4
y (1 3162 3162 £y L)
. | 312 1 0 3 3
. | 3162 0 1 3 3
6 | pw3 3 1 0
« | pw3 3 0 1
N\ _ /
64

the element R}, is

2
.8(.64)—2(,0”—.6\/3)2 nese .64(prx ) Of e case when Ho is

true, set P ,x = (.6)(.3162). Repeating this for the case for P 2 =0 x3x¢ = .30 produces the element R =

.637(.931) .
1 and so
728(.637)(.931) — 1.27(.9 lp,, — .42\/.13)2

Rt 127
91(.637)(.931)

(91p,, —.42~/.13)*. For Ho true set p =£\/.13 =.1664.
pYX , Yx 91

Ho False

Assuming the x are fixed, the above results can be used to calculate the correlations needed to generate a power of
0.7. In each of the R? formulae, we see that part of the change in R?depends on the correlation between y and x3 and

between y and x,. What is needed is to compute the change in R-square (over the reduced model R-square of 0:2) needed to
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yield a power of 0.7 (The noncentrality parameter here is /V. AR? /(1= R?)). The NCSSCALC program (downloadable at

http://www.ncss.com/download.html) was used to calculate the required change in R? (just to make sure the results were

replicated using the G-Power program downloadable at http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/). The '

above formulas were then used to solve for 0, . For p =0 1w =0 and N=20 the resulting correlation matrix was:

1 A1 J1 .476386 .476386
J11 o0 0.3 0.3

J1o0 1 0.3 0.3
476386 03 03 1 0

476386 0.3 0.3 0

However, an adjustment of 0, was needed because the x; were random, meaning that the F follows a confluent

hypergeometric distribution. The result of the adjustment was that p,, = .476386 was changed to .497 to generate the

desired power of 0.7 under these conditions. For P« = P x3w = .30 and N=20, the resulting correlation matrix was:

1 J13 W13 .529404 529404
JI3 1 03 03 0.3
J13 03 1 03 0.3
529404 03 0.3 1 0.3
529404 03 0.3 0.3 1

The adjustment changed p,, =.529404 t0 .559. For 0 .= P = .30 and N=60, the resulting correlation matrix was:
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1 13 13 .387814 .387814
J13 1 03 03 0.3
J130 03 1 0.3 0.3
387814 03 0.3 1 0.3
387814 03 03 0.3 1

The adjustment changed pO,, = .387814 to .389.
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