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Model Criticism 2

Model Criticism of Bayesian Networks with Latent Variables

introduction

The past decade has brought new emphasis on cognitive approaches to measurement constituting a paradigmatic

shift, even a revolution (Mislevy, 1996), in educational measurement research (Embretson, 1983, 1998; Frederiksen,

Mislevy, & Bejar, 1993; Marshall, 1989; Nichols, Chipman, & Brennan, 1995). This new emphasis is altering the

foundation upon which inferences are made about examinees (e.g. Frederiksen, Mislevy, & Bejar, 1993; Mislevy, 1996;

Nichols, Chipman, & Brennan, 1995). The adoption of a cognitive approach to assessment, and the more complex target

of inference, calls for a constructed-response format to provide the rich and complex evidence required to support

complex cognitive inferences (e.g. Chipman, Nichols, & Brennan, 1995; Collins, 1990; Fiske, 1990). Yet, the scoring of

such complex constructed-response data for cognitive assessment remains the greatest obstacle to successful

implementation.'

Bayesian Networks (BN), commonly utilized in artificial intelligence systems, are a promising mechanism for

scoring such constructed-response examinations. Two distinct uses for BNs in complex assessments can be envisaged:

Summarizing key aspects of a given student performance, given features extracted from the raw work products, and

synthesizing evidence from such evaluations across tasks. This presentation concerns the latter use. However, the use of

BN in this way is currently hampered by an inability to fully critique the implemented network, particularly with regard

to potential errors in modeling the inherently latent cognitive variables. (Similar challenges arise in factor analysis and

item response theory).

This study investigates statistical methods for identifying errors in BN with latent variables, as found in

intelligent cognitive assessments. The success of an intelligent assessment or tutoring system depends on the adequacy of

the student model, representing the relationship between the unobservable cognitive variables of interest (es) and the

observable features of task performance (xs), with the probability model for x given 6 being expressed as a BN.

The student model is constructed on the basis of a cognitive task analysis (CTA), an investigation of the

cognitive components that contribute to task performance (Mislevy, Steinberg, Breyer, Almond, & Johnson, 1999).

There is no assurance that the resulting student model is an accurate representation of the true structure of cognition, or
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Model Criticism 3

that it is the most useful model for the purpose of the assessment. Model criticism means evaluating the adequacy of a

statistical model, enabling the analyst to discover hypotheses, variables, or relationships beyond those represented in the

original modelto improve the structure of the BN in response to mismatches between modeled and observed data

patterns (Mislevy, 1994; Mislevy & Gitomer, 1996). A BN model can be criticized at the levels of its fit as a whole

(global measures) and of individual nodes (node measures).

At present, the current process of critiquing, refining, and validating a student model depends largely on

examining the model from the perspective of the findings of the CTA and from theoretical considerations of cognition in

the domain. The use of statistical diagnostic tools is notably lacking. Developing and using empirical tools for model

criticism, therefore, is important to the continued development and implementation of BN methodologies in cognitive

assessment. Statistical indices of model fit could be useful in cognitive assessment in several ways, such as (1)

comparing proposed modeled structures to preliminary performance data; (2) evaluating the model-data concordance for

nodes upon which examinee classification decisions are based, (3) identifying examinee performance that is inconsistent

with the posited student model, and (4) confirming the appropriateness of the modeled cognitive structure and, by

implication, providing evidence about the validity of that conceptualization of cognition in the domain. The

methodology for model fit indices investigated in this study is appropriate for each of these uses, though the discussion

in this study emphasizes the application to the evaluation of the structure of the statistical model of cognition.

Methodology

The general process for the simulations and comparisons conducted for each posited model in this study is

illustrated in Figure 1, which is more fully detailed in the procedure section below. In brief, response data are generated

according to a true BN model, which in applied settings would be real response data and as such would be produced

under an unknown model structure. A "posited" BN model is created (in this study several such posited models were

created to reflect both the true model and several particular discrepancies from the true model). Data are generated in

accordance with the posited model, and a bootstrap distribution of model criticism indices calculated with these latter

datasets become a null distribution for evaluating the tit statistics calculated with the data from the true model.
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Model Criticism 4

Indices

This study examined three indices, Weaver's Surprise Index (Weaver, 1948), Good's Logarithmic Score (Good,

1952), and the Ranked Probability Score (Epstein, 1969)2, that have been used to evaluate the accuracy of probabilistic

predictions in weather forecasting (Murphy & Winkler, 1984). Each measures of the degree of "surprise" felt when a

datum is observed.3

Weaver's Surprise Index

Weaver (1948) developed the Surprise Index to distinguish a "rare" event from a "surprising" event. An event

is surprising if its probability is small compared with the probabilities of other possible outcomes. A surprising event

must be a rare event, but a rare event need not be surprising. His definition of surprise is

2

(s./.),
E(p) p

1

2 + p2

2
...+ + p

. n
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(1)

where there are n possible outcomes of a particular probabilistic event (in BN cognitive assessments with discrete

variables, the n possible states of a variable), pl-p are the prior probabilities of each of the n possible states, E(p) is the

expected value of the probability, and pi is the prior probability of the observed state. Values increasingly greater than

unity indicate increasingly surprising observations.

Good's Logarithmic Score

In a discussion of fees and rational decisions, Good (1952) introduced what we shall be refer to as Good's

Logarithmic Score:

GL= log(bp, ) (2)

when the (predicted) event occurs, and

GL= log b(1 p,)
(3)

when it does not. Here pi is the prior probability of the event i in question before making the observation, and b is a

penalty term that keeps a forecaster from long term gain by simply predicting the average frequency of occurrence. This

penalty term is given by
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Model Criticism 5

where r is the number of possible outcomes and xj is the expectation of pj, that is, xj is the marginal probability

associated with category j before the observation. Values of Good's Logarithmic Score near zero indicate accurate

prediction, and values increasing from zero indicate poor prediction.

Ranked Probability Score

Epstein (1969) developed the Ranked Probability Score to evaluate forecasting accuracy when the states of the predicted

variable are categories of an ordered variable (such as four categories of temperature in degrees Fahrenheit). Its

distinguishing feature is that it considers how close (categorically) the predicted probabilistic outcome is to the observed

outcome. The Ranked Probability Score is given by

3 i K K

li-ilPiSj P"
1
E2 2(K -1) fr., =,

(5)

where K represents the number of possible outcome states and j indicates the observed outcome. The Ranked

Probability Score uses a linearly increasing penalty as the predicted observation becomes more distant from the observed

state, implying that node categorizations are an interval scale as they progress from one extreme to the other. The values

of the Ranked Probability Score vary from 0.00 to 1.00, indicating the poorest possible prediction and best possible

prediction respectively. This study examined several indices, including Weaver's Surprise Index (Weaver, 1948), Good's

Logarithmic Score (Good, 1952), the Ranked Probability Score (Epstein, 1969), the Quadratic Brier Score (Brier, 1950),

Good's Logarithmic Surprise Index (Good, 1954), Logarithmic Score (Cowell, Dawid, & Spiegelhalter, 1993) and the

Spearman correlation coefficient.

Data Generation Model

As a baseline for evaluating fit indices, we generated 1000 response patterns x from a hypothetical BN

cognitive assessmentthe 'Data Generation' BNwith known nodes, edges, and conditional probabilities. Although

they are simulated, we refer to these vectors as 'observed' data since they represent the data that would be observed in

practice. The structure of the Data Generation model, based on a hypothetical example of a student model for a general

practice physician, is provided as Figure 2. The nodes 01 through 04 are latent variables representing aspects of
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Model Criticism 6

physician ability while the nodes X1 through X5 are summary observable variables from interaction with five simulated

patients (with each patient represented as a different observable).

Model Criticism Computation

Our strategy was to route predictions for observable variables through the latent structure, providing an

opportunity to detect problems with the latent structure even though the latent student model variables cannot be

assessed directly. Errors in the student-model would manifest patterns of poor prediction for observable nodes

individually or in the aggregate.

The 'observed data' were uploaded into the Data Generation BN. For each of the 1000 simulees, predictive

probabilities were computed for each observable node treating the remaining observable nodes as known (i.e. for

observable nodes X1 through X
n the probability that node k is in state j is given by

Pkj*. = p(X k = j I X1,...X k_i, X
). The resulting probabilities for X2 were treated as predictions to be compared

to the observed state of X 2 for the simulee, as required to calculate the model criticism indices discussed above for each

observed-variable node in turn for a given simulee. Carrying out this process for each of the observable nodes provided

the node measures, and then aggregating across the five nodes produced a global measure for the simulee. The mean

value of a node mea.sure across the 1000 simulees served as the node measure (node-data fit) for the node in question,

while the mean global measure value across the 1000 simulees served as the global measure of the model-data fit4.

Error Models

Manipulating the Data Generation Model to introduce errors in the latent structure produced a number of

alternative models to serve as the targets for investigating the utility of the model criticism indices. The errors

introduced included node error, directed edge error, variable state error, and prior probability error.

The structure of the models representing the erroneous exclusion and inclusion of latent nodes are provided as

Figures 3 and 4, respectively while the structure of models representing the erroneous exclusion and inclusion of weak

and strong edges are provides as Figures 5, 6 and 7. In addition, three other error models were developed to represent

the erroneous inclusion and exclusion of node states for a continuous latent variable and with incorrect prior probabilities

assigned to a latent variable.
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Procedure

Each stage of the study followed the same sequence of steps: 1) Generate a dataset (N=1000) consistent with

the posited model (the model, either erroneous or true, that is the subject of model criticism). 2) Use the posited model

to produce the probabilities via Bayesian Network updating software, in this case Ergo (Beinlich & Herskovits, 1990;

Noetic Systems, 1996) for each observable node for both the model-consistent data (from step 1) and the 'observed' data.

3) Compute the fit indices (described above) for the observable variables at various sample sizes for both the model-

consistent data and the 'observed' data and determine the distributional properties of the indices. 4) Bootstrap (Efron &

Tibshirani, 1993) the model-consistent data (for posited model) to generate empirical distributions of values under the

null hypothesis and determine critical values for evaluating the 'observed' data. 5) Evaluate the 'observed' data in light

of these empirical distributions and critical values.

For each model (true and error models) this evaluation was conducted at sample sizes of 50, 100, 250, 500 and

1000 simulees. The larger sample sizes included the data from the smaller sample sizes. Each bootstrap data set had a

sample size equal to that of the 'observed' data being evaluated, and critical values were established at the empirical

values representing the 2.5% and 97.5% percentiles. This corresponds to a p < .05, two-tailed test. Values of the

'observed' data that exceeded these critical values were considered significant. A two-tailed test made it was possible to

obtain significant results for better than expected model-data fit as well as misfit, though the latter is the primary concern

of model criticism.

Results

Plots of the resultant values for the global and node measures served as the first basis for evaluating the

effectiveness of the model criticism indices. For each plot (examples are provided below) the x-axis indicates sample

size (e.g. 50 indicates that the observed data and each of the 1,000 bootstrapped data sets had N=50) and the y-axis

indicates the empirical value of the index. The dots connected by dashed lines represent the mean values for the

'observed' data and the solid lines represent the upper and lower critical values from the bootstrap (97.5% and 2.5% of

the 1,000 bootstrapped data sets, respectively).

Example Plots

To illustrate trends in the results, we provide examples for the Ranked Probability Score as applied to a node

measure (the same procedure was also performed at the Global level, assessing the overall degree of model fit). The
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node measure results for the Data Generation Model were predominantly within the bootstrap critical values, with an

occasional value slightly beyond the cutoff, as illustrated in Figure 8.

In contrast, nodes for observables closely associated with an error in the latent structure showed more dramatic

deviations from the bootstrap distributions, as illustrated in Figure 9.

Important findings include the discovery that the x with the closest proximity and greatest degree of relationship

to the source of the latent structure error was nearly always the first (by sample size) to identify model error, and

produced the greatest degree of discrepancy from the bootstrap parameters. Also, nodes in close proximity but with

weaker associations with the source of the error seldom deviated from the bootstrap distributions.

Plot Summaries

A summary of the plots produced for the Ranked Probability Score is provided as Table 1. The 'Model' colunm

indicates true or error model for which results are presented. The column marked 'Global' indicates the global measure

results, and the columns marked X1 through X5 are the results for the observable variables. Numeric values in a cell

indicate that at least one analysis (of the five sample sizes utilized) produced a significant deviation from the bootstrap

distributions. The numeric values indicate which sample sizes produced significant deviations. Bold type represents

cells where there was an error in the latent structure of the immediate parent variable, and a bold X appears in cells

where there was an undetected error in the latent structure of the immediate parent variable. Cross-referencing the data

in Table 1 to Figures 8 and 9 helps to clarify its interpretation. Tables 2 and 3 give similar summaries for Weaver's

Surprise Index and Good's Logarithmic Score.

Discussion

Implications

These results offer promise of utility for the Ranked Probability Score and Weaver's Surprise Index as global

measures and node measures to detect specific types of modeling errors in the latent structure of BNs. For global

measures, major error types (node exclusions and strong edge errors) in the latent structure were detectable. For node

measures (preferably used in combination) these indices helped identify major latent structure errors (node errors and

strong edge errors) at moderate sample sizes, and minor latent structure errors (weak edge errors, node state errors, and

prior probability errors) at large sample sizes. The results suggest utility as node measures even in the absence of model-
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data misfit for global measures. Furthermore, these results suggest that as node measures these indices can identify

nodes in close proximity to the latent structure error, providing the modeler some direction for appropriate modification

to the student model.

To the extent that these results generalize to other such BN models with latent variables, Table 4 suggests

guidelines for the use of the Ranked Probability Score (RPS), Weaver's Surprise Index (WSI), and Good's Logarithmic

Score (GLS) as node measures.

Future Directions

Obviously an important direction for further research is to establish the generalizability of these results to BNs

with latent variables by systematically manipulating BN features such as network size, associations, proportion of latent

to observable nodes, etc. to determine whether model criticism is affected by such variations.

Conclusion

The introduction of this methodology, and more critically, the emphasis on model criticism of BNs with latent

variables in general, provides a means of maximizing the accuracy and utility of BN models for a variety of applications.

As methods of providing empirical support or criticism of student models in cognitive assessment, these results provide a

means of ensuring that the student models developed are appropriate representations of the constellation of knowledges,

processes, and strategies which contribute to task performance. This capability offers the potential of helping the analyst

to create a student model from a CTA by comparing modeled structures with preliminary performance data; to revise BN

structures to improve classification decisions for examinees; to provide validity evidence for the student model in the

substantive domain; and to identify examinees who do not fit the model. With such applications these indices would

contribute to the production of more accurate cognitive models in less time, facilitate the implementation of BN and

related methodologies in future applications, and support the construct validity of the resultant cognitive assessments and

intelligent tutoring systems.

Presented at the annual meeting of the National Council on Measurement in Education
Seattle, Washington

April, 2001

1 0



Model Criticism 10

References

Almond, R. G., & Mislevy, R. J. (1999). Graphical models and computerized adaptive testing. Applied

Psychological Measurement, 23, 223-237.

Almond, R. G., Herskovits, E., Mislevy R. J., & Steinberg, L. S. (1999). Transfer of information between

system and evidence models. In D. Heckerman & J. Whittaker (Eds.), Artificial intelligence and statistics 99:

Proceedings of the seventh international workshop on artificial intelligence and statistics (pp. 181-186). San Francisco,

CA: Morgan Kaufmann.

Beinlich, 1. A., & 1-lerskovits, E. H. (1990). Ergo: A graphical environment for constructing Bayesian belief

networks. Proceedings of the conference on uncertainty in artificial intelligence. Cambridge, MA.

Bejar, 1. 1. (1991). A Methodology for scoring open-ended architectural design problems. Journal of Applied

Psychology, 76, (4), 522-532.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78,

1-3.

Cowell, R. G., Dawid, A. P., & Spiegelhalter, D. J. (1993). Sequential model criticism in probabilistic expert

systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 209-219.

de Finetti, B. (1965). Methods for discriminating levels of partial knowledge concerning a test item. British

Journal of Mathematical and Statistical Psychology, 18, 87-123.

Efron, B. & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

Embretson, S. E. (1983). Construct validity: Construct representation versus nomothetic span. Psychological

Bulletin 93 179-197.

Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application to abstract

reasoning. Psychological Methods, 3, 380-396.

Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories. Journal of Applied

Meteorology, 8 985-987.

Frederiksen, N., Mislevy, R. J., & Bejar, 1. 1. (Eds.) (1993). Test theory for a new generation of tests. Hilsdale,

New Jersey : Lawrence Erlbaum Associates.

Presented at the annual meeting of the National Council on Measurement in Education
Seattle, Washington

April, 2001

1 1



Model Criticism 11

Good, 1. J. (1952). Rational decisions. Journal of the Royal Statistical Society, B. 14, 104-114.

Good, I. J. (1954). The appropriate mathematical tools for describing and measuring uncertainty. In C. F.

Carter, G. P. Meredith, & G. L. S. Sheckle (Eds.), Uncertainty and Business Decisions (pp.385-388). Liverpool:

University Press.

Marshall, S. P. (1989). Generating good items for diagnostic tests. In N. Frederiksen, R. Glaser, A. Lesgold, &

M. G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 433-452). Hillsdale, NJ: Erlbaum.

Mislevy, RJ (1994). Evidence and inference in educational assessment. Psychometrika, 59 (4), 439-483.

Mislevy, R. J. (1996). Test theory reconceived. Journal of Educational Measurement, 33, 379-416.

Mislevy, R. J., & Gitomer, D.H. (1996). The role of probability-based inference in an intelligent tutoring

system. User Mediated and User-Adapted Interaction, 5, 253-282.

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (1999). On the several roles of task model variables in

assessment design. In S. Irvine & P. Kyllonen (Eds.), Generating items for cognitive tests: Theory and practice.

Hillsdale, NJ: Erlbaum.

Mislevy, R. J., Steinberg, L. S., Breyer, F. J., Almond, R. G., & Johnson, L. (1999). A cognitive task analysis,

with implications for designing a simulation-based assessment system. Computers and Human Behavior, 15, 335-374.

Nichols, P. D., Chipman, S. F., & Brennan, R. L. (Eds.) (1995). Cognitively diagnostic assessment. Hilsdale, NJ:

Lawrence Erlbaum Associates.

Noetic Systems (1996). ERGO [computer program]. Baltimore, MD: Noetic Systems, Inc.

Spiegelhalter, D.J., Dawin, A.P., Lauitzen, S.L., & Cowell, R.G. (1993). Bayesian analysis in expert systems.

Statistical Science, 8 (3). 219-283.

Steinberg, L. S., & Gitomer, D. G. (1996). Intelligent tutoring and assessment built on an understanding of a

technical problem-solving task. Instructional Science, 24, 223-258.

Weaver, W. (1948). Probability, rarity, interest, and surprise. Scientific Monthly, 67, 390-392.

Williamson, D. M., Bejar, 1. 1., & Hone, A. S. (1999). 'Mental model comparison of automated and human

scoring. Journal of Educational Measurement, 36 (2), 158-184.

Presented at the annual meeting of the National Council on Measurement in Education
Seattle, Washington

April, 2001

12



Model Criticism 12

Footnotes

1The interested reader is referred to the following sources for discussions of other aspects of the research

program from which this work arises: cognitive psychology (Frederiksen, Mislevy, & Bejar, 1993; Steinberg & Gitomer,

1996); computer-based simulations and constructed-response tasks (Bejar, 1991; Williamson, Bejar, & Hone, 1999);

probability-based reasoning (Almond, & Mislevy, 1999; Almond Herskovits, Mislevy & Steinberg, 1999); and

assessment design (Mislevy, Steinberg, Breyer, Almond, & Johnson, 1999; Mislevy, Steinberg, & Almond, 1999).

2 The Quadratic Brier Score (Brier, 1950), Good's Logarithmic Surprise Index (Good, 1954), Logarithmic Score

(Cowell, Dawid, & Spiegelhalter, 1993) and Spearman correlation coefficient were also investigated but are not

discussed due to lesser promise of utility.

3An interesting connection exists between indices of surprise (which are essentially measures of distance

between probabilistic predictions and a criterion) and assessment: De Finetti (1965) proposed that students answer

multiple-choice questions by assigning a probability to each option representing the student's belief that the option is the

correct answer, and he provided methods of scoring such responses that increase scores as the assigned probabilities are

less surprising in light of the key.

4 By transposing the matrix of values it would be possible to utilize this procedure to evaluate the person-model

fit rather than the model-data fit.
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Table 1

Plot Summary for the Ranked Probability Score

Model

Level/Node

Global Xi Ka Ka XA 2Q

Data Generation

Node Exclusion 100, 250, 500, 1000 X X 100, 250,

500, 1000 500, 1000

Node Inclusion X 100, 250,

500, 1000

State Exclusion X 1000 500, 1000

State Inclusion X X X

Prior Probability X X 500, 1000

Strong Edge Exclusion 100, 250, 500, 1000 100, 250,

500, 1000 500, 1000

Strong Edge Inclusion 500, 1000 250, 500, 500, 1000

1000

Weak Edge Exclusion X 100, 250,

500, 1000

Weak Edge Inclusion X
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Table 2

Plot Summary for Weaver's Surprise Index

LeveUNode

Model Global X --d X--

Data Generation

Node Exclusion 100, 250,

500, 1000

Node Inclusion

State Exclusion

State Inclusion

Prior Probability

Strong Edge Exclusion 250, 500, 1000

1000

Strong Edge Inclusion 500, 1000 500, 1000

X X 100, 250,

500, 1000

X 500, 1000

X 1000 X

X X X

X X X

100, 250,

500, 1000

100, 250,

500, 1000

Weak Edge Exclusion 500, 1000

Weak Edge Inclusion X

Presented at the annual meeting of the National Council on Measurement in Education
Seattle, Washington

April, 2001

15



Model Criticism 15

Table 3

Plot Summary for Good's Logarithmic Score

Model

Level/Node

Global Xi -X-a

Data Generation

Node Exclusion X X X

Node Inclusion X X

State Exclusion X 100, 250, X

500, 1000

State Inclusion X 100, 250, X

500, 1000

Prior Probability X X

Strong Edge Exclusion X

Strong Edge Inclusion 100 X

Weak Edge Exclusion X 1000

Weak Edge Inclusion X
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Table 4

Utilization as Node Measures

Sig. Deviation

N GLS RPS WS1 Error Types

5250 yes no no node state exclusion; node state inclusion

no yes no node inclusion; strong edge inclusion

no yes yes node exclusion; strong edge exclusion

>250 and 51000 yes no no node state exclusion; node state inclusion

no yes no node state exclusion; prior probability error

no no yes weak edge exclusion

no yes yes node exclusion; node inclusion; strong edge

exclusion; strong edge inclusion
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Figure 1
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Figure 2

Data Generation Model
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Figure 3

Node Exclusion Error Model
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Figure 4

Node Inclusion Error Model
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Figure 5

Weak Edge Exclusion Error Model
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Figure 6

Strong Edge Exclusion Error Model
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Figure 7

Edge (Strong or Weak) Inclusion Error Model
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Figure 8

Patient 2 (X2) Node Measure Ranked Probability Score Results for the Data Generation Model
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Figure 9

Patient 5 (X5) Node Measure Ranked Probability Score Results for the Node Exclusion Model
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