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Abstract

The paper illustrates first how estimated-Structural

Equation Modeling (SEM) measurement error variances are

actually estimates of score reliabilities. It also

demonstrates how changing the estimated reliabilities of

the SEM observed variables not only change estimated

reliabilities, but also can change all the other parameters

throughout the analysis.
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A Tutorial on How Reliability is Estimated Within

Structural Equation Modeling

As Thompson (1991) noted, "Multivariate methods best

honor the reality to which the researcher is purportedly

trying to generalize." (p. 80) Canonical correlation

analysis (CCA) has been found to subsume all other

parametric analyses such as t-tests, ANOVA, regression, and

V (Frederick, 1999; Knapp, 1978) . In seminal work Joreskog

and Särbom (1979) indicated that SEM is an even more

general case of the GLM, subsuming all other cases of the

as special cases (Capraro & Capraro, 2001; Knapp, 1978;

Thompson, 1991).

Because SEM subsumes all other parametric statistical

analyses it provides some interesting options for the

researcher. First, all other analyses (e.g., t-tests,

ANOVA, regression, MANOVA, and CCA) can be conducted as

special cases in SEM. This is of conceptual interest but is

often not a practical shortcut or an elegant solution that

efficiently answers the research question at hand. When the

research questions deal with understanding the underlying

structure (EFA) of a set of items or in confirming a theory

from a set of data (CFA) SEM can provide truly elegant and

unique solutions (Stevens, 1996).

4
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Structural Equation Modeling

The work of Joreskog in the early 70's led to

statistical theory and algorithms used in the analysis of

linear structural relation models known today as structural

equation modeling. In SEM, the models include unobservable

variables identified as latent constructs, defined by

observed variables, which by theory fit the construct(s).

Measurement error, reflecting score reliability is also

typically estimated as a unique and an essential part of

SEM analyses (Joreskog, 1969, 1970, 1973, 1977; Jöreskog, &

Goldberger, 1975; Jöreskog, & Sörbom, 1978).

Covariance structure modeling (CSM) or SEM is being

used increasingly within the social sciences (Stevens,

1996) . Indeed, it would be difficult to locate recent

issues of social science journals in which some SEM

applications were not reported. And one new journal--

Structural Equation Modeling: A Multidisciplinary Journal--

has been created that is devoted exclusively to SEM reports

and issues. SEM has been termed "the single most important

contribution of statistics to the social and behavioral

sciences during the past twenty years" (Lomax, 1989, p.

171) . Similarly, Stevens (1996) argued that SEM is ". .

one of the most important advances in quantitative

methodology in many years" (p. 415).
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Various authors have explained SEM in an accessible

manner (cf. Thompson, 2000) . It is important to recognize

that SEM is the most general case of the General Linear

Model (GLM), which means that SEM subsumes other methods

(e.g., t tests, ANOVA, regression, MANOVA, descriptive

discriminate analysis, canonical correlation analysis) as

special cases (Bagozzi, Fornell, & Larcker, 1981; Cohen,

1968; Knapp, 1978; Thompson, 1991).

SEM's major advantage over other analytic methods is

that it accounts for measurement error. A major

distinguishing feature of SEM is that score reliabilities

are estimated as part of structural modeling. Thus,

structural models test both substantive hypothesis and

measurement models. This may not be obvious to many applied

researchers, because rather than estimating reliabilities

directly, SEM estimates error variances instead.

The paper will illustrate first how these error

variances are actually estimates of score reliabilities

(Thompson, 2000) . It will also be demonstrated how changing

the estimated reliabilities of the SEM observed variables

not only changes all the other parameters throughout the

analysis. Because reliability estimation is such an

important part of SEM, it is important for researchers to
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understand how these estimates are incorporated into the

models.

Reliability

Reliability can be viewed from several perspectives.

Reliability can be considered as the portion of any

variable that cannot be attributed to measurement error. At

the level of scores of given individuals, reliability of

the observed scores ("0" or "X") can be expressed as a

finction of he each person's "true" or reliable score

component ("T") and a corresponding measurement error score

component ("E"), subject to the restriction that: Q....7+g.

For a set of scores, the reliability of the data

(remembering that tests are not reliable, data are

reliable) can be estimated by correlating the Oi and the Ti

scores. Alternatively, score reliability can be estimated

Varu
as . The concept is simple but in the application one

Varoi

first notices the complexities for estimating the

reliability. For a more rigorous treatment on reliability

refer to Cronbach (1951), Arnold (1996), Reinhardt (2000),

and Henson (2001).

As Thompson (1994) noted, "The same measure, when

administered to more heterogeneous or more homogeneous sets

of subjects, will yield scores with differing reliability"
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(p. 839) . Because of this phenomenon, researchers should

always examine and report the reliability of their data in

hand even for substantive studies. As the APA Task Force on

Statistical Inference emphasized

. . it is important to remember that a test is not

reliable or unreliable. Reliability is a property of the

scores on a test for a particular population of

examinees . . . Authors should provide reliability

coefficients of the scores for the data being analyzed

even when the focus of their research is not

psychometric. (Wilkinson & APA Task Force on Statistical

Inference, 1999, p. 596)

Similarly, Gronlund and Linn (1990) indicated that

reliability is based on the results obtained from an

evaluation instrument and not a property imbued at creation

within the instrument itself. From this perspective, it is

most appropriate to speak of reliability as a factor of

test scores or of measurement rather than of the test or of

the instrument.

Although many researchers refer to "the reliability of

the test" in some very eloquent prose, this tendency may

lead to the misconception that reliability is a property of

instruments rather than a property of scores. This often

naive conception can result in researchers failing to

8
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examine score reliability for their data (Capraro, Capraro,

& Henson, 2001).

Carmines and Zeller (1979) referred to reliability as

the part remaining after partitioning purely random error.

Joreskog and Sörbom (1993) and Hancock (1997) indicated

that in SEM reliability is defined as the variance in the

variable is not accounted for by measurement error. Raines-

Eudy (2000) noted, "It [reliability] is commonly

represented by the squared multiple correlation

coefficient, which ranges from 0 to 1" (p. 128) . Lomax

(1989) "error variance is random, unsystematic and due to

unreliability. . . Specific variance is non-random,

-systematic, reliable, and due to the particular selection

of variables by the researchers" (p. 193).

Reliability Unavoided

Although many researchers choose not to report

reliability coefficients for data in hand (Capraro,

Capraro, & Henson, 2001), performing sophisticated

statistical analyses such as SEM invokes the reliabilities

of data in hand in the process. In the case of structural

equation modeling (SEM), error variances are estimated and

low error variances as compared to high error variances do

produce very difference results.
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Lomax (1989) found that

. . when the level of a specific variance (due to

reliability) was systematically reduced for a single

exogenous variable (but not for the other two), (1)

error variance for that variable increased

systematically since specific and error variance are

analytically, inversely related . . . Thus, in those

situations where indicator variable reliability

differs substantially from unity, say 0.8 or less

consideration needs to be given to taking the

unreliability into account in the analysis; otherwise,

certain important parameter estimates may be biased

leading to possible model misrepresentation. (p. 193)

In classical statistical analyses such as ANOVA,

multiple linear regression, and MANOVA do not directly

consider reliability as part of the analysis. However,

measurement error (reliability) in the classical

statistical analyses does influences parameter estimates

and effect size (Thompson, 1998) . Selecting SEM as the

analytic method, on the other hand, forces the researcher

to confront the reality of reliability of the data in hand.

Given the increased controversy over statistical

significance testing and effect sizes (Thompson, 1996), it

is important to understand that given a large enough sample

10
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one would always achieve statistical significance whereas

"effect-size measures do not rely on sample size, their use

would be most beneficial for comparing findings from

studies involving different sample sizes" ( Devaney, 2001,

p. 311) . However, effect sizes are attenuated by

reliability coefficients (Thompson, 1998) . The effect size

yield cannot exceed the limits imposed by the reliability

coefficient.

Measurement Error in GLM and SEM

As previously discussed, reliability can be

conceptualized as the proportion of "true", or non-error,

variance in a given measured variable. Thus, the variance

of a measured variable X is made up of both true variance

and error variance, or as expressed in classical test

theory, X = true + error. In graphical representations of

SEM models, measured variables are typically shown as

squares, while latent or synthetic variables are shown as

circles. Direct relationships such as those between an

independent and dependent variable in regression are shown

as a single-ended arrow, while correlations are shown as a

double-ended arrow. The classical test theory formula, re-

expressed in terms of structural equation modeling, is

shown in Figure 1. Figure 1 shows a measured variable 'X',
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which is made up of two synthetic variables, the "true"

variance and the error variance. The reliability of X

could be expressed as the proportion of the variance of X

in the "true" latent variable.

INSERT FIGURE 1 ABOUT HERE

The concept of dividing the variance of a

measured variable into "true" and error synthetic variables

pervades all general linear model (GLM) procedures.

However, this process is only ever invoked for the

dependant variable (or in the case of multivariate

techniques, dependent variables), and the partitioning of

the variance of the dependant variable is dictated by the

relationship of the dependent variable with the independent

variables. For example, the variance of the dependent

variable in an ANOVA analysis is partitioned into the

variance of the dependent variable explained by the

independent variables (referred to as explained or between

variance) and the variance of the dependent variable

unexplained by the independent variables (referred to as

unexplained, within, or error variance) . The variance

explained is comparable with the "true" variance discussed

above; dividing the variance explained by'thee total

variance of the dependent variable results in the ANOVA

eta-squared, an r-squared type effect size.
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This same process holds true for all GLM procedures.

In multiple regression, the dependent variable is divided

into error and "true" variance. The non-error variance in

regression is the variance predicted by the independent

A

variables, sometimes referred to as the variance of y or y-

hat. As with ANOVA, dividing the variance of y-hat by the

total variance of the dependent variable results in the R2

effect size of the regression model. In a bivariate

correlation, the proportion of covariance (the variance

shared by two variables) to the total variance results in a

squared correlation; taking the square-root of this number

gives you the correlation coefficient.

Similar latent variables are invoked in both GLM

procedures and reliability processes. In both procedures,

the proportion of true variance to total variance results

in a r-squared statistic which is the focus of the

analysis. In GLM procedures, this r-squared statistic is

the effect size (e.g., eta-squared, R2, etc.), and in a

reliability analysis this r-squared statistic is the

reliability coefficient (e.g., Cronbach's alpha). However,

there are several important distinctions between these

procedures. In GLM procedures, the partitioning of the

dependent variable is dependent on the dependent variable's

relationship with the independent variables. In
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reliability estimation, the variables are partitioned as a

function of internal consistency and measurement error.

Additionally, GLM procedures only partition the variance of

the dependent variable; all of the variance of the

independent variables is implicitly assumed to be error-

free.

The strength of SEM procedures lies in the

ability to estimate the error variance in all variables

included in the analysis, not just in the dependent

variable as with other GLM procedures. Thus, it is

possible to set the error variance for a given variable to

be equal to the measurement error, or un-reliability, o

that variable.

Heuristic Examples

A SEM model for conducting a multiple regression type

analysis in AMOS 4.0 was used to for heuristic

demonstration with the results contrasted against the

results from a multiple regression analysis conducted in

SPSS. Because SEM subsumes multiple regression it is

possible to graphically demonstrate the differences in the

results from a traditional multiple regression analysis

that does not account for reliability and a SEM model that

does account for reliability. Initially, a regression is
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conducted using Statistical Packages for the Social

Sciences v. 10 (SPSS) to demonstrate that SEM produces

equivalent results. Second, two models are developed to

illustrate the differences in the estimated parameters due

to changes in reliability. For accessibility the Holzinger

and Swineford (1939) data set was used so interested

individuals can replicate the procedures contained herein

and achieve the same results. Originally the data set

contained 301 cases with 26 variables, but for illustration

of the methods a subsample of the data set was used by

selecting only those students enrolled in Grant-White

school (n=145) . The SPSS syntax is contained in Appendix A

and the data are contained in Appendix B. The variables t5

(general information verbal test), t6 (paragraph

comprehension test), t8 (word classification) and

t15(memory of total numbers) were used to predict t9 (word

meaning).

In the following example, data from the general

information (GI), paragraph comprehension (PC), word

meaning (WM), word classification (WC) and memory of total

numbers (NR) were used (See Appendix B).

5



Reliability Estimation in SEM 15

Regression

A regression analysis was conducted in SPSS using GI,

PC, and NR, to predict WM; the results are contained in

Table 1. The SPSS syntax used to run this analysis is

presented in Appendix A. As shown in Table 1, the R2 for

this analysis is .635, with both GI and PC having

standardized beta-weights greater than .4, and variable NR

having a near-zero beta-weight. As previously discussed,

the R-squared statistic represents the proportion of the

variance in the dependent variable predicted by the

independent variables. Thus, the independent variables

account for 63.5% of the variance in the dependent variable

WM.

INSERT TABLE 1 ABOUT HERE

The same regression model, expressed in graphical SEM

terms is shown in Figure 2. In this model, the four

measured variables are represented by squares. The

dependent variable WM is shown partitioned into two latent

variables, y-hat and error; note that this is identical to

the classical test theory equation shown in Figure 1. The

three independent variables are shown as correlated

(indicated by the double-ended arrows) and as predicting y-

hat, or the non-error portion of the dependent variable.

In this model, the independent variables are not
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partitioned into error and non-error termsthis is because

multiple regression does not take into account error for

the independent variables.

INSERT FIGURE 2 ABOUT HERE

The model shown in Figure 2 was then used as an input

model in AMOS 4.0, a commonly used graphical SEM modeling

program. Before the model was analyzed, a number of steps

were taken to format the analysis. From the "View/Set"

"Analysis Properties" menu, the "Output formatting" tab was

selected. On this screen, the boxes "standardized output"

(instructing AMOS to provide both standardized and

unstandardized estimates) and "squared-multiple-

correlations" (instructing AMOS to report the proportion of

non-error variance to the total variance for each measured

variable partitioned into error and non-error terms) were

checked. From the "Bias" tab, the use of unbiased

covariance matrices for both input and analysis was

specified. Finally, from the "estimation method" tab, the

use of an unweighted least-squares method was specified.

The resulting standardized AMOS output from the input

model shown in Figure 2 is shown in Figure 3. In Figure 3,

the estimated correlations are shown printed next to

double-ended arrows, standardized regression weights are

17
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shown next to single-ended arrows, and the multiple-

squared-correlations are shown next to any measured

variable partitioned into error and non-error terms. The

SEM results shown in Figure 3 are identical to the SPSS

regression output shown in Table 1 and 2. The squared-

multiple-correlation (or the proportion of non-error to

total variance) of WM is shown in the AMOS output as .63,

which is equal to the R2 of .635 shown in the SPSS output,

within rounding error. Because the non-error synthetic

variable, y-hat, is made explicit in this SEM model, it is

necessary to multiply the regression weight between an

independent variable and y-hat by the regression weight

between y-hat and the dependent variable to obtain the

equivalent beta-weight for that independent variable. For

example, the line between GI and y-hat is shown as having a

weight of .56 and the line between y-hat and WM is shown as

having a weight of .80. When these numbers are multiplied,

the result is the beta-weight (.56 x .80 = .448) shown in

Table 1, within rounding error.

As an aside, if "all implied moments" are requested

from the Analysis properties/output menu, the AMOS text

output will include the correlations between the dependant

variables and y-hat, also known as structure coefficients.

Structure coefficients, used in conjunction with beta-
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weights, are an important part of interpreting regression

results.

INSERT FIGURE 3 ANS TABLE 2 ABOUT HERE

Regression with Measurement Error

Next, a SEM model that accounts for measurement error

was generated. This model accounts for measurement error of

the measured variables; note the associated error variances

in Figure 3. Table 3 contains a correlation matrix which

confirms the results achieved from the SEM model.

While the regression model discussed above does not

include error terms for the independent variables, the use

of SEM procedures allows error terms to be estimated for

all variables included in an analysis. When error terms

for the independent variables in the regression model are

added, the results are shown in Figure 4. In this model,

the partitioning of WM into y-hat and error remains

identical to the regression model shown above. However,

instead of the independent variables being used to directly

predict y-hat, each independent variable is given its own

error term. All independent variables are shown as sharing

a common "true", non-error term, and it is this non-error

portion that is shown as being used to predict y-hat.
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INSERT FIGURE 4 ABOUT HERE

It is important to note that the model shown in Figure

4 is not simply regression with error terms added to the

independent variables. In fact, it is no longer regression

at all, as regression does not allow error to be estimated

for independent variables. By adding error terms to GI,

PC, and NR, they cease to function as independent variables

in a mathematics sense. That is, while the partitioning of

the variable WM is dependant on its relationship with the

other variables, the partitioning of each of the once

independent variables is likewise dependant on that

variable's relationship with all other variables in the

analysis. Rather than regression, the model shown in

Figure 4 is a confirmatory factor analysis model; an

equivalent representation of this model could be obtained

by removing the y-hat synthetic variable and creating a

single-ended arrow pointing from the "true" synthetic

variable to the WM measured variable.

Structural Equation Modeling

Because the addition of error terms to the independent

variables in the regression model cause it to cease to

function as a regression model, the SEM model shown in

Figure 5 will be used for all of the following models. In
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this model, the variables GI, PC, and NR are used to

construct a latent variable, Varl. The variables WM and WC

are used to construct a second latent variable, Var2. The

relationship between the two latent variables, Varl and

Var2, is similar to the relationship between the

independent and dependant variables in a regression model,

as shown by the single-ended arrow between them. The

following analyses use the same settings for AMOS described

above, save that the covariance matrix to be analyzed and

estimation discrepancy are set to maximum likelihood, a

commonly used estimation method in SEM procedures.

A series of analyses using this input model will now

be presented to show the impact that changing measurement

error can have on statistical results. AMOS output

diagrams are not presented for all models. For the sake of

brevity, the AMOS output diagram for model 1 is shown,

while the squared multiple correlations and fit indices for

all other models are presented in tabular form.

INSERT FIGURE 5 ABOUT HERE

Model 1. SEM software programs such as AMOS allow the

user to choose between fixing the variance of exogenous

variables and regression weights to a value chosen by the

user or estimating them as part of the analysis. By

21
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double-clicking on a path or variable in AMOS, the user is

given the option of setting the regression weight of a line

or the variance of a latent variable to a value. This is

done by assigning variance to the error term. The error

term can be adjusted to demonstrate the effects of

measurement error on the output results. A low variance

reflects little or no measurement error in a given

variable. A large variance set for the error term indicates

that most or all of the variance in the measured variable

is due to measurement error or score unreliability. The

AMOS output shown in Figure 6 has allowed the variances of

all error terms freed; that is, no regression weight or

latent variable variances were fixed to a given number.

The squared multiple correlations and several fit indices,

the chi-square statistic, the root mean square error of

approximation (RMSEA) and adjusted goodness of fit index

(AGFI), for this model are summarized as model 1 in Table

2. In SEM, allowing all parameters to be estimated, as

done in model 1, always results in the best fit possible

for the data. The fit indices for this model therefore

represent the best possible fit of the data to this model.

INSERT FIGURE 6 AND TABLE 2 ABOUT HERE

22
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Model 2. Because SEM allows the user to specify the

amount of error variance for a variable, it is possible to

set the error terms for a given variable to be equal to the

un-reliable portion of the measured variable variance, if

the reliability coefficients are known. All of the

variables from the Holzinger data-set are composite scores

made up of multiple test items. The reliability

coefficients for these variables have been published in

several manuscripts. The reliability coefficients shown in

Table 3 are taken from Gorsuch (1983) . Because the

reliability coefficient is the proportion of the total

variance that is not due to measurement error, it is

possible to determine the amount of error and non-error

variances if the total variance is known. Table 4 shows

the total variances of the sample data with the non-error

variances (obtained by multiplying the total variance by

the reliability coefficient) and error variances (obtained

by multiplying the total variances by 1 the reliability

coefficient).

INSERT TABLE 3 ABOUT HERE

Model 2 was created by using the same input model

shown in Figure 5, with the exception that the error
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variances of all measured variables were set to be equal to

the error variances determined by the reliability

coefficients shown in Table 4. The results of this

analysis are shown in Table 3. As seen here, the model has

a considerably worse fit when compared to the model where

error terms were left free to be estimated, model 1.

Additionally, the squared multiple correlations have

changed considerably for many of the variables.

Just as the variance for error can be set very low as

in the previous example it can also be set to almost all

the variance. This would result in most of the prediction

power of the measured variable being consumed by error with

little remaining for effectively predicting the latent

construct. Figure 5 illustrates the results for the model

where the error variance was set at 59.

Model 3. Model 3 again uses the input model shown in

Figure 5. In this model, however, the error variance of NR

was fixed to 6, or 10.6% of the total variance of NR. All

other parameters were left freed to be estimated. Changing

the error variance of this one variable has a dramatic

impact on the squared multiple correlations of nearly all

of the other measured variables, as shown in Table 3. This

is due largely in part because the number recognition

variable of the Holzinger data has little to do with the
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vocabulary and reading tasks which make up the other

measured variables included in the analysis. By setting

the error variance of NR to a low number, the entire

analysis becomes more indicative of number recognition than

vocabulary and reading, greatly reducing those variables'

contributions to the analysis.

Model 4. Model 4 uses the same input model shown in

Figure 5, with the error variance for GI set to 100, or

74.1% of the total item variance, and the error variance

for PC set to 10, or 88.4% of the total item variance, with

all other parameters left freed to be estimated. The

changes in fit indices and squared multiple correlation can

be seen in Table 3. While the effect on the squared

multiple correlations here is not nearly as dramatic as in

model 3, the measured variables attached to Var2 react

differently. The squared multiple correlation of WM

increases when compared to model 1, while the WC variable

decreases.

Discussion

An examination of the results presented in Table 3

shows that changes in error estimates can greatly effect

the squared multiple correlations (the proportions of non-

error to total variance) of other variables included in the
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model. The estimated squared multiple correlations for

each of the variables in model 1 are less than the

reliabilities for each of the variables. This is due to

the fact that score reliability acts as an upper-limit to

effect sizes (Capraro, Capraro, & Henson, 2001; Henson,

2001) . Because the squared multiple correlations in SEM

procedures are effect sizes, it is important that these

squared correlations not exceed the reliability

coefficients for those variables. If these squared

multiple correlations did exceed the reliability

coefficients, the use of SEM procedures make it possible to

set the error variance equal to the un-reliable portion of

the variable, forcing the effect size to remain equal to

less than the reliability coefficient. This fact

differentiates SEM from other GLM procedures; by taking

into account measurement error, SEM allows the user to

ensure that the effect sizes do not exceed the limits of

reliability. In other GLM procedures, however, measurement

error is not taken into account as part of the analysis.

In fact, independent variables are considered to be

essentially free of measurement error! This fact is by no

means intended to deny the utility of non-SEM GLM

procedures, rather it is meant to underscore the powerful
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impact that measurement error can have on statistical

results.

Because each of the estimated squared multiple

correlations in model 1 were less than the variance

reliabilities, setting the error variances equal to the un-

reliable portion of the measured variables (as done in

model 2), serves to increase the individual effect sizes;

however, an examination of the fit indices reveals that

this is not a better solution to the original model. When

all parameters are freed to be estimated, as in model 1,

the results will be the best fit possible of the data to

the model. Fixing any parameters to a value other than

that models best estimate, given the sample, will always

result in poorer fit indices.

In the case of model 3, a change in one of the error

variances drastically changed the estimates of all other

variables, changing the meaning of the analysis. While the

changes in error in model 3 affected all variables in the

same direction, the changes in error variance in model 4

had a different impact on the two variables contributing to

Var2. Changes in error terms can effect the analysis in a

variety of ways, at times increasing the effect sizes of

some variables, at times decreasing the effect sizes of

some variables, and at times doing both.



Reliability Estimation in SEM 27

References

Arnold, M. E. (1996) . Influences on and limitations of

classical test theory reliability estimates. Research

in the Schools, 3(2), 61-74.

Bacon, D. R., & others. (1995). Composite reliability in

structural equations modeling. Educational and

Psychological Measurement, 55, 394-406.

Bagozzi, R. P., Fornell, C., & Larcker, D. F. (1981).

Canonical correlation analysis as a special case of a

structural relations model. Multivariate Behavioral

Research, 16, 437-454.

Bandalos, D. L. (1997). Assessing sources of error in

structural equation models: The effects of sample

size, reliability, and model misspecification.

Structural Equation Modeling, 4, 177-192.

Capraro, M. M., Capraro, R. M., & Henson, R. K. (2001).

Measurement error of scores on the mathematics anxiety

rating scale across studies. Educational and

Psychological Measurement, 61, 373-386.

Capraro, R. M., & Capraro, M. M. (2001). Commonality

analysis: Understanding variance contributions to

overall canonical correlation effects of attitude

28



Reliability Estimation in SEM 28

toward mathematics on geometry achievement. Multiple

Linear Regression Viewpoints, 27, 16-23.

Cohen, J. (1968) . Multiple regression as a general data-

analytic system. Psychological Bulletin, 70, 426-443.

Cronbach, L. J. (1951) . Coefficient alpha and the internal

structure of tests. Psychometrica, 16, 197-334.

Dawson, T. E. (1998, April) . Structural equation modeling

versus ordinary least squares canonical analysis: Some

heuristic comparisons. Paper presented at the Annual

Meeting of the American Educational Research

Association, San Diego, CA. (ERIC Reproduction Service

No. ED 418 126)

Frederick, B. N. (1999). Partitioning variance in the

multivariate case: A step-by-step guide to canonical

commonality analysis. In B. Thompson (Ed.), Advances

in social sciences methodology (Vol. 5, pp. 305-318).

Stanford, CT: JAI Press.

Gorsuch, R. L. (1983). Factor analysis (2'd ed.). Hillsdale,

NJ: Erlbaum.

Gronlund, N. E., & Linn, R. L. (1990). Measurement and

evaluation in teaching (6th ed.) . New York: Macmillan.

Hancock, G. R. (1997) . Correlation/validity coefficients

disattenuated for score reliability: A structural



Reliability Estimation in SEM 29

equation modeling approach. Educational and

Psychological Measurement, 57, 598-606.

Hancock, G. R., & Nevitt, J. (1999). Bootstrapping and the

identification of exogenous latent variables within

structural equation models. Structural Equation

Modeling, 4, 177-192.

Henson, R. K. (2001) . Understanding internal consistency

reliability estimates: A conceptual primer on

coefficient alpha. Measurement and Evaluation in

Counseling and Development, 34, 177-189.

Holzinger, K., & Swineford, F. (1939). A study in factor

analysis: The stability of a bi-factor solution (No.

48) . Chicago: University of Chicago. (Data on pp. 81-

991)

Järeskog, K. G. A. (1969). A general approach to

confirmatory maximum likelihood factor analysis.

Psychometrika, 34, 183-202.

Jareskog, K. G. A. (1970). A general method for estimating

of covariance structures. Biometrika, 57, 239-251.

Joreskog, K. G. A. (1973) . A general method for estimating

a linear structural equation system. In A. S.

Goldberger & 0. D. Duncan (Eds.), Structural equation

models in the social sciences, (pp. 85-112). New York:

Seminar Press.



Reliability Estimation in SEM 30

Joreskog, K. G. A. (1977) . Structural equation models in

the social sciences: Specification, estimation, and

testing. In P. R. Krishnaiah (Ed.). Application of

statistics, (pp. 265-287). New York: North Holland.

Jöreskog, K. G. A., & Goldberger, A. S. (1975). Estimation

of a model with multiple indicators and multiple

causes of a single latent variable. Journal of the

American Statistical Association, 10, 631-639.

Joreskog, K. G. A., & Sorbom, D. (eds.). (1978). LISREL IV:

Analysis of linear structural relationships by the

method of maximum likelihood. Chicago: National

Education Resources.

Knapp, T. R. (1978) . Canonical correlation analysis: A

general parametric significance testing system.

Psychological Bulletin, 85, 410-416.

Lomax, R. (1989) . Covariance structure analysis: Extensions

and developments. In B. Thompson (Ed.), Advances in

social science methodology (Vol. 1, pp. 171-204).

Greenwich, CT: JAI Press.

McArdle, J. J. (1984). On the madness in his madness: R. B.

Cattell's contributions to structural equation

modeling. Multivariate Behavioral Research, 19, 245-

267.



Reliability Estimation in SEM 31

Raines-Eudy, R. (2000) . Using structural equation modeling

to test for differential reliability and validity: An

empirical demonstration. Structural Equation Modeling,

7, 124-141.

Raykov, T. (1998). A method for obtaining standard errors

and confidence intervals of composite reliability for

cogeneric items. Applied Psychological Measurement,

22, 369-374.

Reinhardt, B. (1996) . Factors affecting coefficient alpha:

A mini Monte Carlo study. In B. Thompson (Ed.),

Advances in social science methodology (Vol. 4, pp. 3-

20). Stamford, CT: JAI Press.

Stevens, J. (1996) . Applied multivariate statistics for the

social sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Thompson, B. (1991) . A primer on the logic and use of

canonical correlation analysis. Measurement and

Evaluation in Counseling and Development, 24(2), 80-

95.

Thompson, B. (1994) . Guidelines for authors. Educational

and Psychological Measurement, 54, 837-847.

Thompson, B. (2000) . Ten commandments of structural

equation modeling. In L. Grimm & P. Yarnold (Eds.),

Reading and understanding more multivariate statistics

32



Reliability Estimation in SEM 32

(pp. 261-284) . Washington, DC: American Psychological

Association.

Wilkinson, L., & APA Task Force on Statistical Inference.

(1999). Statistical methods in psychology journals:

Guidelines and explanations. American Psychologist, 54,

594-604. [reprint available through the APA Home Page:

http://www.apa.org/journals/amp/amp548594.html]

33



Reliability Estimation in SEM 33

Table 1
Summary of Regression Analysis for Variables Predicting
Word Meaning (N=145)

Unstandardized Coefficients

B Std. Error

Constant -7.262 4.853

GI .306 .044

PC 1.020 .155

NR .007 .056

Note. R Square=.635

Beta t Sig.

-1.496 .137

.449 6.891 .000

.433 6.597 .000

.007 .131 .896

3 4
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Table 2

Correlation Matrix of t5, t6, t15

Variables T5 T6 T15

T5

T6

1.000 *.622

1.000

*.219

*.249

Note. N=145.
* Correlation is significant at the 0.01 level.
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Table 3

SEM Model Squared Multiple Correlations and Fit Indices

Squared Multiple Correlation Chi-

Model GI PC NR WM WC Square df RMSEA AGFI

1 .67 .64 .07 .77 .42 5.1 5 .011 .960

2 .79 .64 .13 .86 .50 79.5 10 .220 .772

3 .09 .10 .89 .09 .06 259.9 6 .542 -.154

4 .43 .38 .06 .92 .34 62.2 7 .234 .685

Note. Values in bold indicate variables whose error terms have been fixed.

3 6
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Table 4

Variable Reliability Coefficients and Variances

Coefficient Variance

Alpha Total Non-Error Error

GI 0.8077 134.97 109.0153 25.95473

PC 0.6507 11.315 7.362671 3.95233

WC 0.5802 28.505 16.5386 11.9664

WM 0.8701 62.727 54.57876 8.148237

NR 0.5070 56.496 28.64347 27.85253
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Figure 1. Partitioning of measured variable variance into
error and non-error expressed in structural equation
modeling.
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Figure 2. Regression analysis modeled in SEM.

3 9
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WM

Figure 3. Standardized output from regression analysis.

4 0
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Figure 4. Regression model with the independent variables
partitioned into error and non-error.

41



Reliability Estimation in SEM 41

Figure 5. Input model for SEM heuristic examples.

4 2
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WM WC
k

Figure 6. AMOS output with all parameters freed to be
estimated.
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Appendix A

SPSS Syntax

Comment creates the. variable school and assigns either a 1 or 2.
compute school=1.
if (ID gt 200) school=2.
execute.

Comment computes a regression analysis for the.data for comparison to
the output from AMOS.
REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT wm
/METHOD=ENTER gi pc nr

REGRESSION
/SELECT= school EQ 2
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT t9
/METHOD=ENTER t5 t6 t15 .

Comment. selects. only those. cases. with School=2.

USE ALL.
COMPUTE filter_$=(school=2).
VARIABLE LABEL filter_$ 'school=2 (FILTER)'.
VALUE LABELS filter_$ 0 'Not. Selected' 1 'Selected'.
FORMAT. filter_$ (f1.0).
FILTER BY. filter_$.
EXECUTE .

Comment. Computes the.correlation matrix for comparison to the. Reg.
Analysis,
CORRELATIONS

/VARIABLES=t5 t6 t15
/PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE .

4 4
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Appendix B

Variable Data from Holzinger & Swineford (1939)

GI PC WC WM NR

46 10 22 10 91

43 8 30 10 81

36 11 27 19 84

38 9 25 11 84

51 8 28 24 98

42 10 28 18 86

69 17 42 41 95

35 10 29 11 97

32 11 35 8 84

39 9 27 16 74

27 10 25 13 95

27 1 29 11 100

29 10 30 14 90

35 5 11 10 94

56 14 29 26 96

37 7 18 11 97

48 11 29 18 86

65 10 23 35 88

49 8 26 20 90

59 13 33 36 98

56 5 27 11 84

56 13 39 25 95

50 14 28 24 87

25 7 17 4 94

29 8 29 13 84

39 9 26 17 79

55 13 26 19 79

24 9 24 7 92

44 4 30 16 89

49 9 26 17 91

46 9 23 13 77

51 9 30 21 90

33 9 27 20 91

18 5 21 4 89

31 8 30 8 74

41 9 31 15 96

48 9 28 20 88

20 2 10 2 85
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42 6 35 13 81

52 19 36 33 101

63 15 32 25 90

47 9 24 24 76
29 9 24 8 80

37 8 29 10 87

41 14 24 11 92

47 11 27 23 90

20 6 15 10 73
44 11 32 18 100
28 8 26 17 84

53 10 32 18 87

33 7 21 12 88

42 7 27 13 93

32 5 24 5 95

50 6 34 13 83

54 14 31 20 88

36 7 27 14 98

45 9 28 17 85

56 18 31 27 91

30 8 25 6 89

40 10 24 15 86

56 18 37 31 84

23 7 22 7 95

48 9 36 16 88

16 5 12 4 94

29 6 25 6 73

39 13 22 15 92

32 10 30 16 84

43 15 26 19 84

41 9 28 14 83

49 8 29 12 92

46 9 24 10 96

39 10 26 17 86

40 8 25 17 78

61 15 36 39 96

31 7 19 19 94

34 9 27 22 96

33 15 32 30 95

35 8 26 13 81

43 5 28 11 82

41 9 28 11 95

50 13 29 26 79

39 16 28 15 92

41 15 31 21 86

55 9 29 23 84

55 13 27 17 110
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54 10 34 27 89

48 11 36 18 92

58 11 37 12 104

44 8 33 15 89

61 10 33 19 82

48 10 22 19 98

60 12 30 23 83

50 11 31 19 85

54 9 24 12 90

51 12 32 15 94

84 18 43 38 112

60 15 29 30 86

64 12 23 33 86

72 16 28 32 104

36 8 33 19 86

43 7 23 19 84

78 17 35 30 101

45 10 26 16 94

55 10 29 19 88

50 10 37 23 88

38 6 27 9 88

51 12 33 17 103

57 13 31 26 79

55 14 28 29 92

51 12 33 27 96

59 18 34 33 97

60 14 29 24 79

66 14 36 29 96

41 10 25 13 95

37 14 33 14 100
48 10 30 17 95

46 8 33 15 89

53 8 29 13 86

44 7 34 10 94

40 4 25 17 87

52 9 29 14 86

37 12 21 15 90

42 5 23 16 87

39 8 24 13 111

36 7 28 8 74

58 15 34 23 85

44 8 22 12 91

42 12 32 19 79

42 8 30 12 92

55 10 26 10 85

48 13 33 32 89

43 7 25 11 76

47
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42 9 31 23 99

53 10 26 10 99
37 8 28 6 92

31 4 27 11 85

44 10 25 14 82

51 10 28 14 99

45 9 26 11 96

49 9 31 20 92

49 8 27 7 75

31 7 23 7 87

55 11 32 30 92

48 11 33 14 87

51 11 39 22 90

4 8
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