
DOCUMENT RESUME

ED 459 816 IR 058 352

AUTHOR Laleuf, Jean R.; Spalter, Anne Morgan
TITLE A Component Repository for Learning Objects: A Progress

Report.
SPONS AGENCY National Science Foundation, Arlington, VA.
PUB DATE 2001-00-00
NOTE 10p.; In: Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries (1st, Roanoke, Virginia, June 24-28,
2001) . For entire proceedings, see IR 058 348. Sponsored by
NSDL and STC grants, and Sun Microsystems. Figures may not
reproduce well.

AVAILABLE FROM Association for Computing Machinery, 1515 Broadway, New York
NY 10036. Tel: 800-342-6626 (Toll Free); Tel: 212-626-0500;
e-mail: acmhelp@acm.org. For full text:
http://wwwl.acm.org/pubs/contents/proceedings/d1/379437/.

PUB TYPE Reports - Research (143) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computer Graphics; Computer Software Development;

Educational Environment; Educational Technology; *Electronic
Libraries; Instructional Materials; Introductory Courses;
Library.Materials; *Material Development; Programming

ABSTRACT
An important category of SMET digital library content will

be highly interactive, explorable microworlds for teaching science,
mathematics,-and engineering concepts. .Such environments have proved to be
extraordinarily time-consuming and difficult to produce, while threatening
the goals of widespread creation and use. One proposed solution for
accelerating production has been the creation of repositories of reusable
software components or learning objects. Programmers would use such
components to rapidly assemble larger-scale environments. Although many agree
on the value of this approach, few repositories of such components have been
successfully created. This paper suggests some reasons for the lack of
expected results and proposes two strategies for developing such
repositories. A case study is reported that provides a proof of concept of
these strategies. (Contains 20 references.) (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the ori inal document.

A Component Repository for Learning
Objects: a Progress Report

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

D. Cotton

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Irnprovement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it.

O Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

By: Jean R. Laleuf & Anne Morgan Spalter

e-1

oo

;et 2

BEST COPY AVAILABLE

A Component Repository for Learning Objects
A Progress Report

Jean R. Laleuf
Brown University

Department of Computer Science Box 1910
(401) 863-7658

jrl@cs.brown.edu

ABSTRACT
We believe that an important category of SMET digital library
content will be highly interactive, explorable microworlds for
teaching science, mathematics, and engineering concepts. Such
environments have proved extraordinarily time-consuming and
difficult to produce, however, threatening the goals of widespread
creation and use.

One proposed solution for accelerating production has been the
creation of repositories of reusable software components or
learning objects. Programmers would use such components to
rapidly assemble larger-scale environments. Although many agree
on the value of this approach, few repositories of such
components have been successfully created. We suggest some
reasons for the lack of expected results and propose two strategies
for developing such repositories. We report on a case study that
provides a proof of concept of these strategies.

Keywords
Components, design, digital library, education, learning objects,
NSDL, reuse, software engineering, standards.

1. INTRODUCTION
Our vision for digital library content goes beyond scanned
literature or searchable curriculum materials to include richly
interactive explorable microworlds that take full advantage of the
ever-increasing power of computers, software, and networks.
These learning environments combine the best qualities of live
demonstration (see Fig. 1) with interaction only possible on the
computer. Unfortunately, our research has led us to the conclusion
that it is an unexpectedly huge effort to create a complete
collection of interactive learning experiences for even a single
introductory course in a given discipline.

We have been trying to accelerate the development process by
creating reusable components or learning objects that can be
recombined in different ways to produce sets of learning
environments. By components or learning objects we mean
standardized pieces of code, usually class files or Java beans,
which programmers can easily reuse in different programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL '01, June 24-28, 2001, Roanoke, Virginia, USA.
Copyright 2001 ACM 1-58113-345-6/01/0006...$5.00.

33

Anne Morgan Spalter
Brown University

Department of Computer Science Box 1910
(401) 863-7615

ams@cs.brown.edu

Figure 1: Professor van Dam uses a Tinkertoy house and a
cardboard perspective viewing volume to demonstrate camera
viewing transformations.

It may seem at first that creating a few dozen components would
suffice for many courses. For example, an introductory calculus
course would have a function-graphing component, some tools for
finding derivatives and integrals, a series expander, expression
editors and a few more objects, but the reality is far more
complicated. The situation is similar to that faced by GUI
designers. If one looks at an interface, it seems to be made up of a
few basic elements, such as field boxes, sliders, buttons, and
panes, but GUI libraries are huge and take enormous effort to
develop.

Based on the GUI library analogy, we believe that a half a dozen
programmers and researchers could never construct a major
reusable educational components library in a reasonable amount
of time. Only a concerted collaborative effort of tens of person-
years can build the necessary content for any given field. In
particular, although some underlying components, such as math
libraries for learning objects, may be applicable across many
science education domains, more domain-specific components
must be created separately for each field.

The GUI library analogy assumes that we know exactly how to
make these components, but in the field of educational software
components there are many open research issues. For example,
how does one analyze current simulations for decomposition into
reusable components? How can one design components to be

useful for educators (as well as programmers)? And how does one
choose a proper level of granularity for a component?

We have been exploring two main strategies for repository
creation. The first is the use of a categorization scheme to help
programmers analyze and characterize types of components as
they relate to educational purposes. The second is a method for
addressing issues of object granularity, and determining what
levels of object complexity are appropriate. We have applied these
strategies in a proof-of-concept case study.

The work described here is part of an NSF NSDL grant, the
CREATE project (A Component Repository and Environment for
Assembly of Teaching Environments).

2. PREVIOUS WORK
It has long been hoped that instructional software developers
would contribute to libraries of instructional software that would
give others access to the benefits of software simulations and
interactive exercises. There are a number of significant efforts to
create develop and share educational software components, most
of them based on the Java language. The ESCOT project is a
testbed that seeks to encourage development and reuse of learning
objects, with a current emphasis on middle-school mathematics,
but their components are not available for general public use [6].
The E-Slate company sells educational components (as opposed
to finished applications) and describes about two dozen of them
on their Web site [7]. The Educational Object Economy project
compiles interactive educational tools in the form of complete
applets [5]. As far as we can tell, none of these undertakings
provides complete sets of components for specific courses and
even if they become quite successful, are aimed chiefly at
educators with little or no programming experience. There is still
a need for the digital library to house lower-level components, to
be used by programmers to create fully customized educational
environments. Further discussion of educational component use
can be found in the IEEE Computer September 1999 Special
Issue on Web based learning and collaboration [13].

In addition to work specific to educational software, the technical,
social, economic, and administrative problems with general
computer code reuse are now better understood [4, 11]. Problems
include failure to organize and index reusable objects, failure to
mandate that code be designed with reuse in mind, lack of an
organizational structure dedicated to supporting reuse, and failure
to recognize the domain dependency of reuse strategies.

The Exploratories project at Brown University, on which this
paper's work is based, has worked for over five years to create
learning objects with high levels of interactivity [8]. Our chief
content area has been introductory computer graphics, including
introductory linear algebra [2, 17]. We think of exploratories as
combinations of "exploratoriums" [9] and laboratories, realized
as two- and three-dimensional explorable worlds which are
currently implemented as Java applets. Our applets are embedded
in a hypertext environment and are used by a number of high
school- and college-level courses around the world. They are
freely available at our Web site [8].

When we began trying to reuse frequently occurring program
elements, we quickly found that simply copying and pasting code
was not a good strategy. Most classes worked well only in the
program for which they were initially designed. The problems for
reuse ranged from a lack of software interface standards (such as

34

those imposed by the Java beans spec [16]) to difficulty in
arriving at the right level of feature complexity. In the end, we
found that everyone wound up rewriting the "reusable" elements.
The strategies and project discussed in this paper were inspired by
this situation.

The Exploratories project has tried to promote other aspects of
reusability by creating reusable hypertext structures for Web-
based curricula [19], describing methods for integrating learning
objects into traditional curricula [20], categorizing pedagogical
approaches and teaching techniques that can be used for
interactive learning environments [18], and creating a Web-based
repository structure for JavaBeans [3].

2.1 A Component Categorization Strategy
When we began making components, we found that they fell
naturally into three different categories. We characterize all
reusable educational components as either 1. Core Technologies,
which have a high degree of domain independence and are
typically quite fine-grained (e.g., Java GUI classes), 2. Support
Technologies, which usually have some domain dependence and
are typically medium-grained objects (e.g., BEA Systems
JavaBeans designed for e-commerce (includes shopping cart
beans, order tracking beans, etc.), or 3. Application Technologies,
which are almost always highly domain dependent and coarse-
grained (e.g., a Java applet that teaches about a particular
chemical reaction). These categories are described in more detail
below:

2.1.1 Core Technologies
Characteristics

Domain independence

High levels of reusability

Self-contained functionality

Adherence to high standards of design and
reliability

Audience
Chiefly programmers but also some content developers
(with little or no programming ability) using assembly
tools

Granularity
Typically fine-grained (e.g., sliders, timers and buttons)
but can also include coarse-grained objects (e.g.,
spreadsheets or even an entire pedagogical framework
into which one can plug one's materials [19])

Examples
Java GUI classes

Various math function libraries

IBM AlphaBeans [1]

3D Interaction and visualization widgets

Notes
Many commercial offerings fall into this category, but
such components may also be built in-house.

2.1.2 Support Technologies
Characteristics

Domain dependence

Moderate levels of reusability

Self-contained functionality

Audience
Chiefly programmers but also some content developers
(with little or no programming ability) using assembly
tools.

Granularity
Typically medium-grained objects, often aggregating
finer-grained components (e.g., an image filtering
widget that combines slider and windowing
components)

Examples
BEA Systems JavaBeans designed for e-commerce (e.g.,
shopping cart beans, order tracking beans, etc.)

2.1.3 Application Technologies
Characteristics:

Domain dependence

Minimal levels of reusability

Each object is a self-contained, fully-functional
application or applet that attempts to achieve an
educational goal.

Audience:
End users without programming experience.
Application Technology components can be combined
by both programmers or non-programmers (using a
visual environment) and can be part of a larger
pedagogical structure (e.g., a game or lab) or a full-
blown curriculum.

Granularity:
Typically coarse-grained, although useful distinctions
can be made about the level of concept granularity of
these end products (e.g., fine-grained applets teaching a
single concept vs. coarse-grained applets teaching a
number of concepts in one module)

Examples:
An applet that teaches characteristics of a
particular chemical reaction.

An applet that teaches how to make a scenegraph
in 3D graphics.

Notes:
These objects may also be part of a larger group of
similar objects (e.g., a series of applets to teach
increasingly complex topics in a subject). Because these
objects attempt to achieve an educational goal and are
targeted primarily at end-users, pedagogical, user
interface, and information structure concerns are highly
important in the creation of objects for this category.

35

Note that in comparison to other fields, especially e-commerce,
educational technology is particularly deficient in the support
technologies category. We know of no substantial repositories for
such domain-specific components and therefore observe
educational software developers repeatedly building these types of
components. We believe that one of the chief problems facing
current efforts in educational component technology is a lack of
distinction between support and core technologies. This is
compounded further by a deficiency in understanding the design
features necessary to promote reuse of support technologies.

2.2 A Granularity Strategy
Although the categories described above provide guidance as to
what levels of granularity are appropriate for specific types of
components, individual components may in fact be of any
granularity regardless of the category in which they fall. In our
experience of creating components, we found that, in fact,
creating them solely at any single level of granularity either meant
having too many features and not enough flexibility, or having so
fine-grained a set of components that a great deal of work still
needed to be done to create the final product.

Our strategy for dealing with granularity and organizing the
results is, for a given component, to produce a complete set of
sub-components, thus providing objects at all levels of
granularity, from application technology components (e.g., self-
contained interactive applets) down to core technology code (e.g.,
a coordinate system package which includes a complete set of
interfaces and behaviors for coordinate systems). This
decomposition is important to complete even if there is no current
need for some of the components it generates.

When this strategy is employed, programmers given a component
from any category will be able to customize that component and
also to retrieve, customize, reuse and reconfigure any sub-
components it might aggregate. Teachers working with
programmers would have virtually no constraints on how they
could reconfigure what they see on the screen to meet their own
needs. By including all levels of component granularity in the
development process, we hope to create component repositories
that will be broadly applicable to diverse areas of science
education. In addition, completely decomposed components
describe a hierarchy that is helpful for documentation purposes.
The downside of this strategy is that it requires a large upfront
investment, as discussed in the Conclusion.

3. Case Study: The Camera Viewing
Transformation
Our case study is based on a set of applets that teach students in
an introductory graphics course about 3D camera transformations.

One of the basic tasks in computer graphics is generating a
representation of a three-dimensional scene and displaying it on
the two-dimensional computer screen. This is performed in a
manner very similar to positioning a camera in front of a real-
world scene, taking a photograph, and looking at the resulting
image.

For the sake of mathematical simplicity and efficiency, a series of
manipulations must be performed on the scene and its geometry
before its two-dimensional representation can be drawn on the
screen. Pedagogically, these are best described as changes in

5

position and shape of the objects concerned. The continuum of
these changes is of particular interest to students.

3.1 History
3.1.1 Text Illustrations
Despite the inherently continuous nature of the camera
transformations material, the canonical reference text in computer
graphics, Computer Graphics: Principles and Practice [10],
provides only five pairs of discrete snapshots of these continuous
manipulations (see Fig. 2). Unfortunately, these images are at best
hard to decipher and are typically found confusing and
unintuitive. The essential difficulty of these images is that they are
preset, providing no opportunity for exploration or discovery
through manipulation of the scene and the operations it
undergoes.

Figure 2: One of five pairs of diagrams used to illustrate the
camera viewing transformations.

3.1.2 Models used in class
In his class on introductory computer graphics, Professor Andries
van Dam does a lot to impart the continuous nature of the scene
transformations through the use of Tinkertoy props, as shown in
Fig. 1. This resolves many of the issues presented by the book's
illustrations, as he is able to move the props around and explain
how they move and change orientation in time._Students see the
continuity of motion and more fully grasp the concepts presented
to them. It is difficult, however, to show more than one model
changing at a time and Tinkertoys lack the flexibility necessary to
accurately display the concluding mathematical transformations.
These include scaling and other non-rigid body, distorting
transformations, requiring much hand-waving by the professor
and implicit visualization by the students.

3.1.3 Customized software
One of the first attempts at using computer technology to resolve
the problems above was a program written at Brown for an Evans
and Sutherland vector display in the late '70s [12]. The resulting
program allowed one to manipulate the parameters of the
computer camera and then have the program animate the
succession of transformations to produce a 2D image. Students
observed the continuity of the changes and saw how one shape
smoothly turned into another over time. In the early '90s the
program was reimplemented for a raster display, again using an
experimental software system.

This second version was more powerful and compelling than the
first. It was heavily used for many years but had several

36

limitations, such as the fact that it only ran in our research lab. In
addition, because of the nature of the program design, it was
impossible to easily modify it and when new viewing models were
introduced in the class, the demo became somewhat confusing. As
with all software, it also suffered from code rot. Again, the custom
nature of the software made this difficult to address. When the
underlying software system was abandoned by the research group,
the program eventually ceased to function. A video was made, but
the lack of interaction greatly diminished its usefulness.

3.2 Current incarnation
The idea of an interactive, computer-based educational tool
describing the camera transformations was revisited in early fall of
1999 when one of the course's teaching assistants offered to
throw together a rough prototype replicating a subset of the
FLESH program's capabilities.

Working off this successful prototype, we engaged in a more
formal design process, aiming to better think out the various
pedagogical considerations and also use the new applet as a
proving ground for our ideas on component design and
organization. We thought through the potential components in
terms of our three categories and began to decompose each one
according to our theory of granularity completeness.

3.2.1 Pedagogical considerations
We sought primarily to provide a means by which a user could
visualize the various manipulations undergone by a synthetic
scene when its two-dimensional representation is generated. It
needed to be useful for the professor demonstrating the concepts
to his class during a lecture as well as accessible to students who
wanted to revisit the material and explore and experiment on their
own time.

To these ends we sought to have our new versions encompass all
the capabilities of other methods of teaching the material (such as
the diagrams and models) while enabling a students to freely
explore and answer any question that might occur to them. We
chose to provide an interactive, three-dimensional computer
rendering to allow one to view the scene from multiple angles. We
also gave the users complete control over the passage of time in
the simulation, allowing them to advance or backtrack as needed
to better understand a particular concept. Furthermore, we
provided full, interactive and graphical control over the various
camera parameters (position, orientation, field of view, etc.) at all
stages of the simulation in order to offer students as many
possibilities for exploration as possible.

3.2.2 Component structure
In Fig. 3, we see a sample of the components used in the current
incarnation of the camera viewing applet. The transparent gray
truncated pyramid represents the computer's perspective view
volume, and the scene being viewed consists entirely of the simple
house. A representative component structure, the Vector Solid
View, has been selected to show how a coarse-grained, high-level
component can be broken down into fine-grained, customizable
components.

6

Vector Solid View

.Cylinder Primitive

.Cone Primitive
--. Highlight Behavior

.Manipulator
Behavior

Sphere Primitive

0.0 I,

o o

o o Ji

Vector Math View

Numeric Text Field (x3)

Validation Engine

Text Field

Labeled Axes

Orientation Behavior

Labeled Axis (x3)

Line Primitive

Axis Label

Regular Swing controls and widgets provide a way

to manipulate the Camera Model parameters

Camera
Camera Model
Camera View

Ground Plane
Plane Model
Plane Grid View

Names in italics Indicate that those components

are non-visual, i.e. they have no corresponding on-

screen representation.

Arrows indicate compositionfdepends-on

relationships and show how one coarse-grained

component is made up of multiple other fine-

grained components.

This diagram only includes a few representative

components out of the 34 that are used for this

applet. Components that have been omitted either

serve a purely supportive role or very closely

mirror a structure already being presented.

Figure 3: Decomposition of a sample set of the components used in the camera viewing transformation applet.

Vector Solid View:
Cylinder primitive
The cylinder primitive provides a visual representation of the stem
of the vector's arrow representation. It would be relatively simple
to replace it with another primitive such as a rectangular solid.

Cone primitive
Serving a function similar to the cylinder primitive component,
the cone primitive provides a visual representation of the vector
arrow's head. As with the cylinder, changing the type of primitive
used would be trivial.

Highlight Behavior
This non-visual component provides user feedback functionality
by highlighting the head and stem of the vectoi arrow when the
user's mouse passes over them. This allows users to intuitively
understand that something will happen if they click on the
different parts of the vector.

Manipulator
This component allows users to visually interact with the vector,
dragging it around to change its orientation. It is composed of
three different components, one of which has been omitted from
the diagram for simplicity's sake but which will be described
below.

Behavior
This component plugs into the Java3D interaction
framework to allow users to interact with the vector by
dragging it to the desired position.

Sphere Primitive
This object provides visual feedback to users while they
drag the vector arrow to a new orientation.

37

Spherical Geometry Intersection Utility Class
Although omitted from the diagram, this non-visual
component serves a critical role by performing the
calculations necessary for the Behavior component to
function correctly. Encapsulating this functionality in a
single component facilitates long-term maintenance,
allowing it to be replaced at a later date with a more
efficient implementation should one be developed.

3.3 Reusability
Having decomposed the Camera Viewing Transformation Applet
into a number of fine-grained components, one can now turn to
the issue of these components' reuse. More specifically, one must
look at whether or not these components are at all reusable
outside of the one or two applets that were in the designer's mind
when they were created.

Fig.s 4-6 show the component usage for three different classes of
components. In Fig. 4, the camera viewing applets all reference
the same set of components. Indeed, our four different viewing
applets (Parallel Camera Parameters, Parallel Camera
Transformation, Perspective Camera Parameters, and Perspective
Camera Transformation [8]) each teach different aspects of the
transformation process but use the same set of components,
passing in different parameters to get the desired effects. Notice
that the camera applets use a mixture of both core technology and
support technology components. Also, some support technology
components also reuse core technology components. For example,
the Camera Interpolator component reuses all the components in
the 3D Interpolators core component package.

In Fig. 5, we see that an applet that reuses many of the
components used in the camera viewing applets. This applet helps
students understand the rendering process called radiosity, in

Application
Components

Support
Components

Core

Components

Viewing Applets:

1, 2, 3, 4

Radiosity Applet Shading Applet

Shading lupport Camera Support

Camera

Camera Interpolator

Vector
4------7\

Point Plane

1-1
Axes Point Plotter Appearance Editor

Swing4,---"--......
Button Slider

r-'
Label Menu

Checkbax ...

3D Interpolators

Point Interpolator

Vector Interpolator

Shape Interpolator

...

Figure 4: The component reuse graph for the four camera viewing transformation applets.

Radiosity Support

Form Factor Engine

Application
Components

Support
Components

Core

Components

Viewing Applets:

1, 2, 3, 4

Radiosity Applet Shading Applet

Shading Support Camera Support

Camera

Camera Interpolator

Vector
------7\t

Point Plane Axes PointPlotter Appearance Editor

Swing
..,...------,..

Button
--

Label

Checkbox

Slider

Menu

...

3D Interpolators

Point Interpolator
Vector Interpolator

Shape Interpolator

...

Figure 5: The component reuse graph for the radiosity applet.

Radiosity Support

Form Factor Engine

Application
Components

Support
Components

Core

Components

Viewing Applets:

1,2,3,4
Radiosity Applet Shading Applet

Shading Support Camera Support

Camera

Camera Interpolator

Vector Point Plane Axes Point Plotter Appearance Editor

Swing..--------....
Button Slider

..-."
Label Menu

Checkbox ...

3D Interpolators

Point Interpolator

Vector Interpolator

Shape Interpolator

...

Figure 6: The component reuse graph for the shading applet.

38

Radiosity Support

Form Factor Engine

which energy transport is simulated to calculate diffuse light
reflections in a scene. We see reuse of the Vector, Point and Plane
core technology components as well as the standard Swing
components. The Axes component has not been reused because
the PointPlotter component is being used instead. Notice also that
although the components in the Camera Support package are not
being used, those in the Radiosity Support package are. This is in
keeping with the fact that support technology components are
typically domain-specific and, although reusable for similar
applets, are generally not reusable by applets from different
domains.

Fig. 6 demonstrates that components can, in some cases, be
classified into two different categories depending on how they are
used by the application component. In this case, the Appearance
Editor component is being used as a support technology
component because it plays a central supportive role for the
shading applet. Contrast this to Fig. 4, in which this very same
component acts as a core technology component with respect to
the camera viewing applets. This ability of components to migrate
from role to role depending on how they are used by other
components adds more flexibility to the classification schema laid
out above and thereby enhances its power.

3.3.1 Standards
All of our components adhere to the JavaBeans specification
because doing so facilitates integration of components into
commercial software design packages. A properly-designed
JavaBean, for instance, can be used without any problems in
Sun's BeanBox, Inprise's JBuilder, Forte's Netbeans IDE, or
IBM's VisualAge. It can be used with equal success in the
educational authoring environments being produced by our
colleagues at ESCOT and e-Slate. The universal acceptance of the
JavaBeans standard therefore makes it a valuable requirement for
all our component designs and will make our components that
much more powerful down the road.

3.4 Future Work
Our digital library grant is a collaborative one with chemistry
professor Dave Yaron at Carnegie Mellon. Professor Yaron and
other members of the grant team at Carnegie Mellon have been
creating environments in which non-programming educators can
customize interactive experiences and embed them in their own
pedagogical materials. We have begun to join our different
approaches to the problem of reuse and customization in the
digital library efforts in a collaborative project to aid chemistry
education.

3.4.1 Molecular Visualization Applet
We are working on a molecular visualization applet to increase
the reuse of existing components as well as introduce new
components developed in-house and by third parties.

A current prototype aims to reuse the plane model and view
components as well as some of the core 3D object manipulation
components that allow users to intuitively move objects in a 3D
space.

This prototype expands the core technology space by using a
VRML file loader imported from a third party source and using it
to import VRML models retrieved from the Protein Data Bank,
thereby leveraging content from an existing digital library. We are

39

also planning on introducing a precise collision detection package
to the core packages as well as more basic 3D interaction widgets.

Finally, we will provide a protein docking engine component that
might find significant reuse in other software dealing with protein
interactions.

The resulting set of components will be glued together using our
Carnegie Mellon collaborators' non-programming environment,
thereby providing the power of various in-house and third-party
software components in an easy to use yet powerful building tool
[15].

3.4.2 Increased Compatibility Effort
Recognizing that it would be a grave mistake to isolate our work
from complementary research and development performed by
other research groups, we will also be maximizing compatibility
between the components we develop and development
environments and test beds such as those produced by the E-Slate
and ESCOT projects. Recent developments have made these
environments more compatible with the JavaBeans standard and
we anticipate increased productivity by leveraging the tools they
provide.

3.4.3 Metadata Standards for Harvesting
We have started tagging the applets we produce with standard
IMS [14] metadata tags in order to make our efforts easily
harvestable by collectors of digital library material. In the near
future, we intend to extend this effort by tagging individual
components, thereby allowing harvesters into our component
libraries as well as our applet catalogs.

4. DISCUSSION AND CONCLUSION
When we proposed our framework and granularity strategy as part
of our grant application, we had limited experience using either
one for real-life applications. By creating the camera viewing
transformation applet set, we were able to test out these theories
in practice. We feel that the results offer a proof of concept of
these strategies.

We have found, however, that there are also disadvantages to
using a structured, component-centric approach with an emphasis
on reusability. Although the up-front design results in components
that are well designed, this design methodology greatly increases
the length of the development cycle. For example, the viewing
techniques applets used in our case study took roughly four
months to design, write and test. When compared with the four
days it took to write the applet's initial buggy prototype, it may
not seem to have been worth the time or effort. In addition, it
takes more skilled programmers to develop truly reusable
components, and taking this approach meant that we could no
longer rely solely on undergraduates, our previous source of
programmers.

If a digital library of reusable learning objects is ever to become a
reality, however, we must continue to invest the upfront time. In
our case, although we took four months to design, implement, and
test a single applet, we also produced several dozen components
that we consider to be stable and generally reusable. Indeed, they
were easily reused by the undergraduate who programmed the
radiosity applet. For us, the long-term benefits of this far
outweigh the short-term gains of the hacked-together prototype,
whose code was not reusable.

We believe the complete decomposition approach we have
adopted for component creation allows us to offer full
customization of components by content authors, thereby
increasing the degree to which individual components are reused.
We are also now convinced that the effort and time we must
devote to designing and developing not only good components
but also a large amount of underlying infrastructure will enable us
to reap huge rewards down the line and significantly enhance the
field of educational software component technology.

Although starting a good repository of reusable learning objects is
a time-consuming and expensive task, ultimately doing so should
dramatically reduce the time needed to create interactive learning
environments. Not only will mature programmers' time be
reduced but inexperienced developers will be able to make
sophisticated learning environment by re-using learning objects
that encapsulate advanced functionality that they would not be
able to easily program on their own.

Developers' new creations and the new components that are a part
of them, can, in turn, be contributed to the library, creating a
snowball effect of additional content, both in complete
instructional applications and in new building blocks from which
future applications can be built.

5. ACKNOWLEDGMENTS
We would like to acknowledge helpful comments of Andy van
Dam and contributions to the Exploratories project from
Rosemary Michelle Simpson. We would also like to thank our
sponsors, the National Science Foundation, through our NSDL
and STC grants, and Sun Microsystems.

6. REFERENCES
[1] IBM. alphaBeans: JavaBeans by IBM,

http://alphaworks.ibm.com/alphabeans/

[2] Jeff E. Beall, Adam M. Doppelt, and John F. Hughes.
"Developing an Interactive Illustration: Using Java and the
Web to Make It Worthwhile," in Proceedings of 3D and
Multimedia on the Internet, WWW and Networks, 16-18
April 1996, Pictureville, National Museum of Photography,
Film & Television, Bradford, UK, 1996.

BeanHaus. Java Bean Repository, http://www.beanhaus.org[3]

[4] Stephanie Doublait. "Standard Reuse Practices: Many Myths
vs. a Reality," in Standard View, Vol.5, No. 2, June, 1997.

EOE Foundation. Educational Objects Economy: Building
Communities that Build Knowledge, http://www.eoe.org.

[6] ESCOT project. Educational Software Components of
Tomorrow, http://www.sri.com/policy/ctl/html/escot.html.

E-Slate project. An exploratory learning environment,
http://e-slate.cti.gr/

[5]

[7]

40

[8] Exploratories project. Web-based educational software,
http://www.cs.brown.edu/exploratory/

[9] Exploratorium. The San Francisco Exploratorium: museum
of science, art, and human perception,
http://www.exploratorium.edul

[10] James D. Foley, Andries van Dam, Steven K. Feiner, John
F. Hughes. "Computer Graphics: Principles and Practice,"
Addison-Wesley, 1996, ISBN 0-201-84840-6.

[11] Richard P. Gabriel. "Patterns of Software: Tales from the
Software Community," Oxford University Press, August
1996.

[12] R. F. Gurwitz and R. W. Thorne and A. van Dam and I. B.
Carlbo. "BUMPS: A Program for Animating Projections," in
Proceedings of ACM SIGGRAPH '80, pp. 231-237, 1980.

[13] IEEE. "Web-Based Learning and Collaboration" special
issue, Computer, Vol. 32, No. 9, September 1999.

[1 4] IMS Global Learning Consortium, Inc.,
http://www.imsproject.org/

[15] IrYdium Project. Java Enhanced Chemical Education,
http://ir.chem.cmu.edu/irProject/

[16] JavaBeans. "Specification for the Java 2 Platform,"
http://java.sun.com/products/javabeans/glasgow/

[17]Rosemary Michelle Simpson, Anne Morgan Spalter, and
Andries van Dam. "Exploratories: An Educational Strategy
for the 21st Century," in ACM SIGGRAPH '99 Conference
Abstractions and Applications, 1999.

[18] Anne Morgan Spalter, Michael LeGrand, Saori Taichi, and
Rosemary Michelle Simpson. "Considering a Full Range of
Teaching Techniques for Use in Interactive Educational
Software: A" Practical Guide and Brainstorming Session, in
Proceedings of IEEE FIE 2000 (Frontiers in Education),
October 2000.

[19] Anne Morgan Spalter and Rosemary Michelle Simpson.
"Reusable Hypertext, Structures for Distance and JIT
Learning," in Proceedings of ACM Hypertext 2000, June
2000.

[20] Anne Morgan Spalter and Rosemary Michelle Simpson.
"Integrating Interactive Computer-Based Learning
Experiences Into Established Curricula," in Proceedings of
ACM ITICSE 2000 (Innovation and Technology in
Computer Science Education), July 2000.

U.S. Department of Education
Office of Educatonal Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

NOTICE

REPRODUCTION BASIS

E Nor
Eduction! Resumes Mahn Center

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or "Blanket").

EFF-089 (9/97)

