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Abstract

Few issues have provoked as much controversy as the methods for

detecting item and test bias. A recent illustration of the

controversy surrounding this issue could be seen in the emotional

reactions to the publication of The Bell Curve. The present

paper will review methods of evaluating both item and test bias.

Small heuristic data sets will be provided to illustrate required

calculations. Test bias will be presented within the context of

bias in selection. Models based on regression and decision-

theoretic approaches will be discussed. Item bias will be

discussed by reviewing latent trait, chi-square, and item

difficulty techniques.
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A Review of Methods for

Detection of Test and Item Bias

Few issues have provoked as much controversy as the methods

for detecting item and test bias. According to Reynolds and

Kaiser (1990, p. 487), bias in testing has been a recurring

controversy throughout the history of mental measurement. Much

of this controversy has centered around the claim that

traditional employment and educational tests are biased in favor

of white middle class culture (Ironson & Subkoviak, 1979). A

recent illustration of the controversy surrounding this issue

could be seen in the emotional reactions to the publication of

The Bell Curve.

Research on bias, which in the 1960's gained its own fervor

surrounding reaction to the Civil Rights Movement, can be viewed

as developing in two areas, bias in selection and item bias.

Bias in selection is the study of bias in the presence of an

external criterion, whereas, item bias is the study of bias in

the absence of an external criterion (Ironson & Subkoviak, 1979).

The present paper will begin by defining bias and then

review the various methods for detecting bias in selection and

item bias. Small heuristic data sets will be employed to

illustrate required calculations.

Definition of Bias

The majority of researchers define bias as invalid,

systematic error in how an item or a test measures for members of

a particular group (Camilli & Shepard, 1994; Shepard, 1982).

Systematic measurement error is defined as error which
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"...consistently affects an individuals's score because of some

particular characteristic of the person or the test that has

nothing to do with the construct being measured" (Crocker &

Algina, 1986, p. 105).

Bias is systematic in the sense that it creates distortion

in test results for members of a particular group. Tests do not

perfectly measure an intended knowledge domain; therefore, as

long as the measurement error affects scores for members of

different groups equally, or the magnitude of random error is the

same for all groups, a test or an item

biased (Camilli & Shepard, 1994).

An example of a biased test can best

is not considered to be

be illustrated in the

following scenario: two groups of examinees, African-American

and Asian, are administered a math word-problem test. It appears

from scores on the test that the African-American group scored

higher than the Asian group. When the items are readministered

to the two groups but presented orally instead of in written

form, the differential difficulty disappears (Shepard, 1982, p.

11). Likewise, if the same two groups are taken to a track and

timed on a quarter mile run, but a slower watch is used for the

African-American group, it might appear that the Asian group is

better at running. In actuality, no comparison can be made

between groups because group averages would be confounded by bias

in the methods of measurement. Only rankings within groups might

be considered relatively accurate (Camilli & Shepard, 1994, p.

8 ) .

The informed researcher will know that although group
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differences in test performance exist, this does not always

indicate bias (Camilli & Shepard, 1994). For example, in the

math word-problem scenario, if the examiner intended to measure

reading ability and not only math knowledge, the test may no

longer be considered biased. According to Camilli and Shepard

(1994), "...any conclusions made concerning test bias depend'on

the inferences drawn from and uses made of test results" (p. 9).

Bias in Selection

The following discussion focuses on test bias in terms of

selection procedures or predictive/criterion-related validity and

not construct validity. This is not to say that construct

validity is not important or relevant. The construct validity of

scores obtained from a test must have already been established

before either bias in selection or item bias is investigated

(Palomares & Friedrich, 1991).

Models based on regression

Tests are widely used in choosing applicants for educational

or employment positions. Tests related to the criterion

performance are used to identify the qualified applicants

(Shepard, 1982, p. 15). Thus, the tests are being used for

prediction

applicants

and how accurately the tests

is referred to as predictive

relationship between test and criterion

identify qualified

validity. "Since the

performance is

operationalized by regression equations, test bias was first

defined as unequal regressions" (Shepard, p. 15). Cleary (1968),

in her paper on the regression of college grades on the SAT for

Negro and white students in integrated colleges, provides a

6
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definition of bias in terms of regression. Cleary (1968) states,

A test is biased for members of a subgroup of the

population if, in the prediction of a criterion for

which the test was designed, consistent nonzero

errors of prediction are made for members of the

subgroup. In other words, the test is biased if the

criterion score predicted from the common

regression line is consistently too high or too low

for members of the subgroup. (p. 115)

In Figure la, an example of an unbiased test regression is

illustrated. For this example, even though the group means are

different, the test has equal predictive validity for the Asian

and African-American groups. If a member of the African-American

group and a member of the Asian group had the same GRE (test)

score, their expected graduate G.P.A. (criterion score) would

also be the same.

In Figure lb, an example of biased tests is illustrated.

For this example, although the regression slopes are the same for

both groups, the regression line for the Asian group is shifted

to the right of the regression line for the African-American

group. If a common regression line were used to predict the

G.P.A. for the two groups, the GRE would underpredict performance

of the Asian group and overpredict performance for the African-

American group (Crocker & Algina, 1986).

There are a number of selection models based on determining

separate regression lines for different groups and then

calculating predicted criterion scores for each applicant by

7
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using the appropriate regression coefficient determined by that

candidate's group membership. Three such models, discussed in

Crocker and Algina's (1986) textbook on test theory, are the

Regression Model, the Equal-Risk (Employer's) Model, and

Darlington's Model. Other models have been developed from

different definitions of test bias. To discuss each model is

beyond the scope of this paper. The interested reader is

referred to Crocker and Algina (1986).

Models based on the Decision-Theoretic Approach

The remainder of the section on bias in selection will focus

on the decision-theoretic approach. This model will be discussed

at some length here, because it is generally preferred by

psychometricians over other selection models. The reason this

model is preferred is because decision-theoretic models force the

test-user to establish a aecision rule for selection of

applicants based on a combination of the probabilities of events

(true positive, true negative, false positive, and false

negative) and their values to the decision maker (Crocker &

Algina, 1986). In order to understand the decision-theoretic

approach to selection, it is helpful to have an understanding of

some basic terms and concepts.

Basics concepts. Figure 2a is a scatterplot of test scores

(X) and criterion scores (Y) for a single group from a validation

study. For this particular example, X will be GRE scores and Y

will be graduate GPA. First, the examiner determines a point on

the I scale that will divide the examinees into successful and

unsuccessful groups. In this example, as can be seen in Figure

8
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2b, the examiner has chosen a G.P.A. of 2.0.

Next, the examiner sets a cutoff on X that will determine

whether applicants are selected or rejected for admission into

graduate school. In this example, Figure 2c, the examiner has

chosen a GRE score of 900. In Figure 2d, we see that there are

now four quadrants to our scatterplot. Quadrant A contains true

positive events. A true positive event is when an examinee is

selected that succeeds. Quadrant B contains false positive

events. A false positive event is when an applicant is selected

who subsequently fails. Quadrant C contains false negative

events. A false negative events is when an applicant is rejected

that could have succeeded. Quadrant D contains true negative

events. True negative events are when an applicant is rejected

that would have failed (Crocker & Algina, 1986).

Three other concepts are derived from this scatterplot. The

other concepts are (a) the base rate, (b) the selection ratio,

and (c) the success ratio. The base rate is the proportion of

examinees who could succeed over the total number of examinees (A

+ D)/(A + B + C+ D). The selection ratio is the proportion of

examinees who will be chosen (A + B)/(A + B + C+ D). The success

ratio is the proportion of those examinees that are chosen who

succeed A /(A + B) (Crocker & Algina, 1986; Nunnally & Bernstein,

1994) .

Extensive-forms Analysis. There are two methods to the

decision-theoretic approach to selection. The two methods are

extensive-forms analysis and normal-forms analysis. The two

methods are similar in their conceptual underpinnings; therefore,

9
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only extensive-forms analysis will be discussed (Crocker &

Algina, 1986).

According to Crocker and Algina (1986), there are four basic

steps in extensive-forms analysis:

1. The probability of success and failure of an examinee is

calculated.

2. The decision maker must assign weights, called utilities, to

each possible result (success and failure) of a selection

decision.

3. The expected utility of each decision alternative (select

and reject) is calculated.

4. The expected utility values for each decision are compared

and the decision with the greatest expected utility is

chosen. (p. 278)

Prior to conducting extensive-forms analysis, the bivariate

distribution of the predictor and criterion scores for all

examinees has to have been determined through a previous

validation study. The researcher also has to establish the

criterion cutoff score dividing the examinees into successful and

unsuccessful groups. Once this is completed, the researcher will

be able to calculate the probabilities of success and failure for

each examinee. The symbol plx will represent the probability of

success given score x and qlx will represent the probability of

failure given score x (Crocker & Algina, 1986).

The researcher then decides which of the possible events

(true positive, true negative, false positive, or false negative)

are more important. Thus, the researcher assigns utility values

10
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(weights) to each of the four possible events (Crocker & Algina,

1986). For example, say the researcher is trying to make a

decision on whether to place a group of students in special

education based on standardized test scores. For the researcher,

the possibility of placing a student in special education when

really does not belong there may be more important than not

placing a student in special education who could benefit from

these services. The researcher wants to avoid the stigmatization

associated with labeling a child who would not benefit from

special education services. Thus, the researcher decides:

U = .75
U = 1.00
U, = 1.00
U = .25

In this example, the researcher has placed the most value or

chose the highest utility for a false positive event (Un,),

placing a child in special education who will benefit from the

services and the utility of a true negative event (U,), not

placing a child in special education who would not benefit from

the services. The researcher assigned these two events a utility

of 1.00. The researcher has also placed the least value or

utility (.25) on a false negative event Lifio not placing a child

in special education who would benefit from the services and a

middle value of .75 for a true positive event Utp, placing a child

in special education who would benefit from the services. For

more information on assigning numeric values to utilities, the

reader is referred to Novick and Lindley (1978).

Now the researcher must calculate the expected utility of

11
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each possible decision alternative and choose the alternative

that has the highest expected utility value. The formula for

calculating the expected utility for a select decision is:

E(u)3 = ul,(p1X) + ufi,(q1X)

The formula for calculating the expected utility for a reject

decision is:

E(u), = ufli(p1X) + 11,(q1x)

In our example, suppose plx is .6 and cilx is .4. Thus,

E(u), = .75(.6) + 1(.4) = .85
E(u), = .25(.6) + 1(.4) = .55

The expected utility for a select decision exceeds the utility of

a reject decision, so the researcher would select this particular

student for special education services. The researcher would then

perform this process for each student in the group to determine

if they should receive special education services.

For this particular example, only one group of students was

involved in the selection process. Since probabilities of success

and failure may depend on group membership, the researcher may

want to assign different utility values for different groups of

students or applicants. With two

there are eight possible events.

example, the researcher may want

groups of students/applicants,

In our special education

to calculate different expected

utility values for students depending on whether they are non-

native English speakers or native English speakers. The

researcher may feel that it is more important that non-native

English speakers not be placed in special education because the

standardized test is in English and there is a chance the student

12
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will score lower on the test as a result of not understanding the

questions. The researcher decides that the utilities for the

English speaking group will be: Uip = .75, U5, = 1.00, U, = 1.00,

Uffi = .25. For the non-native English speakers the utilities will

be: U0 = .25, ri. = 1.00, U, = 1.00, U. = .75.

If there are two examinees with the same predictor score and

one is a native English speaker and the other is a non-native

English speaker, then they may have different probabilities of

success and failure. The probability of success for the English

speaker will be .6 and the probability of failure will be .4. The

probability of success for the non-native English speaker will be

.4 and the probability of failure will be .6. Thus, for the

English speaker the two expected utilities are:

E(u)3 = .75(.6) + 1(.4) = .85
E(u), = .25(.6) + 1(.4) = .55

For the non-native English speaker, the two expected utilities

are:
E(u), = .25(.4) + 1(.6) = .70
E(u), = .75(.4) + 1(.6) = .90

Based on these calculations, the researcher would place the

native English speaker in Special Education because the utility

for the selection decision is greater than the utility for a

reject decision. The researcher would not place the non-native

English speaker in Special Education because the reject decision

was greater than the select decision.

Item Bias

Once the construct validity of the scores from a test are

established, an examiner may want to identify biased items before
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construction of the final forms of the test. Detection of biased

items is an internal method. The researcher is comparing an item

to the total test and not to some outside criterion as in the

models of fair selection. Although there are a number of

different models for detecting item bias the researcher needs to

be aware that all the models are based on information internal to

the test itself (Scheuneman, 1979). Thus, they all assume that

the average test item is unbiased, and will not detect item bias

if there is constant bias across items (Ironson & Subkoviak,

1979). In other words, if that particular item has a high

discrimination index, then the item is correlating well with the

other items and it may be that all the items share some bias. In

terms of analysis of variance, bias would be defined as item-by-

group interaction (Cleary, 1968; Fisk, 1991).

A specific model for detecting item bias can indicate item

bias when none exists or miss item bias that actually does exist.

It is recommended that researchers not rely on the information

yielded from just one method to determine if an item is biased,

but instead use information from various methods (Crocker &

Algina, 1986).

According to Crocker and Algina (1986):

A set of items is unbiased if (1) the items are

affected by the same sources of variance in both

subpopulations; and (2) among examinees who are at

the same level on the construct purportedly

measured by the test, the distributions of

irrelevant sources of variation are the same for

14
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both subpopulations. (p. 377)

For example, if a math achievement test has both word problems

and computational problems, the word problem items could be

considered biased for non-native English speaking students. For

this to be the case, the variance in the scores for the native

English speakers and the non-native English speakers would not be

due to the construct being measured (mathematical ability) but to

proficiency in English. The variation in scores would not be

affecting the two groups equally.

There are various methods for detecting item bias. The three

most prominent methods in the literature are: (a) latent trait,

(b) chi-square, and (c) item-difficulty (Crocker & Algina, 1986;

Fisk, 1991). Each of these methods will be discussed briefly.

Latent trait or Item Response methods. Latent trait methods

(Lawson, 1991; also referred to as Item Response methods),

incorporate the use of item characteristic curves (ICC). The

regression of item scores on ability level is called the item

characteristic curve (Scheuneman, 1979). As shown in Figure 3a,

an ICC portrays the relationship between an examinee's ability

and the probability of the examinee answering the item correctly

(Fisk, 1991; Ironson & Subkoviak, 1979).

The ICC can be described mathematically by an ability

parameter denoted by 0 and one or more item parameters. The

items parameters are "a" the slope of the curve which is the item

discrimination parameter, "b" the inflection point of the curve

which is the item difficulty parameter, and "c" the lower

asymptote which is the guessing parameter (Camilli & Shepard
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1994; Fisk, 1991; Scheuneman, 1979). Figure 3b demonstrates an

ICC with different a, b, and c parameters. For latent-trait

models, an item is considered unbiased if the ICCs are the same

for the different groups of interest (Ironson & Subkoviak, 1979).

There are two basic approaches to determining whether an

item is biased. The first approach is to calculate the area

between the ICCs for the two groups of interest, as a measure of

the difference between the two ICCs. There are different formulas

that can be used to calculate the area, such as Rudner's Area

Measure. For more information on these different measures, the

interested reader is referred to Crocker and Algina (1986). The

second approach to detecting item bias is to perform statistical

significance testing (Camilli & Shepard, 1994).

When calculating indices of item bias based on latent trait

models, the researcher first assumes that the test from which the

items are drawn is homogenous. That is, it is posited that the

test measures one underlying trait or ability. Second, before the

ICCs for an item for different groups can be compared, the item

parameters must be scaled in the same metric. For a complete

discussion on the two major methods for equating parameters, the

interested reader is referred to Camilli and Shepard (1994). It

should be noted that the guessing parameter is not affected by a

change of scale, therefore, this parameter does not need to be

equated or scaled in the same metric (Crocker & Algina, 1986).

Third, the researcher determines which model will be used to

compare the ICCs. There are three models based on Item Response

Theory to choose from. They are the one-parameter model, the two-
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parameter model, and the three-parameter models (Camilli &

Shepard, 1994; Crocker & Algina, 1986; Fisk, 1991; Lawson, 1991).

Lastly, the researcher decides on the method(s) for detecting

item bias. The researcher either computes area statistics and/or

engages in statistical significance testing. With statistical

significance testing, the test statistics (chi-square statistics)

are computed to determine if the null hypotheses should be

rejected. If a null hypothesis for that item is rejected, the

item may be considered biased (Crocker & Algina, 1986). For

heuristic purposes, only the one-parameter model will be

discussed here, however, the two-parameter and three-parameter

models follow the same principles.

The one-parameter model, sometimes referred to as the Rasch

model (Rasch, 1980), sets the item discrimination parameter (a)

to a constant and only the item difficulty parameter (b) is

allowed to vary. The null hypothesis would be: 1-10: bg = b4 The

test of the null hypothesis is conducted and a chi-square

statistic is obtained. The items for which the null hypothesis is

rejected are considered to be biased items (Crocker & Algina,

1986). The chi-square statistic can also be regarded as an

indication of the amount of bias in the item (analogous to effect

size in ANOVA) (Crocker & Algina, 1986).

Latent trait methods are usually preferred over other

methods of item bias detection because indications of item bias

should not occur solely due to differences in the ability

distribution. A disadvantage with latent-trait methods is that

17
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even when item bias does not exist, differences in ICCs can still

occur. If the items are not unidimensional, which was the

assumption made for using latent-trait methods, an item may

appear biased when all it is indicating is multidimensionality

(Crocker & Algina, 1986). For the example discussed earlier

about the math achievement test, the word-problems on the test

would probably have different ICCs. Thus, the researcher could

infer that the word problem items are biased. In actuality, the

items are measuring both math knowledge and English proficiency

(multidimensionality).

Another disadvantage to latent-trait methods is the sample

size and number of items required. The three-parameter model

requires approximately 1,000 subjects and 30 items or 500

subjects and 60 items. For the two-parameter model, a minimum of

500 examinees per group is suggested and for the one-parameter

model 200 examinees in each group are required (Crocker & Algina,

1986).

Chi-square techniques. One alternative to the latent-trait

methods that does not require such large sample sizes is the chi-

square technique. With the chi-square technique samples with 100

or 200 examinees in each group are sufficient. In addition, chi-

square techniques are easier to compute than latent-trait

methods.

According to Crocker and Algina (1986), chi-square

techniques "...essentially define an item as unbiased if, within

a group of examinees with scores in the same test score interval,

the proportion of examinees responding correctly to the item is
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the same for both subpopulations" (p. 383). There are a number

of different chi-square techniques.

In general, chi-square techniques divide the observed score

scale into several intervals (Crocker & Algina, 1986). Three to

five intervals are customary. For each interval, (a) a minimum of

10 to 20 correct responses should be included (b) expected

frequencies should be at least five, and (c) a minimum number of

incorrect responses should be decided upon (based on the

researcher's judgement) and included (Fisk, 1991). Within each

interval the groups of interest are compared in terms of

proportions responding correctly to an item. If the proportions

vary across groups, the item is considered biased (Crocker &

Algina, 1986).

Two examples of chi-square, using Camilli's statistic, are

provided in Table 1. These examples were generated for heuristic

purposes and would never actually be used in research because

they do not include a minimum number of incorrect responses. The

author chose these examples so the reader could see two extremes,

a chi-square where item bias is definitely present and where

there is no bias present. For both examples, the observed score

scale was divided into three intervals. Nu refers to the number

of examinees in the first group and second groups with scores in

the jth interval. The symbols Ou and 02j, refer to the number of

examinees in the first and second group who had scores in the jth

interval and answered the item correctly.

Pu is the proportion of examinees in the first group and the
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jth interval that answered the item correctly: Pu = Ou / Nu .

The quantity P. is the proportion of all examinees who scored in

the jth interval and answered the item correctly: P. = (Ou + 02j)

/ (Nu + N2j). To compute Camilli's statistic the following formula

is used:

N N, -P, )2XE 11

(N, +N, ) P (1-P )j .1

After Camilli's statistic is computed, it can then be

compared to a chi-square distribution with J degrees of freedom.

J equals the number of intervals. Thus, J for these two examples

would be three. As can be seen in the first example in the table,

the chi-square statistic would be 39.99999. If we compare this

value to a chi-square distribution, with 3 degrees of freedom at

the .05 level, the critical value would be approximately 7.815.

39.99999 exceeds this value and would indicate that the item is

biased. For the second example, the chi-squared statistic would

be zero, indicating no bias.

Item difficulty techniques. A number of approaches exist for

the use of item difficulty techniques in item bias studies. All

the approaches are based on one of two definitions for a set of

unbiased items. The first definition states that a set of items

is unbiased if the item difficulties for the two groups are

perfectly correlated (all points in the scatterplot lie in a

straight line). The second definition states a set of items is

unbiased if the difficulty difference between the two groups is

20
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the same for all items. If the criterion for the second

definition is met, then the criterion for the first definition

will also be met but the reverse will not necessarily be true

(Crocker & Algina, 1986).

The most widely implemented item difficulty technique, based

on the first definition for a set of unbiased items, is commonly

referred to as the Delta Plot Method. The Delta Plot Method was

developed by Angoff and Ford (1973). This method involves

computing the p-value, which is the proportion of examinees

getting the item correct, for each item separately for each

group. Next, the p-value is converted into a normal deviate Z,

using tables of the standardized normal distribution. Once the z-

value is obtained, in order to eliminate negative z values, a

delta value is calculated using the formula: A = 4z + 13 (Ironson

& Subkoviak, 1979).

According to Fisk (1991), the delta values can then be

"...plotted as ordered pairs on a bivariate graph" (p. 13).

Although the correlation for the scatterplot may be high (e.g.,

.96) there still may be points that lie off the line that would

be considered biased item(s).

An example of a Delta Plot method is provided in Tables 2

and 3. Table 2 is an example of hypothetical raw data collected

from a dichotomous test on two groups of examinees with 15

examinees in each group. Table 3 shows that the item difficulty

value (P) was computed for each item in each group. In addition,

the Z-values corresponding to the appropriate P scores are

reported which are then converted into delta values. Figure 4
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illustrates a delta plot of the delta values for group 1 on the

x-axis and group 2 on the y-axis. There are two outliers (items

2 and 10) that might be considered biased items.

Conclusions

As can be seen throughout this paper, there are not only

different definitions of bias, but also different methods for

bias detection based on the varying definitions. In the end,

there is not one definitive method for fair selection or for

detection of biased items. The test user needs to consider the

purpose of the test and the inferences that will be made from the

test and decide based on these considerations which methods or

combination of methods would be best to use. Particularly, in

regards to item bias, it may be in the best interest of the test

user to employ a combination of methods and see if the results

from the different methods are in agreement before deciding that

an item is biased.
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Table 1

Examples of Chi-Square using Camilli's Statistic
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i
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Table 2

Hypothetical Data Set for the Delta Plot Method

Item
,- -

Group 1 1- _ . _...
1 1 ;
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. 1
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01 0
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-T---15-1-
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-.--1.1----1-7--i'----o'
1'

1. 1'
0! 1

1-----1----5 ' 0! 17

6 ' 0 lI 0, 01 1 0' 0: 1,
1'

0! 1
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8 0 il 0: 0 1. 0; 1 1 . 01 0
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10 1. 1 0! ii 0 0 0 11 0: 0
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61-

0

0 .

17

0,
°I

;

,

0, i 0;
12 , 11 1.

:
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11
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01 0
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13 1 1:
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01

0

11

1

i

o
1,

0'

!

0;
0!

14
15 0 1;
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1 1

1 1 1' 11
,

11 o:
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0'

I
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o!
2 1

0
1: 1'

0;
0!1-
11

---i-
1, a

1 1! 01 1

4 1 0, 01 1. 1 01 1 01 1

5 1 1 i 01 0. 0, 0 1: 0 0
6 1 i ' 01 0, 0 0 0; 11 0' 0
7 ii 11

0:
1L 11
0; 01

1. 0 0; 11 0! 0
8 1 1' 01 0, 11 01 1

9 0 0! 11 11 0 1. 0' 1; 1!
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Table 3

Calculations for the Delta Plot Method

i .
I

Item P Score :P Score 1Z Score !Z Score ;Delta Delta
1

Group 1
-1.

l

1 0.41

2 0.8

Group 2 Group 1
I.

L_____
_0.461 -0.25!

0.66, 0.85

1

Group 2 ;Group 1 :Group;
1

-0.1! 12: 12.6

0.41 is...a.:1-711.11;
1 7

3 0.33! 0.33! -0.45 -0.451 11.2' 1t2
1

1
:

4 0731 0.73; 0.6 0.61 15.4' 15.4

5 531 0.53: 0.05 0.051 13.2 13.2

6 0.1311 0.13
-7-

--1.15 1.151 8.4. 8.4

1

0.2i 0.13 -0.85 -1.151
1

9.6. 8.4

!

0.93 0.93 1.5 1.5 19: 19

0.06, 0.06 -1.55 -1.55, 6.8: 6.8

10 0.331
1

0.73 -0.45 0.6 11.2. 15.4

27



A Review 27

Figure Captions

Figure la. Unbiased tests according to the Cleary definition.

Figure lb. Biased tests according to the Cleary definition.

Figure 2a. Scatterplot of test scores (x) and criterion scores

(y)

Figure 2b. Scatterplot with the criterion cutoff.

Figure 2c. Scatterplot with predictor test cutoff.

Figure 2d. Scatterplot with four quadrants.

Figure 3a. Item characteristic curve.

Figure 3b. ICC of an item that differs for both groups on the a,

b, and c parameters.

Figure 4. Delta plot.
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