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Introduction

Multilevel modeling techniques provide a way to analyze nested data. Data obtained from
organizational or educational settings are inherently nested, given that individuals are nested in offices
or classrooms, offices or classrooms are nested in buildings or schools, and so on. Hierarchical linear
modeling (HLM) is one computer program for analyzing such data. The model used by HLM,
attempts to explain the effects of independent variables on some outcome variable. The level 1 model
examines the relationships among predictors and outcome variables for individuals, much like ordinary
least squares regression models. With HLM, however, the intercept and regression coefficients from
the level 1 model, conceptually become the dependent variables in the level 2 model. In the level 2
model, group-level variables are used to explain the between-group variance in the level 1 parameters.
Such models are useful in distinguishing the effects of individual-level characteristics from group-level
characteristics on the outcome measure.

Centering is an important consideration in HLM. As with multiple regression, the intercept is defined
as the value of the outcome variable when the predictor variable(s) is zero. For some predictor variables,
values of zero are meaningless (i.e., developmental age) or out of range (i.e., SAT scores). Since HLM
focuses on explaining variance in the intercept and regression coefficients, it is critical that their meanings
be clear. Unlike multiple regression, the centering transformations that are routinely used can have a
substantial impact on the results and the interpretation of the regression equations.

To date, some research has been conducted on the effects of centering. While prior research is
invaluable, it has not provided concrete examples as well as theoretical approaches for both simple and
complex models in an educational setting and in a manner understandable to newer users of HLM. The
present study attempts to fill this gap by examining two questions:

1. What are the implications of centering choices in terms of reliability, variance accounted for,
and statistical significance of the parameters?

2. How should centering be used to address specific research questions?

The impact of centering methods is explained mathematically and demonstrated by application to
data from an educational setting using successively more complex models. The data for this paper
come from the National Education Longitudinal Study of 1988 (NELS:88) sponsored by the National
Center for Education Statistics. Analyses focus on models commonly seen in the literature. An
attempt is made to explain the impact of centering in a manner more useful to newer HLM users.

Background on Multilevel Models

In multilevel modeling, multiple models are developed, each corresponding to a certain unit of
analysis. The first stage model is typically the individual-level model. A typical individual-level
model would be:

y = r30; + x, + rii
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In these models, i refer to the individual and j to the group. Yij is the outcome variable
measured for individuals. Poj represents the intercept for a given group. f3li represents the effect of
a certain independent variable on the outcome for individuals. The unique effect associated with
the individual is represented by rj. The individual level model can be conceived of in the same
way as a multiple regression model, with pi., indicating the increment in the outcome variable
associated with a unit increment in X.

In the second stage model, the coefficients from the first stage model become the dependent
variables. The second stage model allows the researcher to study the effects of group level
variables on the variance among the values of the coefficients. A typical second stage model
might consist of an equation for each coefficient. For example:

Roi = Yoo + 701

In this example, the intercept (PO is hypothesized to be a function of the overall mean of the
outcome variable (y00), a group characteristic (W.), and a unique (or random) effect associated
with each group (uoj). The slope ((31;) is hypothesized to be a function of the mean of the slopes
across groups, the effect of some group characteristic (711), and a unique (or random) effect
associated with each group. Here, the slope is considered to be random, since uo; is included in
the model. The slope would be considered to be fixed if this latter term were omitted from the
model. Multilevel models can be expanded to a third stage that might examine the effects of an
overarching unit (e.g., office building, school district) on the coefficients from the second stage
model.

The various pieces of the second stage model can be substituted into the equation for
individuals to yield a single equation that simultaneously explains between-group variance and
within-group variance. An example follows:

Yii Yoo YolWj Yio (Xi) + yilWj (Xii) + uoi + uli (Xii) +rii.

Here Yio estimates the within group effect and Yoi represents the between group effect. yli is a
cross-level interaction that measures the effect for a given person in a given group. Yoo is the
intercept; the remaining terms and are residuals associated with individuals (r;) and with the
parameters (uo; )

Centering in Multilevel Models

In multiple regression, the intercept is defined as the expected value of the dependent variable
when the value of the predictor is 0 (Cohen and Cohen, 1983). A similar interpretation can be
made with regard to multilevel models. That is, for the Level 1 model, the value of the intercept
(3) is defined as the expected value on the outcome measure (YO for an individual in group j
with a value of 0 for Xi; (Bryk and Raudenbush, 1992). Since 13o; becomes the dependent variable
in the Level 2 models, its meaning must be clear so the researcher can understand what is being
predicted in the second stage. The key issue involves setting Xi; equal to 0, which in some
situations, results in a nonsensical value for X
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For example, if Xrepresents age, what would it mean to have an age of 0? Or, suppose that X is
the score on a test that ranges from 10-100, what does it mean to have a test score of 0? Since it
is often meaningless to have values of 0 for X, centering is used to scale the values of X and to
purposefully place the value of 0 at a meaningful point. The literature on centering (Bryk and
Raudenbush, 1992; Hofmann and Gavin, 1995; Kreft, de Leeuw, and Aiken, 1995; Schumacker
and Bembry, 1997) focuses primarily on four methods for scaling the predictor variables: (1) the
natural or raw score metric, also referred to as no centering; (2) grand mean centering; (3) group
mean centering; and (4) centering on specific selected values.

Scaling on the Raw Score Metric

Under this method, variables are left in their original form. The meaning of 130j in this case is
the expected value for Yij when Xi = 0. This metric may be meaningful in cases where 0 has a
real value, such as when X measures hours of instruction or training, and 0 might indicate no
instruction/training. Additionally, when X represents a dummy coded variable, then Poj will
represent the expected value for the individuals with dummy code values of 0. For instance, if
individuals are coded so that African Americans have a value of 1 and Caucasians a value of.0,
130j will represent the expected outcome value for Caucasians.

Grand Mean Centering

With grand mean centering, each X value is expressed as it deviation from the variable's grand
mean, noted as (NJ X..). This approach to centering anchors the meaning of X at the grand
mean for the sample under study. With grand mean centering, Boi is the expected outcome for
subjects whose value on Xi is equal to the grand mean. Bryk and Raudenbush (1992) point out
that with grand mean centering, the intercept can be interpreted as an adjusted mean, in the same
way one thinks of an adjusted mean with analysis of covariance (ANCOVA) models. In this
case, the intercept would be thought of as:

130J= 71.; + pi; (xi;

As with ANCOVA, grand mean centering allows consideration of an effect after partialling out or
controlling for other effects. The variance, To.; , of 130; is then the variance in the adjusted means.

Although grand mean centering is typically considered in connection with continuous variables,
it can also be used for dummy coded variables. Grand mean centering of dummy coded variables
allows the dummy coded variable to take on two values. The grand mean for the X variable will
equal the proportion of individuals coded as 1. Consider the example where African Americans
are coded as 1 and Caucasians as 0. The grand mean for X will be the proportion of African
Americans in the sample. If a particular individual is African American, the grand-mean centered
value will equal Xij X.. (or 1 minus the proportion of African Americans), which is the
proportion of Caucasians. For Caucasians, the grand mean centered variable will equal 0 minus
the proportion of African Americans, resulting in a negative value, or minus the proportion of
African Americans.

Group Mean Centering

Group mean centering expresses each X value as its deviation from the particular group's mean.
That is, the value of X for an individual in group j would be her/his deviation from group j's mean
on X, expressed as (Xi, X.). Here, the value of I30; is the unadjusted mean for group j, thus the
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expected outcome for an individual depends on the group to which the individual belongs. The
variance of the unadjusted means is simply the observed variance about the group means on X.
One advantage of group mean centering is that it maintains orthogonality between level 1 and
level 2 models (Bryk and Raudenbush, 1992), often making it easier to obtain a converged
solution (Fein and Lissitz, 2000).

As with grand mean centering, group mean centering can be used for dummy coded variables.
Continuing with the above example (African Americans coded 1, Caucasians coded 0), the group
mean will be the proportion of African Americans in the group. For African Americans, the
group-centered, dummy-coded value will be the proportion of Caucasians in group j; for
Caucasians, X will be negative and will equal minus the proportion of African Americans in
group j.

Centering on Specific Values

Sometimes there exists a specific value for X about which the researcher is interested. The
value might be based on theory, a population mean, or possibly some baseline or cutoff limit.
This type of centering operates much like grand mean centering, since it essentially involves
adding or subtracting a constant from each case. With this method, each individual's score is
expressed as a deviation from the specific value, not from the grand mean derived from the
sample at hand. 130 is then interpreted as the expected outcome for individuals who score at this
preset X value.

Centering the Level 2 Predictors

Bryk and Raudenbush (1992) indicate that centering the level 2 predictors (the W's) is not as
critical an issue as centering the level 1 predictors. Interpretation of the intercepts for the level 2
equations does not rely on the metric chosen for the level 2 predictors. Level 2 predictors may be
centered to make them more easily interpretable. Or, they may be centered when an interaction
variable will be used, to reduce the collinearity among variables.

Implications of Centering Choices

Studies of centering find that it enhances the interpretation of results and reduces the correlation
between intercept and slope estimates across groups. This multicollinearity can cause
convergence problems in obtaining a solution (Bryk and Raudenbush, 1992). Comparisons of
centering methods indicate that raw metric scaling and grand mean centering produce nearly
equivalent results (Burton, 1993; Kreft, de Leeuw, and Aiken, 1995). Since grand mean
centering involves a linear transformation of the values for the centered variables, it will change
the value of the intercept but not the slopes.

Group mean centering, on the other hand, appears to produce results that differ from those
based on other centering options. This is primarily because group mean centering is not a simple
linear transformation of the variables. Instead, it essentially introduces a new variable (Hofmann
and Gavin, 1998). Whereas grand mean centering subtracts a constant value from the variable for
all individuals, group mean centering subtracts a different value depending on the group the
individual is in. Research on centering options has shown that group mean centering produces
results that differ from other approaches and introduces the potential for misspecification if the
group mean is not included as a predictor of the intercept at level 2 (Kreft, et al., 1995; Cohen,
Rathbun, and Krotki, 1997).
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Group mean centering has also been shown to alter the conclusions the researcher might draw
about the relative importance of variables in the model (Burton, 1993; Hofmann et al., 1997).
Variables that are not statistically significant in a group-mean centered model may be statistically
significant in a grand mean centered model. Burton (1993) focused on this issue, studying the
relationships between minority status and math achievement under varying centering options. His
findings indicated that using raw metric scaling or grand mean centering of the minority status
variable led to the conclusion that only the individual student's minority status had an effect on
student's mathematics achievement. Use of group mean centering resulted in a statistically
significant effect associated with the average minority status of the school. Although group mean
centering can introduce complexity into model specification and interpretation, Bryk and
Raudenbush (1992) and others (Kreft et al., 1995; Schumacker and Bembry, 1997; Hofmann and
Gavin, 1997) find it to be exceedingly useful for studying contextual effects.

Numerical Examples

Description of Data Set and Variables

For the examples in this paper, the Level 1 dependent variable is a measure of student
achievement in NELS:88 based on a test of math and reading (F12XCOMP) given to 10th graders
(mean=51.55, sd=10.01, range=30.31 to 71.82). The independent variables used in the examples
include ethnicity; the socioeconomic condition of the family; and perceived support from the
teacher. The examples were based on 12,652 individuals and 657 schools, with an average of 20
students per school (mode=21; range=10 to 74).

Ethnicity is a categorical variable in NELS:88 that was dummy coded as follows: Asian Pacific
Islanders and white non-Hispanic students were coded as 1 (n=2,515) and all other groups were
coded as 0. Socioeconomic status (SES) is based on a composite variable available in the
NELS:88 database (mean=.05, sd=.80, range=-3.29 to 2.76). Perceived teacher support is a
factor constructed as part of an earlier study (information available from first author upon
request) from a principal components analysis of questions asking for students' perceptions about
the teachers in their school. Five questions were included in the factor:

students get along well with teachers
the teaching is good at this school
teachers are interested in students
when I work hard, teachers praise my efforts
most teachers listen to me

Students responded to each question using a 5-point rating scale. In constructing the factor,
individual questions were given approximately equal weight (alpha = .64). Values for the factor
were standardized to have a mean of 0 and a standard deviation of 1.

School level explanatory variables included the school mean values for each of the Level 1
independent variables; that is, the average SES for students in a school; the proportion of non-
minority (Asian and white) students in the school; and the school mean value for the Perceived
Support factor. In addition, a factor constructed from principal components of questions asked of
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the school administrators (as part of earlier study referenced above) was used to represent School
Climate. Three questions were included in the factor:

there is a positive relationship between school and parents.
teachers press students to achieve
students are expected to do homework

Administrators responded to each question using a 5-point rating scale. In constructing the factor,
individual questions were given approximately equal weight (alpha=.65). Values for the factor
were standardized to have a mean of 0 and a standard deviation of 1.

Demonstration 1: Basic Model

This demonstration is based on a model with three predictors included in the level 1 model
(SES, ethnicity, and teacher support) and no predictors in the level 2 model. The slope for 132;
was treated as a fixed effect, while other parameters were treated as random. This decision was
based on preliminary runs that indicated that the random variance component for 132j was not
statistically significant. The model appears below.

Level 1: Yo = Poi +

Level 2: r3, = Yoo uoi

(3, = 7i. uo
132j =720

133j = 730+ 1-13j

(SES) + f32, (RACE) + 131i (TCHRSUPP) + r ,j

This results in the following combined model:

Yii = Yoo + Y,o (SESij) + 720 (RACEij) + Y30 (TCHRSUPPii) + uoi + uli + u3; +ru.

Before comparing the results for different types of centering, it is instructive to consider the
interpretation of the various coefficients:

Yoo is the intercept, or the value for achievement when all predictor variables equal zero.
yio is the average slope across schools when individuals' SES is used to predict
achievement
Y20 is the average slope when individuals' Race is used to predict achievement
Y30 is the average slope when individuals' perception of Teacher Support is used to
predict achievement
u0 is the between-group variance associated with the intercepts (also referred to as tauo)
Li, is the between-group variance associated with the slopes for SES (taui)
u3 is the between-group variance associated with the slopes for Teacher Support (tau3)
r ij is the unexplained variance associated with the level-1 model (within-group variance)

Table 1 displays the results from analyses using three centering options. The table includes
estimates for the parameters, their standard errors (se), reliability estimates for the coefficients,
and the variance components for the between-group and within-group variance.
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Table 1. Comparisons of Three Centering Options for the Basic Model.

Parameter Raw Metric
Grand Mean

Centering
Group Mean

Centering
Yoo (se) 47.93 (.21)* 51.54 (.12) 51.44 (.21)

ylo (se) (SES) 4.67 (.11) 4.67 (.11) 4.12 (.12)

y20 (se) (RACE) 4.18 (.22) 4.18 (.22) 3.85 (.25)

Y30 (se) (TCHSUPP) 1.66 (.08) 1.66 (.09) 1.53 (.09)
Reliability of Bo .42 .43 .85

Reliability of B, .04 .04 .02

Reliability of B3 .10 .10 .10

Var Comp uo 4.98, p=.00, df=654 5.04, p=.00, df=654 23.86, p=.00, df=654
Var Comp ul .45, p=.018 .45, p=.018 .15 , p=.06
Var Comp u3 .56, p=.042 .56, p=.042 .57 , p=.046
Var Comp rii 65.20 65.20 65.11
All coefficients were statistically significant, p< 01.

Results are explained for the raw metric example. Here, the average achievement score for the
sample was 47.93 (with a standard error of .21). Each unit increase in SES is associated with an
increase in achievement of 4.67 points; likewise each unit increase in teacher support results in an
increase of 1.66 points in achievement. Because race is a dummy coded variable, the coefficient
for race represents the difference in performance between minority (coded 0) and non-minority
students (coded 1). On average, non-minority students scored 4.18 points higher than minority
students.

Comparison of the coefficients for the three types of centering methods shows that results are
very similar for raw metric and grand mean centering. Raw metric and grand mean centering
differed only in estimates of the intercepts. Group mean centering produced different intercept
and slope parameters. The variance component for the intercepts, uo, was substantially larger
with group mean centering than for the other approaches.'

Reliability estimates are provided for the tau's for each random effect. In HLM, reliability
indicates that percentage of tau that is reliable parameter variance. The total variance consists of
both parameter variance and sampling variance. Reliability thus estimates how much of the total
variance can be explained by the between-group model(s) (Arnold, 1992). The formula for
estimating reliability is:

(parameter variance) / (parameter variance + error variance).

HLM estimates the reliability of a given parameter for each group-level sample, where error
variance depends on the within-group sample size. The overall measure of reliability is the
average of the within-group reliabilities (Bryk and Raudenbush, 1992). The reliability estimate of
the intercept was distinctly higher for group mean centering than for other approaches but slightly
less for the SES slope.

To examine whether this finding was peculiar to this particular data set, we ran these analyses on two data
sets routinely available with the HLM software (the High School and Beyond and the Vocabulary data
sets.) For both cases, group mean centering produced larger estimates of tau for the intercept than did other
centering approaches.
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Estimating Explained Variance

Because hierarchical linear modeling appears to closely parallel linear multiple regression, it
seems reasonable to expect that a statistic like R2 (percent of variance explained) should be
available. This statistic is not routinely provided with HLM software, but formulas have been
developed to estimate it. These formulas estimate explained variance by comparing reductions in
error variance for series of nested models (Arnold, 1992; Kreft and De Leeuw, 1998; Snijders and
Bosker, 1999). A complication arises, however, because such calculations depend on having an
estimate of total variance (e.g., within-group variance + between-groups variance). Kreft and De
Leeuw, 1998 (p. 116) explain that with HLM the within-group variance ( ru ) and the between-
group variance (tauo) do not sum to total variance due to confounding (the level-1 coefficients
cannot be separated into between and within parts). As a result, sometimes adding variables to
the model can increase between-groups variance and decrease the amount of explained variance
a counterintuitive finding. Snijders and Bosker (1999) suggested that such a finding could
indicate that the model is misspecified. For instance, decreases in variance explained can occur
when basic assumptions are violated (e.g., level 1 or level 2 errors are correlated with one or more
X variables), which can happen when important variables are not included in the model. They
noted that R2 can be helpful as a diagnostic tool to signify misspecified models.

For each of the demonstrations in this paper, we provide estimates of R2 to illustrate how the
statistic might be calculated. We wish to point out, however, that reporting R2 for multilevel
models is controversial. While Kreft and de Leeuw (1998:119) provided formulas, they also
concluded their discussion by saying that the concept of R2 in multilevel models is "ill defined
and ambiguous," and the usefulness of the statistic is limited to random intercept models. Some
authors (such as Goldstein, personal communication; and recent discussions on a multilevel
modeling listserve) discourage its use altogether.

Kreft and de Leeuw (1998) and Snijders and Bosker (1999) proposed different formulas for
calculating explained variance. The Kreft and de Leeuw formula is:

For level 1:

(1) R2IKD = (a2 original model a2 new model) / a2 for original model

For level 2:

(2) R22KD = (T2 original model T2 new model) / T2 for original model

where a2 is within group variance (ri;) and 12 is between group variance (uoi). The Snijders and
Bosker formula is:

For level 1:

2RIsa(3) 1 [(a2 new model + T2 new model) / (a2 for original model + T2 original model)]

For level 2:

(4) R22sB = 1 [(a2 new model/n + T2 new model) / (a2 for original model/n + -c2 original model)]
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The n in equation 4 is intended to be a measure of the size of the group (e.g., for each class or
school). In balanced designs, the group size is consistent across groups and this value can be
used for n. In unbalanced designs, deciding on the appropriate value of n is not as
straightforward. Snijders and Bosker (1999) suggest using either a measure of the average group
size for the sample or an estimate of the typical group size in the population. They point out that
when the group size in the population is very large, the value for the within groups variance will
be diminished, and R2 will simply be a ratio of the two estimates of between group variance.

Both pairs of authors indicate that these formulas are for models with random intercepts and do
not apply for models with random slopes. However, Snijders and Bosker (1999) proposed that
estimates of R2 for models with random slopes can be obtained by re-running the models with
fixed slopes and using the values for between and within groups variance to estimate R2's for the
random slopes model. This was done for the models in the present study, and R2 estimates were
calculated using both formulas. The fully unconditional model was run to obtain the between
group (T2=23.04) and within group (62=77.59) variance components. Results appear below. For
these calculations, the modal value for group size (21) was used as an estimate of n.

Table 2. Comparison of Incremental R2 for Different Centering Methods for the Basic Model

Type of Centering
Within
Groups

cy2

Between
Groups

r2

Level 1 Level 2

R21 Kr) R21SB R22KD R22SB

Raw metric 65.85 5.17 .1513 .29 .78 .69

Grand mean 65.85 5.17 .1513 .29 .78 .69

Group mean 65.68 23.82 .1534 .11 -.03 0

Several observations can be made about these results. First, as might be expected, the R2 values
for raw metric and grand mean centering are identical in all cases. Second, with the exception of
the level 1 estimate for the KD formula, the explained variance is higher for raw metric and grand
mean centering than for group mean centering. It is also noteworthy that the two formulas
produced different estimates.

Demonstration 2: Intercepts-as-Outcomes Model

For this demonstration, an intercepts-as-outcomes model was run. The same three predictor
variables were included in the level-1 model (SES, ethnicity, and teacher support), and their mean
values were included in the Level 2 model as predictors of the intercept. The 132j slope was treated
as a fixed effect. The equations for this model appear below:

Level 1: Yij = Po; +

Level 2: I30; = 700 + 701

pu =y10+ ui;
132; =720

33; =730+ 1-13j

(SES;;) + 132j (RACE;;) +131i (TCHRSUPPO + r

(MEANSES) + 702 (MEANTSUPP) + 703 (MEANRACE) + uoj
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Combining the Level 1 and 2 models results in the following:

YU = Yoo + yo, (MEANSES) + 702 (MEANTSUPP) + 703 (MEANRACE) + 710 (SESij)

720 (RACE;) + Y30 (TCHRSUPPO uoj + 113j +ru

The difference between this model and the model in the first example is the addition of predictor
variables for the intercept. It is useful to consider the interpretation of the additional coefficients
before comparing the effects of centering options. As shown by the level 2 model:

Yoo is the average achievement level across schools; the average value for Poi
yol is the change in the intercept Poi associated with mean SES for the school.
702 is the change in the intercept Po; associated with an increase in mean Teacher Support.
703 is the change in the intercept 130i associated with the proportion of non-minority
students in the school.

When the level 2 terms are substituted into the level 1 equation, it is possible to examine the
effects of individual characteristics as compared to group characteristics on individuals'
achievement. For example, yo, represents the group effect of SES while y,o represents the
individual effect.

Table 3 displays the results from analyses using three centering options and provides similar
information as that included in Table 1.

Table 3. Comparison of Centering Options for Means-As-Outcomes Model

Parameter Raw Metric Grand Mean
Centering

Group Mean
Centering

Yoo (se) 47.72 (.38) * 51.04 (.43) 47.71 (.38)

Yoi (se) (Mean SES) 2.46 (.28) 2.46 (.28) 6.56 (.25)

Yoe (se) (Mean TSUPP) 1.07 (.31) 1.07 (.31) 2.61 (.30)

703 (se) (Mean RACE) .52 (.53), NS .53 (.53), NS 4.38 (.46) Sig

ylo (se) (SES) 4.13 (.13) 4.13 (.13) 4.13 (.12)

y20 (se (RACE) 3.85 (.25) 3.85 (.25) 3.85 (.25)

Y30 (se) (TSUPP) 1.53 (.09) 1.53 (.09) 1.53 (.09)
Reliability of Bo .36 .36 .50

Reliability of B, .02 .02 .01

Reliability of B3 .11 .11 .11

Var Comp u0 3.75, df=651,p=.00 3.73, p=.00 3.85, p=.00
Var Comp III .20, df=654, p=.059 .20, p=.059 .09, p=.062
Var Comp u3 .63, df=654, p=.045 .63, p=.045 .59, p=.047
Var Comp ri; 65.07 65.07 65.15
* All coefficients were significant, p<.01 except where noted as "NS."
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Comparison of the coefficients obtained for the three centering options shows that, again,
results are nearly identical for raw metric scaling and grand mean centering, with the exception of
the intercepts (as expected). The coefficients for the predictors of the intercepts differ for group
mean centering versus the other two options. The differences are quite large and influence the
interpretations of the findings.

The values for Mean SES and Mean Teacher Support are higher for the group mean centered
model than for the others. Note, for example, that with grand mean centering, the coefficient for
Mean SES of the school is 2.46, while the coefficient for individuals is 4.13, roughly twice that
for schools. For the group centered model, the reverse is true; the coefficients are 6.56 for
schools and 4.13 for individuals. With grand mean centering, the results indicate that the SES for
individuals is more important than the average SES of the school for predicting individual's
achievement. With group mean centering, the results suggest that the school setting is more
important.

While the values for the SES coefficients changed under the different centering options, they all
remained statistically significant. This was not the case for the ethnicity variable, however.
Under grand mean centering and the raw metric approach, the coefficient for average proportion
of non-minorities in a school was approximately .52, which is not statistically significant. For
group mean centering, the coefficient was more than eight times higher at 4.38, which is
statistically significant. Under grand mean centering, the results suggest that there were
differences in achievement for the two ethnic groups but that the ethnic composition of the school
did not make a difference. Under group mean centering, the results indicate a statistically
significant effect for the school's ethnic composition.

Estimates of Explained Variance

Estimates of variance explained by this model appear in Table 4. Here, the estimate was
calculated to represent the increment in variance explained by the intercepts-as-outcomes model
as compared to the basic model (presented in demonstration 1). Thus, the original values of a2
and r2 used in the calculations are those that appear in Table 2.

Table 4. Comparison of Incremental R2 for Different Centering Methods for
Intercepts-as-Outcomes Model

Type of Centering
Within
Groups

2

Between
Groups

12

Level 1 Level 2

R21KD R21SB R22KD R22SB

Raw metric 65.69 3.82 .002 .02 .26 .16
Grand mean 65.69 3.82 .002 .02 .26 .16
Group mean 65.69 3.82 -.0002 .22 .83 .74

Again, results were identical for raw metric and group mean centering; and the results differed
for the two methods for calculating R2. An instance of a negative increase was noted for the
group mean centered model when the Kreft and de Leeuw formula was used. This occurred
because the within-groups variance increased from 65.68 for the basic model to 65.69 for the
intercepts-as-outcomes model. While the increase in within groups variance is small (as is the
associated decrease in explained variance), it may be attributable to model misspecification, given
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that the random components of the slopes, ul and u3 , which were statistically significant, were
omitted from the models in order to calculate R2. For all but the R2IKD estimates, group mean
centering resulted in a larger increase in explained variance.

Demonstration 3: Intercepts- and Slopes-as-Outcomes Model

For the next demonstration, an intercepts and slopes as outcomes model was run. The same
Level 1 model was run as in the previous demonstration, but Mean SES was included in the Level
2 model as a predictor of the SES slope.

Level 1: Yij = 130i + 131i (SESij) + 132i (RACEij) + 13i; (TCHRSUPPO + r

Level 2: 130, = Yoo + yol (MEANSES) + 702 (MEANTSUPP) + 703 ( MEANRACE)
Raj = yio+ Yii (MEANSES) + ui
32j = 720

133j 7 730+ U3j

Combining the Level 1 and 2 models results in the following:

Uoj

Yu = Yoo + Yol (MEANSES) + 702 (MEANTSUPP) + 703 ( MEANRACE)
[Y10+ y1 (MEANSES) + ul, ](SESu) + 72o (RACEu) + Y30 (TCHRSUPP,J) + u3; +rij.

Combining terms yields the following equation:

Yi; = Yoo + yol (MEANSES) + YO2 (MEANTSUPP) + 703 (MEANRACE) +

Ylo (SESu) yl 1 (MEANSES) (SESU) + 720 (RACEii) + 730 (TCHRSUPP1) +
U0i + Uli (SESij) + u31

The difference between this model and the model in the second example is the addition of a
predictor variable for the MEANSES slope. The addition of an explanatory variable for the slope
allows the researcher to consider if the relationship between the X variable (individual SES) and
the outcome (achievement) varies depending on the average SES for the school. In the level 2
model, the additional coefficients would be interpreted as follows:

yio is the average slope when individuals' SES is used to predict achievement

yl is the change in f3,j associated with the average SES for the school.

As described above, when the level 2 terms are substituted into the level 1 equation, it is
possible to examine the effects of individual versus group characteristics on individuals'
achievement and to see the cross-level interaction effects. In the combined equation, yli
represents the cross-level interaction and can be interpreted in the way interactions are generally
interpreted. In this example, the cross-level interaction estimates the effect on achievement of
particular combinations of school SES and individual SES, beyond the effects of school SES
alone and individual SES alone. Table 5 displays the results from analyses using three centering
options.
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Table 5. Comparison of Centering Options for
Intercepts- and Slopes-As-Outcomes Model*

Parameter Raw Metric Grand Mean
Centering

Group Mean
Centering

Yoo (se) 47.44 (.39) 50.79 (.44) 47.71 (.38)
701 (se) (Mean SES) 2.26 (.29) 2.28 (.29) 6.56 (.25)
702 (se) (Mean TSUPP) .93 (.32) .93 (.32) 2.61 (.30)
Yo3(se) (Mean RACE) .69 (.53)NS .69 (.53) NS 4.38 (.46) Sig

Ylo (se) (SES) 4.12 (.12) 4.12 (.13) 4.13 (.12)
yl I (se) (SES) (Mean
SES)

.51 (.21) Sig .51 (.21) Sig .23 (.26) NS

y20 (se) (RACE) 3.87 (.25) 3.87 (.25) 3.86 (.25)
Y30 (se) (TSUPP) 1.53 (.09) 1.53 (.09) 1.53 (.09)
Reliability of Bo .36 .36 .50
Reliability of B1 .03 .03 .01
Reliability of B3 .11 .11 .10
Var Comp uo 3.69, df=651,p=.000 3.67, p=.000 3.85, p=.000
Var Comp ul .27, df=653, p=.054 .27 , p=.054 .12, p=.060
Var Comp u3 .64, df=654, p=.044 .63, p=.044 .57, p=.047
Var Comp r11 65.04 65.05 65.14
* All coefficients were significant, p<.01 except where noted as "NS."

This model added a predictor variable for the SES slope, y,1, which estimates the cross-level
interaction effect. This coefficient is the term that was affected by the centering method. For raw
metric scaling and grand mean centering, the coefficient for yilindicates that a unit increase in the
average SES combined with a unit increase in individual SES produces a .51 increase in
achievement. With group mean centering, the coefficient is half as large (.23). With raw metric
scaling or grand mean centering, the cross-level interaction is statistically significant; but with
grand mean centering, the interaction is not significant.

Estimates of Variance Explained

Estimates of variance explained by this model appear in Table 6. Again, the estimates were
calculated to represent the increment in variance explained by the intercepts- and slopes-as-
outcomes model as compared to the intercepts-as-outcomes model (presented in demonstration
2). Thus, the original values of cy2 and T2 used in the calculations were those that appear in Table
4.
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Table 6. Comparison of Incremental R2 for Different Centering Methods for
Intercepts-and Slopes-as-Outcomes Model

Type of Centering
Within
Groups

cr2

Between
Groups

T2

Level 1 Level 2

R21 KD R2 I SB R22 KD R22SB

Raw metric 65.69 3.77 .000 .0007 .013 .007
Grand mean 65.69 3.77 .000 .0007 .013 .007
Group mean 65.69 3.83 .000 -.0001 -.003 -.001

These results show that increases in explained variance were very small for all three centering
methods, and there were two instances where the increase was negative. Again the values for R2
were different for group mean centering versus the other two approaches.

Using Centering to Address Specific Research Questions

The second part of the paper explores ways to use centering to address specific research questions.
The first section focuses on ways to examine contextual effects, and the second section deals
with cross-level interaction effects.

Studying Contextual Effects

Bryk and Raudenbush (1992) point out that researchers can use HLM to evaluate contextual effects,
that is, when the aggregate of a person-level characteristic is related to the outcome after controlling
for individual characteristics. Such models require that the aggregate value be included as a predictor
of the intercept (Cohen et al., 1997).

Grand mean and group mean centering were compared using the dataset described above and the
following intercepts-as-outcomes model:

Level 1:
Level 2:

Yij = 130j + 131 j (Xi) + rii

130j = Yoo Yoi

131j =Yio

Under grand mean centering, the combined model would be:

= yoo +yol(X.) + X..) + uo; + ru

Here, yol represents the contextual effect and yio is the individual effect. Under group mean
centering, the combined model would be:

Yi; = Yoo 4-Yol(X.;) + ylo(Xu X.;) + ucc, +

Determining the contextual effect requires combining like terms and subtracting:
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Yi1 Yoo +(Y131- Yio) (Xi) Ylo(Xu) + uoi + rij

Now, the contextual effect is represented by yor ylo. If the researcher were to use group mean
centering and omit the aggregate value as a level-2 predictor, the following combined equation would
be obtained:

Yii = Yoo Ylo (Xu) yio (X.i) + rii +uii

This model suggests that the effect of the group value for X is equal and exactly opposite of the
effect of individual's value on X, a finding that does not make sense.

Numerical ExampleDemonstration 4

To demonstrate the counterintuitive result that can occur from this type of misspecification, the
teacher support variable was used to predict scores on the reading and math achievement test by
running two different models. For Model 1, the school mean was not included as a level 2
predictor; for Model 2 it was. Teacher support was group mean centered for both models. Thus,
Model 1 was:

Yu = Poj + 131; (Xi; X.;) + rii

Poi = 700 +

Rlj =710

where is teacher support. By substitution:

= Yoo Yio (Xu) yio (X.) + rii +

Model 2 was:

= + pi; (xi; )(,) ru

Po; = 70o + Yoi (X.) + uji

[31j =Yio

And, by substitution:

)(J.; = Yoo +Yol(X.) + ylo(Xi; X.;) + ri;

For Model 1, the intercept was equal to 51.45 and ylo was equal to 1.54, resulting in the following
equation.

= 51.45 + 1.54 (Xu) 1.54 (X..)

The interpretation of these coefficients is that achievement increases by 1.54 for each unit
increase in an individual's value of perceived teacher support. But, for each unit increase in the
school mean value for teacher support, achievement scores decrease by 1.54. Thus, a student
who felt supported in an unsupportive environment would be expected to do better than the
student who felt supported in a supportive environment, a rather odd finding.
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The intercept and coefficient for ylo were the same in Model 2 as in Model 1. But, in Model
2, a value of 5.62 was found for yob resulting in the following prediction equation:

Yi; = 51.45 +5.62 (X.j) + 1.54(Xi; X.;)

The interpretation here is that a unit increase in the school's mean level of teacher support is
associated with a 5.62 increase in individual's achievement. And, for each unit increase above
the school mean, individuals increased their achievement scores by 1.54 points.

The equations for Model 1 and 2 were then used to predict individuals' achievement scores, and
the results were graphed. Factor scores on the Teacher Support factor were used to group
individuals into quartiles. Predicted achievement scores for individual in the lowest and highest
quartiles on the Teacher Support factor were included in the figures. Figure 1 shows the result for
Model 1, and Figure 2 shows the results for Model 2. Both figures show that achievement scores
are predicted to be higher for individuals who felt most strongly supported by their teachers than
for those who felt the least level of teacher support. However, in Figure 1, the school mean level
of teacher support is negatively related to achievement. In Figure 2, the relationship is positive.

[Insert Figures 1 and 2 about here]

This was replicated (just for verification purposes) by running two models in which achievement
was predicted by SES. The model which omitted the mean from level 2 produced the following
results:

= 51.45 + 4.53(Xii ) 4.53 (X.)

And, with the mean at level 2,

Yi; = 51.09 + 8.26 (X.) + 4.53 (Xi;

Cross-Level InteractionsDemonstration 5

Other research may examine cross-level effects, that is interactions between level 1 and level 2
variables. Cross-level interactions indicate that the relationship between the outcome measure and
a given level-1 variable differs over the values of a group-level variable. Cross-level interactions
are modeled by incorporating variables in the level-2 model as predictors for level-1 slopes. For
instance, in demonstration 3 above, Mean SES was included as a level-2 predictor for [iii, the
equation that modeled the relationship between individual's SES and achievement. Thus, the
cross-level interaction would test if the relationship between an individual's SES and his or her
achievement varied depending on the mean SES of the school the individual attended.

Hofmann and Gavin (1998) pointed out that often a model such as that used with demonstration
3 is proposed as a way for examining cross-level interactions. They note, however, that when
such a model is used along with grand mean centering, it is impossible to disentangle between-
group and within-group effects for cross-level interaction. For example, the following model
might be proposed:
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Level 1:
Level 2:

=130; + PI; (X;;) + ri;

Poj = Yoo + 701 W.j Uoj

pi; =y10+711 wj+uo;

where W is a school level predictor variable. Under grand mean centering, the combined model would
be (error terms omitted for simplicity):

= 700 ±Yoi(Wi) + X..) + 71, W.; (Xi; X..)

The cross-level interaction is represented by the final term, W (Xi.; ). The problem is that the
between-group and within-group effects cannot be partialled out; 71; is a mix of the between-group
and the within-group effects. Hofmann et al. (1998) show that this problem can be overcome by using
the following model:

Level 1:
Level 2:

Yij = Poj + Pk; (Xi) + rij

POj = 700 + 701 X.j + 702 W.j + 703 (XjWj) U0j

131j = 710+71i W.j U0j

Here, two predictor variables have been added to the level-2 model for the intercept. X J is the
group mean for variable X, which is needed under group mean centering as explained in
demonstration 4. XiWi is the term that makes it possible to disentangle the between- and within-
groups effects. Under group mean centering, the combined model is (error terms omitted for
simplicity):

Yij = 700 + 701 X. +702(Wj) + 703 (Xi W.j) 710 (Xij X j) + yliWi (Xis Xi)

The relevant portions of the model are the terms 703 (NW J) and y,, W X J). When multiplied
through, these terms become:

yo3 (X,W.,) + y,, (vv.; xi; ) (W.j X J).

Combining like terms yields:

(yo3 Yii )(XJW ) + Yl i (W XU ).

Here, (y03 y, ) estimates the effect of the between-group interaction, while 711 represents the within-
group interaction.

Examination of the same model under grand mean centering shows that the researcher still cannot
partial out the between-group and within-group effects of the interaction. Under grand mean centering
the model is:

Level 1:
Level 2:

Yi; =130; + 1; (Xi; X..)+ riJ

Rod = 700 + 701 X.j + 702 W.j yo3 (XjW.i) uo;

pi; ----710+711 w.; + uo;
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When combined:

Yij = 700 + YO1 X.j +702(Wj) + 703 (XjW..j) + yio X ) + 711 X..)

The relevant portions of the model are the terms 703 (XjW.i) and 711W.i (Xi X..). When multiplied
through, these terms become:

703 (XjW.j) + yti (W.., Xi; ) yi, (W; X..).

Here, there are no like terms to combine and the reader can see that yii is a mix of both between-
group and within-group effects.

To demonstrate, a model was run using group mean centering in which W.; was the School Climate
factor, x.; was the school level of SES, and Wi N was the interaction of the two. The combined
equation is repeated here for clarity:

Yij = 700 + 701 X.j +702(Wj) +.703 (XjW.j) + 710 (Xij X.j) + Yil W.j (Xij Xj)

Obtained values for the relevant coefficients were yol = .41, 702 = 7.79, y03 = .36, yi0 = 4.11, and yi
= -.05. These values indicate: (1) a unit increase in the value for the School Climate is associated
with a .41 increase in individuals' achievement; (2) a unit increase in the school's Mean SES is
associated with a 7.79 increase in individuals' achievement; (3) each unit increase in an individual's
SES in relation to the school's Mean SES is associated with a 4.11 increase in achievement; (4) a .05
decrease 2 in achievement is associated with a unit increase in individual SES combined with a unit
increase in School Climate; and (5) a .41 ( that is, .36 -.05) increase in achievement is associated
with the combination of a unit increase in School Climate and a unit increase in Mean SES. These
latter two effects are the cross-level interactions.

Summary

In this paper, we presented five numerical examples to demonstrate the effects of centering
choices on model parameters, explained variance, and interpretation of results. Demonstrations 1
through 3 show that results for raw metric scaling and grand mean centering tend to be similar
and tend to differ markedly from results obtained under group mean centering.

In demonstration 1, the between-groups variance estimate was more than five times as large
with group mean centering as with other methods. Hence, the increase in explained variance for
level 2 (compared to the fully unconditional model) was smaller for group mean centering than
for the other methods. In demonstration 2, parameter estimates varied considerably for raw
metric/grand mean centering versus group mean centering; and one of the school-level variables
(MEANRACE; representing proportion of whites and Asians in the school) was statistically
significant for group mean centering but not for the other methods. Also in demonstration 2, the
increase in R2 for level 2 under group mean centering was substantially larger than for the other
methods. In demonstration 3, the coefficient associated with the cross-level interaction was

2 This coefficient was not statistically significant, indicating that there was essentially no effect for School
Climate. We include it for demonstration purposes only.
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statistically significant under raw metric/grand mean centering but not significant under group
mean centering.

These types of differences lead to different interpretations of results, but these differences are
only apparent when multiple centering methods are used and compared. If the researcher had
chosen to use only one of the centering methods (as is more typically done), the types of
interpretations would depend on the choice of centering method.

Centering is useful for a number of reasons. As shown in Demonstrations 4 and 5, it can be
used to help disentangle and study between-group and within-group effects. Centering can also
enhance the interpretation of results and reduce collinearity, but it can also alter the results and
their interpretations. The advice offered by Kreft et al. (1995) is probably the most salient, "there
is no statistically correct choice among centering options, but rather the choice should be driven
by theory and by the intent of the research." The critical issue is that the researcher be aware of
how centering decisions affect the interpretation of the results to avoid unknowingly drawing
erroneous conclusions.
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