
DOCUMENT RESUME

ED 459 838 IR 058 374

AUTHOR Kang, ByungHoon; Wilensky, Robert
TITLE Toward a Model of Self-Administering Data.
SPONS AGENCY National Science Foundation, Arlington, VA.
PUB DATE 2001-06-00
NOTE 10p.; In: Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries (1st, Roanoke, Virginia, June 24-28,
2001). For entire proceedings, see IR 058 348. Figures may
not reproduce well.

CONTRACT CA98-17353
AVAILABLE FROM Association for Computing Machinery, 1515 Broadway, New York

NY 10036. Tel: 800-342-6626 (Toll Free); Tel: 212-626-0500;
e-mail: acmhelp@acm.org. For full text:
http://wwwl.acm.org/pubs/contents/proceedings/d1/379437/.

PUB'TYPE Reports Evaluative (142) Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Access to Information; Data Processing; Electronic

Libraries; *Information Management; Information Services;
Models; Shared ResOurces and Services

IDENTIFIERS Asynchronous Learning Networks; *Data Management; Digital
Data

ABSTRACT
This paper describes a model of self-administering data. In

this model, a declarative description of how a data object should behave is
attached to the object, either by a user or by a data input device. A
widespread infrastructure of self-administering data handlers is presumed to
exist; these handlers are responsible for carrying out the specifications
attached to the data. Typically, the specifications express how and to whom
the data should be transferred, how it should be incorporated when it is
received, what rights recipients of the data will have with respect to it,
and the kind of relation that should exist between distributed copies of the
object. Functions such as distributed version control can be implemented on
top of the basic handler functions. This paper suggests that this model can
provide superior support for common cooperative functions. Because the model
is declarative, users need only express their intentions once in creating a
self-administering description, and need not be concerned with manually
performing subsequent repetitious operations. Because the model is
peer-to-peer, users are less dependent on additional, perhaps costly
resources, at least when these are not critical. An initial implementation of
the model has been created. The authors are experimenting with the model both
as a tool to aid in digital library functions, and as a possible replacement
for some server oriented functions. (Contains 20 references.) (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Toward a Model of Self-Administering Data

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

D. Cotton

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

16 This document has been reproduced as
received from the person or organization
originating it.

0 Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

By: ByungHoon Kang & Robert Wilensky

BEST COPY AVAILABLE

Toward A Model of Self-administering Data
ByungHoon Kang

Division of Computer Science
UC Berkeley

Berkeley, CA 94720
510 642-8468

hoon@cs.berkeley.edu

ABSTRACT
We describe a model of self-administering data. In this model, a
declarative description of how a data object should behave is
attached to the object, either by a user or by a data input device. A
widespread infrastructure of self-administering data handlers is
presumed to exist; these handlers are responsible for carrying out the
specifications attached to the data. Typically, the specifications
express how and to whom the data should be transferred, how it
should be incorporated when it is received, what rights recipients of
the data will have with respect to it, and the kind of relation that
should exist between distributed copies of the object. Functions
such as distributed version control can be implemented on top of the
basic handler functions.

We suggest that this model can provide superior support for
common cooperative functions. Because the model is declarative,
users need only express their intentions once in creating a self-
administering description, and need not be concerned with manually
performing subsequent repetitious operations. Because the model is
peer-to-peer, users are less dependent on additional, perhaps costly
resources, at least when these are not critical.

An initial implementation of the model has been created. We are
experimenting with the model both as a tool to aid in digital library
functions, and as a possible replacement for some server oriented
functions.

Keywords: Self-administering data, data access model, data
management, peer to peer, distributed file system, asynchronous
collaboration, file sharing, scalable update propagation.

1. Introduction
Central to the digital libraries enterprise are issues of creating,
managing and facilitating access to collections of digital objects. At
one extreme, emulating traditional libraries, a digital library may
serve as finding aid, collection manager, repository, and distributor
for a set of digital objects. Alternatively, these services may be
disaggregated, with affiliated or independent services providing
collection management service, repository service, and so forth.
Disaggregation, we suggest elsewhere ([20]), can enable more
"democratic" management of resources, with individuals and groups
using library-like services to manage their own collections, and to
make use of associated services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL '01, June 24-28, 2001, Roanoke, Virginia, USA.
Copyright 2001 ACM 1-58113-345-6/01/0006...$5.00.

322

Robert Wilensky
Division of Computer Science

UC Berkeley
Berkeley, CA 94720

510 642-7034

wilensky@cs.berkeley.edu

As digital libraries become more democratic, their interaction with
other aspects of the data management process will become more
important. For example, a working group may want to house the
latest draft of a document in a repository for general access. While
they are working on the document, versions need to get passed
around or shared, and, as work progresses, the draft in the repository
will need to be updated. In addition to incorporation, repositories
need to be able to disseminate their data to interested users, who
may be able to use related services to comment upon or annotate the
document. For example, a user reading the draft may appreciate
receiving an updated copy when the draft is changed, or receive
notifications of various sorts. Such scenarios represent a need for
end-to-end data management, in which collection and repository
management form only one piece, and whose boundary with
personal and group information management become indistinct.

Here we propose a data management strategy that is largely
concerned with personal information management issues as they
relate to the larger picture of digital object management. While we
are developing this strategy to support digital library tasks, such as
incorporation and dissemination of digital objects into conventional
digital library structures, the data model we present may have
additional implications. In effect, we provide a peer-to-peer digital
object management tool. This tool can support interaction with
services, but it may also serve as replacement for them. Thus, we
propose for consideration a more radical notion of a peer-to-peer
version of digital libraries, with no services at all.

2. Scenarios and Design Goals
In this section, we consider a number of scenarios that motivate our
design. Mostly, we express our frustration with current tools
available for simple processes, and suggest what, to us, seem like
more attractive scenarios. Below we present the data processing
model we designed to enable these scenarios. Then we describe our
initial implementation.

2.1 Co-Authoring across Administering
Domains
Example Problem: Suppose a web-page designer is commissioned
to create some web pages from a customer. The customer somehow
communicates what is desired to the designer, who then creates an
initial version of these pages. Perhaps the designer sends these page
drafts to the customer by email as attachments, or has the customer
download the web-pages from the designer's web site, or uses some
other protocol, like ftp, to move copies about. Later, the customer
makes some modifications and returns the pages to the designer, and
the process iterates.

As a result, both users' email boxes, or file spaces, etc, get filled
with email attachments of versions. These versions are often hard to

3

manage because there is no built-in version management support for
email attachments, HTTP, or FTP. Our collaborators could instead
try to use some collaboration tool designed for this purpose. Heavy
weight document management system like Lotus Notes [10] or even
Xerox's Docushare [11] are probably overkill for this purpose;
moreover, they may require administrative commitments neither
user can make. Web-based file sharing system such as
www.desktop.com [17], www.hotoffice.com [18], Web Edit [6], i-
drive [12] and BSCW [4], and synchronization services, such as
Fusion One [13], provide an interesting alternative. However, such
services don't provide control over important aspects of data
management, such as back-up, conversion, and merging. Moreover,
the users are at the mercy of a potentially overloaded server, perhaps
at a precariously fmanced dot corn. Also, adding a third party to the
interaction introduces increased vulnerability Users are not able to
perform their sharing operation when the central server is down
even though their local machines and services are functioning, and
have introduced a new security concern. In addition, they are subject
to various, and, we think, avoidable, human errors, such as
forgetting to transmit the shared copy to the web repository after
every change.

Desired Properties: The above scenario suggests to us the
following properties of an ideal system for this task:

P1

P2:

P3:

P4:

P5:

P6:

P7:

No repeat user involvement in routine data management

No unnecessary dependence on shared resources, such as
shared data repositories or file servers

No prior administrative set up costs

Ability to exploit minimal use of central server as only
required

Undo/Redo capability within user's domain

Secure and safe incorporation of updates at user's domain

Lightweight enough to be widely deployed

A Proposed Solution: We propose a way of accessing and
managing data to achieve the above desiderata. We introduce an
infrastructure of Self-administering Data Handlers, which are
deployed wherever users wish to take advantage of their services.
These Self-administering Data Handlers (SD Handlers) administer
data according to an attached Self-administering Data Description.
The Self-administering Data Description (SDD) is metadata
describing how, where, and to whom the data are to be copied,
updated and otherwise administered. In other words, the SD
Handlers are daemon processes that administer data by honoring
attached self-administering descriptions.

Consider how the task above might be performed if SD Handlers
were available to the collaborating parties. When the web-page
designer creates web-pages, she saves them into a directory or folder
somewhere on her local disk, as is her standard practice. Her SD
Handler detects this action and pops up a UI with a self-
administering description for the saved web pages, probably
representing her defaults. She examines the default preferences,
checks a couple of choices and adds a new destination, in this case,
a location specifier provided by the client. Then the SD Handler
attaches to the data objects their respective self-administering
description.

Suppose the designer specified that these pages should be delivered
to client's public web folder whenever she updates one of those.
When a page is updated, the SD Handler will automatically sign it

323

with the designer's private key and encrypt the result with the
client's public key. The signed and labeled data object is deposited
into the network of SD Handler infrastructure.

The client's SD Handler receives and verifies the authenticity of the
self-administering description. In this case, it interprets the
description as instructing incorporation of the data object into
client's web folder. The client's SD Handler logs this event of data
incorporation. If the designer's name is not found in the client's
trustee list, the incorporation is denied. If the recipient's SD Handler
is not available, the SD Handler could retry or delegate the retrying
of delivery to a pre-negotiated server.

If the designer prefers strong update serialization, the SD Handler
might be configured to first contact a pre-negotiated central
serialization service, (say, a CVS[8] server or the Oceanstore [2]
service) and have her changes merged according to the arrival order
at the central serialization server. The merged data are then delivered
back to the designer's SD Handler, which forwards the merged data
to the destinations specified in the self-administering description.

Such a network of SD Handlers provides a lightweight
asynchronous collaboration infrastructure for sharing data in a
secure way. Centralized servers may be exploited in this process, but
only when there is some particular need that justifies the cost, such
as a desire for strong serialization of updates.

2.2 Data-Collection
Example Problem: Let us briefly consider a less desktop-centric
scenario. Suppose a botanist takes pictures of plants in a field with
her digital camera. She wants to transfer these to multiple remote
designations, including her own web page, her research group's
database, and her collaborator's disk. To do so, she must go to her
office desktop and download the image from the digital camera into
some buffer space, and then copy it into her own web page folder.
She must then open up a database connection, authenticates herself,
and then upload the data into database. She would also pop up an
email client, create a new email message and upload the image data
as the message's attachment. Then she sends the email to her
collaborators, asking them to download the attached image onto
their disk space. She repeats these procedures whenever she takes a
picture or pictures she wishes to so incorporate.

This scenario provides comparable desiderata to the initial one,
except that one would like to deploy our proposal as close to the
data as possible. Thus, we must modularize SD Handler
functionality so we can implement its services within a device's
limited resources. For example, the camera might be enabled with a
simple interface for using some pre-downloaded self-administering
descriptions. Services that the camera couldn't perform locally could
be performed by an affiliated proxy server. The camera need only
reach the proxy server for the rest of the tasks to be automated as
above.

We envision data collection involving SD Handlers from a wide
variety of a simple special purpose devices, include scanners, smart
cards, smart mobile phones, PDAs, and lightweight widely
distributed sensors. These devices, perhaps together with a helpful
proxy, simply deposit their tagged data into the infrastructure, which
takes care of all routine data management and transport issues.

3. Self-administering Data Model
As suggested above, we envision a network of SD Handlers, each
"close" to a user or device that it serves. To a first approximation,

there would be one SD Handler per networked device, perhaps
more. Some would be associated primarily with users, some with
data collection in devices, others with services, such as digital object
repositories, each supporting basic SD Handler functionality, but
perhaps implementing services associated with the particular
characteristics of its application. Such a network is illustrated in
Figure 1.

Partitioned(Local)
Versioning,Indexing

Q.Jser A)

SD Handler

Service Providers:

ETD Handler
o

Centralized Services:
Strong Serialization,

Store-and-forward delivery

Self-adminis ing Data De live rotocol \,

SD Handler

User
Partitioned(Local)

Versioning,Indexing

evice D:
Pervasive Sensors/Actuators,
DA, Camera, Scanner

Figure 1: Network of SD Handlers

SD Handlers form a network, within which data is moved in
accordance with the SD Handler's discipline. In addition, each SD
Handler may provide an interface to a local collection or stream of
data. The data may be a user's file system, web space, database, or
other collection, administered by some mechanism other than the
SD Handler. While these may be administered by a wide variety of
mechanisms, the data looks the same once it is with the SD Handler
network. We refer to each diverse collection of data as a data realm.
In effect, the SD Handler bridges a realm into the SD Handler
infrastructure.

Figure 2 presents an overview of the architecture of each SD
Handler. SD Handlers are required to implement the bottom tier of
the architecture, we define its basic functions. These are named
bottling, floating, popping, and logging, and are described further
below. To exploit capabilities fully, however, it is recommended that
SD Handlers also implement an additional tier of functions on top of
the basic services. These are called notifying, diff-ing, and
versioning. Applications of various sorts may be built on top of
these functions. In addition, GUIs and API need to be provided, to
communicate with the user, and to form a bridge between the SD
Handler and the user's data realms.

3.1 Basic Functionality
Here we present the basic building blocks of SD handling. These are
bottling, floating, popping, and logging. We then describe how
other functions can be built on top of these basic functions.

Prior to this process, a self-administering data description is attached
to the data object, akin to creating a packing slip for a shipment.
This description contains the shipper's preferences for handling the
data, as well as the lists of recipients and/or destinations. The data
preference can include high-availability, strong-serialization and
default archival support. The destinations can be an on-line storage
of collaborator's, a database, a PDA, a smart phone, a speaker/media
device and pervasive sensors/actuators. In accordance with this

324

5

packing slip, at some point, the data object is bottled, i.e., prepared
for shipping. To make a data bottle, the labeled data object is signed
and encrypted. Then the bottle is floated across a sea of data.
Finally, the bottle is popped at its destination(s), and the data
extracted. All events are logged, so that support for other services,
e.g., version control, and be readily accommodated.

Co-Authoring Data-Collection

Notifying Diff-ing Versioning

Bottling Floating Popping Logging

Figure 2: The Tiered SD Handler Architecture

3.1.1 Preparation
Prior to a SD Handler performing any operation on a data object, the
object must be bridged into the infrastructure. I.e., a SD Handler has
to be made aware of the object, and of the user's specifications for
it. This is done by attaching a Self-administering Data Description
(SDD) to the data. Since a self-administering data description can
have many options and get quite complicated, we assume that most
users never work with one directly. Instead, users interact with a UI.
We have implemented a standard UI for a SD Handler running on
desktop, which we discuss below. We assume that a different UI
would be suitable for different devices, and that there would be
default description templates for each user and each device, perhaps
inherited or cascaded together as a function of the user and device
environment.

Once an object has a SDD attached to it, the SD Handler aware of it
will begin monitoring the object and attempting to enforce the
specification of the SDD. Doing so typically results in sending a
copy of the object to one or more recipients.

3.1.2 Bottling
When a SD Handler decides it must send a data object to a recipient,
it first prepares a data bottle. It does so by signing the self-
administering description and its data with its user's private key, for
authenticating the sender at the recipient's SD Handler. The result is
then encrypted with the destination's public key so that only the real
destination can access the description and the data. The sender's
credentials are checked against receiver's trustee list to allow
appropriate access in incorporating the data at the destinations.
Then the bottle is floated, i.e., dropped into the SD Handler
network. We describe floating below, but first examine the inverse
operation of bottling, popping, which occurs when a SD Handler
receives a bottle destined for a known user.

3.1.3 Popping
A delivered bottle is inspected for its integrity and the sender is
authenticated for appropriate access right. Then the bottle is
uncapped with matching encryption keys to be incorporated into the
destination realm according to the packing slip. For safe
incorporation, every incorporation is logged for undoing or redoing
operations.

The trustee-list maintained by SD Handler is used for giving or
denying the delivery action from the sender. When SD Handler
daemon process receives the bottled data, it authenticates the sender
with trustee-list and decrypts the self-administering description to
guide the incorporation activities.

Incorporation is based on appending; SD handling never overwrites
data, but may shadow it. Since every incorporation is logged, it is
always possible to revert the changes back to a specific version.

The bottled data is incorporated through SD Handler into any
number of places, and in any number of different manners: onto a
user's desktop, PDA, collaborator's domain, online-storage (NFS,
Web), database entry, and even subdocument elements, such as
anchor points in HTML page. The SD Handler running on a desktop
computer maintains the history for the versioned content, and the
incorporation activities. If the destination is database, the
incorporation could comprise adding new entiy; if the destination is
a collaborator's online storage, the incorporation may create a newly
updated file in a sandboxed location.

The followings are the examples of incorporations at various
destinations.

A bottled data delivered

onto UNIX file system, creates an i-noded file.

onto a database, creates an updated (appended) database entry.

onto a repository, creates a new index entry and is moved into
repository space.

onto a speaker device, creates voice data at the speaker
onto another trusted user's file system, creates an i-noded file in
a sandboxed location.
onto a calendar/address book in a personal information
managing application, creates anchor contains new data or new
hyperlink pointing to a file in a sandboxed location.

onto an anchor in a HTML document owned by another trusted
user's, creates an anchor contains new data or new hyperlink
pointing to a newly updated data in a sandboxed location.
onto a writable CD, creates a newly added data on the writable
CD

3.1.4 Floating
A bottled data object is dropped into the SD Handler network
infrastructure. The infrastructure provides the delivery of the
bottled data to the destination, as illustrated in Figure 3. SD
Handler has its own delivery protocol (SDDP: Self-administering
data Delivery Protocol) but SD Handlers can also uses legacy
protocols such as HTTP, FTP, and SMTP by tunneling SDDP.

The floating architecture of SD Handler provides store-and-forward
service for delivering the data to a recipient who is not available at
the time of delivery. It also provides the update serialization service,
where the updates from the multiple participants are serially ordered
according to the arrival time at the server. The bottled data has to
flow into the serialization server and flow out to its destinations.

325

Bottling

-SDD creation
-Packaging with DSA

Floating

Rece ver,

-Verification of Sender
-Data Incorporation

Sender Logging
Diff,Versioning

Receiver Logging
Diff,Versioning

Figure 3: From Sender to Receiver

Finally, the infrastructure of network of SD Handler provides a
naming service to map the user's SD Handler's location into its
current IP address. Each SD Handler that does not have static IP
address, register its current IP address to the name resolution server
in the infrastructure. And the SD Sender would cache the latest
mapping and use it until the host becomes unreachable, and then it
contacts the name resolution server for the current IP address of the
participant's SD Handler.

3.1.5 Logging
The data and packing slip and its bottling/popping activities are
logged for undoing/redoing and auditing purposes. The logging
history can be flushed to a designated archival repository from the
local space of the bottling and popping point.

The log can be incremental in that the delta of changes is recorded.
Doing so, of course, increases the dependency between logged
objects, although it saves the disk space.

3.2 Advanced Functions
There are a set of functions that are useful, but not required, of
compliant SD Handlers. We describe these here.

3.2.1 Versioning
Each SD Handler maintains its own version tree at its own realm by
enhancing the logging feature. Decentralization is achieved by
naming the same resource uniquely along with its version number
across different administrative domain. This is done by prefixing the
owner-name to a local name of resource, as each SD Handler has its
own name space per given owner-name. We use the owner name to
uniquely locate its public key. The typical owner name could be
email address where the uniqueness is being maintained at its
organization or email service provider. In CVS[8] and WebDAV[7]
there is one version tree that is maintained at the central server with
its single name space. In contrast, in SD Handler, different version
trees are maintained at each realm. They share only a naming
convention that uniquely addresses identifiable resources across
different version trees.

3.2.2 Diff-ing
Given two unique resource names (which includes version
numbers), the SD Handler shows the differences of the two data
objects. If one or both of data objects are not available, SD Handler
looks at the self administering description and contacts the SD
Handler which maintains the logs of requested data. Users should be
able to diff the changes before and after the transaction so that one

6

Central Peer To Peer Cliques

Figure 4: Update Propagation Models

can verify that the automated updates from trusted source are
meaningful.

3.2.3 Notibfing
The SD Handler provides a notification of the basic activities to the
end user. This can be achieved by simply showing the log entry that
has been added most recently. A user's latest activity involving the
same data that is under the established self-administering control
such as saving after modification, deleting, would be monitored by
SD Handler and notified to the user for further actions.

3.3 Scalable Update Propagation Model
We have developed a scalable update propagation model based on
cliques. We define a clique as a strongly connected group of users
who share the same SDD. As shown in Figure 4, the update for the
data, A:foo, is reported back to the central coordinating user/server,
A in the diagram, and then propagated back to the rest of the
participants in the central model. In a peer-to-peer model, as shown
in Bayou's anti-entropy algorithm [3], the updates are reconciled
among peers in an arbitrary order whenever they are connected to
each other; then the update is propagated to other members. In our
model, changes are immediately propagated within cliques;
secondary propagation to other cliques is through the junction point,
as shown in B, C in the "cliques" diagram. We can imagine that B
and C can filter and aggregate the changes made by members in the
clique, so that the tiny changes made within B's clique and C's
clique are not visible to A. We believe this approach will fit
naturally to group interaction.

Both central and the peer-to-peer propagation models use the
same name for all the propagation. However, in our model, the
naming carries more clique interaction information. For example,
given C:A:foo, one can deduce that this object originated from
data A:foo and that user C created a new clique by creating a new
SDD associated with C:A:foo. The SDD for A:foo would have a
different member's policy and serialization preference. For the
data, A:foo, the clique composed of A,B,C would specify strong
serialization and back-up support, while, the clique composed of
B,D,E,F might not need to use such strong serialization and back-
up support among them.

3.4 Self-administering Data Delivery Protocol
The Self-administering Data Delivery Protocol is illustrated in
Figure 5.

326

SD Receiver

CtOK SDli)

OK DAT)

Connect

Disconnect

[SD Sender]

(Ready")

User"),

SDD

(DATA

CDoNE)

Figure 5: Self-administering Data Delivery Protocol

The SD Sender parses the SDD file written in SDDL (Self-
administering Data Description Language) and makes a connection
to each Sharer's SD Receiver. When it receives the "+OK Ready"
message from the SD Receiver, it sends the SD Sender's user id,
(generally an email address). The SD Receiver then checks the
membership of this user's id in its SD Receiver's trustee list. If it is
not on the list, the SD Receiver refuses the connection and the SD
Sender sends an email notification to the user of the SD Receiver. If
the user id is found on the trustee list then the SD Receiver tries to
verify whether the user of the SD Sender is who she claims to be.
For user authentication, we use a public-private key encryption
system, where the user of the SD Sender's identity are verified using
a digital signature. To avoid the man-in-the-middle-attack, all the
links between the SD Sender and the SD Receiver can be encrypted.

After the authentication is finished, the SD Sender sends the SDD to
the SD Receiver, followed by the DATA command. The SD
Receiver then parses the received SDD and follows its description,
which may involve synchronizing the shared document with latest
copy given by the DATA command.

If the more files are coming from the SD Sender, it repeats its
protocol from the authentication point onwards, until all files have
been received; then the connection is closed. The SDDP thus
provides a selective delivery acceptance mechanism using a trustee
list. Only the owner of the trustee list can add a new user id into its
own trustee list.

3.5 Self-administering Data Description (SDD)
The basic responsibility of a SD Handler is to interpret SDDs, i.e., a
Self-administering Data Description attached to a data object. SDDs
are written in SDDL that is based on XML. Figure 6 provides a
typical example.

We stipulate that every SDD has one owner, but may contain
multiple users as sharers. Each user in the sharer element can have
its own multiple self-administering data server locations. For
example, the user "Robert Wilensky" in the following example
contains four different SD server locations, the last of the four being
his own archival server.

The archival server is an instance of SD server where the SD
Handler governs the archival repository for its subscribed users. The
owner "B. Hoon Kang" provides its own archival server to .be
accessible by the sharer. The central server element provides the
central server location for SD Handler's "floating" operations (to be

described below), such as store-and-forward data delivery,
serializing the updates at a central location, and dynamically
mapping the user's SD server name into its current IP address.

<SELFDATA
ownername="B.Hoon Kong"
UAN ="d1ib2001 selfdata paper"
archivalsupport ="yes"
secureaccesscontrol="yes"
consistency="yes"
availability="high"
changenotification="always">

<UAN name = "dlib2001 selfdata paper">
<ITEM location = "selfdata01.doc"/>
<ITEM location = "diagram-imageOLgif
<ITEM location = "diagram-image02.gif"/>

</UAN>
<SHARER coherency = "SERIALIZE" >

<USER name="B. Hoon Kang"
id="hoon@cs.berkeley.edu"
initial="B.H.Kang">

<SELFDATASERVER
name="alpine.cs.berkeley.edu" port="7070"
location="Soda Rm 493" />
<SELFDATASERVER
name="sb.index.berkeley.edu" port="7070"
location="145 wilson st" />
<ARCHIVALSERVER

name="dlibarchiver.cs.berkeleY.edu" port="7070" />
<ALTERNATEEMAIL

name="hoon@now.cs.berkeley.edu" I>
</USER>
<USER
name="Robert Wilensky"
id="wilensky(u)cs.berkeley.edu" initial="RW">

<SELFDATASERVER name="bonsai.cs.berkeley.edu"
port="7070" />

<SELFDATASERVER
name="mobile-ip.cs.berkeley.edu" port="7070" />

<SELFDATASERVER
name="home-ip.eecs.berkeley.edu" port="7070" />

<ARCHIVALSERVER
name="myarchiver.eecs.berkeley.edu" port="7070" />

</USER>
<SHARER>
<CENTRAL>

<CENTRALSERVER
name="galaxy.cs.berkeley.edu" port="7070" />

<CENTRAL>
<ARCHIVE>

<ARCHIVALSERVER
name="galaxy.cs.berkeley.edu"
port="7070" />

<ARCHIVE>
</SELFDATA>

Figure 6: A Typical Self-administrating Data Description

A UAN (Unique Activity Name) is used to uniquely specify a SDD.
I.e., there is one to one mapping between UAN and SDD. The
Activity Name is unique within the owner's "realm", or unit of
computing administration, as known to the SD infrastructure. In the
SD Handler's network, the GUAN (Global UAN), which is

327

composed of owner-name and UAN, is used to uniquely specify the
data of interest. The activity is defined in 4.1.2

The UAN tag contains one or more items, each of which maps into a
data handle. There are a variety of different types of handles,
depending on the nature of the realm. For example, when data item
is from a file system structure, then the data handle would be a file
or directory name.

4. Implementation: Self-administering Data
Handler (SD Handler)
We have built a prototype of the SD Handler in Java. We have
modularized the basic tier functionalities and have built the GUI for
desktop environment. We have used the Java's built-in security
library for public/private key management and its
enayption/decryption. In our experimentation, we have focused on
co-authoring as our initial target application.

4.1 SDD Viewer/Editor (Bottling)
4.1.1 From Legacy File System
In order to bring data into SD Handler's world, we need to create its
SDD first. As shown in the top of Figure 7, the user can browse the
file or directory through a File Tree Viewer. If the user places a
cursor on a file or directory that has previous SDD, the SDD
Viewer/Editor shot will pop up, as shown in the bottom of Figure 7.
If this is a new SDD, an empty SDD Viewer/Editor pops up. The
user can add or delete sharers and can specify the preferences. (In
the current prototype, the preference fields for strong serializing
server, store-and-forward server, back-up repository server are
associated per SD Handler daemon process, not per SDD instance.)
Then, the user can synch out the associated data, using DSA (Digital
Signature Algorithm), to every participant: The SD Handler's
bottling functionality wraps the content with SDD and encrypt with
the sender (owner)'s private key and the recipient's public key. The
owner is asked to type in her pass-phrase to authenticate the use of
her own private key. The delivery status is recorded.

REIE3
CFGSAFE

IBMTools

G- CO ICONS

0- En JBulIder3

9 En My Documents
.sdd

En My Pictures

n My Webs
; B SELFhoon.doc

L B desktopini
dIlbOlsah.htm

!abet seifdatedoc]I-- 0
sahandiersnapshotdoc

j sedadmindata.htm

pi SDD (or cAbry Documents \ 0601 soltdata.dcic ,, HO Et
Add Sharer' Remove Sharer

Server R . User Name IIIIIgtnllIl Delive Status
hoonkan. alpine.Cs.berke... hoon kan . hoon O. S.berk . Don't know aka.
brim speed stanford. . Brian Cho Ibcho nee stanf .. Don't know abo..

Weds Writing Secure Sync(Digital Signature Al Came!'
_

Figure 7: SDD Viewer/Editor from File Tree Browser

BEST COPY AVAVLABLE

4.1.2 From Activity Browser
We have found that it is cumbersome to remember to go to the file
or directory every time we want to use SD Handler's bottling
service. Therefore, we have introduced the activity as a mnemonic
reminder for the collection of items that share the same SDD. Each
item is a representative of data unit such as a file and an image.
Thus, the activity is a unit of SDD association. A new activity can
be created explicitly from an activity browser and implicitly from
file tree browser. A new activity named as the data handle is created
implicitly when a SDD is associated with data file from the file tree
browser. Later, the user can find the SDD using either the activity
browser or the file tree browser. In order to provide the most active
activity item in the first page of the activity browser window, the
activities are sorted according to their number of accesses and by the
priority that it is given by the user.

We also prototyped the activity browser tree to provide hierarchical
activity management, however, the complexity of tree management
to the user seems to outweigh the benefit of SDD inheritance in a
hierarchical activity management. The activity interactions are
illustrated in Figure 8.

MACTIVITY Boomer tor hhoonkon

I:Add Rem Rernovatl,,

Unique kllYllyNeme lOyonees Pu..1 TItle Content
dab01 selfdele.dot bhoonkere2 dlib 2001 paper C2MyDocumentsfdlibOt selfd...
readrne.bd ibhoonkeng !Men pape for SD ...1C9WorkPedusedrne St

show I Cancel

I not: tar I I,:p W J g If tl I lag 1.=

B TODOLANG DLL :,JI

D pdcmn20.d11

D re admeld

D table20,c111

n thirtkoad prl.

i if e issue,
...

readrne DR Crdate ActMly

File.s or twig All Flies (..) ,,- 'Cancel

MAotivity Tree Viewer r

In ACTIVITY TITLEekty Recent SAHandlefeActiOte OWNER,B.Hoon Cana"

D ITEM FlRIORITY,r CONTENT,calrAmbos29r FRECAJENC'YellY TITLEeCS 291 class protect'

D ITEM 9R101311Y,1" CONTENT,Cbpapers" FRE0UENCY="1 TITLEecIllb paper avIth Prof. WIlenslef

ITEM PRIORI1I=7 CONTENT," FREQUENC57 IITLEepeseter ebautselfder

Cn ACTIVITY TITLE,Inaege sharing' CANNER,Hoon Kane

D ITEM PRIORITYer CONTENTeDaljoshue_pictures" FREGUENCY="1* TTTLE="joshue pictures 1 month'

D ITEM PRIORITY..? CONTENTeD2demIlf FREQUENCY.11111TLE,ahole farnlly ploiure71

Figure 8: Activity Browsers: flat(top), hierarchical(bottom)

4.2 Public/Private Key-Store Manager
The Java framework provides a keystore architecture and a
command line interface, keytool. We provide our own public/private
keystore manager to store other collaborator's public key and trust
level. (See Figure 9.) The trust level "new" means that the
associated public key has never been added to the owner's keystore
before and the owner of keystore has to decide whether to accept the
key or not. If the owner accepts the public key with new status, the
status is changed to "trusted". If the owner denies the public key of a
collaborator, the status is set to "untrusted" and further contact from
this source is denied at the earliest stage in the SDDP protocol stack.

328

wIl.e6tote et CAWINOLIWS \ SAliendleLkeystate .l'''A-l.,

aster/1*par Rammaiii;Ily 1 1 impormay , I -Export-We/ I

CRConirrean Oeo), Orearszelf.1101/ eareZebenrIlnit .Lirociliti1C9,21.9 tril.e.: :C n1 ITOlitticeltAieTi.. Certified 13

hoon krun.....

bnen che

I u; berkeley. ice *felon
ifie sys dir, mrecle dm

bed:ally. Ice jus2 iTnisted ,lw
moUrtein vice*. Iuse JNerr 919

rob 55101 kusg dem,' luSa Trusted Self
mIster.sparnmer hPCke! Su !..k0 .P4M, 't. J

_Is°
. unTnstsd Ie.,.

FOk 1 FC-isocel I

Figure 9: Key Store Manager

4.3 SD Sender/Receiver (Floating)
Our current prototype uses SDDP to deliver the bottled data directly
between SD Handlers. The desktop version of the SD Handler has
both the SD Sender and the threaded SD Receiver. We designed the
SD Handler to minimally use the centralized highly available servers
for common P2P infrastructure services such as store-and-forward
delivery, naming/tracking the current location (IP address) of SD
Handler, and the strong serialization of updates. The infrastructure
services are not being shared among SD Handlers across
administrative domains. Rather, each SD Handler can subscribe to
its own infrastructure services.

If they don't use common P2P infrastructure services, the SD Receiver
has to be available to receive a data delivery from the sending SD
Sender. However, we have come up with a simple solution where the
SD Handler of the initial creator of the SDD is used as an
infrastructure service point for the duration of the interactions unless
one of the participant's SD Handlers specified in SDD provides the
infrastructure services for their interactions. For example, if the
recipient's SD Receiver does not have store-and-forward delivery
service, it can contact the creator of its SDD for the latest logged copy
that it might have missed. As a same token, each participant can
register its current IP location to the creator of its SDD.

4.4 Receiver Log Viewer (Popping/Logging)
When self-administered data is sent to a receiving SD Handler, the
receiver log viewer (See Figure 10.) records the receiving activity,
noting its UAN (Unique Activity Name), author (sender), date, and
author's note. If the sender is a new/trusted contact, the receiver first
creates a versioned copy and then records the data handle to it, then
the incorporation status is set to "Pending". The owner can accept or
deny the incorporation of this versioned copy into his own realm.
The incorporation status shows whether the current logged activity
has been accepted or denied. If the incorporation is successful, the
status will be set to "Accepted", if not it will be set to "Error". If the
user distrusts the sender, then the sender's public key is registered
into the owner's keystore as "Untrusted". If the user denies the
incorporation entry, then only the associated update is denied and
the incorporation status is set to "Denied".

t

c
Acupl Day 1.r

Unique Acii*N.. AultoolTtomPath [Dale Author Note sooty LeyelLlIncorporation s...I Dotal-MI(11e

cdl2001paper hon Ialpine.o.... Mon Ja... no comment NewContact jAccepted ICAANDOWSISANL

cdI2001 paper_ noon alpine.cs7 FriJan... no comment., NewConlact _Pendlog,,.... 'ClININDOWSIDAHL_

CC ReverlTo ; al

8

Figure 10: Receiver Log Viewer

Table 1: Comparison of SD Handler P6. Secure and safe incorporation of updates at user's domain

with Leitacy ADnlications

Desired
properti
es

Email
(SMTP)

CVS/
Web-
DAV

ICQ/
AIM

Groove
SD
Handl
er

FTP
t-J

PI No . No No I No No JJ Yes

P2 Yes No Yes I Yes Yes I Yes
1

P3 Yes No No 1 Yes] Yes .I Yes

P4 Yes I No I Yes I IYes Yes I Yes

No I YesP5__I No]] Yes I

__
No JINo]

P6 I No I No I INo] INo
I

1 No Yes

P7 IIYes I Yes I Yes 1 Yes Yes Yes

P to P fres 1 No I No 1 Yes IIYes I Yes

Goal
.

Message 11Central IlFile I

version] transer.exchange f
...............................

Instant I

message.]
P2P I

services....

Self-
..admin...

5. Comparisons
5.1 Comparison to "Legacy" Applications
We compared SD Handler with Email, CVS, and FTP, according to
the seven desiderata listed in 2.1. A summary of the comparisons is
given in Table 1.

P 1 . No repeat user involvement in routine data management

All of the applications except SD Handler require repeated user
involvement in copying, moving, and sending the data. SD Handler
requires SDD creation once for repeated usages.

P2. No unnecessafy dependence on shared resources, such as shared
data repositories or file servers

Email does not require shared resources for collaboration; CVS
require a shared server location.

P3. No prior administrative set up costs

Both CVS and FTP provide the password-controlled access to the
data that is being shared among collaborators. Either group account
or individual account needs to be set up by an administrator, and
need to be distributed to each collaborator to access the data prior to
the collaboration. In Email or ICQ [14] or AIM [16], however, the
password is not required to send or receive the message and its
attached data. The access is purely controlled by the user's
discretion whether to accept or refuse the attachment. An orthogonal
end-to-end security method, for example, PGP[9] email, could be
added. Both the SD Handler and Groove[15] provide public/private
key based access control to the data without requiring prior
administrative account set up. The user's discretion is guided by the
key issuer's certificate or web-of-certificates.

P4. Ability to exploit minimal use of central server as only required

ICQ provides this property, so as to be scalable when their central
server is contacted for name resolution of recipient's current IP
address and store-and-forward data delivery to the unavailable
recipient. By this measure, web-based file sharing systems over-
utilize their central server in terms of the network bandwidth,
processing power and disk space.

P5. Undo/Redo capability within user's domain

Only CVS support this.

329

Email could use DSA (Digital Signature Algorithm) for end-to-end
security but the incorporation of email attachment is not sandboxed.
ICQ and FR do not provide safe-guarded incorporation either.
CVS's undo capability could provide a safe incorporation since one
can go back to the previous change in the case of an incorporation
error.

P7. Lightweight enough to be widely deployed

All the applications above are considered to be lightweight since
they do not require a heavyweight server infrastructure.

5.2 Declarative vs. Session-Based Data
Management
FTP, NFS, HTTP, and derivative applications (e.g. WebDAV[7])
require a session with a resource controlling a data object in order to
create, update, move, delete, or otherwise manage that object.
Moreover, during this session, the data are managed by procedural
commands. Network file systems, e.g., AFS and NFS, basically
provide file semantics in sharing data, so, once again, intentions are
expressed procedurally. Ficus [5] , Bayou (peer-to-peer optimistic
file replication [16]), and Rumor (user-level replication system [19])
use file sharing semantics, and hence are fundamentally procedural
as well. Also the overwriting semantics of file systems does not
provide the knowledge about who made which changes. Hence one
would have to use versioning software like CVS[8] in an explicit
way, requiring the user's involvement in setting up check-in, check-
out and copying.

In contrast, the SD Handler model provides a declarative way of
managing data across administrative domains in a wide area scale.
The SD Handler model also enables the user to specify that the data
needs to be versioned at the different administrative domains. We
believe this model can simplify data management, achieving our
goals of minimizing the user's participation in routine tasks.

5.3 Scripted Email Attachment
A SD Handler can perform incorporation of received data into the
recipient's internal data storage. A similar effect can be achieved by
running a script (VBScript, UNIX shell script) with an email
attachment. However, as is well-known, doing so is dangerous since
the script can run any arbitrary command. However, the SD
Handler's incorporation operation is sandboxed within SD Handler's
address boundary where the access is limited only through the
sanitized SD Handler's incorporation functionality.

5.4 P2P (Peer to Peer) Systems
ICQ [14], AIM [16] provide a peer to peer instant messaging with
infrastructure services such as identity (user account) management,
store-and-forward delivery and dynamic mapping of user's current
IP address. We have found that these infrastructure services are
common to most P2P systems. For example, Groove [15] provides
collaborative P2P software tools with just these infrastructure
services. The "shared space" in Groove provides an interactive
collaborative environment where various applications (tools) can be
built upon such as instant messaging, file sharing, free form
drawing, and real-time conversation. However, unlike SD Handler,
the management of data still requires repeated user interactions. The
delivered files (attachments) have to be manually downloaded and
saved. Versioning and logging are not provided since the

incorporation of data is not automated but depends on manual end-
user commands. Moreover, Groove and ICQ/AIM assume each peer
to be an end user; in SD Handler the peer could be a personal
repository server, a back up server, and a device in addition to other
desktop users. Finally, Groove is focused on building a
collaboratively shared space (or workspace) in a P2P way. SD
Handler is focused on providing new semantics and controls for
managing data with minimal user interactions. The co-authoring
application is an example of using self-administering data model in
a collaborative scenario.

6. Discussion
We have not yet had enough experience with our implementation to
draw any forceful conclusions. However, we keep discovering new
applications for self-administering data as we progress. For example,
with an appropriate SDD, mirrored copies of documents can easily
be made, in effect implementing a peer-to-peer RAID, or
eliminating the need for tape backups. Doing so makes sense, as the
loaded cost of tape backup is probably about one order of magnitude
greater than the cost of low-end disk on a PC.

Self-administering data seem especially useful for data
incorporation. For example, as in our Personal Library service [20],
users may want to place a document in a scanner, and have it
incorporated in their repository and added to a collection they
maintain. Providing a SD Handler at the scanner provides a simple
means to accomplish this goal.

Self-administering data can be used to update data managed by
particular remote programs. Consider contact information inside a
remote program. One can have one's contact information in an
object whose SDD instructs that it be sent to one's contact list upon
modification, and that the remote "contact update" program be
executed. The remote user would need to specify what such a
program is. The result, though, is that everyone's contact
information for an individual can in effect be edited by the
individual to whom it refers.

Self-administering data can provide an alternative to traditional
digital library functions. Documents can be made available to a
community of users by copying, rather than via repositories. Again,
doing so may make sense, depending upon the cost of servers versus
the cost of low-end machines, and the kind of availability one
desires.

On the other hand, one-to-many communication is costly in this
model, as we currently encrypt each communication on a per user
basis. One possibility is to provide an option for users to trade off
security for communication efficiency, in the. case of one-to-many
transactions.

7. Acknowledgements
This research was supported by the Digital Libraries Initiative,
under grant NSF CA98-17353.

330

1 0

8. References
[1] Randy Katz, et al. The Endeavour Expedition: Charting the

Fluid Information Utility,
http://endeavour.cs.berkeley.edu/proposal/

[2] John Kubiatowicz, et al, OceanStore: An Architecture for
Global-Scale Persistent Storage, Proceeedings of the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2000), 2000. http://oceanstore.cs.berkeley.edu/

[3] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A.
J. Demers. Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP-16), Saint Malo, France,
1997, http://www.parc.xerox.com/csVprojects/bayou/.

[4] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, S.
Sikkel, J. Trevor, G. Woetzel, Basic Support for Cooperative
Work on the World Wide Web. International Journal of Human-
Computer Studies, 46(6), 1997. http://bscw.gmd.de/index.html

[5] T.W. Page, Jr et al, Perspectives on Optimistically Replicated,
Peer-to-Peer Filing, Software Practice and Experience, v.28,
n.2, February, 1998, http://ficus-
www.cs.ucla.eduitravler/ficus_summary.html

[6] Ken Pier, Eric A. Bier, Ken Fishkin, Maureen Stone WebEdit:
Shared Editing in a Web Browser. WWW4 Poster Proceedings,
1995.
http://www.parc.xerox.com/istligroups/gir/doclwebedit/webedex
t.htm.

[7] Jim Whitehead, Collaborative Authoring on the Web:
Introducing WebDAV, Bulletin of the American Society for
Information Science, Vol. 25, No.1,1998,
http://www.webdav.org/papers/

[8] CVS (Concurrent Versions System), http://www.cvshome.org/

[9] PGP (Pretty Good Privacy), http://www.pgpi.org/

[10] Lotus Notes, http://www.lotus.com/

[11] Xerox Docushare, http://www.xerox.com/

[12] I-drive, http://www.idrive.com/

[13] FusionOne, http://www.fusionone.com/

[14] ICQ, http://www.icq.com/

[15] Groove Networks, http://www.groove.net

[16] AIM, http://www.aim.com/

[17] Desktop, http://www.desktop.com/

[18] Hotoffice, http://www.hotoffice.com/

[19] Peter Reiher, Michael Gunter, Gerald Popek, Rumor: A User-
Level File Replication Middleware Service, http://fing-
www.cs.ucla.edu/

[20] Robert Wilensky, Personal Libraries: Collection Management
as a Tool for Lightweight Personal and Group Document
Management (forthcoming).

U.S. Department of Education
Office of Educatonal Research and Improvement (OEN)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

NOTICE

REPRODUCTION BASIS

ERic.
EittaliagEl &scums Intannatin Ceater

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or."Blanket").

EFF-089 (9/97)

