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PREFACE

It is an honor and pleasure for us to host the PME24 conference in Hiroshima, in the
memorial year of 2000. The theme for the PME24 conference is Major Issues in
Mathematics Education for the 21st Century. The theme for the plenary panel is
Teaching and Learning in School Mathematics. The Program Committee hopes that
the Plenary Addresses and Plenary Panel Discussion, as well as many personal
presentations will create an atmosphere of reflection, examination and discussion on
these significant issues.

The papers in the four volumes of the proceedings are grouped according to types of
presentations: Plenary Addresses, Plenary Panel, Research Forum, Project Groups,
Discussion Groups, Short Oral Communications, Poster Presentations, School Visit,
and Research Reports. The plenary addresses and the research forum papers appear
according to the order of presentation. The Groups are sequenced according to their
numbers. For other types of presentations, within each group, papers are sequenced
alphabetically by the name of the first author, with the name(s) of the presenting
author(s) underlined.

There are two cross-references to help readers identify papers of interest to them:
by research domain, according to the first author (p. 1-xxxvi);

by author, in the list of authors (p. 1-249).

We would like to extend our thanks to the Program Committee and to the reviewers
for their respective roles in working with the papers in these proceedings. We would
also like to express our sincere thanks to Hideki Iwasaki, Atsumi Ueda, and Takeshi
Yamaguchi for their dedication, cooperation and endless amount of work devoted to
the preparation of the proceedings.

This conference received support from many sources, without which we could not
have organized it to meet PME standards. We are grateful to the sponsors, especially
to the Commemorative Association for the Japan World Exposition (1970), the
Hiroshima Convention Bureau, and SHARP Corporation for their supports. Last, but
not least, many thanks to the members of the Local Organizing Committee and many
Japanese colleagues for sharing with us so willingly the responsibilites and for their
personal donations given to the enterprise.

Tadao Nakahara
Masataka Koyama
Hiroshima, July 2000
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THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF
MATHEMATICS EDUCATION (PME)

HISTORY AND AIMS OF PME

PME came into existence at the Third International Congress on Mathematics Education (ICME3)
held in Karlsruhe, Germany, in 1976. Its past presidents have been Efraim Fischbein (Israel),
Richard R. Skemp (UK), Gerard Vergnaud (France), Kevin F. Collis (Australia), Pear la Nesher
(Israel), Nicolas Balacheff (France), Kathleen Hart (UK), Carolyn Kieran (Canada) and Stephen
Lerman (UK).

The major goals of the Group are:

To promote international contacts and the exchange of scientific information in the psychology
of mathematics education;

To promote and stimulate interdisciplinary research in the aforesaid area with the cooperation of
psychologists, mathematicians and mathematics educators;

To further a deeper understanding into the psychological aspects of teaching and learning
mathematics and the implications thereof.

PME MEMBERSHIP AND RELATED INFORMATION

Membership is open to people involved in active research consistent with the. Group's goals, or
professionally interested in the results of such research. Membership is on an annual basis and
requires payment of the membership fees ($40 US or the equivalent in local currency) per year
(January to December). For participants of PME24 Conference, the membership fee is included in
the Conference Deposit. Others are requested to contact their Regional Contact or the Executive
Secretary:

Joop van Dormolen
Rehov Harofeh 48A/10
Haifa 34367, Israel
Phone: +972-4-8246239
Fax: +972-4-8258071
Email: tx.technion.ac.il

For more information about PME as an organization see its home page at:
http://members.tripod.com/-IGPME (case sensitive) or through the Executive Secretary.

HONORARY MEMBERS OF PME

Hans Freudenthal (The Netherlands, deceased)
Efraim Fischbein (Israel, deceased)

PRESENT OFFICERS OF PME

President: Gilah Leder (Australia)
Vice-president: Janet Ainley (UK)
Secretary: Vicki Zack (Canada)
Treasurer: Gard Brekke (Norway)
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Gilah Leder (LaTrobe University, Australia)
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PROCEEDINGS OF PREVIOUS PME CONFERENCES

Some proceedings of previous PME conferences can be purchased. For
information consult the web site http://igome.tripod.com/procee.html, or

contact the Executive Secretary, Joop van Dormolen, email:
joop@tx.technion.ac.il. Abstracts from articles in PME proceedings can be
inspected on the ERIC web site (http://www.askeric.org) and on the web site of
ZDM/MATHDI (http://www.emis.de/MATH/DI.html).
ERIC is a web online information service. All proceedings, except PMEI, are
included in ERIC. In the list below you can find the ERIC codes. The ERIC
abstracts can be read on the Internet site of Ask Eric (http://www.askeric.org).
From there click on button "Search for ERIC database". Then type the ERIC
number (see the list below) without spaces or enter other information (author,
title, keyword).
Micro fiches with the content of the proceedings might be available for
inspection at university libraries or can be bought from: ER1C/CSMEE, 1929
Kenny Road, Columbus, OH 43210-1080, Tel: (614) 292-6717, Fax: (614)
292-0263, e-mail: ericse@osu.edu
MATHDI is the web version of the Zentralblatt fur Didaktik der Mathematik
(ZDM, English subtitle: International Reviews on Mathematical Education).
For more information on ZDM/MATHDI and its prices or assistance regarding
consortia contact Gerhard Konig, managing director, fax: +49 7247 808 461,
email: gk@fiz-karlsruhe.de.

PME International
No. Year Place

1 1977 Utrecht, The Netherlands
2 1978 Osnabruck, Germany
3 1979 Warwick, United Kingdom
4 1980 Berkeley, USA
5 1981 Grenoble, France
6 1982 Antwerpen, Belgium
7 1983 Shoresh, Israel
8 1984 Sydney, Australia
9 1985 Noordwijkerhout,

The Netherlands
10 1986 London, United Kingdom
11 1987 Montreal, Canada
12 1988 Veszprem, Hungary
13 1989 Paris, France

14 1990 Oaxtepex, Mexico

ERIC number
not available in ERIC
ED226945
ED226956
ED250186
ED225809
ED226943
ED241295
ED306127
ED411130(vol.1), ED411131(vol.2)

ED287715
ED383532
ED411128(vol.1), ED411129(vol.2)
ED411140(vol.1), ED411141(vol.2),
ED411142(vol.3)
ED411137(vol.1), ED411138(vol.2),
ED411139(vol.3)



15 1991 Assisi, Italy

16 1992 Durham, USA
17 1993 Tsukuba, Japan
18 1994 Lisbon, Portugal
19 1995 Recife, Brazil

20 1996 Valencia, Spain
21 1997 Lahti,Finland

22 1998 Stellenbosch, South Africa

23 1999 Haifa, Israel

ED413162(vol.1),
ED413 6(vol.3)
ED383 538
ED383 536
ED383 537
ED411134(vol.1),
ED411136(vol.3)
being processed
ED416082(vol.1),
ED416084(vol.3),
ED427969(vol.1),
ED427971(vol.3),
being processed

ED413163(vol.2),

ED411135(vol.2),

ED416083(vol.2),
ED416085(vol.4)
ED427970(vol.2),
ED427972(vol.4)

PME North American Chapter
No. Year Place

Berkeley, California
(with PME2)

3 1981 Minnesota
4 1982 Georgia
5 1983 Montreal, Canada
6 1984 Wisconsin
7 1985 Ohio
8 1986 Michigan

Montreal, Canada
(with PMEI 1)

10 1988 Illinois
11 1989 New Jersey

12 1990 Oaxtepex, Mexico
(with PME14)

13 1991 Virginia (with PME l6)
14 1992 Durham, New Hampshire
15 1993 California
16 1994 Louisiana
17 1995 Ohio
18 1996 Panama City, Florida
19 1997 Normal, Illinois
20 1998 Raleigh, North Carolina
21 1999 Mexico
22 2000 Tucson, Arizona

2 1980

9 1987

ERIC number

ED250186

ED223449
ED226957
ED289688
ED253432
ED411127
ED301443

ED383532

ED411126
ED411132(vol.1),
ED411137(vol.1),
ED411139(vol.3)
ED352274
ED383538
ED372917
ED383533(vol.1),
ED398534
ED400178
ED420494(vol.1),
ED430775(vol.1),
being processed

ED411 133(vol.2)
ED411138(vol.2),

ED383534(vol.2)

ED420495(vol.2)
ED430776(vol.2)
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THE REVIEW PROCESS OF PME24

Reseach Forum

Three themes had been suggested by the Program Committee as research forum
themes for the PME24 conference: Dynamic Geometry; Language, Semiotics
and Mathematics Education; and Rational Numbers. The Program Committee
received only 4 research forum proposals for these themes (3 for the first theme,
none for the second theme, and 1 for the third theme). For the first theme, all
the proposals were reviewed and ranked by three reputable scholars with
expertise in the field. The Program Committee considered and generally
accepted the research forum coordinator's evaluation of the reviews and
ranking of the proposals. Consequently, 3 proposals were selected for the first
theme. For the second and third themes, the Program Committee had discussed
thoughtfully about the disappointing situation of only one or none proposal for
these themes. As a result, it was decided to cancel these forums.

Reseach Reports

The Program Committee received 159 research report proposals. Each proposal
was sent for blind review to three reviewers. As a rule, proposals with at least
two recommendations for acceptance were accepted. The reviews of proposals
with only one recommendation for acceptance were carefully read by at least
two members of the Program Committee. When necessary, the Program
Committee members read the full proposal and formally reviewed it. Proposals
with 3 recommendations for rejection were not considered for presentation as
research reports. Altogether, 117 research report proposals were accepted.
When appropriate, authors of proposals that were not accepted as research
reports were invited to re-submit their work some in the form of a short oral
communication and some as a poster presentation.

Short Oral Communications and Poster Presentations

The Program Committee received 53 short oral communication proposals and
22 poster presentation proposals. Each proposal was reviewed by at least two
Program Committee members. Altogether, 42 short oral proposals and 17
poster proposals were accepted. There were cases in which the Program
Committee did not accept a proposal in the form that it was intended but
invited the author(s) to present it in a different form.

After these reviewing procedures, the Program Committee recommended the
acceptance of presentations in the following format: 117 Research Reports, 64
Short Oral Communications, and 27 Poster Presentations.
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ABSTRACT:
This article gives a brief introduction to a new discipline called the cognitive science

of mathematics (Lakoff & Natlez, 2000), that is, the empirical and multidisciplinary
study of mathematics (itself) as a scientific subject matter. The theoretical background

of the arguments is based on embodied cognition, and on relatively recent findings in

cognitive linguistics. The article discusses Mathematical Idea Analysisthe set of
techniques for studying implicit (largely unconscious) conceptual structures in
mathematics. Particular attention is paid to everyday cognitive mechanisms such as

image schemas and conceptual metaphors, showing how they play a fundamental role

in constituting the very fabric of mathematics. The analyses, illustrated with a
discussion of some issues of set and hyperset theory, show that it is (human) meaning

what makes mathematics what it is: Mathematics is not transcendentally objective,
but it is not arbitrary either (not the result of pure social conventions). Some
implications for mathematics education are suggested.

Have you ever thought why (I mean, really why) the multiplication of two
negative numbers yields a positive one? Or why the empty class is a subclass of all

classes? And why is it a class at all, if it cannot be a class of anything? And why is it

unique? For most people, including mathematicians, physicists, engineers, and
computer scientists, the answers to these questions have a strong dogmatic component

(try these questions with your own colleagues!). It is common to encounter answers
such as "well, that's the way it is", or "I don't know exactly why, but I know it works

that way", and so on.
Within the culture of those who practice mathematics professionally, the

dogmatic answers to these questions usually follow from definitions, axioms, and

rules, they don't necessarily follow from genuine understanding. In those cases, the

validation of the answer is provided by proof, not necessarily by meaning. This
profound difference between determining that something is true and explaining why it

is true, can be seen in the following historical anecdote.
Benjamin Peirce, one of Harvard's leading mathematicians in the 19th century

(and the father of Charles Sanders Peirce), was once lecturing at Harvard on Euler's

proof that e + 1 = 0. In teaching this famous equation and its proof, he remarked,

"Gentlemen, that is surely true, it is absolutely paradoxical; we cannot

understand it, and we don't know what it means. But we have proved
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it, and therefore we know it must be truth." (cited in Maor, 1994, p.
160)

Of course Peirce was not the only mathematician (or mathematics teacher) to
fail to understand what e + 1 = 0 means. Even today, relatively few mathematics
teachers and students understand what the equation actually means. Yet generation
after generation of mathematics teachers and students continue to go
uncomprehendingly through one version or another of Euler's proof, understanding
only the regularity in the manipulations of the symbols, but not the ideas that make it
true. This is hardly an isolated example. Meaningless truth and meaningful sense-
making are fundamental components of many debates involving the nature of
mathematics.

In this plenary address, I want to show that it is meaning (i.e., human
meaningful ideas), what makes mathematics what it is, and that this meaning is not
arbitrary, not the result of pure social conventions. My arguments will be based on
contemporary embodied cognitive science. More specifically, I intend to show the
following:
1. That the nature of mathematics is about human ideas, not just, formal proofs,

axioms, and definitions (proofs, axioms, and definitions constitute only a part of
mathematics, which are also realized through precise sets of ideas).

2. That these ideas are grounded in species-specific everyday cognitive and bodily
mechanisms, therefore making mathematics a human enterprise, not a platonic and
transcendental entity.

3. That because of this grounding, mathematical ideas are not arbitrary, that is, they
are not the product of purely social and cultural conventions (although socio-
historical dimensions play key roles in the formation and development of ideas).

4. That the conceptual (and idea) structure that constitutes mathematics can be
studied empirically, through scientific methods.

5 . That a particular methodology based on embodied cognitive science
Mathematical Idea Analysiscan serve this purpose.

Most of the material I will present here is based on the work I have been developing
for several years in close collaboration with the cognitive linguist George Lakoff in
Berkeley (Lakoff & Ntifiez, 1997, 1998, 2000; Ntillez & Lakoff, 1998).

THE CONTEMPORARY STUDY OF IDEAS:

FROM ARMCHAIR PHILOSOPHY TO SCIENTIFIC UNDERSTANDING

Throughout history, many mathematicians have tried to answer the question of
the nature of meaning, truth, and ideas in mathematics. In the last century or so,
various influential mathematicians, such as Dedekind, Cantor, Hilbert, Poincare, and
Weyl, to mention only a few, suggested some answers which share important
elements. They all considered, in one way or another, human intuition as a
fundamental starting point for their philosophical investigations: Intuitions of small
integers, intuitions of collections, intuitions of movement in space, and so on (see
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Dedekind, 1888/1976; Dauben on Cantor (1979); Kitcher on Hilbert (1976); Poincare,
1913/1963; Weyl, 1918/1994). They saw these fundamental intuitions of the human
mind as being stable and profound to serve as basis for mathematics.'

These philosophical insights tell us something important. They implicitly say
that the edifice of mathematics is based on aspects of the human mind that lie outside
of mathematics proper (i.e., these intuitions themselves are not theorems, axioms or
definitions). However, beyond the philosophical and historical interest these insights
may have, when seen from the perspective of nowadays' scientific standards, they
present important limitations:

First, those mathematicians were professionally trained to do mathematics, not
necessarily to study ideas and intuitions. And their discipline, mathematics (as
such), does not study ideas or intuitions. Today, the study of ideas (concepts and
intuitions) itself is a scientific subject matter, and it is not anymore just a vague
and elusive philosophical object.
Second, the methodology they used was mainly introspectionthe subjective
investigation of one's own impressions, feelings, and thoughts. Now we know,
form substantial evidence in the scientific study of intuition and cognition, that
there are fundamental aspects of mental activity that are unconscious in nature and
therefore inaccessible to introspection.

The moral here is that pure philosophical inquiry and introspectionalthough very
importantgive, at best, a very limited picture of the conceptual structure that makes
mathematics possible. What is needed, in order to understand the nature and origin of
mathematics and of mathematical meaning, is to study mathematics itself (with its
intuitive grounding, its inferential structure, its symbol systems, etc.) as a scientific
subject matter. What is needed is a cognitive science of mathematics, a science of
mind-based mathematics (Lakoff & Ntifiez, 1997, 2000). From this perspective, the
answers to these issues should be in terms of those mechanisms underlying our
intuitions and ideas. That is, in terms of human cognitive, biological, and cultural
mechanisms, and not in terms of axioms, definitions, formal proofs, and theorems. Let
us see what important findings are helpful in providing those answers.

Embodied Cognitive Science and Recent Empirical Findings
about the Nature of Mind

In recent years, there have been revolutionary advances in cognitive science
the multidisciplinary scientific study of the mind. These advances have an important

But, they didn't think of these intuitions and basic ideas as being "rigorous" enough. This was a

major reason why, later, formalism would explicitly eliminate ideas, and go on to dominate the
foundational debates. Unfortunately, at that time philosophers and mathematicians didn't have the
scientific and theoretical tools we have today to see that human intuitions and ideas are indeed very
precise and rigorous, and that therefore the problems they were facing didn't have to do with lack of
rigor of ideas and intuitions. For details, see Nunez & Lakoff, 1998, and Lakoff & Nilez, 2000).
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bearing on our understanding of mathematics. Among the most profound of these new
insights are the following:
1. The embodiment of mind. The detailed nature and dynamics of our bodies, our

brains, and our everyday functioning in the world structures human concepts and
human reason. This includes mathematical concepts and mathematical reason.

2 . The cognitive unconscious. Most cognitive processes is unconsciousnot
repressed in the Freudian sense, but simply inaccessible to direct conscious
introspection. We cannot through introspection look directly at our conceptual
systems and at our low-level cognitive processes. This includes most mathematical
thought.

3. Metaphorical thought. For the most part, human beings conceptualize abstract
concepts in concrete terms, using precise inferential structure and modes of
reasoning grounded in the sensory motor system. The cognitive mechanism by
which the abstract is comprehended in terms of the concrete is called conceptual
metaphor'. Mathematical thought also makes use of conceptual metaphor, as when
we conceptualize numbers as points on a line, or space as sets of points.

In what follows I intend to give a general overview of how to apply these empirical
findings to the realm of mathematical ideas. That is, while taking mathematics as a
subject matter for cognitive science I will ask how certain domains in mathematics are
created and conceptualized. In doing so, I will show that it is with these recent
advances in cognitive science that a deep and grounded Mathematical Idea Analysis
becomes possible (for details, see Lakoff & Nunez, 2000). Keep in mind that the
major concern then is not just with what is true in mathematics, but with what
mathematical ideas mean, and why mathematical truths are true by virtue of what they
mean.

At this point it is important to mention that when I refer to cognitive science, I
refer to contemporary embodied oriented approaches (see, for instance, Johnson,
1987; Lakoff, 1987; Varela, Thompson, & Rosch, 1991; Nunez, 1995, 1999), which
are radically different from orthodox cognitive science. The latter builds on dualist,
functionalist, and objectivist assumptions, while the former has explicitly denied
them, especially, the mind-body split (dualism). For embodied oriented approaches
any theory of mind must take into account the peculiarities of brains, bodies, and the
environment in which they exist. Because of these reasons analyses of the sort I will
be giving below were not even imaginable in the days of orthodox cognitive science
of the disembodied mind, developed in the 1960s and early 1970s. In general, within
the traditional perspective, which under the form of neo-cognitivism (Freeman &
Nunez, 1999) is still very active today, thought is addressed in terms of the
manipulation of purely abstract symbols and concepts are seen as literal free of all
biological constraints and of discoveries about the brain.

I mention this, because, unfortunately, within the mathematics education
community, for many, cognitive science is synonymous with the orthodox view.

2
As we will see later, this is a technical term.

.4 5
1-6



Because of the various limitations that this traditional view has manifested over the
years, many researchers in mathematics education concerned with developmental,
social, and cultural factors have rejected cognitive science as a whole, assuming that it
had little to offer (Ntifiez, Edwards, & Matos, 1998). I want to make clear then, that
Mathematical Idea Analysis comes out of embodied oriented approaches to cognitive
science. For a deeper discussion of the differences between orthodox cognitive
science and recent embodied oriented cognitive science, see Ntifiez (1997), Lakoff &
Johnson (1999), and Niiiiez & Freeman (1999).

Ordinary Cognition and Mathematical Cognition

Substantial research in neuropsychology, child development, and animal
cognition suggests that all individuals of the species Homo Sapiens are born with a
capacity to distinguish among very small numbers of objects and events (e.g.,
subitizing) and to do the simplest arithmeticthe arithmetic of very small numbers
(for recent reviews on these and related issues, see Dehaene, 1997, and Butterworth,
1999). These findings are important for the understanding of the biological rudiments
of basic arithmetic. However, they tell us very little about the full complexity and
abstraction of mathematics. There is a lot more to mathematics than the arithmetic of
very small numbers. Trigonometry and calculus are very far from "3 minus 1 equals
2". Even realizing that zero is a number and that negative numbers are numbers took
centuries of sophisticated development. Extending numbers to the rationals, the reals,
the imaginaries, and the hyperreals requires an enormous cognitive apparatus that
goes well beyond what babies and animals and a normal adult without instruction can
do. So the question of the nature, origin, and meaning of mathematical ideas remains
open: What are the embodied cognitive capacities that allow one to go from such
innate basic numerical abilities to a deep and rich understanding of, say, college-level
mathematics?

George Lakoff and I have addressed this question, using methodologies from
the growing field of cognitive linguistics and psycholinguistics (more about this
below). According to what we have found to date, it appears that such advanced
mathematical abilities are not independent of the cognitive apparatus used outside of
mathematics. Rather, it appears that the cognitive structure of advanced mathematics
makes use of the kind of conceptual apparatus that is the stuff of ordinary everyday
thought such as image schemas, aspectual schemas, conceptual blends, and conceptual
metaphor3. Indeed, the last one is one of the most important ones, constituting the
very fabric of mathematics. It is present in all subfields of mathematics, as when we
conceptualize functions as sets of points, infinite sums as having a final unique
resultant state, or dynamic continuity as being static preservation of closeness
(Weierstrass's c---8 criteria).

3 Because of the scope of this presentation, here I will refer only to image schemas and conceptual

metaphor. I will describe them in the next section.



Let us now have a look at the theoretical background of Mathematical Idea
Analysis.

MATHEMATICAL IDEA ANALYSIS

Extending the study of the cognitive unconscious to mathematical cognition,
implies analyzing the way in which we implicitly understand mathematics as we do it
or talk about it. A large part of unconscious thought involves implicit rather than
explicit, automatic, immediate understandingmaking sense of things without having
conscious access to the cognitive mechanisms by which we make sense of things.
Ordinary everyday mathematical sense-making is not in the form of conscious proofs
from axioms nor is it always the result of explicit, conscious, goal-oriented
instruction. Most of our everyday mathematical understanding takes place without our
being able to explain exactly what we understood and how we understood it. What
Lakoff and I have done is to study everyday mathematical understanding of this
automatic unconscious sort and to ask the following crucial questions:

How much of mathematical understanding makes use of the same kinds of
conceptual mechanisms that are used in the understanding of ordinary,
nonmathematical domains?
Are the same cognitive mechanisms used to characterize ordinary ideas also used
to characterize mathematical ideas?
If yes, what is the biological or bodily grounding of such mechanisms?

We have found that a great many cognitive mechanisms that are not specifically
mathematical are used to characterize mathematical ideas. These include such
ordinary cognitive mechanisms as those used for basic spatial relations, groupings,
small quantities, motion, distributions of things in space, changes, bodily orientations,
basic manipulations of objects (e.g., rotating and stretching), iterated actions, and so
on.

Thus, for example:
Conceptualizing the technical mathematical concept of a class makes use of the
everyday concept of a collection of objects in a bounded region of space.
Conceptualizing the technical mathematical concept of recursion makes use of the
everyday concept of a repeated action.
Conceptualizing the technical mathematical concept of complex arithmetic makes
use of the everyday concept of rotation.
Conceptualizing derivatives in calculus requires making use of such everyday
concepts as motion, approaching a boundary, and so on.

From a nontechnical perspective, this should be completely obvious. But from the
technical perspective of cognitive science, there is a challenging question one must
ask:

Exactly what everyday concepts and cognitive mechanisms are used in exactly
what ways in the unconscious conceptualization of technical ideas, such that they
provide the precise inferential structure observed in mathematics?
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Mathematical Idea Analysis, depends crucially on the answers to this question. We
have found that mathematical ideas, are grounded in bodily-based mechanisms and
everyday experience. Many mathematical ideas are ways of mathematicizing ordinary
ideas, as when the idea of subtraction mathematizes the ordinary idea of distance, or
as when the idea of a derivative mathematicizes the ordinary idea of instantaneous
change. I will illustrate these findings in more detail with some examples taken from
set theory and hyperset theory. But because of the technicalities involved we must
first go over some basic notions of cognitive linguistics, necessary to understand those
examples.

Some Basic Notions of Cognitive Linguistics and the Embodied Mind

Recent developments in cognitive linguistics have been very fruitful in studying
high-level cognition from an embodiment perspective (e.g., natural language
understanding and conceptual systems). In particular, cognitive semantics (Sweetser,
1990, Talmy, 1999), conceptual integration (Fauconnier, 1997; Fauconnier & Turner,
1998) and conceptual metaphor theory (Lakoff, 1993; Lakoff & Johnson, 1980, 1999;
Gibbs, 1994) have proven to be very powerful. These approaches offer the possibility
of empirically studying the conceptual structure of vast systems of abstract concepts
through the largely unconscious, effortless, everyday linguistic manifestations. They
provide an excellent background for the development of Mathematical Idea Analysis.

Conceptual metaphor
An important finding in cognitive linguistics is that concepts are systematically

organized through vast networks of conceptual mappings, occurring in highly-
coordinated systems and combining in complex ways. For the most part these
conceptual mappings are used unconsciously and effortlessly in everyday
communication. An important kind of mapping is the one mentioned earlier,
conceptual metaphor.

It is important to keep in mind that conceptual metaphors are not mere figures
of speech, and that they are not just pedagogical tools used to illustrate some
educational material. Conceptual metaphors are in fact fundamental cognitive
mechanisms (technically, they are inference-preserving cross-domain mappings)
which project the inferential structure of a source domain onto a target domain,
allowing the use of effortless species-specific body-based inference to structure
abstract inference. For example, humans naturally conceptualize Time (target domain)
primarily in terms of Uni-dimensional Motion (source domain), either the motions of
future times toward an observer (as in "Christmas is approaching") or the motion of
an observer over a time landscape (as in "We're approaching Christmas"). That is,
our everyday concept of Time is inextricably related to the experience of uni-
dimensional motion. There are, of course, many more important details and variations
of this general Time As Motion mapping but their analyses would go beyond the
scope of this presentation. The point here, is that these conceptual metaphors (and
conceptual mappings in general) are irreducible, they are extremely precise (e.g., in
the Time As Motion example, their inferential structure preserves transitive relations),

1-9 .
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they are used extensively, effortlessly, unconsciously, and they are ultimately bodily
grounded (for details, see Lakoff & Johnson, 1999, Chapter 10; Naez, 1999).

Contrary to what some people think, conceptual metaphors (and conceptual
mappings in general) are not mere arbitrary social conventions. They are not arbitrary,
because they are structured by species-specific constrains underlying our everyday
experienceespecially bodily experience. For example, in most cultures Affection is
conceptualized in terms of thermic experience: Warmth (as in "He greeted me
warmly", or as in "send her my warm helloes"). The grounding of this mapping
doesn't depend (only) on social conventions. It emerges from the correlation all
individuals of the species experience, from early ontogenetic development, between
affection and the bodily experience of warmth. It is also important to mention that a
huge amount of the conceptual metaphors we use in everyday communication, such as
Affection Is Warmth, is not learned through explicit goal-oriented educational
intervention.

Research in contemporary conceptual metaphor theory indicates that there is an
extensive conventional system of conceptual metaphors in every human conceptual
system. As I said earlier, unlike traditional studies of metaphor, contemporary
embodied views don't see conceptual metaphors as residing in words, but in thought.
Metaphorical linguistic expressions thus are only surface manifestations of
metaphorical thought. These theoretical claims are based on substantial empirical
evidence from a variety of sources, including among others, psycholinguistic
experiments (Gibbs, 1994), cross-linguistic studies (Yu, 1998), generalizations over
inference patterns (Lakoff, 1987), generalizations over conventional and novel
language (Lakoff and Turner, 1989), the study of historical semantic change
(Sweetser, 1990), of language acquisition (C. Johnson, 1997), of spontaneous gestures
(McNeill, 1992), and of American sign language (Taub, 1997). Conceptual mappings
thus can be studied empirically, and stated precisely.

In what concerns mathematical concepts, Lakoff & Ntiiiez (2000) distinguish,
three important types of conceptual metaphors:

Grounding metaphors, which ground our understanding of mathematical ideas in
terms of everyday experience. In these cases, the target domain of the metaphor is
mathematical, but the source domain lies outside of mathematics. Examples
include the metaphor Classes Are Container Schemas (see below) and other
conceptual metaphors for arithmetic.
Redefinitional metaphors, which are metaphors that impose a technical
understanding replacing ordinary concepts (such as the conceptual metaphor used
by Georg Cantor to reconceptualize the notions of "more than" and "as many as"
for infinite sets).
Linking metaphors, which are metaphors within mathematics itself that allow us to
conceptualize one mathematical domain in terms of another mathematical domain.
In these cases, both domains of the mapping are mathematical. Examples include
Von Neumann's Numbers Are Sets metaphor, Functions Are Sets of Points, and as
we will see later, the Sets Are Graphs metaphor.
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The linking metaphors are in many ways the most interesting of these, since they are
part of the fabric of mathematics itself. They occur whenever one branch of
mathematics is used to model another, as happens frequently. Moreover, linking
metaphors are central to the creation, not only of new mathematical concepts, but
often to the creation of new branches of mathematics. Such classical branches of
mathematics as analytic geometry, trigonometry, and complex analysis owe their
existence to linking metaphors.

Spatial relation concepts and image schemas
Another important finding in cognitive linguistics is that conceptual systems

can be ultimately decomposed into primitive spatial relations concepts called image
schemas. Image schemas are basic dynamic topological and orientation structures that
characterize spatial inferences and link language to visual-motor experience (Johnson,
1987; Lakoff and Johnson, 1999). As we will see, an extremely important feature of
image schemas is that their inferential structure is preserved under metaphorical
mappings. Image schemas can be studied empirically through language (and
spontaneous gestures), in particular through the linguistic manifestation of spatial

relations.
Every language has a system of spatial relations, though they differ radically

from language to language. In English there are prepositions like in, on, through,
above, and so on. Other languages have systems that often differ radically from the
English system. However, the spatial relations in a given language decompose into
conceptual primitives (image schemas) that appear to be universal.

For example, the English word "on," in the sense used in "The book is on the
desk" is a composite of three primitive image schemas:

The Above Schema (the book is above the desk)
The Contact Schema (the book is in contact with the desk)
The Support Schema (the book is supported by the desk)

The Above Schema is orientational; it specifies an orientation in space relative to the
gravitational pull one feels on one's body. The Contact Schema is one of a number of
topological schemas; it indicates an absence of a gap. The Support Schema is force-
dynamic in nature; it indicates the direction and nature of a force. In general, static
image schemas fall into one of these categories: orientational, topological, and force-
dynamic. In other languages, the primitives may combine in very different ways. Not
all languages have a single concept like English on. For instance, even in a language
as close as German, the on in on the table is rendered as auf, while the on in on the
wall (which does not contain the Above Schema) is translated as an.

A common image schema that is of great importance in mathematics is the
Container Schema, which in everyday cognition occurs as the central part of the
meaning of words like in and out. The Container Schema has three parts: an Interior, a
Boundary, and an Exterior. This structure forms a gestalt, in the sense that the parts
make no sense without the whole. There is no Interior without a Boundary and an
Exterior, no Exterior without a Boundary and an Interior, and no Boundary without
sides, in this case an Inside and an Outside. This structure is topological in the sense
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that the boundary can be made larger, smaller, or distorted and still remain the
boundary of a Container Schema.

The schemas for the concepts In and Out, have a bit more structure than the
plain Container Schema. The concept In requires that the Interior of the Container
Schema be profiled, that is, that it must be highlighted over the Exterior and
Boundary. In addition, there is also a figure-ground distinction. For example, in a
sentence like "The car is in the garage," the garage is the ground, that is, it is the
landmark relative to which the car, the figure, is located. In cognitive linguistics, the
ground in an image schema is called the Landmark, and the figure is called the
Trajector. Thus, the In-Schema has the following structure:

Container Schema, with Interior, Boundary, and Exterior
Profiled: The Interior
Landmark: The Interior
Image schemas have a special cognitive function: they are both perceptual and

conceptual in nature. As such, they provide a bridge between language and reasoning
on the one hand and vision on the other. Image schemas can fit visual perception, as
when we see the milk as being in the glass. They can also be imposed on visual
scenes, as when we see the bees swarming in the garden, where there is no physical
container that the bees are in. Because spatial relations terms in a given language
name complex image schemas, image schemas are the link between language and
spatial perception.

We can now analyze how the inferential structure of image schemas (for
example, the Container Schema) is preserved under metaphorical mappings to
generate more abstract concepts (such as the concept of Boolean class). We shall see
exactly how image schemas provide the inferential structure to the source domain of
the conceptual metaphor, which via the mapping is projected onto the target domain
of the metaphor to generate Boolean-class inferences.

Image schema structure and metaphorical projections
When we draw illustrations of Container Schemas, we find that they look rather

like Venn Diagrams for Boolean classes. This is by no means an accident. The reason
is that classes are normally conceptualized in terms of Container Schemas. For
instance, we think (and speak) of elements as being in or out of a class. Venn
Diagrams are visual instantiations of Container Schemas. The reason that Venn
diagrams work as symbolizations of classes is that classes are usually metaphorically
conceptualized as containers that is, as bounded regions in space.

Container Schemas have a logic that appears to arise from the structure of our
visual and imaging system, adapted for more general use. More specifically,
Container Schemas appear to be realized neurally using such brain mechanisms as
topographic maps of the visual field, center-surround receptive fields, gating circuitry,
and so on (Regier, 1996). The inferential structure of these schemas can be used both
for structuring space and for more abstract reason, and is projected onto our everyday
conceptual system by a particular conceptual metaphor, the Categories (or 'Classes')
Are Containers metaphor. This accounts for part (by no means all!) of our reasoning
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about conceptual categories. Boolean logic also arises from our capacity to perceive
the world in terms of container schemas and to form mental images using them.

So, how do we normally conceptualize the intuitive premathematical notion of
classes? The answer is in terms of Container Schemas. In other words, we normally
conceptualize a class of entities in terms of a bounded region of space, with members
of the class all inside the bounded region and nonmembers outside of the bounded
region. From a cognitive perspective, intuitive classes are thus metaphorical
conceptual containers, characterized cognitively by a metaphorical mapping a
grounding metaphor the Classes Are Containers Schemas metaphor. The following
is the mapping of such conceptual metaphor.

Classes Are Containers

Source Domain
Container Schemas

Target Domain
Classes

Interiors Of Container Schemas > Classes

Objects in Interiors > Class members

Being an Object in an Interior --> The Membership Relation

An Interior of one Container Schema
within a Larger One

> A subclass in a Larger Class

The Overlap of the Interiors of Two
Container Schemas

> The Intersection of Two Classes

The Totality of the Interiors of Two
Container Schemas

> The Union of Two Classes

The Exterior of a Container Schemas -9 The Complement of a Class

This is our natural, everyday unconscious conceptual metaphor for what a class It
is a grounding metaphor. It grounds our concept of a class in our concept of a
bounded region in space, via the conceptual apparatus of the image schema for
containment. This is the way we conceptualize classes in everyday life.

We can now analyze, how conceptual image schemas (in this case, Container
Schemas) are the source of four fundamental inferential laws of logic. The structural
constraints on Container Schemas mentioned earlier (i.e., brain mechanisms such as
topographic maps of the visual field, center-surround receptive fields, gating circuitry,
etc.) give them an inferential structure, which Lakoff and I called "Laws of Container
Schemas" (Lakoff & I111fiez, 2000). These so-called "laws" are conceptual in nature
and are reflections at the cognitive level of brain structures at the neural level (see
Figure 1). The four inferential laws are Container Schema versions of classical logical
laws: Excluded Middle, Modus Ponens, Hypothetical Syllogism, and Modus Tollens.
Let's see the details.

Inferential Laws of Embodied Container Schemas:
Excluded Middle. Every object X is either in Container Schema A or out of
Container Schema A.
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Modus Ponens: Given two Container Schemas A and B and an object X, if A is in B
and X is in A, then Xis in B.
Hypothetical Syllogism: Given three Container Schemas A, B and C, if A is in B
and B is in C, then A is in C.
Modus Tollens: Given two Container Schemas A and B and an object Y, if A is in
B and Y is outside of B, then Y is outside of A.

Figure I. The "laws" of cognitive Container Schemas. The figure shows one cognitive
Container Schema, A, occurring inside another, B. By inspection, one can see that if X is
in A, then X is in B, and that if Y is outside of B, then Y is outside of A. We conceptualize
physical containers in terms of cognitive containers. Cognitive Container Schemas are
used not only in perception and imagination but also in conceptualization, as when we
conceptualize bees as swarming in the garden. Container Schemas are the cognitive
structures that allow us to make sense of familiar Venn diagrams.

Now, recall that conceptual metaphors allow the inferential structure of the
source domain to be used to structure the target domain. So, the Classes Are
Containers Metaphor maps the inferential laws given above for embodied Container
Schemas (source domain) onto conceptual classes (target domain). These include both
everyday classes and Boolean classes, which are metaphorical extensions of everyday
classes. The entailment of such conceptual mapping is the following:

Inferential Laws for Classes Mapped from Embodied Container Schemas
Excluded Middle. Every element X is either a member of class A or not a member
of class A.
Modus Ponens: Given two classes A and B and an element X, if A is a subclass B
and X is a member of A, then X is a member of B.
Hypothetical Syllogism: Given three classes A, B, and C, if A is a subclass of B and
B is a subclass of C, then A is a subclass of C.
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Modus To llens: Given two classes A and B and an element Y, if A is a subclass of B
and Y is not a member of B, then Y is not a member of A.

The moral then is that these traditional laws of logic are in fact cognitive entities
and, as such, are grounded in the neural structures that characterize Container
Schemas. In other words, these laws are part of our bodies. Since they do not
transcend our bodies, they are not laws of any transcendent reason. The truths of these
traditional laws of logic are thus not dogmatic. They are true by virtue of what they
mean.

This completes our brief and general overview of some crucial concepts of
cognitive linguistics. Let us now see how this background can be used to apply a
Mathematical Idea Analysis to some specific mathematical domains, Set theory and
Hyperset theory.

ARE HYPERSETS, SETS?
A VIEW FROM MATHEMATICAL IDEA ANALYSIS

Consider the following question in modern mathematics: Are hypersets, sets? If
not, what are they? We will now see, what embodied cognitive science can say about
this. Since hypersets and sets are human (technical, mathematical) ideas we can
provide an answer through Mathematical Idea Analysis. This is what we can say.

Sets
On the formalist view of the axiomatic method, a "set" is any mathematical

structure that "satisfies" the axioms of set theory as written in symbols. The
traditional axioms for set theory (the Zermelo-Fraenkel axioms) are often taught as
being about sets conceptualized as containers. Many writers speak of sets as
"containing" their members, and most students think of them that way. Even the
choice of the word "member" suggests such a reading, as do the Venn diagrams used
to introduce the subject. But if you look carefully through those axioms, you will find
nothing in them that characterizes a container. The terms "set" and "member of are
both taken as undefined primitives. In formal mathematics, that means that they can
be anything that fits the axioms. Here are the classic Zermelo-Fraenkel axioms,
including the axiom of choice, what are commonly called the ZFC axioms.

The axiom of extension: Two sets are equal if and only if they have the same
members. In other words, a set is uniquely determined by its members.
The axiom of specification: Given a set A and a one-place predicate, P(x) that is
either true or false of each member of A, there exists a subset of A whose members
are exactly those members of A for which P(x) is true.
The axiom of pairing: For any two sets, there exists a set that they are both
members of.
The axiom of union: For every collection of sets, there is a set whose members are
exactly the members of the sets of that collection.
The axiom of powers: For each set A, there is a set P(A) whose members are
exactly the subsets of set A.
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The axiom of infinity: There exists a set A such that (1) the empty set is a member
of A, and (ii) if x is a member of A, then the successor of x is a member of A.
The axiom of choice: Given a disjointed set S whose members are nonempty sets,
there exists a set C which has as its members one and only one element from each
member of S.

You can see that there is absolutely nothing in these axioms that explicitly requires
sets to be containers. What these axioms do, collectively, is to create entities called
"sets," first from elements and then from previously created sets. The axioms do not
say explicitly how sets are to be conceptualized.

The point here is that, within formal mathematics, where all mathematical
concepts are mapped onto set-theoretical structures, the "sets" used in these structures
are not technically conceptualized as the Container Schemas we described above.
They do not have container-schema structure with an interior, boundary, and exterior
at all. Indeed, within formal mathematics, there are no concepts at all, and hence sets
are not conceptualized as anything in particular. They are undefined entities whose
only constraints are that they must "fit" the axioms. For formal logicians and model
theorists, sets are those entities that fit the axioms and are used in the modeling of
other branches of mathematics.

Of course, most of us do conceptualize sets in terms of Container Schemas, and
that is perfectly consistent with the axioms given above. However, when we
conceptualize sets as Container Schemas, a particular entailment follows
automatically: Sets cannot be members of themselves, since containers cannot be
inside themselves. But strictly speaking, this entailment does not follow from the
axioms themselves, but rather from our metaphorical understanding of sets in terms of
containers. The above axioms do not rule out sets that contain themselves. Indeed, an
extra axiom was proposed by Von Neumann to rule out this possibility:

The Axiom of Foundation: There are no infinite descending sequences of sets
under the membership relation. That is, ... E S, E . . . E S is ruled out.

Since allowing sets to be members of themselves would result in such a sequence, this
axiom has the indirect effect of ruling out self-membership.

Hypersets
Technically within formal mathematics, model theory has nothing to do with

everyday understanding. Model-theorists do not depend upon our ordinary container-
based concept of a set. Indeed, certain model-theorists have found that our ordinary
grounding metaphor that Classes Are Container Schemas gets in the way of modeling
kinds of phenomena they want to model, especially recursive phenomena. For
example, take expressions like

1x = +
1

1+
1 +

If we observe carefully, we can see that the denominator of the main fraction has in
fact the value defined for x itself. In other words the above expression is equivalent to
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Such recursive expressions are common in mathematics and computer science. The
.possibilities for modeling such expressions using "sets" are ruled out if the only kind
of "sets" used in the modeling must be ones that cannot have themselves as members.
Set-theorists have realized that a new non-container metaphor is needed for thinking
about sets, and have explicitly constructed one (see Barwise and Moss, 1991).

The idea is to use graphs, not containers, for characterizing sets. The kinds of
graphs used are Accessible Pointed Graphs, or APGs. "Pointed" indicates an
asymmetric relation between nodes in the graph, indicated visually by an arrow
pointing from one node to anotheror from one node back to that node itself (see
Figure 2). "Accessible" indicates that there is a. single node which is linked to all other
nodes in the graph, and can therefore be "accessed" from any other node.

(a) (6) (c)

Figure 2. Hypersets: Sets conceptualized as graphs, with the empty set as the graph with
no arrows leading from it. The set containing the empty set is a graph whose root has
one arrow leading to the empty set (a). Illustration (b) depicts a graph of a set that is a
"member" of itself, under the Sets Are Graphs Metaphor. Illustration (c) depicts an
infinitely long chain of nodes in an infinite graph, which is equivalent to (b).

From the axiomatic perspective, they have replaced the Axiom of Foundation
with another axiom that implies its negation, the "Anti-Foundation Axiom." From the
perspective of Mathematical Idea Analysis they have implicitly used a conceptual
metaphor, a linking metaphor whose mapping is the following:

The Sets Are Graphs Metaphor

Source Domain

Accessible Pointed Graphs

Target Domain

Sets

An APG > The Membership Structure of a Set

An Arrow ---> The Membership Relation

Nodes That Are Tails of Arrows -4 Sets

Decorations on Nodes that are Heads of

Arrows
> Members

APG's With No Loops ) Classical Sets With The Foundation
Axiom

APG's With or Without Loops 4 Hypersets With the Anti-Foundation
Axiom
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The effect of this metaphor is to eliminate the notion of containment from the concept
of a "set." The graphs have no notion of containment built into them at all. And
containment is not modeled by the graphs.

Graphs that have no loops satisfy the ZFC axioms and the Axiom of
Foundation. They thus work just like sets conceptualized as containers. But graphs
that do have loops model sets that can "have themselves as members." They do not
work like sets that are conceptualized as containers, and they do not satisfy the Axiom
of Foundation.

A "hyperset" is an APG that may or may not contain loops. Hypersets thus do
not fit the Axiom of Foundation, but rather another axiom with the opposite intent:

The Anti-Foundation Axiom: Every APG pictures a unique set.
The fact that hypersets satisfy the Zermelo-Fraenkel axioms confirms what we

said above: The Zermelo- Fraenkel axioms for set theorythe ones generally accepted
in mathematicsdo not define our ordinary concept of a set as a container at all!
That is, the axioms of "set theory" are not, and were never meant to be, about what we
ordinarily call "sets", which we conceptualize in terms of Container Schemas.

So, What are sets, really?
Here we see the power of conceptual metaphor in mathematics. Sets,

conceptualized in everyday terms as containers, do not have the right properties to
model everything needed. So we can now metaphorically reconceptualize "sets" to
exclude containment by using certain kinds of graphs. The only confusing thing is that
this special case of graph theory is still called "set theory" for historical reasons.

Because of this misleading terminology, it is sometimes said that the theory of
hypersets is "a set theory in which sets can contain themselves." From a cognitive
point of view this is completely misleading because it is not a theory of "sets" as we
ordinarily understand them in terms of containment. The reason that these graph
theoretical objects are called "sets" is a functional one: they play the role in modeling
axioms that classical sets with the Axiom of Foundation used to play.

The moral is that mathematics has (at least) two quite inconsistent metaphorical
conceptions of sets, one in terms of Container Schemas (a grounding metaphor) and
one in terms of graphs (a linking metaphor). Is one of these conceptions right and the
other wrong? There is a perspective from which one might think so, a perspective that
says that there must be only one literal correct notion of a "set". But from the
perspective of Mathematical Idea Analysis these two distinct notions of "set" define
different and mutually inconsistent subject matters, conceptualized via radically
different conceptual metaphors. This situation is much more common in mathematics
than the general public normally recognizes. It is Mathematical Idea Analysis that
helps us to see and analyze these situations, by making explicit what is cognitively
implicit.
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EPILOGUE: SOME SPECULATIONS ABOUT THE IMPLICATIONS OF MATHEMATICAL
IDEA ANALYSIS FOR MATHEMATICS EDUCATION

I would like to close my presentation, making some general remarks about
possible implications of Mathematical Idea Analysis for mathematics education in
general, and for the psychology of mathematics education in particular. This is by no
means an exhaustive list. It is simply an open list to be taken as a proposal for
discussion during the various sessions of the PME-2000 meeting.

In a nutshell, I could say that the deepest implication that Mathematical Idea
Analysis provides, is the kind of philosophy of mathematics and of mathematics
education that it brings forth. The approach presented here gives a portrait of
mathematics that is fundamentally human. Concepts and ideas are human, and the
truths that come out of them are relative to human conceptual systems. This includes
mathematics. It follows from this perspective that teaching mathematics implies
teaching human meaning, and teaching why theorems are true by virtue of what the
elements involved actually mean. From this perspective at least the following
implications can be mentioned:

Mathematics education should demystify truth, proof, definitions, and formalisms.
Although they are relevant, they should be taught in the context of the underlying
human ideas. Therefore questions like those in the first paragraph of this article
should be taken very seriously in the educational process.
Mathematics Education should also demystify the belief that meaning, intuition,
and ideas are vague and (purely) subjective. Human ideas and meaning have an
impressive amount of bodily grounded constrains that make them non-arbitrary.
Mathematics should be taught as a human enterprise, with its cultural and
historical dimensions (which shouldn't just be a presentation of dates and a
chronological list of events). These human dimensions should include those
moments of doubts, hesitations, triumphs, and insights that shaped the historical
process of sense-making.
New generations of mathematics teachers, not only should have a good
background in education, history, and philosophy, but they should also have some
knowledge of cognitive science, in particular of the empirical study of conceptual
structures and of everyday unconscious inferential mechanisms. They should know
what is the implicit conceptual structure of the ideas they have to teach.
The so-called "misconceptions" are not really misconceptions. This term as it is
implies that there is a "wrong" conception, wrong relative to some "truth". But
Mathematical Idea Analysis shows that there are no wrong conceptions as such,
but rather variations of ideas and conceptual systems with different inferential
structures (sometimes even inconsistent with each other, as we saw for the case of

sets and hypersets).
From a pedagogical point of view then, it would be very important to identify what

are exactly the variations of inferential structure that generate the so-called
misconceptions. By making this explicit, a pedagogical intervention should follow
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for inducing students to operate with the appropriate conceptual mappings that
bring forth the inferential structure required by the mathematical idea in question.
When applied properly, Mathematical Idea Analysis can serve as a tool for helping
people (especially adolescents and adults) to become aware of the organization,
limitations, and potentials of their own conceptual systems, making explicit (and
conscious) what in everyday life is implicit (and unconscious).
"Being good at mathematics" doesn't necessarily mean being good at doing
calculations and running algorithms. It means knowing how to keep one's
metaphors straight, when to operate with the appropriate metaphors, when to shift
from one to another one, when to combine them, and so on. Teaching how to
master this conceptual gymnastics should be a goal for mathematics education.
Beyond the mathematical content as such, the empirical study of conceptual
systems can also give important insights into the attitudes and beliefs, students
have about mathematics. The detailed study of students' conceptual structures
underlying their linguistic expressions can reveal the origin of difficulties, lack of
motivation, anxieties, and so on, that may be interfering with the learning of
mathematics.

As you can see, this is far from being an exhaustive list. I believe that the cognitive
science of mathematics, and Mathematical Idea Analysis in particular, provide a rich
and deep tool, with a solid theoretical background, for bringing back human meaning
into mathematics. The invitation is then extended for exploring how this can be
accomplished in the process of teaching this astonishing conceptual structure called
mathematics.
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INSIDE AND OUTSIDE: SPACES, TIMES AND LANGUAGE
IN PROOF PRODUCTION

Ferdinando Arzarello (°)
Dipartimento di Matematica, University di Torino, Italia

Abstract. The paper focuses on some cognitive and didactical phenomena which feature
processes and products of pupils (grades 7-12), who learn 'mathematical proof within techno-
logical environments. Language and Time reveal crucial and assume specific features when
subjects interact with artefacts and instruments, because of the semiotic mediation by precise
interventions of the teacher. The main issues in the analysis of students' performances consist in
metaphors, deictics, mental times, narratives, functions of dragging, abductions, linear vs.
multivariate language and so on, to be used within an embodied cognition perspective. The learning
of proof is described as a long process of interiorisation, through specific and complex mental
dynamics of pupils, from perceptions and actions within technological environments towards
structured abstract mathematical objects, embedded in a theoretical framework.

Introduction
The purpose of this paper is to focus on the genesis of (abstract) mathematical objects
within specific mathematical areas, when pupils interact with technological artefacts
and instruments (for the distinction see: Bartolini Bussi & Mariotti, 1999a), in
particular the computer. The term 'mathematical object' is used here in a wide sense,
which covers concepts (including representations: see Vergnaud, 1990) as well as
relationships among them: we call structured mathematical object' such a cluster and
use the abbreviation SMO to denote it. An example of SMO is the set of natural
numbers (represented, let us say, in base ten): it is a set equipped with the function of
successor, the usual operations and their properties.

More specifically, the paper sketches a theoretical framework, where some
major variables in the genesis of SMOs are described and scrutinised; the model is
based on the analysis of processes and products in pupils (aged 12 to 18) who
approach 'mathematical proof in the classroom2. In some cases, students work within

( °) The results are based on a joint research, funded by the Italian Ministry of the University
(MURST), which involves many Italian researchers (all their presentations at the last PME's have
been obtained within such a project) and that I co-ordinate. In particular the following people have
contributed to the theoretical elaboration as well as to the experimental work: V.Andriano, P.Boero,
M.G.Bartolini Bussi, G.Gallino, R.Garuti, M.A.Mariotti, M.Maschietto, F.Olivero, D.Paola,
O.Robutti. A special acknowledgement is due to P.Boero, M.G.Bartolini Bussi, F.Olivero, D.Paola
and O.Robutti for their useful criticism and suggestions in the writing of the manuscript.

SMOs have some similarity with the way mathematical entities are presented in category theory,
namely as objects equipped with arrows and represented through diagrams.
2 In the whole, about 100 students were involved in our research: they have been observed and
video-taped while exploring situations, conjecturing hypotheses, proving properties (generally in
peer or group interaction); moreover their written protocols (sometimes individual, sometimes not)
were studied. The pupils belong to various schools in different parts of Northern Italy, where the
research-teachers of our project work. Generally, pupils of 14-18 years attend the Liceo Scientifico
(that is a high school with a scientific option), whilst the youngest (12-13 y.) attend the last years of
the junior secondary school.
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computer-based environments (e.g. Cabri-Geometre) or interact with other artefacts
(e.g. Mathematical Mechanisms), in other cases they simply use paper and pencil; the
mathematical areas exploited are Geometry and (elementary) Number Theory.

The genesis of SMOs will be pictured as a dynamic evolution from perceptions,
deictics3, actions to mathematical objects, symbols, relationships through a complex
setting of transformational processes, which involve two main tools or categories:

(i) language (in its different forms: body 1., oral I., written 1.), by means of
which subjects start, develop and support the whole genetic process;

(ii) time, as a psychological category which represents the mental environment
where the genetic process of SMOs 'is born' and 'lives'.

The paper is divided into three sections: in Section 1 the theoretical framework
is discussed; in Section 2 time and language are analysed with respect to the mental
processes of pupils who are constructing SMOs; in Section 3 an emblematic case
study is discussed; some provisional conclusions are sketched at the end of the paper.

1. The theoretical framework
The nature and construction of mathematical objects is a main topic in Mathematics
Education (Harel & Tall, 1991; Sfard, 1994, 1998). A fascinating point concerns the
"question of the primary sources of our understanding" (Sfard, ibid., p.45), of the
genesis of mathematical concepts and of their relationships with pupils' pre- and
extra-school experience. A complete investigation of the problem is beyond the
purpose of this paper. What we are interested in is the embodied cognition
perspective (see: Johnson, 1987; Lakoff & Johnson, 1980; Lakoff & Nrniez, 1996;
Thurston, 1994) with particular respect to the following issues:

metaphors as grounding and producing basic mathematics concepts (Lakoff &
Johnson, 1980; Sfard, 1994; Radford, 1999, 2000);
mind times, as mental environments where the subjects put and transform the
experienced facts (Boero et al., 1996; Guala & Boero, 1999);
narratives, through which subjects make meanings for what they have previously
experienced by building up mathematical stories (Love, 1995; Mason & Heal,
1995; Nemirovski, 1996; Scrivener, 1995).

We shall now elaborate the sense that such notions have within our framework.
The issue of embodiment, that is "to put the body back into the mind" (Johnson,

1987, p.xvi), assumes in our research a particular flavour, insofar a mathematical
proof may seem very far from our bodily experience, and discovering how a typically
conceptual activity, as proving is, has its roots in "perceptual, motor-program,
emotional, historical, social and linguistic experience" (Johnson, ibid.), reveals very

The deictic function of language (see Radford, 1999, 2000) allows to indicate directly in the
discourse some object which has not a name: words like "this", "that" are typically exploiting a
deictic function.
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intriguing. Embodiment and proof become particularly intermingled when pupils
interact with an artefact, e.g. a mechanism, a computer with a dynamic geometry
software (Bartolini Bussi, 1993; Mariotti & Bartolini Bussi, 1998, Bartolini Bussi et
al., 1999c), or work within fields of experience (Boero et al., 1995b), e.g. the field of
shadows (Boero et al., 1995c) or the field of natural numbers, conceived as chains
built up from counting processes (Gallistel & Gelman, 1992). In such cases language
and time reveal crucial, respectively as a tool and as a mental environment, which
support the genetic process from perceptions towards SMOs and mathematical proof.

In fact, proving4 is an activity where discursive and semiotic processes are
essential, while the formalistic aspects are not so important (see Arzarello, 2000):

"to expose, or to find, a proof people certainly argue, in various ways, discursive or
pictorial, possibly resorting to rhetorical expedients, with all the resources of conversation,

but with a special aim ... that of letting the interlocutor see a certain pattern, a series of
links connecting chunks of knowledge" (Lolli, 1999, quoted in Arzarello, 2000).

At this point, mathematical embodiment knocks on the door. But how does this
effectively enter the game? We shall argue that language and time are the two right
ingredients to look at in order to grasp the genetic processes of pupils towards proof.
The approach we shall develop takes into account the semiotic analysis of
generalisation processes given by Radford (Radford, 1999, 2000). In a detailed study
of novices' performances who, working in group and interacting each other, try to
generalise and write in algebraic form regularities that are discovered in so called
'figural numbers', Radford points out that the transition to the abstract general
algebraic formula is trigged and supported by two main functions of language, deeply
intermingled with the metaphoric function:

(i) the deictic function (see note 3);
(ii) the generative action function (which supplies the conceptual dimension for

generalising: see also the notion of grounding metaphor for functions in Lakoff &
Nunez, 1996).

According to Radford's analysis, the two functions start and support the genesis
of SMOs in algebra (in our terminology): language produces surrogates for (not yet
existing) mathematical objects, which are grounded in the subjects' knowledge and
fields of experience; metaphors are the tools by which subjects express this link and
start creating that conceptual dimension, which will reveal essential for the
construction of the mathematical object self.

Our claim is that deictic and generative action functions are present and
important also in the geometric context, for example when pupils explore situations
and formulate conjectures using Cabri or Mathematical Mechanisms. The way things

We use the word proof referring both to proof as a final (usually written) product and to the
proving process (see Douek, 1999); the meaning we refer to each time will be clear from the
context.
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happen is specific of the artefact. In particular, the generative action of (some types
of) dragging reveals crucial (Arzarello et al., 1998b) with Cabri.

Moreover, observations of interaction and of dragging in peers working at the
same computer with only one mouse show that a major component of pupils'
behaviours and dynamics is time. This component appears also in other contexts:
research carried out by Boero and his co-workers (Boero et al. 1996; Guala & Boero,
1999) has shown the relevance of mental times to analyse the components of mental
dynamics in pupils working in different contexts. Guala & Boero introduce some
categories for mental time: t. of past experience, contemporaneity t., exploration t.,
synchronous connection t.. All of them are more or less guided by the image of an
order in a continuum of events (or in more continua), which can be transformed or
seen in different ways by the subject. Guala & Boero's categories for mental time are
important also in our study, especially for analysing the processes of generation of
conditionality.

However, our research has shown also other aspects after which mental time
enters into the genesis of SMOs, namely 'tempos's , with consequent problems of
synchronisation: see 2.2 for examples and comments. Tempos' and orders are crucial
for the genetic process of SMOs and it will be shown that an artefact like Cabri seems
to facilitate their activation 6.

2. Language and Time
Language is a crucial tool through which pupils, possibly with the support of
teachers, elaborate their daily experience towards more sophisticated behaviours:
from expressions describing everyday life (narratives: see below) to sentences which
organise the experienced relationships into causal, final, hypothetical moves.
Because of the verbal coaching, in these processes students' mental times are
structured according to a double polarity: the past, that is the lived experiences
recalled by memory; and the future, namely the space of anticipation and volition. In
this sense, language and time are essential ingredients in the genesis of theoretical
knowledge, that is "a system of scientific concepts" in the sense of Vygotsky (1934,
chap. VI); such a knowledge is a-timed, hence essential transformations are necessary
to construct it from experiences which are embedded in time. The evolution of pupils
towards it requires a long period of apprenticeship in school and long-term
interventions of teachers; developing a theoretical model for describing such an

5 Other possible words to use are rhythms (which have a more external connotation) or moves (as

actions in a sequence, with different quickness). For an elaboration on such concepts, see the vol.
879 of the Annals of the New York Academy of Sciences, Tempos in Science and Nature:
Structures, Relations, and Complexity', in particular Varela (1999).

It is interesting to observe that 'tempos' are important also in number contexts: in fact they often
are the root of fields of experiences for pupils, who acquire the notion of number also through
processes of counting down and up; pupils and teachers of elementary schools use the metaphor of
the chain to describe them (Boero, I 995a). For another example see Bartolini Bussi et al. (1999).
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evolution is one of the goals of our research but at the moment it is not yet
completely elaborated. Specifically, we are studying the evolution of pupils' solving
abilities in different contexts and the conditions which seem crucial for causing and
supporting such an evolution, including the consequent didactical engineering.

For the clarity of exposition and due to space constraints, we shall limit to
illustrate a condensed segment of such an evolution, namely we shall show the
genesis of SMO's in students who have already undergone the process of
apprenticeship towards theoretical knowledge but who pass again through its main
steps in the emblematic example which we shall comment.

We shall start our illustration discussing with more details the analysis of
language and time as tools for interpreting the genetic process of SMOs.

2.1 Analysis of Language
A first point to stress is the mixed production of non verbal and oral language (e.g.
gestures of pupils who draw geometric figures in the air or on the screen, together
with their oral comments): it possibly creates and always supports the partial,
generally disconnected, order which is given to the facts experienced by the subjects
within their mental time. But an order can exist since the subject can make sense of
her/his experiences. At this point narratives enter the scene, in different forms.
Nemirovsky (1996) defined a mathematical narrative' as a narrative articulated with
mathematical symbols. This type of narratives is produced for ex. by pupils who
reconstruct their past experience with Cabri or the Mathematical Mechanisms while
they are moving to the proving phase (see Douek, 1999, for examples in different
contexts). But there is also another type of narratives in mathematics, that has been
studied by Mason & Heal (1995) and Scrivener (1995), namely the sketches (drawn
on paper, but also made from gestures in the air). In fact the sketch may be a tool
which activates the narrative function, insofar it is made by pure imagination
(Scrivener, 1995). Goldschmidt (1991) distinguishes two modalities of visual
reasoning while working with sketches: "seeing that" and "seeing as"; there is a
dialectic between the two: "a back and forth swaying movement which helps translate
particulars of form into generic qualities, and generic rules into specific appearances"
(quoted in Scrivener). Hence its functions enter the dialectic between perceptual and
conceptual, emphasized by many scholars (Laborde, 1999), and is deeply
intermingled with verbal competencies and mental times.

A second issue concerns the deep link between language and pupils' mental
dynamics. Mental dynamics 'give life' to perceptions, insofar they can be used to
activate the past experience as well as to anticipate a future intention. In such cases,

7 Ricoeur, who is often quoted by Nemirovsky, points out that one of the narrative's major functions
consists in ordering different times: the activity of narrating does not consist simply in adding
episodes to one another; it also constructs meaningful totalities out of scattered events. The art of
narrating...requires that we are able to extract a configuration from a succession" (quoted in
Nemirovsky, 1996, p.198).
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argumentative activity, especially in the interaction among mates (see section 3), has
a double function: (i) scaffolding the construction of new (inter- and intra-conceptual)
relationships; (ii) controlling and managing the whole (conjecturing, proving, etc.)
process. The two functions may be integrated particularly when the discovered
relationships, conjectures and proofs allow students to gain new insight in a
mathematical problem or field. The link between language and pupils' mental
dynamics is particularly interesting within the Cabri environment: very often, the
perception of objects drawn in Cabri leads students to use metaphors and deictics to
name them; immediately they start actions on them, which modify both the
perceptual and the metaphoric aspects (transformational function: see Simon, 1996).
The interactions among perceptions, metaphors, actions are the starting point of an
evolution towards the structured mathematical objects.

2.2 Analysis of mental timed frames for 'tempos' and for orders
The evolution from perceptions towards SMOs generally happens within rich timed
frames, which are ruled by the language and the actions of the subjects. A first frame
is nurtured by different 'tempos' which can be observed, e.g. working with Cabri. A
first 'tempo' (present also in paper and pencil environments) consists of the periodic
change from ascending to descending control of the subject with respect to the
geometrical figures and backwards (see Saada-Robert, 1989; Arzarello, 1998a): it
varies during the performance and marks also the change in the way students see the
mathematical objects, with respect to what is considered as given and what is to be
found (see section 3). It has low frequencies (in the first 20 minutes of the video we
have counted about 15 such changes): for this reason, it is called a slow 'tempo'.

Another kind of 'tempos', which are faster, are present in the interaction between
pupils and the software Cabri. Their roots seem to consist in the rupture of the
synchronism which exists between thought and physical movements of our body (see
the description in Berthoz, 1997, and Varela, 1999), when subjects use the mouse in a
dynamic geometry software. The phenomenon is typical of novices but is present also
in subjects who have more experience with the software (#61-64, #128)8; an example
is given by group interactions, when the mouse is in the hand of one subject and the
others cannot follow what happens on the screen (#92 and before). Generally the
subject tries to overcome the gap between the two 'tempos', controlling hand gestures
and dragging slowly and carefully so that the synchronism between perceptual and
cognitive aspects can be established (#77, #102). Such 'tempos' are faster (Berthoz,
1997; Varela, 1999), hence they are called fast 'tempos'.

'Tempos' may support a continuity and correspondence between perception and
thought, back and forth from inside to outside (see the genesis of circumcentre in the
Conclusion). It seems that a feeble co-ordination of fast 'tempos' is an obstacle for
solving problems using dynamic geometric software. On the contrary, the students

8 #n indicates the sentence numbered n in the Appendix.
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who master Cabri have a good co-ordination of fast 'tempos' in that context and this
has positive consequences at the cognitive level also for the control of slow 'tempos',
hence for the whole process of problem solving in Cabri. Moreover, it seems that
some functions of the dynamic software (specifically, some types of dragging) are
useful for generating a strong evolution from perceptions towards SMOs. In this
sense, a conscious use of dragging (which requires a high co-ordination of fast
'tempos') can support the subject in the processes of generating generalities. This has
radical consequences for the teaching: promoting a conscious use of dragging can be
achieved only by suitable interventions of the teacher, who scaffolds the experiences
of pupils and teach them the different typologies of dragging (the method is
systematically used in the classrooms of our project).

In the case of numbers, the 'tempos' of counting can support the natural order of
numbers and become an essential constituent of their field of experience: the search
for a regularity starts with metaphors which try to build a new order from the facts
experienced through numerical explorations within such a field and evolve towards
suitable SMOs (see Boero et al., 1995a).

Language encompasses also the problems of the order of events, which appear
not linearly ordered in perceptual experiences (Varela, 1999). Here the narrative
function of language plays an essential role: it allows students to make sense of what
has happened, connecting the perceptual experiences with the past and categorised
ones. In other words, while metaphors and deictics allow the construction of objects
in a discursive form and the beginning of a generalisation process which anticipates
the future, the narrative function allows events to be ordered by looking mainly at the
past (see: #104, #138 , #151, #152). The result of the evolution may be a de-timed
sentence expressed in the present tense9, which has the features of a scientific
discourse.

Mental time becomes a sort of mental environment where subjects use language
to order in some way the facts that they have experienced (see Varela, 1999). For ex.,
gestures and the broken oral language in #73 are an attempt to grasp the complex
relationships among geometrical objects represented by Cabri figures; that is, subjects
try to express discursively a non linearly ordered factual situation (i.e., Cabri figures
which change because of dragging) with a tool (oral language) which is more
comfortable with linear order"). This creates a tension which is expressed in the
example by the broken sentences and utterances, as if language tried to mimic the
complex order of the experienced facts.

An interesting point to stress is the fact that the variety of languages used by
students in most of their performances helps communication. Illuminating examples
are given by # 65, 66, 67 and # 73, 74: the verbal part of the message apparently has

'The language we refer to is Italian: the sense of its present tense is possibly different from English.
1° See Simone, 2000, for a discussion on linear and non-linear languages.
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no meaning; on the contrary, the pupils successfully communicate some essential
point to their mates. The non-linear structure of her sentences reflects the different
nature of what she is communicating: this can happen when all the 'tempos' have been
synchronised among the girls and the perceptual and metaphorical ground of what
has happened on the screen is shared among the three pupils. Consequently, the non
linear order constitutes a common basis upon which they can share some ideas about
the SMOs they are building: we call multivariate such a cluster of languages used
together. The timed frame for orders constitutes a ground for the cognitive unity
discussed by Garuti et al. (1996, 1998): in fact students can use a multivariate
language to describe (#78) and communicate (#73) their ideas. Only after this
multivariate language has done its job, namely has guaranteed a shared experience for
the three girls, they start a further evolution process (namely from #127 to #152)
towards a linear and more formal language, which explains in more canonical forms
why what they have experienced is such (#150). The evolution from Perceptions-
Deictics-Actions towards Mathematical Objects-Symbols-Relationships (that is
SMOs) described till now can be sketched like in fig.1 .

TEMPOS
slow - fast

TIME

ORDERS
partial - total

PERCEPTIONS

LANGUAGE

CMETAPHORD

DEICTICS

ARFC7V

fig. 1

2.3 Other theoretical tools
Even if time and language are the two major ingredients of the model, the analysis of
SMOs requires also many other tools; more precisely:
> the theory of experience fields (Boero et al., 1995b);
> the discussion as a polyphony of voices (Bartolini Bussi, 1996), typically when

one voice is that of the official scientific knowledge and the others those of pupils;
> the notion of semiotic mediation, from the Vygotskyan historical-cultural school

of psychology (Wertsch, 1998; Bartolini Bussi & Mariotti, 1999a, 1999b);
> typologies of dragging analysed by Arzarello and Olivero (Arzarello et al.,

1998b).
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Moreover, a new tool is in course of elaboration, namely the analysis of the
neurological bases of some mathematical concepts (Berthoz, 1997; Dehaene et al.,
1993, 2000; Longo, 1997): particularly the analysis of perception as a multisensorial
integration, and of action as anticipation of movement given by Berthoz (1997) and
discussed by Longo (1997) from the mathematical point of view.

Space constraints do not even allow us to sketch the issues mentioned above: the
interested reader is invited to read the quoted reference for more information. The
next section will use all the ingredients previously outlined to describe the genesis of
SMOs in a concrete emblematic example.

3. A case analysis
Following up these general comments, we shall now give a more detailed analysis of
the protocol in Appendix. In the sequel, H will indicate the dynamic figure ABCD
and T the figure A'B'C'D'; in the protocol, the way pupils look at the two figures
changes over time: sometimes they look at T as depending on H (we write H = T),
sometimes students look for hypotheses on H so that T satisfies particular conditions
(we shall write T = H). The different directions through which pupils look at the
objects are deeply intermingled with their mental times, e.g.: order from past to
present or from future to present, etc.; 'tempos' depending on the control with respect
to the objects (ascending vs. descending), to the dialectic with dragging and sketches
and to the outside-inside dynamics and back. 'Tempos', orders, causal and conditional
dependencies find here a crucial connection: in particular the different orders that
subjects attach to experienced facts may change or not in the transition from
exploring to conjecturing and to proving and this may have consequences on the
degree of difficulties found by pupils (see also Douek, 1999).

The starting point of the cognitive dynamic is #37, where M makes explicit the
heuristics to be used, which is developed in the following items (till #48): this is the
genesis of H T, which lasts till #60. In #50 the degenerate point, which will be
named in #58 begins to be present as a perceptual fact. The episode marks the
beginning of a systematic exploration (descending control and attention towards the
future). During the exploration (#52) the theory crops up from the past: together with
the perceived object it produces the sentence #53, which is spelled in the de-timed
present tense of standard scientific sentences. In #58-60 the genesis of SMOs starts:
the point (of intersection of the perpendicular bisectors, when it exists) is manipulated
through dragging and its meaning is framed into conditional sentences, that is the
perceptual facts and the generalising function interact to generate a mathematical
sense for what is perceived (#60). This produces an inversion in the way the objects
are looked at (T = H), which culminates in #64; similarly the control becomes
ascending, as it is shown by the wandering dragging (we use the analysis of dragging
developed by Arzarello et al., 1998b) pursued in #61-64. There are also different
'tempos' (#61-67) in the students: E explores with Cabri (#62, 64: wandering
dragging); V wants to think with her own 'tempo', which is different from E's (#65):
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in fact she does not grasp the explanation of E (#60); M tries to synchronise the two
(#66). In #68 E draws a parallelogram, which marks a new inversion (H T,
descending control). The tension between perceptual and theoretic aspects is always
high (#72): in #73 the multivariate language, which collects perceptual and
theoretical chunks, allows V to synchronise her 'tempo' with that of E and to
communicate with M (#74); namely, multi-variety and non-linearity of language
allow communication and sharing of knowledge among the students (see the
comments in 2.2). In fact, in #75 E transforms the sentence of V into a "linear"
sentence, structured in more a canonical way, and in #76 V echoes the voice of E. In
#77 there is a new inversion (T H, ascending control): the 'tempo' of E has
changed and it seems it is now shared in the group. The slow 'tempos' of her gestures
and the new modality of dragging (the so called bounded dragging) allow E and her
mates to rule the guided exploration, which now starts from an already structured
object. In this sense, the action with the mouse and the consequent dragging, with its
complex typologies, can incorporate a deictic and a generalising function.

In #78-84 there is a systematic genesis of structured objects (different types of
quadrilaterals): also Boero et al. (1996) observed this type of exploration in other
contexts. The cases of the square and the rectangle are object of a mental experiment:
E makes a mental dynamic exploration, namely she activates a strategy which is
similar (but not identical) to the "changing hypothesis" strategy described by Boero
(ibid.). The mental experiment produces a deduction in the form of impossible
examples. In #82-91 exploration continues: there are many inversions of control and
of the relationships between H and T; #92 is interesting: E makes a mental
exploration supported by her hands' gestures (T G H), which is transformed into
"linear" language in #94. After the new 'impossible example' of #95 (ascending
control), the degeneration is grasped at a new (more theoretical) level, which is
marked by the linguistic transformations of #96, #100, #101, #102, #103. The last
sentence expresses an abduction (Arzarello et al., 1998a), which is produced after the
lieu tnuet dragging (Arzarello et al., 1998b) in #102, where B describes a circle. The
linguistic transformations mark the abduction while the effects of dragging suggest
the theory of remarkable points of a triangle, insofar they are linked to inscribed and
circumscribed circles. Such a theory is evoked by E and the time is now towards the
past (#104). In #104-126 the students give voice to the theories and discuss them; the
resolving point is #126, where there is the genesis of the right figure. In #127 E gives
the explanation in a multivariate sentence, in which however the theoretical side
evoked in previous interventions (#104-125) is marked by the present (de-timed)
tense. It is interesting to observe that in this present time do live both words and
deictics but there is no reference to the particular figure on the screen in that moment:
in fact the argument is supported by a sketch made on the screen by hands, which
refers to a general geometrical object (Harel & Tall, 1991). Namely, because of the
narrative incorporated in the sketch, thinking can go beyond the concrete perceptual
aspects and get the theoretical side (they do not see "that" but "as", see 2.1). In fact,
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in #131 the "multivariate" sentence of #127 is transformed into an almost linear
utterance, which incorporates also some chunks of the logical relationships among its
constituent sentences.

Conclusions
The comment above illustrates how embodied is the generation of SMOs and how
strong the cognitive unity from the first empirical perceptions to the production of
logically structured sentences of mathematics can be. This is achieved insofar the
students have interiorised the dragging practice through a cognitive apprenticeship
(Arzarello et al., 1993), where the role of teacher is basic.

The written proof produced later on by E, V and M exhibits a strong continuity
through linguistic transformations and (modulo some inversions between H and T)
from all the explorations above to the final product, which has the canonical structure
of usual mathematical proofs (something similar is described in Boero et al., 1996).
Constraints of space do not allow us to describe it here. We limit ourselves to sketch
the structure of the whole process in fig.2, where the main transformations are shown,
namely: the genesis of conditional statements through de-timing; that of mathematical
sentences through linearisation and that of abstract concepts (and their symbolic
representation) as a generalising transformation of metaphors, deictics and
narratives.

TIME

GENESIS OF

COND TIONALS

PERCEPTION

LANGUAGE

Ci-IETAPH°R

C3'ICT'CS D

'ARRATIV.

DE- TIMING

fig.2

LINEARISATION
GENESIS OF
GENERALISATION

CONCEPTS

LOGIC LANGUAGE

PS

REPRESENT.
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Now, let us summarise the main points. We have illustrated the generation of
SMOs in geometry within the embodied cognition perspective, analysing processes of
pupils working with Cabri. Mental times of students revealed crucial in managing
such a generation. Another crucial point was the mediation of the artefact, in
particular the role of dragging and of the representations of mathematical objects
(like Cabri drawings, sketches); the dynamic geometric figures have proved a
cognitive pivot: the hypotheses incorporated in them are transformed into new ones
through the complex dynamic of action and interpretation within changing tempos
and orders of the subjects when interacting. An emblematic example is the story of
the "degenerate point". At the beginning (#50) it is a purely perceptual fact; then it is
a metaphor which describes the result of a dynamic process (#58), but whose
meaning remains to be explained (#65); the first chunk of theoretical explanation is
obtained (#72) through the framing of the perceptual experience in a narrative which
encompasses different perceptions (#66 and ff.). In the end (#96) the word
"degenerate" marks the conclusion of a rich exploration framed within a time section
in the sense of Boero et al. (1996). Now things are ready for the final transformation,
namely the "degenerate point" to be transformed in the "circumcentre" (#102, #127),
whose genesis is the dragging described in #100 through the metaphor of "keeping
the point inside".

Appendix: an emblematic protocol.
PROBLEM. You are given a quadrilateral ABCD. Construct the perpendicular bisectors of its
sides: a of AB, b of BC, c of CD, d of DA. A' is the intersection point of a and b, B' of b and c, C' of
c and d, D' of a and d. Investigate how A'B'C'D' changes in relation to ABCD. Prove your
conjectures. [17-18 year old pupils, who know Cabri I very well and are acquainted to explore
situations when presented with open problems). We present some excerpts of the protocol of Elisa,
Michela and Valentina's work with Cabri; the protocol is the transcription of a video, which lasts
one and a half hour. We present some (parts of) episodes of the first part (which lasts 20 minutes
altogether), where the genesis of SMOs is particularly evident. The three students work with one
computer and have also paper and pencil at their disposal].
The first 4 minutes of the video, with 35 interventions of pupils, are skipped: the students read the
problem, draw the figures, accomplish the constructions and give names to the created objects.

The students (E, M, V) constructed fig. 1 and 36. E: and now? (E has the mouse)
37. M: One must see how it varies, as the
external quadrilateral changes [ABCD]

checked its correctness through dragging.

7.3

41. V: 1 think that not...try moving...the
figure...[E drags randomly point D] ... 'cause....
move this one [V indicates point B and E drags
it randomly]... it seemed
to me that you had put the...you know...the
function of the segment, that you can create
without doing the points...it seemed that you
had not shot this one [Al...do you understand?

(time = 5'25")
48. V:...but if you already do it coloured...

1-34



you get a small coloured point.
[E colours the quadrilateral A'B'C'D' and
drags the point D]
49. E. And let's try perhaps...let's try to see
what happens with regular external
quadrilaterals...
50 M: I don't know...let's start with a square,
so that we see...
[E drags B, C, D up to get a rectangle]
51. V: Properties of the perpendicular
bisectors? [the Italian word is assi]
52. E: The perpendicular bisector...
how was it?
53. M: Hence...the perpendicular bisector
passes through the midpoint...
54. E: It is perpendicular!...
55. M: ok!
56. E: Well in the square, in the...
[She measures the sides of ABCD, then drags
randomly first point C then point B]
(time = 7' 10")
57. E: No, I was wondering...that...I was
wondering!
[E stops the dragging with fig. 2]

.1 ow

lig.2
58. E: No, that is...it degenerates into a
point...it's logical isn't it?...if they are
parallel...that is, if the sides are
perpendicular...[she drags B]...
59. M: ...we are looking for...
60. E: I mean if the opposite sides are
parallel [she continues dragging B], those
[the perp. bisectors] are perpendicular. And
up to this...lsn't it?....and if they are equal the
midpoint is on the same line. [She drags C
till ABCD becomes a rectangle].
61. M: ok...so?
[E drags A randomly, then D; in the end she
goes back to the original figure]
(time = 9')
62. E: Please, tell me something!

[E drags B, D, C, A systematically]
63. V: What are you doing? Are you moving
randomly?
64. E: No, I was wondering if I could
construct a figure...
65. V: Listen to me, please; let's try thinking...
just a moment...'cause of that we have done
before...to finish the discourse, when it
degenerates into a point, that...have I
misunderstood or we have not explained it?
66. M: well, practically she is saying: since the
properties of the perpendicular bisector are
perpendicularity and the distance from a
point...if...the different segments are parallel,
then since they are perpendicular....Moreover
if two of...like in a square for example, the
midpoint must belong to the same straight line.
67. V: yes
[In the meanwhile E has dragged the points A,
B, C, D in order to get a parallelogram]
68. E: I am doing a parallelogram...the sides
are parallel, aren't they? in the parallelogram.
Hence also the perpendicular bisectors are
parallel, isn't it? They are parallel two by two.
69. V&M: yes
70. E: So also the segments A'B' and C'D' are
parallel.
71. V: Hence it maintains...no, nothing!
(time = 11')
[E drags the points B, C, D till she gets a
rectangle]
72. E: hence the square has been
proved...degenerate...
73. V: Hence if...when...and limm, yes, that is
natural, because when there are two...the two
sides of the external one...the two sides
parallel two by two, it is natural...that is it
should always be that the perpendicular
bisectors ire...
74. M: it is so.
75. E: Because they are parallel...they are
perpendicular to two parallel lines.
76. V:...they are parallel...
77. E: let's move the point very slowly to see
what changes [she drags the point C for a
while]. Now they are not any longer parallel,
hence...these two [d, b] are not any longer
parallel...sure, it is logic...and not for these two
[a, c] ...That is what we have said up now.
[E drags slowly point C along line BC and
back]
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78. E: Nothing, there is no way to
get...the...that they are parallel...a square...
type: inside there is a square; the sides
should be parallel two by two...However one
longer than the other! Isn't it? ...But it cannot
ever be, because otherwise...then these [the
sides of ABCD] are not any longer parallel.
79. M: It cannot be a square inside!
80. E: Sure!
81. M: Neither a rectangle!
82. E: It can be only...a trapezium [she drags C
trying to get a trapezium]
83. M: Or a parallelogram.
84. E: A parallelogram or a trapezium.
85. V: I am wondering why...
...(time = 14')
[M takes the mouse and drags B]
92. E: No! Why the lines...should be so [she
mimics with her hands two parallel
horizontal lines]; then it means that one is
longer than the other, isn't it?
93. V: sure! necessarily!
94. E: However if one is longer than the
other, the other two are not parallel any
longer...0therwise in the parallelogram they
have moved , since they all are parallel.
[M drags B and stops when the per-
pendicular bisectors coincide in one point].
95. V: Hence it can never be..
96. E: My God! It degenerates into a point
again!
97. E: Excuse me, can I...? [she asks to move
the mouse again and drags C].
98: Let us see what remains equal, when it
remains...
99: V&M: when?
100. E: That is, I try dragging the
stuff....and...the point...keeping the point
inside...that is moving the point, but leaving
that...that...the quadrilateral degenerates into a
point.
101. M: That is, it keeps inside...
(time = 16' 02")
102. E: ...to find a property that...when it
degenerates into a point...do you understand?
[she drags the point B slowly, trying to keep
the perpendicular bisectors coincide]
103. E: Let's mark the angles...excuse me,
but in a triangle the intersection point of the
perpendicular bisectors is...
104. V: hmm, I had already thought of that!

75

...[the students recall what they remember
about the remarkable points of a triangle;
they are in doubt whether to consider the
circumcentre or the centroid; they make
some exploration and discuss about the
circles outside and inside the quadrilateral]...
126. M: That is when you can put a circle
inside.
127. E: No, no! I know it! It is the
circumcentre..., why it must be equidistant
from the sides, isn't it? [she indicates with
fingers on the screen] This point [the meeting
point of the bisectors] is the perpendicular
bisector of this [AD] hence it is equidistant
[from A and D].
(time = 18' /3 ")
128. V: Wait a moment, stop please!
129. Hence this point here [the supposed
circumcentre]...if you have...look at..., that is
the bisector, it is equidistant from the
extremes...
130. V: sure!
131. E: ...because the bisector is the locus of
points which are equidistant from the
extremes...hence it is equidistant from this
and from this [A and B]. But from this [A],
these two are equal...[she repeats the same
reasoning and gestures with respect to all
vertices]...hence in the end they are all
equal and it is the ray, isn't it?...
132. V&M: yes!
133. E: ...I mean I wasn't that clear.
134. V: Try to do a circle.
135. M: Try!
136. E: hmm...how can I do it?
137. M: excuse me...centre and point;
make the centre here [the intersection point
of bisectors]...
138. E: Wait! No! It is enough to see...the
angles. How are they when...it is a cyclic
quadrilateral...the opposite...are 180°?
[they ask the teacher the right property
and then measure the angles in Cabri; E
measures angles D and B; some
explorations and reasoning concerning
the sum of opposite angles D and B]
...(time = 20' 43")
150. E. yes, in conclusion....hmm, anyway
the proof is that...the perpendicular bisectors
are equidistant from vertices...hence this point
[the intersection point of the bisectors] is
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equidistant from these two vertices [A, B] and ...Isn't similar to a problem we have already
also from these [A, D], from these [D,C] and done?
from these [C,B]...isn't it?...then in the end 151. V: We certainly did something similar!

152. E: perhaps with the medians.
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Teaching by Open-Approach Method in Japanese Mathematics Classroom

Nobuhiko Nohda
University of Tsukuba, Japan

ORIGINS OF OPEN-APPROACH METHOD IN JAPAN
In Japan, mathematics educators have traditionally been emphasizing

mathematical perspectives in their research and practice. In these twenty years,
more attention has been paid to individual students in the stream of
mathematical perspectives emphasized. Some of the representative research
results have been published under the titles of "The open-ended approach,"
"The open approach," "From problem to problem" and "Various ways of
thinking" (Shimada, 1977; Nohda, 1983; Takeuchi & Sawada, 1984; Sawada &
Sakai, 1995; Koto, 1992). The tradition of posing and solving problems in
mathematics class since before World War H served as a base for the emergence
of these researches.

Most of these recent researches focus on possibilities of individual students as
well as their mathematical ways of thinking. Development of teaching methods
that are tuned to a variety of students' ways of thinking is also a major issue. In
other words, students' mathematical thinking, mathematical perspectives and
development of teaching methods have been integrated, which constitutes a
remarkable feature in recent Japanese mathematics education and mathematics
education research.

An origin of such trend was the research on evaluation conducted at the
beginning of 1970s. One of leading research was the one by Shimada and others
concerning the method of evaluating student's achievement in higher objectives
of mathematics education. They meant higher objectives as follows:
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To be able to mathematize a situation and to deal with it. (In other words, to
be able to bring forth an (important) aspect of the problem into student's
favored way of thinking by mobilizing their repertories of learned
mathematics, to reinterpret it in order to deal with the situation

mathematically, and then to apply their preferred techniques.) (Shimada,
1977)
To be able to collaborate with others in solving a mathematical problem.
(Shimada et al., 1972)

It was here that they developed open-ended problems in order to evaluate
students' activity. Open-ended problem refers to the problem that is formulated
so as to have multiple correct answers. Shimada and others developed different

open-ended problems such as "marble problem" and "water flask problem."
In those days, Japanese Mathematics Course of Study was organized around

the idea of Modernization of Mathematics Education. The class activity was so
called "issei-jugyou" (frontal teaching). There were 45 students and one teacher
in the classroom. The teacher explained new concept to the students and
presented examples of concept and solutions of exemplary problems. A series of
knowledge, skills, concepts, principles and laws was presented to students in the
step-by-step fashion. Under such circumstances, the open-ended problem was
expected to serve as a vehicle for changing the lesson organization substantially.

In the beginning, the research was conducted by four researchers, Shigeru
Shimada, Toshio Sawada, Yoshihiko Hashimoto, and Kenichi Shibuya. A few
years' later, more researchers and teachers in elementary and secondary schools
participated in the research. These teachers used the method in their

mathematics classrooms. The book "The open-ended approach: A new proposal
for teaching mathematics" (Shimada, 1977) was published as the result of this
collaborative work. Recently, the book was translated into English and
published by NCTM (Becker & Shimada, 1997). The research has been
continued and developed in the ways as mentioned above.

At present, there are still many schools in Japan that have 40 students and a
teacher in one classroom. However, ways of teaching became more variable
compared with 30 years' ago, and came to emphasize ideas of each student
together with the traditional mathematical perspectives. As indicated by the
production of many books above, the idea of "openness" in teaching and
evaluation has been developed and extended in various ways through
collaboration between researchers and schoolteachers and has been realized in
actual mathematics classrooms in Japan (see Note).

In this short presentation, I will describe the idea of open-approach method
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and show an example of teaching situations that realized the idea of
open-approach method. Then, I will discuss several perspectives for future
mathematics education research from the viewpoint of open-approach method.

IDEAS OF OPEN-APPROACH METHOD
Opening Up the Hearts of Students Toward Mathematics

All of the educational activities should open a student's present-day learning
to his/her future learning. Thereby, the student can acquire necessary
qualifications to make his/her life successful. Even in school mathematics, we
should take into account that every student is encouraged to seek his/her own
way of life, and has whole mind and body to contribute to his/her community
with full force on the basis of mathematical sense, knowledge, skills, the ways
of thinking, and so on. Therefore, we should ensure the maximum opportunity
and the best environment of learning in any kinds of educational activities as
possible. However, it is clear that most students cannot necessarily learn the
content of more than the middle grades, because of the "hard" characteristics of
school mathematics (its structural, abstract, and conventional phases), even
though they can easily learn the content of the lower grades by themselves
(Nohda, 1982). Therefore, the appropriate teaching is necessary especially in
school mathematics.

In teaching mathematics, teachers are supposed to assist their students in
understanding and elaborating their mathematical ideas as far as possible in
response to students' achievement, disposition, and so on. However, the teaching
only anchored in the logic of teacher never can open up the heart of student,
even if its process and product are "attractive" for teachers mathematically. On
the other hand, the teaching flattered students' ideas is bound to end up the
activities of low mathematical quality, and finally never can open toward
mathematics.

Teaching by open-approach method aims that all students can learn
mathematics in response to their own mathematical power, accompanying with
certain degree of self-determination of their learning, and can elaborate the
quality of their process and products toward mathematics. In other words,
teachers who employ open-approach method in their teaching need to try to
understand a lot of students' ideas as possible, to sophisticate the ideas in
mathematical activities by means of students' negotiations with others and/or
teachers' advice, and to encourage their self-government in elaborating the
activity mathematically. Thus, the teaching by open-approach method intends to
open up the hearts of students toward mathematics.
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The teaching by open-approach method assumes three principles. The first is
related to the autonomy of students' activities. It requires that we should
appreciate the value of students' activities for fear of being just non-interfering.
The second is related to the evolutionary and integral nature of mathematical
knowledge. Content of mathematics is theoretical and systematic. Therefore, the
more essential certain knowledge is, the more comprehensively it derives
analogical, special and general knowledge. Metaphorically, more essential
knowledge opens the door ahead more widely. At the same time, the essential
original knowledge can be reflected on many times later in the course of
evolution of mathematical knowledge. This repeated reflection on the original
knowledge is a driving force to continue to step forward across the door. The
third is related to teachers' expedient decision-making in class. In mathematics
class, teachers often encounter students' unexpected ideas. In this bout, teachers
have an important role to give the ideas full play, and to take into account that
other students can also understand real amount of the unexpected ideas.

Teaching by open-approach method consists of three situations in general;
Situation A: Formulating a problem mathematically, Situation B: Investigating
various approach to the formulated problem, and Situation C: Posing advanced
problems.

I
Situation A

Formulatingulating a problem
mathematically

Situation B
Investigating various approach

to the formulated problem
I

Situation C
Posingsing advanced

problems

In Situation A "Formulating a problem mathematically," teachers show students
the original situations or problems, and students try to formulate them as
mathematical problems in response to their own learning experience. In
Situation B "Investigating various approach to the formulated problem,"
students are expected to find their own solutions on the basis of their experience.
Teachers direct students to discuss the relations of wide variety of solutions
proposed, and lead them to integrate seemingly unrelated solutions into a more
sophisticated one. In Situation C "Posing advanced problems," students try to
pose more general problems on the basis of their activities in Situation B.
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Through solving these problems, they are expected to find more general
solutions.

Openness and Types of Problems
In the open-ended approach proposed by Shimada, emphasis was placed on

the problem whose end was not closed to one answer. He and his colleagues

intended to organize class by making use of multiple correct answers positively.
In the open-approach method, the meaning of openness is considered broadly

than the open-ended approach. Here, in addition to the problem whose end was
open, the problem that produces multiple correct solutions and the problem that

produces multiple problems are included. By this extension, the difficulty of
constructing the open problem is overcome. Moreover, it becomes possible to
provide more opportunities for students with different abilities and needs to
participate in the class. After getting multiple solutions by his/her own, it also

becomes possible to lead students to sum up their solutions from the viewpoint

of mathematical ideas (Nohda, 1983).
Problems used in the open-approach method are non-routine problems.

Furthermore, based on the openness described above, it is reasonable to classify
the problems into three types: "Process is open," "End products are open" and
"Ways to develop are open." Several researchers use these names. The types are
described below with typical examples.
Process is open. This type of problem have multiple correct ways of
solving the original problem. Needless to say, all mathematical problems are
inherently open in this sense. However, the issue is that many school problems
require only the answers or do not emphasize the process aspect of the problems.

It is therefore important to verbalize that the process is open and ask for
teachers to look at the problems at hand from such a viewpoint. The "card
problem" below is one example of this type.

"As 37 pupils will make birthday cards for the teacher 'Matsui Sensei' in the
classroom meeting, it has been decided that everyone will make cards. Then,
they have to make some small cards (in the shape of a rectangle 15 cm long and
10 cm wide) from some bigger rectangular sheet (45 cm long and 35 cm wide).
The problem will be, "How many small cards can you make from the bigger
one?"

Here, students may dissect the rectangular sheet into the size of card and get
the arrangement as shown in the figure at right. Students also may calculate (35

x 45) ± (15 x 10) and get the answer 10.5 numerically. Another student may
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calculate (7x9) = (3x2) by noting the ratios.

Multiple solutions enable students to carry out the
activity according to their abilities and interests, and
then through group discussion, to seek a better
process of problem solving.
End products are open. This type of problem has multiple correct answers.
As stated above, Shimada and his colleagues have been developed this type of
problems (e.g., Shimada, 1977). In Europe, Christansen & Walter (1986) talked
about the importance of investigation problems, which is similar to the
problems that the end products are open. An example of this type, "marble
problem," is shown below, which is well known as a representative problem in
the open-ended approach.

A

"The figure shows scattering patterns of marbles thrown by three students A,
B and C. In this game, the student who has the smallest scatter is the winner. In
these examples, the degree of scattering ranges from A to C. In such a case, it is
convenient if we have some numerical measure to indicate the degree of
scattering. Then, think about it from various points of view, and show ways of
indicating the degree of scattering by itemized statements. After that, think of
the best answer for this problem."

Students may discover "measure the area of a polygonal figure" as a measure
of degree of scattering. Another students may think of "measure of the length of
all segments connecting two points," and still another may do "measure the
radius of the smallest circle including all points." These methods of measure
have advantages and disadvantages. The teacher can help students see both the
advantages and disadvantages in generalizing the proposed methods.
Ways to develop are open. After students solved the problem, they can
develop new problems by changing the conditions or attributions of the original
problem. When we emphasize this aspect of "from problem to problem"
(Takeuchi & Sawada, 1984), the problem can be said that ways to develop are
open. An example below, "matchstick problem," is taken from problems used in
the US-Japan comparative study on mathematical problem solving (Miwa,
1992).
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"Squares are made using matchsticks as shown in the picture below. When
the number of squares is eight, how many matchsticks are used?

(1) Write a way of solution and the answer to the problem above.
(2)Make up your own problems like the one above and write them down.

Make as many problems as you can. You don't need to find the answers to
your problems.

(3) Choose the one problem you think is best from those you wrote down above,
and write the number of the problem in the space. Write down the
reason(s) you think it is best."

Here, students may develop problems by changing the number of squares.
They may further change the condition "square" to "triangle" or "diamond," for
example. They may also develop problems to ask for the number of squares
when the number of matchsticks used is given (inverse problem). Students can
enjoy developing their own problems. Furthermore, by comparing with their
peers they can discuss mathematical structures of the problem and
generalizability of their solutions in the lesson.

Evaluation of Students' Responses
It would be worthwhile to mention here how to evaluate student's activity in

the open-approach method. This is because the aim of the method is not to
produce correct answers but to promote student's mathematical ways of
thinking and creativity. Indeed, it is not easy for the teacher to evaluate a variety
of student's responses being produced.

Student's response is evaluated according to the following criteria (see
Shimada, 1977)

Fluency - how many solutions can each student produce?
Flexibility - how many different mathematical ideas can each student
discover?
Originality to what degree is student's idea original?
Elegance to what degree is student's expression of his or her idea simple
and clear?

These criteria need to be evaluated by both quantitatively and qualitatively.
Here, especially the first two criteria can be evaluated by counting the number
of responses.
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In Nohda (1998), a model in the form of a matrix has been constructed to
evaluate responses by the criteria of "diversity" and "generality." In the matrix,
an item (Aij) shows the number of responses by the student. "Diversity" is
expressed by (Aij) where j is a constant, in which different mathematical ideas
correspond to different (Aij). "Generality" is expressed by (Aij) where i is a
constant, in which different level of generality correspond to different (Aij). For
instance, responses of "marble problem" described above can be evaluated in
the following way.

Diversity Alj: Ideas of length, A2j: Ideas of area, A3j: Ideas of variance

Generality Ail: Concrete example, Ai2: Semi-concrete example, Ai3: Abstract
example

All: Max. or min. length of two points.

Al2: Circumference of 5 points.

A13: Sum of all lengths of 5 points distances.

A21: Min. square covering 5 points.

A22: Min. circle covering 5 points. P: 000 Q: 011
A23: Sum of the areas of triangles formed from 000 000

5 points and so on.

According to this evaluation, we can say that the student Q has a more
diversified and a more general approach than student P. On the other hand,
supposing that P and 0 indicate the states of the same student prior to and after
the lesson, respectively, then it is possible to know how the student has changed
through teaching using the open problems by comparing the two matrices.

TEACHING SITUATION BY OPEN-APPROACH METHOD
In this section, I will describe how mathematics teaching proceeds by using

open-approach method in class. Figure below shows a characterization of
Japanese teaching of mathematical problem solving (Nohda & Shimizu, 1989).
In Nohda (1982), I investigated the process in terms of pedagogical tactics by
Herbert. The figure also shows several features of Japanese class in that
problem situation that contains important mathematical ideas is presented to
students, and students challenge the situation collaboratively and finally reach
their solutions (see also TIMSS results by US Department of Education, 1996).
However, it becomes more difficult to make such process happen, as students
become older and their abilities and beliefs vary far more. Therefore, in the
open-approach method, it is intended to provide students with rich situations by
using open problems that have possibility to serve for individual differences
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among students both in their
abilities and interests and in the
development of mathematical ways
of thinking, and to support the
investigative process of solving
and generating problems. Through
such activities, students are

expected to learn not only
mathematical knowledge but also
important basis of mathematical
problem solving such as

mathematical ways of thinking,
beliefs, and meta-knowledge of
"how to learn." udent Experienced Before

Here, an example of teaching
situation is shown. Mr. Tsubota who is a mathematics teacher in the Elementary
School Attached to University of Tsukuba, Tokyo, conducted a class by using
the "marble problem" (Tsubota, 1988). The students were in grade 6 (11 to 12
years old). I will illustrate the flow of class according to the three situations
described earlier.
Situation A: "Formulating a problem mathematically." The "marble

problem" was presented to students not by sentences but by a game situation

as follows:
Teacher: We will play a game of throwing marbles on a piece of paper and

comparing how much the marbles scattered. Winner is the one whose
marbles scattered most. Let's see, each of the three people, A, B and C, threw
marbles, and the marbles scattered in this way (teacher shows the students
figures). Who do you think is the winner?

eacher Ex fenced Before

pocial
Factor

eachin Strategies

Teachers Activity

Problem Solving
and

1 Communication
at the

Problematic

Students Activity

Cultural
Factor

a s of Learnin

tudent's Belief
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Then, Mr. Tsubota let the students experience the marble-throwing-game by
themselves on their desks. After a while, he asked several students to present
their results on the blackboard. By looking at presentations by their peers, the
students began to realize that there are a variety of scattered ways. Mr. Tsubota
then asked the students how to decide which marbles are scattered more and
how to convince others that is a reasonable decision. Several students raised
their hands and made proposals. Many of them capitalized on their knowledge
as sixth-graders and put their focuses on lengths and areas. Discussion was
gradually shifted to the differences among proposed ways of making decision.

This way of presenting problem is often seen in mathematics teaching in
Japan. In the case of Mr. Tsubota, he cultivated students' mathematical words
such as "length" and "area" in the earlier part of the discussion. Based on these
naturally verbalized words by the students, he then posed the essence of the
problem, "Is it possible to use number for making a good decision?"
Situation B: "Investigating various approach to the formulated problem."
In the later part of the discussion, the students came to present different ways of

,

using number. Other students seemed to share strong points of each way. Still,
some students proposed counter-examples and indicated that some of the ways
cannot be applied to extreme cases. Through intense discussion, the students
came to integrate variety of solutions into more sophisticated ones.
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Situation C: "Posing advanced problems." After all presentations were
made, Mr. Tsubota let the students go back to the original game situation and
decide the winner by using someone's proposed way. The students said that they
liked simpler ones, and finally decided to use "area" to make comparison. They
measured the "areas" of their own scattered marbles and decided the winner. At
the same time, it became apparent that in some cases the "area" did not give
reasonable measures for the purpose of comparing the degree of scattering. At
the end of the class, the teacher and the students recognized that the "area"
method needed to be revised further and reflected on today's class. The teacher
concluded the class by saying, "Today, we learned how to measure and compare
ambiguous objects."

In sum, Mr. Tsubota's class illustrates that it is possible that students (i) pose
problems in the problematic situation, (ii) formulate their own approaches by
themselves, (iii) accept that there are a variety of solutions, and (iv) closely
examine, justify and refute different solutions. It shows that the open-approach
method enables the construction of vital mathematical activities in the
classroom.

PERSPECTIVES FOR FUTURE MATHEMATICS EDUCATION
RESEARCH

Although the theory of open-approach was constructed around 1980, the
above discussion shows that it has many contact points with the ideas discussed
in the mathematics education community today.

In the open-approach method, teachings are required to be open to student's
mind. Such requirement can be found in constructivist approach to teaching,
which was raised in mid 1980s. Teachers following the open-approach try to
orchestrate their lessons by taking advantage of students' thoughts, even when
those thoughts are unexpected for the teachers. This seems closely related to the
idea of "learning trajectory" that M. Simon has proposed (Simon, 1995). The
openness of approaches to one problem is also an important aspect of the
open-approach. The class discusses student's various ideas and thoughts, and
develops them mathematically through sophistication by the peer group and
appropriate advises by the teacher. Thus, the open-approach class may share the
common interest with the class that emphasizes mathematical discussion and
communication. Furthermore, the evaluation in the open-approach method,
where the emphasis is laid on students' ways of mathematical thinking and their
creativity rather than correct answers, reflects the common expectation with the
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research that facilitate students' attitudes and beliefs in problem-solving
oriented classes (Nohda, 1993).

These similarities imply that the recent research findings in these areas can
enrich the open-approach method, while the ideas underlain the open-approach
method can be used as a global framework for integrating the fruits in the
research areas. Considering that the open-approach style is also open to
mathematics, the idea of open-approach can present a viewpoint from which we
can reexamine how mathematics is located in the research or proposed teaching
methods. For example, the open-approach presented some viewpoints in its
evaluation, like flexibility, originality, and elegance, which reflect the nature of
mathematics or "doing mathematics." This means that it tries to evaluate not
only students' positive or active attitudes to mathematics, but also mathematical
nature in students' thinking.

The number of people who are interested in Japanese mathematics classes has
been increased since the mathematics education reform movements around the
world in 1990s. The open-approach method is based on the tradition of Japanese
mathematics education community in a sense that it made good characteristics
of the tradition explicit and extended them. Therefore, its basic spirit, "be open
both to students and to mathematics," can be a perspective for investigating
Japanese lessons. In fact, this is consistent with the analysis of TIMSS
Videotape Studies. When Stigler and Hiebert characterized the lessons in the US,
Germany, and Japan in terms of relationships among students, teachers, and
mathematics, they stated that students and mathematics were dominant in
Japanese lessons (Stigler & Hiebert, 1999, pp. 25-26). Because of being open to
both of students and mathematics, problem solving oriented lessons would
result neither in teachers' demonstration of the best solutions nor in mere
presentation of students' various opinions.

I would like to conclude this paper with two research problems to be studied
further. First, we need to develop more good problems, especially open-ended
type problems. As stated above, it is most difficult to construct open-ended type
problems among the three types of open problems. There is not sufficient stock
of such problems even in Japan, so we need to develop them because they are
very valuable to mathematics education today. We examined the "marble

problem" as the example of open-ended problem. In that problem, students are
expected to mathematically make sense of the situation where marbles are
scattered. This suggests that some open-ended problems can be related to
mathematical modeling. It may be possible to get hints for developing good
open-ended problem by referring to the research on mathematical modeling.
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Second, we need to study changes in students' mathematical ways of thinking
more closely. Many teaching practices following the open-approach were
implemented, and the changes in students' understanding and positive attitudes
have been explored. But we do not fully understand how each student's
creativity and mathematical thinking can develop and what is the cue for such
development. Investigation of such issues is also needed for improving
mathematics classes through the open-approach method.

NOTE
The table below shows the ratio of presentations at the Annual Meetings of

Japan Society of Mathematical Education from 1970 to 1999 that included the
words "Problem Solving" or "Open" in their titles by the levels of education.
The graph below shows the ratio in each year.

K. &Ele. Lower Sec. Upper Sec. Tertiary

Total Num. Of Presentation 5246 3586 3213 435

Ratio of "Prob. So Iv." 5.4% 2.6% 0.4% 1.1%

Ratio of "Open ('words)" 0.4% 0.9% 0.2% 0

Ratio of Problem Solving & Open (+words)

0.14

0.12

T, 0.1

-a- Ratio in K. & Elemen.

z Prob. Sofa.

.° 0.08 Ratio in K. & Elemen.
to Open(+words)

Ratio in Sec. School
0.06

s
0

Prob. Sofa.

Ratio in Sec. School
Open(+words)

0.04

0.02

4,-.ANA .. ArAkom.A.kok

m co co m Of 07

Year

The table shows that the ratio of presentations whose titles include "Open" is
high in secondary education levels. It is aligned with the aim of open-approach,
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i.e., to contribute to a variety of students' differences at these levels. The figure
shows that problem solving oriented class was pervaded during 1980s especially
in elementary schools. This is consistent with the trend by NCTM at that time.
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Basic Issues for Research in Mathematics Education

Raymond Duval

Universite du Littoral Cote d'Opale

Institut de Formation des Maitres du Nord Pas-de-Calais

Mathematics education covers a very broad range of topics, from primary school to university. It can
be analysed from different points of view, epistemology, psychology... But, whatever topic and
point of view may be, research in mathematics education entails theoretical and methodological
choices on some core problems about the nature of mathematical knowledge with regard to all other
kinds of knowledge. Does it depend on the same thought processes as the other kinds of knowledge
or does it require the development of some specific ways of cognitive working ? Can be mathematics
learning mainly described as a concept acquisition ? Which kind of representation is relevant in
mathematical understanding ? Which field of phenomena can show the conditions of understanding
and knowledge acquisition in mathematics ? These problems provide alternative choices. We can
assume that thinking works in mathematics like in the other areas or that it works in a very specific
way. We can focus either on objects and concepts particular to one mathematical area or on constant
features of the mathematical activity. We can also focus either on mental and individual
representations or on semiotic systems of representation. We can focus either on class room activity
or on individual acquisitions over several years.

These basic issues are not purely theoretical. The choices lead to different ways. of specifying
relevant variables for mathematics learning, and they do not yield equal possibilities to explain the
variety of difficulties that students come against up throughout their studies. From primary school to
higher secondary level we can notice a strong contrast beween very spontaneous simple mathematics
for every child and a little more advanced mathematics, for example when new concepts are
introduced or when algebra is brought into use,. when theorem proving is required or when graphs
are used in analysis as an obvious tool of visualization... And we can see an increasing gap for
learning : more and more students seem to reach a breaking point in their understanding of
mathematics. Are we faced with the same kind of phenomena ? More precisely is there something
similar in the process of mathematics learning at the first levels and at upper levels ? In fact, because
of teaching requirements which are peculiar to each level of study and, also, because of internal
evidence of mathematics, for teachers and mathematicians, some choices appear essential and
obvious.

However, we must pay more attention to these basic issues, at least if we want to understand deep
mechanisms of mathematics learning and difficulties most students encounter throughout their
curriculum. Our purpose in this paper is to come back to these basic issues and to explain why our
research has progresively led us to choices which are diverging from those considered as essential
and obvious. In other words, the main question about mathematics learning is : does mathematics
understanding require specific ways of cognitive working in comparison with the other fields of
knowledge ? Or, from a phenomenological point of view, do visualization, language and
conceptualisation work in mathematics in the same way as in other situations ? If it is not the case,
what kind of cognitive working is required in order to understand mathematical objects and
processes, in order to become equally able to apply them, and how can any student master it ?
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I. Analysis of knowledge acquisition in mathematics education research

(1) What do analysis of mathematics knowledge focus on : concepts understanding or
underlying thought processes ?

Mathematics are divided into various areas : arithmetic, geometry, algebra, calculus, statistics...
And for each area we have, on the one hand, a set of concepts relative to objects such as numbers,
functions, vectors, etc. and, on the other hand, specific algorithms, procedures, methods of problem
solving which are close connected to concepts/objects. From preprimary schools to senior
secondary schools, students must discover or learn some basic concepts and algorithms with their
applications within these various areas... Thus we are faced with a large scope of teaching goals
And each one leads to focus on the concepts/objects according to specific problems that their
teaching can involve : what kind of situations to introduce them or to justify their introduction,
what kind of mistakes can occur, what kinds of progression...? In these conditions, it seems difficult
to avoid a certain compartmentalization in research. But above all, what concerns the common deep
processes which underlie mathematics understanding are put off investigation. Learning processes
are assimilated to the construction of such-and-such a concept.

Whatever the concept/object you choose, mathematics knowledge requires thought processes which
are multidisciplinary and typical of what it is to understand in mathematics. That appears through
validation, through proving, through using symbols and various visualization forms (cartesian
graphs, geometrical figures..). For example, it is usual to observe a gap between the use of words
and the use of symbols, between «the use of mathematical expressions and the way they are
understood» (Sierpinska 1997 p.10), or between the spontaneaous ways of seeing geometrical
figures and the mathematical ones. Learning mathematics is not only to gain a practice of particular
concept/objects and to apply algorithms, it is also to take over the thought processes which enable a
student to understand concepts and their applications. And these thought processes cannot be
assimilated to construction of such-and-such a concept.

In the case of proof learning, that alternative between mathematical concepts/objects side and
involved thought processes side appears clearly with proof, one of the most difficult topics in
mathematics education. Because the ways to show why a proposition is true are not the same for
theorems in mathematics as for statements about phenomena of the external world. How to help
students gain insight into these very specific mathematical ways ? And why teaching does not
succeed in finding such help with most students ? One can emphasize the need to provide not one
but several proof methods or the importance to be confronted with rich epistemological context
such as a physics problem ... That requires exploration of a particular set of data and activities for
each theorem. But what matters is not only to gain insight why such proposition can be true, but to
understand how proving in mathematics works and to gain the thought processes involved in
proving. That changes the perspective within the educational problem of proof appears. Why, for
example, cannot students really understand mathematical ways or reasoning, whenever natural
language is used and whatever the proposition they have to prove ?

(2) From what kind of phenomena can the specific problems raised by mathematics learning
be examined ?

In order to study the complexity of mathematics learning, we must take into account the students
and not only the epistemological complexity of the taught concepts. But there are many ways to
refer to what the students do, to their explanations, to their achievements, etc. We can try to observe
live behaviours and productions over the learning time or, on the contrary, evolution of
mathematical skills within further various situations over a whole curriculum. We can also focus on
individuals or on the activities of the class including the teacher and the teaching organisation, or on
the whole population of an age group. Thus, we have several possible areas of observation (both
scale of time and field of study). Each area requires a specific methodology because parameters
and variations that can be checked are not at all the same. And when we change the area of
observation the problems of learning appear in an other light.
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Field

of

study

Scale of time

ongoing learning of mathematical
concepts

(over a short-lasting time)

curriculum
(over several years of teaching)

What transfer ?

Individuals

one or several sessions

- inside class activiities
(some particular productions)

outside class activitties
(interview, experimental frame.. )

feed-back of new acquisitions on
the previous [earnings

skills that can be mobilized in
further situations at a higher level

(transversal or longitudinal
methodology)

One particular classroom:
'the teacher or/and the

students ?

one or several sessions
(case study.... )

Population of an age group at the end
(assessment)

feed-back of new acquisitions on
the previous leamings

skills that can be mobilized in
futther situations at a higher level

(assessment)

Figure 1. The various areas of observation of mathematics learning.

There are many reasons and social demands which lead to emphasize one area rather than the
others or to consider one particular kind of phenomena as the most relevant or the most significant.
But the problem is not in this heterogeneous range of possible areas. It is about the depth of
acquisition and the possibilities of transfer. Where and how can we gain data about this crucial
aspect for any learning ?

For that, we must distinguish three kinds of difficulties that students come up against in
mathematics learning :

temporary difficulties in order to succeed the local goals of any learning sequence : they
depend on degrees of newness for students, on misleading similarities to what is already
known, or on the background of the underlying epistemological complexity

recurrent difficulties whenever context is changed (for example, heuristic using of
geometrical figures in problem-solving leads to such changes), or whenever new objects are
introduced

standing or insuperable difficulties (for most students) : they underlie local ongoing
acquisitions and inhibit further acquisitions. They appear whenever students are faced with a
proof task or with some verbal problem in arithmetic or in algebra

Hence the following question : what kind of difficulties do we have to examine, if we want to
analyse the thought processes which are required for mathematics understanding and therefore the
specific conditions of mathematics learning ? Temporary or standing difficulties ? Obviously all
kinds of difficulties must be taken into account in teaching. But over ongoing learning and in the
field of class activities, they cannot be truly discriminated. And, in fact temporary, difficulties are
necessarily uppermost in the didactic purposes of the teachers. And we cannot avoid the question
whether results at local scales can be extrapolated at global scales. Anyway when analysis is turned
towards temporary difficulties, phenomena relative to epistemological complexity are favoured and,
on the contrary, when it is towards insuperable difficulties, phenomena relative to the cognitive
functioning of subject become the most significant.
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II. Kinds of representation involved in mathematical thinking

There is no knowedge without representation. But from Descartes until now, through Peirce and
Piaget, many changes have taken place in the way to consider the relationship between knowledge
and representations, and the nature of representations appears to be more and more complex (Duval
article 1998b, Duval &alii, 1999). When we talk of "representations" the four following aspects must
be taken into account :

(a) the system by which representation is produced. Any representation is produced through
a particular system. It can be a physical device such as camera, or an brain organisation as for
memory visual images, or even semiotic system such as various languages. And the content of
the representation of an object changes according to the productive system of representation
which is used. It means content of any representation depends on its productive system and not
only of the represented object. The content of a verbal description of a man in order to
recognize him is not the same as the content its sketch portrait, or the content of the graph of a
function is not the same as the content of its analytic expression. Human thinking require the
mobilization of several heterogeneous productive system of representation and their
coordination. Do thought processes especially require semiotic systems as the main constituent
of the cognitive architecture which enables any individual to understand mathematics ? And,
in mathematics education, what is it crucial for learning, (al) taking into account the global and
spontaneous individual state of beliefs about a subject (Peirce, the first Piaget), or (a2) making
the students aware of the ways of functioning of the semiotic productive systems which are
used in mathematics ?

(b) the relation between representation and the represented object. There are two kinds of
productive systems of representation : on the one hand physical devices and neuronic
organisations, on the other hand semiotic systems. In the first kind (bl) (physical and mental
images), the relation is based on action of an object on the system (causality), and in the second
one (b2) (words, symbols, drawings) the relation is only denotation. In mathematics education,
when we talk of "mental images" what kind of relation are we referring to ?

(c) the possibility of an access to the represented object apart from semiotic representation.
We have representations (c1) which are an evocation of what has already been perceived
(Piaget 1926, 1946) or what could be perceived and representations, or (c2) about objects
(mathematical objects) which cannot be perceived.

(d) the reason why representation using is necessary : either (d1) mainly communication or
(d2) processing (computation or discursive expansion (Frege 1891, 1892), anamorphosis, etc).

According to the way these aspects are taken into account, what is referred as representations
change. I will confine here to the relevant issues for mathematics learning.

(3) Which brings about the most misunderstanding : subjective representations of students or
manifold semiotic representations used in mathematics ?

Many studies have examined students mistakes over the learning of concepts for each level and some
failures remain whatever teaching method is adopted. In order to explain these structural
misunderstandings, subjective representations (al, cl) are emphasized as being the root of obstacles
encountered over learning. Thus, in the triadic conceptualisation of Peirce (2.228) (Object,
"representamen" (sign), "interpretant"), interpretant is emphasized in such a way that
representations are mainly mental phenomena and individual beliefs.

Progress in mathematics has involved development of several semiotic systems from the primitive
duality of cognitive modes, image and language, which are linked with the more informational
sensory receptors : seeing and hearing. For example, symbolic notations stemmed from written
language and have led to algebraic writing. For visualization, the construction of plane figures with
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tools, then that of figures in perspective, then that of graphs in order to "translate" curves into
equations. Each new semiotic system provides new means of representation and processing for
mathematical thinking. So that for any mathematical object we can have different representations
produced by different semiotic systems (a2, c2). Thus we must change the triadic conceptualisation
of Peirce in the following way : {Object, one of the various semiotic systems, composition of signs).
But that necessary variety of semiotic systems raises important problems of coordination.

OBJECT

DENOTATION.' `DENOTATION

CONTENT A
of representation

roduction of one representation
t ough constraints and specific
posst les of a semiotic system A

? ? ?

ONTENT B M- Signs or
representation A signs compositio

Production of another representation
through constraints and specific
possibilities of a semiotic s

Figure 2. Representation and understanding for mathematical knowledge

In that perspective, deeper causes of misunderstanding appear. Whenever a semiotic system is
changed, the content of representation changes, while the denoted object remains the same. But as
mathematical objects cannot be identified with any of their representations, many students cannot
discriminate the content of representation and the represented object : objects change when
representation is changed!

Here the issue is to know what kinds of representation is crucial for mathematics learning.
Emphasizing individual beliefs, as for physical phenomena (Piaget), leads to assume a purely mental
cognitive model in order to analyse acquisition of mathematics knowledge. And semiotic
representations are considered as external to thought processes. Is such an assumption obvious and,

above all, relevant ?

(4) Is the distinction between mental and material representations relevant for the use of
semiotic representations in mathematics knoledge ?

This distinction is based on three considerations. First, the dualistic opposition, for any sign, between
signifier and meaning, between what must can be perceived and what is evoked in the mind (el).
Then understanding is about objects and goes beyond the content of any semiotic representation.
Lastly, semiotic representations are needed for communication (dl). Hence the opposition between
purely mental representations which would be enable anybody to understand and semiotic
representations which would be mainly for communication and social interactions. And it is often
argued that semiotic representations used by somebody else are sometimes difficult to understand.

However, in mathematics, semiotic representations does not fulfill first a communication function
but a processing function (d2). It is only through semiotic representation that mathematical numbers
can be reached and used. Progress in the human numbers knowledge has been closely connected
with progress in numeral systems. In fact, the opposition between mental and semiotic systems is
deceptive because it is the outcome of the confusion between two heterogeneous aspects in

representation production : the phenomenological mode and the used system. Moreover, in external
phenomenological mode, we must distinguish oral and visual (writing, drawing) modes. Semiotic
representations are neither mental as images of memory (61) nor material as pieces which can be
physically handled.
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Figure 3. Production of representation and relationships between thinking, semiotic system and the
main cognitive functions.

Semiotic systems of representation play an essential part in all the main cognitive functions : not
only communication but also processing, that is the transformation from one representation into
another one inside the same system and without resort to further external data. And semiotic
reprentations too are necessary to enable anyone to become aware of something new. Objectivation
is an expression or representation for himself, which can be either mentally or materially produced.
But its constrainsts are quite different from these one in social interactions.

The way we take into account semiotic representations involves an implicit model of cognitive
working of human thought and entails choices concerning mathematics learning.

Thus one can really wonder why pure mental models, that is off-semiotic representation
models, are always postulated to explain mathematics understanding. What seems simple or purely
mental in the inner evidence of understanding, especially when you have become an expert, is the
outcome of a very long process of internalization of semiotic representations.

One can also ask whether the variations of apprehension between the oral mode of production
and the visual mode of production do not lead to introduce a distinction between two kinds of
mathematics : spontaneous mathematics which can be discovered, or done, by everyone, child or
adult, at school or ouside school, and hardly more advanced mathematics which require, on the
contrary, skills in extensive processing of semiotic representations. So that the jump in leaming
would be between mainly oral practice of mathematics and necessarily writing practice of
mathematics. The passage from additive to multiplicative operations, or this one from natural
numbers to decimal numbers seem to require such a change of practice. But also proving in the
discovery of which writing can be a necessary stage for purpose of objectivation and not only of
communication (Duval 1999).

III. What kind of model is relevant to explain the mathematics learning process ?

Somehow, any model must refer to the organisation of a field of phenomena and describe its way of
working. With regard for the mathematics learning, we can distinguish two great kinds of models :

the developmental models and the cognitive models.

The developmental models focus on the increase in knowledge. Initially they referred first to two
fields of phenomena. On the hand, the historical ways whose mathematical concepts/objects were
discovered and on the other hand the ways in which young children become aware of natural
numbers, geometrical shapes, schematic representation of environnemtal space... And a relative
parallelism was postulated between these two fields of phenomena in order to explain acquisition of
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mathematics knowledge. Thus there a link was established between epistemology and
developmental psychology. On this basis, constructivist model of development appeared as the
sketch description of every acquisition of mathematics knowledge. And therefore learning
processes over the curriculum would have to follow constructivist "laws" of knowledge acquisition

Developmental models have led to enhancing a third field of phenomena, the interactions
between students inside classroom, especially while they are solving problems. These interactions
present three advantages : they correspond to a main factor in the constructivist model of
acquisition, they can be managed by the teacher, they enable researchers to observe live learning
processes (see above I. 2 ).

In a developmental model, explanation of learning process is refered to common schemes
which would underlie any increase in knowledge at historical scale of discoveries, at genetic scale
of child's intelligence growth (outside of any teaching from the Piaget's view point) and also at the
local scale of group work. The cognitive complexity which underlies mathematics understanding is
not taken into account except for subjective representations when they seem to hinder learning (see
above 11.3).

The cognitive models focus on the cognitive complexity of the working of human thought. At first
sight, they seem far from mathematics learning. And classical models developed in psychology
laboratories cannot be used as they are (Fischbein, 1999). By the simple reason that the learning of
mathematics raises specific and fundamental questions about reasoning modes, about the treatment
of figures, about the understanding of mathematical concepts and infinity is a very important
instance which are not envisaged by psychologists. Nevertheless, there is a core question which
cannot really be raised in the framework of the developmental model :what are the internal
cognitive conditions required in order that any student can understand mathematics at any level
of primary or secondary school ? Note that we are talking now of "understanding" and not only of
"learning". These internal cognitive conditions refer to what was called the archictecture
cognitive , that is an organisation of several systems (Kant, p.619) : in such an archictecture
several semiotic systems must be included or more precisely incorporated into natural systems.

We have already evoked two important facts. Whatever the phenomenological mode of production
of representations, working of human thought involves using one or several semiotic systems : the
first of all is the native language. But acquisition of mathematics requires other semiotic systems
such as the decimal numeral system, algebraic writing or formal languages..; which are suited to
mathematical operations. Unlike oral native language, the semiotic system used in mathematics as
well as written language, are not natural. In the context of the core question, research on learning
processes, must take into account how such semiotic systems can be internalized by students and
under what conditions they can become operative for each student on.

The alternative bewteen developmental models and cognitive models concerns directly the way the
problem of mathematics learning is raised and analysed : either an increase of knowledge according
to common and general processes or a minded-opening to quite specific thought processes.

IV. The paradoxical character of mathematical knowledge

Concerning the cognitive mode of access to objects, there is an important gap bewteen mathematical
knowledge and knowledge in other sciences such as astronomy, physics, biology, or botany. We do
not have any perceptive or instrumental access to mathematical objects, even the most elementary, as
for any object or phenomenon of the external world. We cannot see them, study them through a
microscope or take a picture of them. The only way of gaining access to them is using signs, words
or symbols, expressions or drawings. But, at the same time, mathematical objects must not be
confused with the used semiotic representations. This conflicting requirement makes the specific
core of mathematical knowledge. And it begins early with numbers which do not have to be
identified with digits and the used numeral systems (binary, decimal).
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Obviously, it is not a significant characteristic for mathematicians and epistemology does not take it
really into account. From an intrinsic mathematical point of view the semiotic side, which is the only
directly accessible, seems to be transparent or subsequent to non-semiotic actions. But from a
comparative epistemological point of view, the conflicting requirement cannot be erased. On the
contrary it appears as the crucial problem of mathematics learning. In the other fields of knowledge,
semiotic representations are images or descriptions about some phenomena to which we can gain a
perceptive or instrumental access, ouside any semiotic representations. In mathematics it is not the
case. In these conditions, how can a student learn to distinguish a mathematical object from any
particular semiotic representation ? And therefore, how can a student learn to recognize a
mathematical object through its possible different representations ? At every level, among many
students, inability to convert a representation from one semiotic system into a representation of the
same objet from another system can be observed as if both representations refer to two different
objets. This inability underlies the difficulties of transfer of knowledge and also the difficulties to
translate verbal statements of any problem into relevant numerical or symbolic data for mathematical
solving.

This conflicting requirement, which is typical of mathematical knowledge, can be approached
otherwise. It is very often assumed that mathematics resort to the most common thought processes :
reasoning and visualization. And this assumption is particularly strong in the teaching of plane and
solid geometry. But there teaching comes up against difficulties which indicate an imperceptible but
deep gap between common thought processes and mathematical processes. Considering always
persistent understanding blocks about theorems proving and heuristic using of geometrical figures in
problem solving is enough to ask questions about the specific cognitive working that mathematical
knowledge requires.

The recurrent confusions between hypotheses and conclusion, between a statement and its
reciprocal, and other dysfunctions are only the expression of the natural discursive practice in the
ordinary way of reasoning. In fact, under similar pratices of speech, there is a discrepancy between
the kind of organisation of propositions within a valid reasoning and the one in any common
argumentation or explanation (Duval to be published). In order to make students become aware of
this discrepancy a cognitive detour is required (Duval 1991). Understanding what is being proved in
mathematics is not at first a matter of learning methods, facing different proofs for the same
theorem or even convincing other students...

Nothing seems more obvious than a geometrical figure. It seems providing directly to see, even
if every figure is always a particular configuration. In fact when the goals of teaching go beyond
recognizing or constructing elementary cultural shapes, the gap between figures perception and
mathematical way of seeing figures is widening. Mathematical visualization, in the case of
geometrical figures, leads away from any iconic representation of physical shapes. Unlike iconic
representations, figures are not sufficient to know what are the denoted objects (Duval 1998a).
Besides, for the same object, we can have quite different possible figures : thus, for example, there
are two typical figures for a parallelogram and only one is iconically a paralelogram shape. But
when it is a matter of solving a geometrical problem, the complexity of using geometrical
visualization increases fast for most students, even at upper levels. And there we are faced with a
field of phenomena which cannot be explained only by the epistemological complexity of such-and-
such a concept !

We can focus on the paradoxical character of mathematical knowledge or put it on the fringe. That
means to emphasize what is specific to cognitive working in mathematics understanding or to
confine cognitive structures that would be common to any kind of knowledge. That means also
either to take a comparative viewpoint with other fields of knowledge or to take one only within
mathematics. In order to study mathematics learning, we must take into account mainly the
insuperable difficulties. And these difficulties, which are the most inhibiting for students, must be
analysed in relation to the conflicting requirement and to the gap between common thought
processes and mathematical processes. Which raises the following question : what is the cognitive
working that underlies understanding in mathematics ? And that leads to highlighting the importance
of representations not in the ordinary sense (al, cl, dl) but in the alternative one (a2, b2, c2, d2).
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V. The cognitive working that underlies understanding in mathematics

We cannot talk about representation without relating it to its system of production. But to take into
account semiotic systems means focusing on the transformations of representations. Thus we must
distinguish two kinds of transformations : "processing" and conversion.

Some semiotic systems provide specific possibilities of intrinsic transformations of representation.
Any transformation produced in one system can be changed in another representation of the same
system. Thus, paraphrase, reformulation, computation, anamorphosis, reconfiguration, etc. are
transformations of semiotic representations which can be achieved only in one specific register. We
referred to this kind of transformation as "processing" and we referred to semiotic systems which
provide such possibilities as registers of representation.

For any representation of an object which is produced within a system, we can also produce another
representation of this object into another system. We referred to this kind of transformation as
conversion. Thus constructing a graph from a given equation or writing an equation from a graph,
translating a verbal statement into a litteral expression or into a equation... Geometry is a field where
conversion is very much in demand, as well implicitly as explicitly. But numbers required also
changes of representation which are more similar to conversion than to processing, even with the
simple change from decimal expressions to fractionary expressions, apart from a few frequent
associations such as 0,5 into 1/2.

Researchers do not pay very close attention to the gap between these two kinds of cognitive
operations. In mathematics processes and in analysis of mathematical tasks, they are not really
separated, whenever they are implicitly or explicitly needed. They are looked upon as a whole. For
example mathematical activity, in problem solving situations, requires the ability to change register,
either because another presentation of data fits better an already known model, or because two
registers must be brought into play, like figures and native language. From a cognitive view point the
real problem is to know whether these two kinds of transformations can be considered as depending
on the same deep thought processes. All observations show that is not the case.

a. The irreductible cognitive complexity of conversion

Conversion is the transformation of representation of an object by changing register. Two main facts
can be observed at any level.

In some cases conversion is obvious and immediate as if the representation of the starting
register is transparent to the representation of the target register. In other words, conversion can be
seen like an easy translation unit to unit. Conversion is congruent :

set of points whose ordinate is greater than abscissa y > x

In other cases it is just the opposite. Conversion is non-congruent :

set of points whose ordinate and abscissa are with the same sign x (x) y >0

Non-congruence is the crucial phenomenon for any task of conversion. Difficulties and mental
blocks stem often from the inability to achieve a conversion, or to recognize it when it has been
made. But what is the most surprising with this crucial phenomenon for mathematics understandin.
is its unidirectional character. A conversion can be congruent in one way and non-congruent in the
opposite way. Congruence or non-congruence are closely connected to thedirection of conversion.
That leads to striking, typical and particularly persistent contrasts of performances, such as in the
following figures.
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recognition teaching on linear functions)

y = 2x 25%

Figure 4. (Duval 1988, 1995b)

Obviously, in the opposite direction, conversion is very easy and there is no more difference
between equations (Duval 1996b) . And at higher level we find the same analogous results.
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. 83

.34

FIGURE 5. Elementary task of conversion (Pavlopoulou 1993, p. 84)

By bringing into play systematic variations, contrast of successes and failures for the same
mathematical objects appear in similar situations! Very accurate analyses of the congruent or non-
congruent character of the conversion of a representation into another one can be systematically
done. And they explain in a very accurate way many errors, failures misunderstandings or mental
blocks (Duval 1995b, pp. 45-59; 1996a, pp. 366-367).

For every couple of registers, typical facts such as these can be sytematicaly observed. What do they
mean ? We can see that two representations of an object do not have the same content from a register
into another. And when conversion from one into the other is non-concgruent, the two contents are
understood as two quite different objects. Students don't recognize it anymore. And there are good
reasons for that. The apparent lack of correspondence between two contents of representations of the
same object stems from the fact that content of representation does not depend first on the
represented object but on the activated system of production. That means not only each register
provides some specific possibilities of processing, but also does not explicit the same properties of
objets as the other registers.

Now we are coming up against the consequences of the paradoxical character of mathematical
knowledge. Since there is not direct access to objects apart from their representations, how can a
student learn to recognize a mathematical object through its various possible representations when
their contents are so different ? Explaining that as a lack of conceptual understanding is not a right
explanation because we have reversals of successes and failures when changing the direction of
conversion. In fact the explanation must be searched at a deeper level. Failures or even mental
blocks when conversion is non-congruent reveals a lack of co-ordination between the registers
that have to bring into play together. And if we come back to the schema (figure) we see that
conceptual understanding is possible when such a coordination is achieved. Because of this, the
condition for mathematical objects are not confused with content of representation. We can complete
the above schema (figure 2 ) in the following way :
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Figure 6. Cognitive conditions of mathematics understanding (see above Figure 2)

But for most students, understanding in mathematics is "confined to some processes within strongly
"compartmentalised" registers. Learning mathematics consists in developing progressive
coordinations between various semiotic systems of representation.

DENOTATION

Production of another represe
within a semiotic system B

b. The cognitive ambiguity of some kinds of processing

We must remind that processing is a transformation of representations within one particular
register.That means : ways of working of processing do not depend only on the mathematical
properties of objects but also on the possibilities of used register. For example we have not the same
process of computation with decimal and fractionary notations :

0,25+0,25=0,5
0, 5 : 0, 25 =2

1/4 +1/4 =1/2
1/2 : 1/4 = 4/2

And we must also distinguish multifunctional registers from monofunctional registers.
Multifunctional registers are those used in all fields of culture. They are used as well for
communication goals as for processing goals. And, above all, they provide a large range of various
processings. Thus natural language is necessarily used in mathematics but not with the same way of
working as in everyday life (Duval 19956, cap.II). Within these multifunctional registers,
processings cannot be performed or changed in a algorithmic way. On the contrary, monofunctional
registers have been developed for one specific kind of processing, in order to have more powerful
and less expensive perfomances than those within multifunctional registers. Here processing
becomes technical and using signs or expressions depends first on their form. Technical processing
are formal processing. That's why processing can be expanded as algorithms.

DISCURSIVE REPRESENTATION NON-DISCURSIVE REPRESENTATION

MULTIFUNCTIONAL
REGISTERS :

non-algorithmisable

processings

natural language

verbal (conceptual) associations,

reasoning (argumentation from
observatins or beliefs, valid

deduction from definitions or
theorems...)

geometrical figures as shape
configurations, plane or in perspective

operative apprehension and not only
perceptual apprehension

construction with tools

MONOFONCTIONAL
REGISTERS:

processings are mainly

algorithms

numeral systems

symbolic or algebraic notations,
formal languages

computation

cartesian graphs

change of coordinates system,
interpolation, extrapolation

Figure 7. Classification of the four kinds of register used in mathematics processes
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Mathematical processes involve at least two of these four kinds of processing as we can see it in any
problem solving or in some fields like geometry. Mathematics understanding require the
coordination between at least two registers of which one is multifunctional and the other
monofunctional. Classic problenzatiques of relations between mathematics and language can be put
in an accurate and relevant way only within such a framework of cognitive working. Now if we
consider the most advanced level of teaching, the predominance of discursive monofunctional
registers seems to increase. Besides it is with this kind of register that both performances and loss of
meaning is very often observed. Why? It is wrongly believed that application to daily life or to
extramathematical situations can be a source of meaning and therefore of understanding. No! The
main problem is first with the multifunctional registers. They are implicitly and explicitly needed for
mathematics understanding, but the way they are working in mathematics thought processes is quite
different from the one they are working in the other fields of knowledge and, a fortiori, in everyday
life. Therefore resorting to natural language as within ordinary speech and referring to geometrical
figures as if they were as obvious as other visual images does not help but increases the confusion in
understanding and learning. Here a wide field of reseach is opening. If we want to understand the
complex mechanisms of mathematics learning we must analyse the specific ways of working of the
multifunctional registers, especially for what matters reasoning in proof and visualization in solving
geometry problems. We can have already very specific and decisive cognitive variables (Duval
1995a, 1995b, 1996a)

c The cognitive architecture that underlies understanding in mathematics

That quick overview of the complexity of all kinds of semiotic transformations involved in
mathematical processes sends us back to the above question : what are the internal cognitive
conditions required in order to any subject can understand mathematics ? Now, psychological
models of information processing have highlighted that conscious understanding depends on the
automatic (unconscious) working of the organisation of various and heterogeneous systems. This
organisation makes up the cognitive architecture of the epistemic subject. But mathematics
understanding requires a more complex organisation, including semiotic systems, because it depends
on the mobilisation of several registers. In these conditions learning mathematics means : integrate
into its own cognitive architecture all needed registers as new systems of representation.

INTENTIONAL
bringing into play a semiotic system

(mentally or materially)
The representation DENOTES the represented
object in a :

discursive registers non - discursive registers I
(expression) (visualization)

natural/\\ symbolic non - iconic/ iconic

language or formal

statements

graphs drawings

formulae figures (man, house )

schema sketch

AUTOMATIC
through activation
of organic systems

The representation IS THE OUTCOME
of a direct access to object

/s./
A/ (from vision to memory)

reproduction of internal availability of
perceived gestalts what has been SEEN

imitation
simulation

mental images

olnternalizationo

Figure 8. Various coordinations between productive systems required for mathematics understanding
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That diagram gives a very simplified presentation of cognitive architecture. For example, we should
have to distinguish, for the native language, between common working in social interactions and
theoretical working in knowledge areas which are ruled by proof requirement. But it shows the
various cognitive coordinations that mathematics understanding requires. Learning mathematics
involves both incorporation of monofunctional registers and differentiation of the possible different
ways of working within multifunctional registers. But it is not enough. Learning mathematics
involves their coordination, or their decompartmentalization. Otherwise, conversion between non-
congruent representations will be inhibited. And that is not a side-problem, because registers are
non-isomorphous and because showing together two different representations of the same object, in
order to create associations, does not work. Learning mathematics is learning to discriminate and to
coordinate semiotic systems of representation in order to become able of any transforming of
representation.

That can summed up in one sentence. Mathematics learning does not consist first in a construction of
concepts by students but in the construction of the cognitive architecture of the epistemic subject.
What is at stake in mathematics education through particular content acquisition is the construction
of this architecture, because it creates future abilities of students for further learning and for more
comprehensive understanding. But this deep aspect is misunderstood because student's individual
consciousness, with its beliefs, evidences and interests, is often mistaken for the working of thought
processes.

Conclusion

Research in mathematics education is extremely complex, because it must be lead through strained
relationships between two heterogeneous kinds of organisation and requirements for knowledge, the
mathematical one and the cognitive one. And when we are going from preelementary levels to
secondary levels, the predominance from one to the other seems progressively to be reversed. In
these conditions, what does research about mathematics learning processes mean ? Are we not
confronted with quite different topics, each demanding a particular model ? And would the only
common process which could be extracted not be useful mainly in order to organise activity
sequences the in classroom ?

In an overview of some basic issues, we have emphasized what in mathematics knowledge is deeply
different from other areas of knowledge, rather than what is common. This choice can amaze. Since
Piaget's developmental models and also because mathematics are considered as an intellectual
subject and are needed in all fields of science and technology, we are inclined to assume common
roots between mathematical processes and common thought processes. That is both right and false. It
is right because these common thought processes depend on the working of the semiotic system of
representation. It is false because the taught mathematics require a more systematic and more
differentiated use of semiotic systems than the one needed for anyone who remains at an only oral
culture stage, or than the one needed in other fields of culture which do not all resort to mathematics.
And thus by highlighting the intrinsic role of productive semiotic systems in mathematics
understanding, we emphasize at the same time the gap between natural representations (visual
memories, mental images...) and semiotic representations. As we have already said (Duval
(Fischbein)) the psychological approach to these fundamental questions requires specific models,
which by their turn could contribute to develop the field of cognitive psychology.

In that perspective, conversion of representations and all manifold aspects of non-congruence
appear as the typical and basic characteristic of mathematical thought processes. Through
conversion we are coming to the core of mathematics learning problems. Furthermore conversion
provides a powerful tool of analysis of what is relevant in the content of any representation,
because representation is not only considered in itself, but in relation to another register. Thus we
can bring out cognitive variables, and not only structural semiotic variations, which determine each
register working. It is mainly needed with the multifunctional registers. And by taking into account
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the two kinds of representation transformations, processing and conversion, a cognitive analysis of
problems and exploration of their variations become possible. Unlike mathematical analyses which
are downstream analyses, back from various ways of their mathematical solving, cognitive analysis
are upstream analyses, from variations of initial conversions forward which can be required in
order to start up processing.

All that can seem very far from teaching and especially from questions a teacher can ask in his/her
classroom. This deliberate distance reflects the difference between subjective repesentations of
individuals and the deep cognitive architecture to construct in order to understand mathematics
concepts. The theoretical choices we have made and the model of thought processes that we are
developing can lead to many experiments, to other theoretical frameworks, and even in classrooms!
But a quite different learning environment than the one of the classroom is becoming more and more
important. It requires however the conception of dynamic software which provides very open
interactions with learners in order not to be only an assistance for some algorithms learning. The
model based on registers of thought cognitive working can be helpful for such a conception and
mainly for very complex learning : proving (Luengo 1997) and decimal numbers (Adjiage 1999). In
mathematics education. issues relative to learning cannot be subordinated to those relative to
teaching, because they depend first on the complex cognitive working involved in mathematics
understanding. A wide field of reseach is opening ahead of us.

References

Adjiage, R. (1999). L'expression des nombres rationnels et leur enseignement initial. These U.L.P.
Strasbourg.

Duval, R. (1988). Graphiques et Equations: ('articulation de deux registres, in Annales de
Didactique et de Sciences Cognitives, 1, p. 235-255

Duval, R. (1989). L'organisation deductive du discours: interaction entre structure profonde et
structure de surface dans Faeces a la demonstration, (avec M.A. Egret), in Annales de Didactique et
de Sciences Cognitives, 2, p. 41-65.

Duval, (R.,1991). Structure du raisonnement deductif et apprentissage de la demonstration, in
Educational Studies in Mathematics. 22, 3, p.233-26I.

Duval, R. (1995a). Geometrical Pictures : Kinds of Representation and specific Processings. in
Exploiting Mental Imgery with Computers in Mathematic Education (Ed. R. Suttherland & J.
Mason ) Berlin: Springer p. 142-157.

Duval, R. (1995b) Semiosis et pensee lzumaine. Bern: Peter Lang. Senziosos y pensiamento human°
tr. M.V. Restrepo. 1999 Cali : Universidad del Valle.

Duval, R. (1996a). «Quel cognitif retenir en didactique des mathematiques ?». Recherches en
Didactique des Mathematiques, Vol 16, n°3, 349-382

Duval,R. (1996b). Les representations graphiques: fonctionnement et conditions de leur
apprentissage in Actes de la 46eme Rencontre Internationale de la CIEAEM, tome 1, 3-15 (Ed.
Antibi). Toulouse : Universite Paul Sabatier

Duval, R.(1998a). Geometry form a cognitive point a view, dans Perspectives on the Teaching of
Geometry for the 21st Century, (ed; C. Mammana and V. Villani) Dordrecht/ Boston Kluwer
Academic Publishers p. 37-52

106 1-68



Duval, R. (1998b). Signe et objet (I) : trois grandes &apes dans la problematique des rapports entre
representation et objet Anna les de Didactique et de Sciences Cognitives, 6, p. 139-163. Strasbourg :
IREM

Duval, R. &alii. (1999). Conversion et articulation des representations analogiques ( Ed. Duval)
SEminaire I.U.F.M. Nord Pas de Calais : D.R.E.D.

Duval, R. (1999). Ecriture, raisonnement et decouverte de la demonstration en mathematiques.
Actes de la Xe Ecole d'Ete de Didactiques des mathematiques tome II, Caen : IUFM p.29-50.

Duval, R. (to be published). Cognitive working of reasoning and understanding of the mathematical
processes of proof

Fischbein, E. (1999). Psychology and mathematics education. Mathematical Thinking and
Learning, I, 47-48.

Frege, G. (1971), (1891,1892). Fonction et concept. Sens et denotation tr. Ecrits logiques et
phislosophiques Paris : Seuil.

Luengo, V. (1997). CABRI-EUCLIDE :un micro-monde de preuve integrant la refutation. These
Universite Grenoble I : Laboratoire IMAG.

Pavlopoulou, K. (1993). Un probleme decisif pour l'apprentissage de l'algebre lineaire : la
coordination des registres de representation. Annales de Didactique et de sciences cognitives, n°5,
p.67-93.

Peirce, C.S. (1931). Collected Papers, II, Elements of Logic. CambridgeHarvard: university Press

Piaget, J. (1968), (1946). La formation du symbole chez l'enfant. Neuchatel : Delachaux et Niestle

Piaget, J. (1972), (1926).La representation de l'espace chez l'enfant. Paris :P.U.F.

Sierpienska, A. (1997). Formats of Interaction ans Model Readers, For the learning od
Mathematics, 17, 2 , p.3-12

Shoenfeld, A. H. (1986). On having and using Geometric Knowledge in Conceptual and
Procedural Knowledge the case of nzathematics (Ed. J. Hiebert) Hillsdale NJ, Erlbaum).

17
1-69



PLENARY PANEL

Theme:

Teaching and learning in school mathematics:

What has research told us about

mathematics teaching and learning ?

Chair: Peter Sullivan

Panelists: Paolo Boero

Margaret Brown

Fou-Lai Lin

1-71



Physicians leave education researchers for dead

Diane Ravitch is a research professor at New York University in New York City. She
was the US assistant secretary for educational research from 1991 to 1993. This was
published in the Sydney Morning Herald on 22/2/99 (retyped).

It was an ordinary trip to California? or so I thought. I had taken long weekends to the
West Coast many times before, but this time was very different. The difference
revealed itself on the morning after my return to New York City: I could barely draw a
breath. Some corner of my brain thought "exhaustion", or "prelude to a bad cold", and
I decided to ignore whatever was happening.

Twenty-four hours after my return home, my left leg began to ache. Unable to sleep, I
got up the next morning convinced that I had a really bad cramp. Ignore it, I decided,
because I had to get through the work on my desk and get ready for a trip to Dayton,
Ohio, and Chicago later in the week.

After a day at my computer, I could barely stand on the left leg, but my dog forced me
to leave the house: she had to go out for a walk. I dragged myself outside and
fortunately ran into my neighbour, a radiologist, who happened to be on his way to a
community meeting. I ask him whether to put hot or cold compresses on my leg; by
chance, he noticed that I was short of breath. He told me to call my doctor
immediately.

He recognised the classic symptoms of something I knew nothing about: pulmonary
embolisms. The rest of the story is quickly summarised: I went to the emergency
department of the local hospital, where my neighbour's diagnosis was quickly
confirmed.

I had blood clots in my left leg and in both lungs. If I had not received prompt
treatment, the doctors said, I might have died.

When I was in the intensive care unit, the hospital's specialists gathered around my bed,
explaining the diagnosis and treatment of pulmonary embolisms to other doctors,
residents, and interns. The head of pulmonary medicine described the tests that had
been used to ascertain my illness, and the drugs and protocols that were employed to
stabilise the clots.

As I lay there, listening to them discuss my condition, I had a sudden insight. I was
deeply grateful that my treatment was based on medical research, and not education
research. At first, I thought, that's a silly idea, you can't treat pulmonary embolisms
with education research anyway. But as the conversation continued literally over my
prone body, employing a vocabulary that I did not understand, I began to fantasise about
being the subject of education researchers.

The physicians who hovered over me dissolved, replaced in my mind's eye by an equal
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number of education experts. The first thing that I noticed was the disappearance of
the certainty that the physicians had shared. Instead, my new specialists began to
argue over whether anything was actually wrong with me. A few thought that I had a
problem, but others scoffed and said that such an analysis was tantamount to "blaming
the victim".

Some challenged the concept of "illness", claiming that it was a social construction,
utterly lacking in objective reality. Others rejected the evidence of the tests used to
diagnose my ailment; a few said that the tests were meaningless for females, and others
insisted that the tests were meaningless for anyone under any circumstances.

One of the noisier researchers maintained that any effort to focus attention on any
individual situation merely diverted attention from gross social injustices: a just social
order could not come into existence, he claimed, until anecdotal cases like mine were
not eligible for attention and resources. Among the raucous crowd of education
experts there was no agreement, no common set of standards for diagnosing my
problem. They could not agree on what was wrong with me, perhaps because they did
not agree on standards for good health.

Some maintained that it was wrong to stigmatise people who were short of breath and
had a really sore leg; perhaps it was a challenge for me to breathe and to walk, but who
was to say that the behaviour I exhibited was inappropriate or inferior compared to what
most people did? Some people who were short of breath and had sore legs were
actually happier, I learned, than people who did not exhibit these traits.

A few researchers continued to insist that something was wrong with me; one even
pulled out the results of my CAT-scan and sonogram. But the rest ridiculed the tests,
pointing out that they represented only a snapshot of my actual condition and were,
therefore, completely unreliable, as compared to longitudinal data (which of course was
unavailable).

I was almost completely convinced at that point that the discord among the experts
guaranteed that I would get no treatment at all, but then something remarkable
happened. The administrator of the hospital walked in and said that she had received a
large grant from the Government to pay for treatment of people who had my symptoms.

Suddenly, many of those who had been arguing that nothing was wrong with me
decided that they wanted to be part of the effort to cure me.

But, to no-one's surprise, the assembled authorities could not agree on what to do to
make me better. Each had his own favourite cure, and each pulled out a tall stack of
research studies to support his proposals. One group urged a regimen of bed rest, but
another said I needed vigorous exercise.

One prescribed a special diet, but another said I should eat whatever I wanted. One
recommended drug X, but another recommended drug Not-X.

Another said that it was up to me to decide how to cure myself, based on my own
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priorities about what was important to me. Just when I thought I had heard everything,
a group of newly minded doctors of education told me that my body would heal itself
by its own natural mechanisms, and that I did not need any treatment at all:

My head was spinning with all this contradictory advice. The room turned a few times,
and I thought for a minute that I was in that house that got carried away by a twister in
The Wizard of Oz. Then, to my amazement and delight, I realized that I was back,
safe and sound (but very sick) in my bed in the intensive-care unit at Long Island
College Hospital.

I looked appreciatively at the medical doctors around by bed, grateful to be surrounded
by men and women who have a common vocabulary, a common body of knowledge, a
shared set of criteria, and clear standards for recognising and treating illnesses.

They have access to reliable tests that tell them what the problem is, and they agree on
treatments that have been validated over a long period of time.

The thought occurred to me that educators have something to learn from physicians.

Medicine, too, has its quacks and charlatans. But unlike educators, physicians have
canons of scientific validity to protect innocent patients from unproven remedies and
specious theories. To be sure, not every important question can be resolved by
scientific research, but medicine seems to have done a good job of identifying and
implementing those that can.

I am grateful indeed that my diagnosis and treatment were grounded in solid medical
research. Otherwise, I would not be here to tell my tale.

In our society, we rightly insist upon valid medical research: after all, lives are at risk.
Now that I am on the mend, I wonder: Why don't we insist with equal vehemence on
well-tested, validated education research? Lives are at risk here, too.
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CAN RESEARCH IN MATHEMATICS EDUCATION BE USEFUL FOR THE
TEACHING AND LEARNING OF MATHEMATICS IN SCHOOL? AND HOW?

Paolo Boero, Dipartimento di Matematica, University di Genova

1. The metaphor of medical sciences

When examining the usefulness of education research results for overcoming
serious difficulties in learning, Diane Ravitch adopts the metaphor of treating a
serious illness (like pulmonary embolisms) with the tools of medical science. In my
view this metaphor is misleading, given that the most serious difficulties in
learning, particularly in learning mathematics:

are of a systemic, cultural nature (while pulmonary embolisms concerns one
individual's body). In mathematics education we cannot isolate "learning" from
"teaching", nor "learning mathematics" from socially "situated" intellectual and
cultural development, including linguistic competencies, metacognitive aspects,
rational attitudes, etc.;

- cannot be measured in an objective way (like blood pressure). Objective
measurements are suitable for dealing with technical skills, like performing
additions; on the contrary complex arithmetic problem solving or conjecturing in
the geometry field escape present criteria of objective, quantitative assessment (cfr.
Boero & Szendrei, 1998, Section 3);

must be approached at two levels the level of autonomous performances, and
the level of performances which are potentially attainable with the help of more
competent people (according to Vygotsky's idea of "zone of proximal
development", ZPD). This distinction is significant if we wish to consider
"diagnosis" and "remedial interventions" (which must be carried out within the
ZPD). No equivalent to ZPD exists for pulmonary embolisms.

All these characteristics which fall outside the metaphor of a serious physical
illness (like pulmonary embolisms) raise another problem - that of the field of
sciences which mathematics education (ME) belongs to. The problem of the
usefulness (and reliability) of results in ME bears strong similarities to the same
problem for economics (or even better for some areas of the medical sciences like
psychiatry or psychoanalysis, which are very far from the areas involved in the
treatment of pulmonary embolisms).

Examining the comparison with other sciences in greater depth, we may say that
ME shares with some human sciences the characteristics of a "speculative"
discipline (whose criterion of validity is the value of the descriptions and
interpretations of what happened or happens, such as in the field of history). On the
other hand, it shares with other disciplines the characteristic of a potentially
"applicable" discipline (whose criterion of validity consists in the validity of
predictions for successful decision-making, such as in the field of economics).
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To say that ME belongs to the human sciences does not mean that we must accept
the present status of unreliability of many ME results; Diane Ravitch' paper
challenges us to find out possible reasons for unreliability of ME experimental
research results, and how to improve their reliability.

2. Some reasons behind the unreliability of ME experimental research results

I will refer to the analysis made in Boero & Szendrei (1998) about the reasons
behind the unreliability of some mathematics education results.

First of all, the very desire to equate ME experimental research with
experimental research in the field of natural sciences can produce negative effects
on the reliability of results. If we state that ME experimental research (like
experimental research in physics, biology, chemistry, etc.) must produce data that
can be reproduced under similar conditions, and whose interpretations may be
partly or totally falsified by further research, then researchers must isolate
variables, keep experimental conditions under control, etc. But mathematics
education is a complex process and research results are interesting (both in
themselves and in terms of their consequences for the school system) when
complexity is taken into account. This 'complexity' mainly concerns the fact that
almost every meaningful teaching-learning process appears as a long-term process
involving a large number of interrelated variables; moreover, at present, isolating
and measuring some of the significant variables would appear to be fairly difficult.

Another negative effect stemming from the desire to adopting a paradigm
similar to those of the natural sciences concerns the importance attributed to
quantitative, objective assessment data and their impact on the school system.
Generally speaking, results of the 'quantitative information' type are very popular
among school teachers and administrators; some mathematicians regard them as the
only 'scientific' results in mathematics education. Indeed, these results provide
information which frequently seems 'objective', 'scientific' and easily intelligible.
Apart from the scarce scientific relevance of some of these results, for the reasons
given above, we have seen in our research how the quantitative evaluation of
pupils, teachers, school systems, projects and innovations may cause serious damage
(for instance, it may orient teachers towards preparing pupils to be successful in
quantitative assessment tests - an aim that can conflict with importasnt long term
educational goals).

Other reasons for the unreliability of ME experimental research results stem
from some characteristics that ME shares with human sciences for instance:

the importance of (and the difficulty of controlling) ideological assumptions.
Sometimes a teaching innovation is tested, or a research hypothesis is chosen, in
accordance with the researcher's ideological positions. This can have consequences
both on the acceptance and diffusion of research results and on the processes for
testing research hypotheses;

the danger of arbitrary extrapolations from one cultural setting to another. As
an example, we may cite (from Boero & Szendrei, 1998) the differences in Italy
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and in Hungary concerning the learning of natural numbers: in the Italian language,
natural numbers ('one, two, three, four...') are used to indicate the days of the
month (the sole exception being the first day, commonly named 'the first of...') ;

by contrast, in Hungarian, all the days of the month are named with the ordinal
adjective 'the first..., second..., third...'.So in the two countries the relationships
between 'cardinal' and 'ordinal' aspects of natural numbers differ in pupils' early
mathematical experiences. These differences may affect both the cognitive
hierarchy between different aspects of the number concept and the opportunities
that real life situations offer the teacher for approaching these aspects in the
classroom, with heavy consequences on learning results.

3. How to improve the reliability of ME experimental research results

In my opinion, ME can improve the reliability of presently produced results, but
the price to be paid is not low. Specifically, when reporting experimental ME
results clear and constant reference should be made to the specific conditions in
which they were produced (including the students' cultural setting and preceding
school experience). This implies strong a priori limitations on the validity of
results, but seems necessary in order to avoid dangerous extrapolations and
arbitrary applications.

On the other hand, researchers (and teachers) should try to keep methodologies
and results of the 'quantitative information' type under control. For instance, it is
crucial to understand whether it is possible (and, in this case, how it is possible) to
keep mathematics education variables 'constant' in order to create effective control
groups.

Another necessary constraint comes on the mathematics side. In recent years
(cfr. NCTM 1989 standards) some crucial parts of mathematics (like "proof" and
"algebraic language") have been made less important in assessment, or even
removed from the basic requirements of high school in some countries. Action of
this kind should be carefully taken under ME control and, if necessary, discouraged
with scientific arguments. Indeed not only does it provoke well justified reactions
from mathematicians, parents, and others (see "Math Wars" in USA), but is also
dangerous for a number of reasons:

it may compromise the quality of the students' intellectual development
(especially if we allow that the content of the activity is relevant for it: see
Vygotsky, Thought and Language, Chapter VI, about the role of grammar - and
algebra in the students' intellectual development);

- it can compromise the specific role of cultural transmission that schooling
plays within the mechanism of cultural reproduction in a society.

The fact that "proof" or "algebraic language" (as presently taught) are difficult
for most students is not a good reason for cutting or delaying them in curricula.
ME must accept the challenge coming from this kind of topics. Some, preliminary
ME results show the feasibility of alternative, successful approach to them. But
promising results need a strong commitment both on the historical
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epistemological ground and on the cognitive ground, and a sound mathematical
perspective (as an example concerning "proof", see Mariotti et al. 1997).

As a consequence, ME teams need to include researchers with a sound
mathematical and epistemological grounding. The reasons for their inclusion lie not
just in the need to avoid relevant mathematics topics and skills being omitted from
or misinterpreted in ME; they can play other, significant roles. For instance, they
can help detect possible connections between students' strategies and crucial
mathematical behaviours; they can establish possible epistemological links between
different investigations or research hypotheses, etc., thus widening and
strengthening the scope of ME.

In my opinion, another necessary component in ME experimental research is the
presence of teacher-researchers. From a purely academic-centred perspective,
researchers are expected to be professionals operating in the field of research with
an academic status. But what about research questions coming from school practice
and the application of research results in the school system?

In the Italian ME tradition (see Arzarello & Bartolini Bussi, 1998), the
participation of school teachers in all the phases of experimental research (with full
researcher status, including the right to take part in decision making about the
research questions, methodology, etc. and in analysis of experimental data) would
provide a number of advantages: a guarantee that research questions are strictly
linked to acute difficulties faced in school; the exploitation of teachers' awareness
about the research methodology and hypotheses in managing teaching experiments
is exploited; personal knowledge of students (when analysing their performance); a
better choice of results to be diffused in the school system, and their optimum
presentation (for instance in pre-service and in-service teacher training: cf Boero,
Dapueto & Parenti, 1996).
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DOES RESEARCH MAKE A CONTRIBUTION TO TEACHING
AND LEARNING IN SCHOOL MATHEMATICS? REFLECTIONS

ON AN ARTICLE FROM DIANE RAVITCH

Margaret Brown
King's College, University of London, UK

Abstract: This response to Diane Ravitch accounts for some differences between
medicine and mathematics education, but accepts some of the criticisms as valid.

EVIDENCE-BASED PRACTICE

The article powerfully contrasts the position of the knowledge-base in medicine with
that in education. This is in line with current political thinking in the UK where it is
also now fashionable to contrast research in education unfavourably with medical
research. The result is to justify a call for a move in education towards 'evidence-
based practice'.

`Evidence-based practice' has been adopted as an aim in medicine and nursing. The
Cochrane Collaboration in Britain sponsors groups of researchers and practitioners in
various healthcare specialisms to carry out systematic reviews of existing research.
The studies included must meet certain conditions of rigour, if possible employing
randomly controlled trials. The findings in these reviews are used as a basis for
recommending current best practice in healthcare. Our UK Government Department
for Education and Employment has recently funded a Centre for Evidence-Informed
Policy and Practice to extend these reviews into education.

My personal position is that I cautiously support this move into evidence-based
practice but am sceptical about its appropriateness at present due to factors which I
discuss below. It should also be noted that there are important areas of research in
mathematics education (e.g.epistemology, policy studies) to which this discussion is
irrelevant.

1. The robustness of the scientific knowledge-base

Both medicine and education are eclectic fields in that they are vocational areas
which use a knowledge-base drawn from more fundamental disciplines.

In the case of clinical medicine the knowledge-base is mainly biological and
biochemical and is reasonably well-established in some areas. For example inrelation
to pulmonary embolism, which is the subject of this article, one can point to several
centuries of scientific research into how the blood vessels, heart and lungs function.
Some of the scientific knowledge may have been gained in the medical context by
doctors or researchers, or it may arise in the laboratory.

Of course Professor Ravitch was a bit lucky that the medical field in which she was
suffering was one that was relatively well-understood. If she had been afflicted by
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certain types of cancer, schizophrenia, obesity or multiple sclerosis she might have
been less impressed by the competence of the medical fraternity, since the biological
bases of these diseases are less well understood.

Education rests on a much less well-researched knowledge base in terms of
fundamental disciplines. We are at last gradually beginning to gain some insight into
brain functioning via tomography, but psychology is a new and as yet very empirical
science, with many unconnected detailed results and a few theories, which are too
general to act as a reliable guide for practice. I am old-fashioned enough still to
believe that psychology, both cognitive and social, is the key discipline in teaching
and learning, but those parts of sociology and other disciplines which relate to
education are not much further developed.

In relation to mathematics education in particular we have very little idea about the
nature of schemas and how they relate to classroom events. We do not know in
what form knowledge is internalised, assimilated or accommodated, how it is
associated or conceptually related to other knowledge, and especially to
generalisations, abstractions, specific language or symbols or diagrams. We do not
know why some pupils seem to acquire and re-structure ideas quickly, nor why
some have more facility than others at spatial representation, why some are more
curious about mathmatics or why some are more able to make creative leaps. Nor do
we know much about the effect on learning of different aspects of teachers,
teaching or teaching materials Thus it is not surprising that most research in
mathematics education is at the stage of 'nature study' i.e. careful observation and
local theory, in order to build up fragments of the knowledge-base.

2. The evidence-base for effective practice

Distinct from but connected with the knowledge-base is the applied research which
evaluates practice. It is obvious that a fuller theoretical understanding is likely to lead
to more effective practice. Equally, evaluation results should lead to further
investigation and thus further knowledge. There has been well over a century of
medical practice which has been based on at least some elementary but robust
scientific knowledge.

Thanks to the professional bodies in medicine, innovative treatments reflecting
greater understanding (and sometimes lucky hunch) have first been reported in the
medical literature as interesting case-studies, and later where appropriate tested
against other treatments in larger scale trials, or evaluated post-hoc using data-sets.
Thus there is a tradition of what we might regard as informed practitioner action-
research followed up by larger scale quantitative studies.

In the most advanced areas of medicine, such as pulmonary embolism, these
procedures are highly effective. However it should be noted that in other areas such
as Alzheimer's syndrome or lung cancer this state has not been reached, whether
because of insufficient understanding of the biological condition or because of
insufficient research on possible preventative measures or cures.
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This method of informed action-research followed by more systematic evaluation of
potentially promising practice would seem to be a reasonable way to proceed in
education, and of course some start has already been made.

To take areas in which I have been involved personally, a 'pure' research project
identifying cognitive hierarchies in the mid -1970s, Concepts in Secondary
Mathematics and Science, formed the main knowledge-base for several
developments carried out by or in co-operation with teachers. These include a
published curriculum scheme (SMP 11-16), two published formative assessment
scheme (Graded Assessment in Mathematics/Science - GAIM/GASP) leading to the
original 10-level form of the English National Curriculum, and two published
schemes of occasional 'thinking' lessons aiming at cognitive acceleration in
mathematics/science education (CAME/CASE). All were developed formatively
through small-scale and then wider-scale trialling and modification, but only the latter
schemes have had a formal evaluation in terms of matched controls and effect-sizes.
Nevertheless there have been other quantitative but less rigorous data which have
suggested success, like 65% market penetration for the SMP scheme and national
test data which mainly validated the content of national curriculum levels.

There are of course ethical problems in trialling educational materials and practices,
but some of these are similar to those in medicine. For example the confidence and
often the formal permission of the patient/doctor/hospital or the teacher/parent/pupil/
headteacher may have to be gained. Nevertheless this might well be easier for a
prestigious medical institution recommending an apparently miraculous and possibly
quickly administered new treatment than for a lower status educational researcher
who needs permission for whole classes of children for a change of curriculum or
teaching practice lasting several months.

While larger scale medical experiments seem to be able to standardly use random
allocation of patients to treatments, it is more difficult to envisage this being possible
in education, even at the class or school level, although there are some powerful
examples, e.g. in Bob Slavin's work. It is certainly both easier and cheaper, although
less rigorous, to look for well-designed experiments with matched pairings. The
differences in tradition are likely to be partly due to more generous research funding
in medicine but partly also because in most educational experiments the commitment
of the teacher is crucial. This may be similar for surgical procedures but is
presumably less so if the main treatment is medical in character.

I believe that we should aim for more rigorous experimental design in mathematics
education; we should be prepared to submit our favoured solutions to a fair test and
consequently need to be more ambitious in our funding requests. The result would
be more credibility with government; it is currently difficult to persuade them that
any contribution is made by our work to raising standards in mathematics learning.
Unless we act, changes may be taken up by teachers but may not deliver better
results, and more worryingly sound recommendations may not be adopted because
people are not convinced that the benefits will be worth the investment.
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3.The complexity of educational contexts

Professor Ravitch's main point is that where educationists are constantly bickering
about validity issues, medics tend to get on with it in more robust ways. There are of

course more and less controversial areas of medicine; for example the arguments

rage about homeopathic versus intrusive treatments for some forms of cancer, or
therapeutic versus drug treatments for depressive and behaviour disorders. Whereas

some diagnostic tests may be well-accepted, there are almost certain to be others

which are just as much argued over as in education. As noted earlier, problems are

more likely to arise in areas with more contested knowledge-bases. And it should be
noted that teachers like doctors are likely to be robust practitioners while in both

areas the academics argue and may sadly sometimes be more concerned with
academic status relating to theoretical niceties than impact on the system. One
interesting difference is that in medicine the academic is more likely to be also a

practitioner.

Educationists can argue that things are more starightforward in medicine; popping

pills is less complex than teaching in a complex social context, and a physical

measurement of e.g. blood pressure is simpler than an assessment of mathematical
learning or attitude. It is certainly true that in education, significant effects in
properly designed experiments are difficult to come by, perhaps because of these
multiple interfering factors. But there must be many areas of medicine where the
patient's history, attitude, social relations and background are also significant factors
in the success or failure of a treatment. Many of these variations are ironed out by
randomly controlled trials given a sample which is large enough, which relates back

to the previous point.

CONCLUSION
In this response I have tried to make it clear that the contrast between medicine and
education is less great than is presented and can be partly accounted for by the
different stages reached both in the development of knowledge and in evaluation

research. There are probably other contributing factors, like the fact that it is easier
in education to build up a long publication list through critique and reflection, based

on a little observation, than by rigorous large-scale experimentation. Or that a small
improvement in medical treatment may still be worthwhile achieving if one or two
lives are saved, and may be easy enough to disseminate to a small number of well-
networked practitioners. Even a few percentage points improvement in international
comparisons of mathematics achievement may seem little reward for the expense
and disruption of systemwide change in mathematics teaching.

Nevertheless I believe the article is useful in calling us to account; if we are not in a
stronger position to provide evidence of our successful impact on mathematics
learning in 50 years time, then it will be difficult to find suitable excuses.
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An Approach for Developing Well-tested, Validated Research of
Mathematics Learning and Teaching

Fou-Lai Lin Department of Mathematics, National Taiwan Normal University

1. Investigating Local Learning Issues from An International Perspective

Education research from international perspectives should aim to reveal educational

issues in the society, and to develop appropriate strategies to resolve these issues

under international collaboration.

A comparison study (Lin, 1988, 1991; Hart, 1981, 1984) that focused on the
societal differences of reasons why Taiwanese and English secondary students
develop their misconceptions / incorrect strategies of solving mathematics problems

have shown its values on investigating local learning issues from an international
perspective. I will argue that the approach of investigating local learning issues from

an international perspective do generate a methodology that makes well-tested,
validated education research meaningful.

2. English "Address" vs. Taiwanese "Integer-Multipliers"

Among the populations of age 13-14, there are about 30% and 25% of English and

Taiwanese students respectively are using the incorrect-addition strategy consistently

on "hard" ratio tasks (Hart, 1984; Lin, 1991). That is, those students in both
societies have the same problem solving behavior on certain ratio tasks with
non-integer rate. When investigating the reasons why those students reason in such

a way, Hart (1984) called those English students as "adders" for the characteristics of

those English students are identified as follows:

a) using addition-based child-methods, such as halving, doubling, adding on and

building up to solve easy ratio items;

b) avoiding application of multiplication of fractions, and taught algorithms; and

c) never using multiplicative strategies, such as the unitary method (how much for

one), and the formula method (a/b = c/d) (Hart, 1984).

However, we found that those counterparts of the Taiwanese are able to use
multiplicative methods such as multipliers and unitary methods predominantly on

easy ratio problems, and switch to the incorrect addition strategy on hard ratio
problems. Clinical interviews with those students have shown that the main reason

they fall-back to the incorrect strategy is because of non-awareness of non-integer

multiples (Lin, 1991). For those Taiwanese students, their concepts of multiplication

have strong linkage with their concepts of multiples. Since they don't recognize
non-integer multiples as multiple, when they faced with ratio tasks with non-integer
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rate, harder than n naturally the linkage between the tasks and the multiplicative

strategy can't be connected in their mind. The incorrect addition strategy seems then

to be the reasonable choice for them. We called those students, about one quarter in

Taiwanese population of age 13-14, the "integer-multipliers".

3. Bridging the Prior-Framework to the Formal Conception

The aim of investigating learning issues is for educators to re-design more effective

mathematics teaching, to enhance effective learning in classrooms. Bridging one's

prior-framework to the formal concepts is one view of learning. The

prior-framework is used here to be a general terminology which could be called as

misconception, pre-conception, child method, informal knowledge, intuition,

alternative framework, spontaneous concept, etc., within specific contexts in the
literature. Under this view, effective learning can be interpreted as the involvement

of learners in developing connections between their prior-framework and the formal

concepts.

Following the view of learning as bridging the prior-framework to the formal

knowledge and the findings of different characteristics of English adders and
Taiwanese integer-multipliers, we examined and modified the diagnostic teaching

module on ratio that was developed by Hart (1984) to help English adders. The

version of Taiwanese diagnostic teaching module on ratio was proved to be an
effective module for those Taiwanese integer-multipliers in developing their
multiplicative strategy on proportional reasoning tasks (Kuo, et al., 1986).

Furthermore, the finding about Taiwanese students do not aware non-integer multiples

as multiple caused a great attention by Taiwan mathematics educators. Consequently,

the new elementary mathematics curriculum implemented in 1993 did take this result

into consideration and have developed activities for children to learn their concept on

non-integer multiples. For instance, the topics on multiplication of fractions and

decimals in this new curriculum are treated not only as procedural knowledge but

more fundamentally as well as conceptual understanding in Year 5 and Year 6
respectively.

4. Making Sense of A Methodology

Some consequent statements have been drawn from the results of the above
investigating.

a) Defining the position of research in mathematics education to be

apply-oriented is meaningful. Results of researches were proved to be the
key resources for re-designing teaching modules and learning activities, and
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reforming curriculum to meet the need of ensuring effective learning.

b) International comparative study could be aimed to formulate specific

education issues within each participated populations and develop strategies

collaboratively to resolve that issues.

c) The characteristics of learners' prior-framework in learning mathematics are

societal and cultural rooted by nature.

Considering statements a), b) and c) as the basis of a methodology, I will exercise it

on studying learning issues in mathematics arguments.

5. Investigating Learning Issues on Mathematics Arguments
In England, the Current Mathematics National Curriculum prescribes a

process-oriented approach to "proving" that aims to make proof more accessible (ME,

1994). Hoyles and Healy (1999) described that English "students' justifications are

usually expected to draw on experimental results.

In Taiwan Junior High School, the Euclidean geometry, in simplified format, is still

the dominant context teaching deductive reasoning. At this stage, algebra is not
considered by majority of teachers aiming to play the role of proving.

Hoyles and Healy (1998) found out that the improper empirical methods are

favored by about a quarter of English top 20% students of 15 years old as their own

approach of proving the statements such as item Al: "When you add any 2 even

numbers, your answer is always even", and item GI: When you ass the interior angles

of any triangle, your answer is always 180°.

Considering the empirical approach as the main component of their

prior-framework in learning with formal proof, then the learning path of those
students can be represented as Figure 1. They are seeking for ways to transfer from

the empirical approach to the formal proof.

Figure I. A representation of a learning path for English students

.4 0 -,114 4-
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The formal-presented improper or incorrect arguments identified as their own

methods by about 30%--40% of Taiwanese students. Considering those arguments as

the main component of their prior-framework in learning with formal proof, then the

learning path of those students can be represented as Figure 2. They are seeking for

ways to modify their incorrect or improper formal argumentation to adapt the formal

proof.

Figure 2. A representation of a learning path for Taiwanese students

Figure 1 and Figure 2 show that the prior-frameworks and hence the nature of

issues of developing effective learning activities in mathematics proof are different

between Taiwanese and English students.

6. A Conjecture of Linking the Informal Argument to the Formal Proof

Hoyles and Healy (1999) had tried to link informal argumentation with formal proof through

computer- integrated teaching experiments. Hoyles reported that their teaching experiments

did not seem to result in a very effective learning.

In Taiwan pre-pilot study (Lin & Chen, 1999), three either improper or incorrect formal

presented argumentation on the item Al shared a common feature that each one of those

arguments start with naming one-unknown. To make a correct formal proof of the statement:

The sum of any two even number is always even," students have to name two arbitrary

unknowns actively, this assume to be over- loaded in their cognition at aged 15 years. Taking

one- unknown as reference to establish the two even numbers is the common feature of those

improper / incorrect formal arguments. Could this feature help us formulating a conjecture that

the learning of proving this kind of statements, the number of unknowns which is necessarily to

be given by learners in the tasks should start from one and then two and so on?

Though, there may have many ways to learn formal proof. Nevertheless, this observation is

worthy to try out in the future study from both societies.
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New tools, new attitudes to knowledge: the case of geometric loci and
transformations in Dynamic Geometry Environment

Ana Paula Jahn

PROEM - PUC/SP1
jahn@exatas.pucsp.br

The introduction of computer environments brings particular features into the
didactic system: a computer (with convenient software) becomes part of the "milieu"
and is the scene of the pupil's mathematical activity. It is of particular importance to
determine the characteristics of "milieux" integrating a computer environment, and
as far as we are concerned, the effects of the use of Cabri-geometre in specific
situations in order to analyse observed behaviours. Broadly speaking, we know that
a computer provides new tools to act on abstract objects, in particular mathematical
objects, and in this way it changes the attitudes of the pupil to the objects themselves.

We propose to discuss the fact that the computerised "milieu" with Cabri-geometre
opens new possibilities of action and provides an extended feedback: graphical and
computational possibilities offered by this microworld allow a "reification" of
geometric objects, as well as of numerous operations on these objects and various
feedback. Furthermore, this "milieu" provides specific representations of knowledge
related to the functionalities of the computer environment - fast treatment of figure
deformations, dynamic apprehension of curve generation, specific tools such as
"Locus" and "Trace" (particularly efficient in representations of images by a
geometric construction, we will discuss it farther), fast and handy construction tools,
such as "Parallel line", "Midpoint", etc. Indeed, the cost of operations, which is
usually prohibitive in the paper/pencil environment, is changed due to these tools,
and the economical constructions they afford make repetitions possible.

We are therefore interested in the pieces of knowledge that are related to computer
environments, i.e., in their nature, as well as in the knowledge they are likely to
bring into play in the apprehension by the pupils. We will look more particularly at
the notions of geometric locus and transformation, through an analysis of the tools
provided by Cabri: "Locus", "Trace", and those that represent transformations
"Reflection ", "Symmetry", "Rotation", "Translation", "Dilation".

IProgramas de Estudos e Pesquisas no Ensino da Maternatica, Pontificia Universidade Catolica de Sao Paulo (Brazil).
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On the notion of geometric locus: relating geometric and functional aspects

Traditionally, in the context of synthetic and static geometry, a geometric locus is
likely to be perceived as a set of points satisfying a certain property, the set being
regarded either globally, or point by point.

"In order to say that the points of a figure satisfy the same property, and that all
points satisfying this property belong to the figure, we say that the figure is the
geometric locus, or the set of points satisfying the mentioned property."

Therefore, a geometric locus is a set of points having a certain property: a
characteristic condition determines whether a point belongs to the set.

Loci are not characterized in the functional setting, or in the setting of
transformations, they serve as means of transition between the definition of a figure
in the Euclidean sense (taken globally), and its definition as a set of points. In this
way, the term "locus" can be replaced by "set of points". That is the case, for
instance, of "classic" pointwise characterisations of objects, such as perpendicular
bisector, angle bisector, conics, and more particularly circle.

The tool "Locus" in Cabri does not come under the same meaning. Indeed, it is not
possible in Cabri-geometre to obtain a locus from a metric property, or a property
which is not expressed in a functional form, i.e., as a condition relating a point with
only one degree of freedom (i.e. point on object) to another, variable point2.

In Cabri, a locus is a set L of points that are function of a point element of a set E:
L = {f(P), P in E }, and on the screen we have a sketch (a representation) of the set L
by a finite number of f(P). The point P is a "variable" point that belongs to a certain
set of points in the plane (a straight line, a circle, a line segment...), and the point
f(P) of the locus is related to P by means of a geometric construction. As regards our
purpose, this functional relation can represent a geometric transformation, and the
tool "Locus" represents the means to obtain the set of images of points of the figure-
object, i.e., the image of the latter.

With the "Locus" tool, the points that define the image are calculated by the software
and obtained directly without the need for any movement of the variable point. The

2 It is possible using the Cabri "Locus" tool to construct loci of lines (envelopes), discussion in this paper is restricted to
the loci of points.
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locus appears instantaneously and in its entirety as a new geometrical object on the
screen. There is a second way that the user can locate the set of point-images of the
figure under a particular transformation. With the "Trace" tool, the student can drag
point P on any figure, and observe the trajectory of the point P', related to P by
construction. The representation that is produced using "Trace", however, does not
have the status of a true Cabri object, since it does not rely only on geometric
primitives but also necessitates graphical movements. For this reason, this second
way of exploring the set of points is not recognised as legitimate for mathematical

study, it is conceived as no more than a visual aid.

In the following section, examples will be provided to illustrate how these two tools
were integrated in a didactic sequence about geometric transformation. It was
hypothesised that the these two tools, "Locus" and "Trace", would enable the
clarification and description of what remains implicit in paper/pencil, especially the
case of the functional relationship which is specific in their functioning. The
sequence was designed for use with a class of 33 high school students (aged 15-16)

from a school in southeast of France. The complete sequence consisted of four
teaching situations realised during seven sessions, each of which lasted one hour.
During their interactions with the activities proposed, students worked in pairs and
five pairs were select for case-study. All of the students had had approximately 6-
months experience of using the Cabri (both computer and calculator versions) as part
of their mathematics class prior to taking part in the transformations study. In this
paper, episodes drawn from the analysis of the strategies of the case-study pairs to
the problems proposed in the third session will be presented to consider the
contribution of the Cabri tools to the students developing ideas about geometrical
relationships.

On geometric transformations...

Problems where transformations are to be used to prove a certain property, or where
the transformation is not explicitly given, are rare in junior high school (11-14 years).
From the beginning of high school (15 years), such problems become of major
importance. Nevertheless, the transition from the object conception to the tool
conception of a transformation, which is essential in the problem solving in
geometry, is not made without difficulty. The activities from the didactic sequence3
considered in this papers refer to the first of these conceptions, but before describing

3 For more details on a teaching sequence based on these choices, see Jahn (1998).
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these in more detail, we identify briefly some ways in which Cabri offers new
mediations of the tool conception.

Transformations as tools

In Cabri-geometre, transformations appear as construction tools. The toolbox
"Transformations" contains reflection, symmetry, translation, rotation, dilation, and
inversion. These tools allow the construction of the image of a point and of other
objects such as segment, circle, triangle, polygon, conic...

Ede Edit option; Window , Help:

ma

Reflection
Symmetry I

I Translation
Rotation I

011atiOn I

Inverse

Figure 1 - Toolbox "Transformations"

Each of these tools is used in the following way: one first indicates (i.e., points out
by means of the cursor) the object to be transformed, and then an element which
defines the transformation (e.g., a point in the case of a symmetry, a vector in the
case of a translation, a point and a number indicating the measure of an angle in the
case of a rotation...). In this way, the image of the chosen object is directly obtained.
By means of these operators, the transformations are approached from the global
point of view: they act on objects. It is important to emphasise that these
transformations are geometric primitives: they are, together with "Midpoint",
"Perpendicular bisector", "Perpendicular line", etc., construction tools governed by
geometric properties. This functionality is specific of the software and has no
equivalent in paper/pencil environment, where the effective construction is

unavoidable, unless one uses articulated systems (machines to draw mirror images,
pantographs, etc.). Therefore we suppose that the fact that these tools are available in
Cabri-geometre may lead to a more systematic use of transformations in the
construction tasks or in the study of a configuration.
Let us take an example of a parallelogram: given three points A, B, and C, construct
with Cabri the fourth vertex D of a parallelogram ABCD. Its construction based on a
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symmetry would be a better sign of understanding than a statement such as "a
parallelogram has a centre of symmetry". By the way, using Cabri, this construction
is highly economical in the sense that only two tools are necessary, and the point D
constructed in this way can be recognised for all positions of the three initial points,
even when they are collinear.

He Ede Options Window Help

13 _±_/10_1

Point (A)
Point (B)
Point (C)
Midpoint A, C (I)
Symmetry B. I
Polygon A, B, C, D

Figure 2 Construction of a parallelogram

We can also consider the use of the tools from the Cabri toolbox "Transformations"
to study possible procedures to construct a line parallel or perpendicular to a given
line and passing through a given point (Capponi, 1993).

Transformations as objects

The first transformations taught in junior high school and high school are isometries,
after which dilations are introduced; all preserve collinearity and angles, i.e., the
shapes. At this level, it may seem evident to be satisfied with these applications: they
are at same time simple and fundamental. However, one must be aware of the danger
of a generalisation by the pupils who can believe, for instance, that the property "the
image of a straight line is a straight line" is valid for all transformations. A
systematic study of isometries may be the origin of a didactic obstacle according to
which a transformation does not distort, it only displaces and turns objects. As a
result, the relation between figure-object and figure-image is not established, and the
notion of transformation is reduced to the idea that a figure can take up two different
positions.

This is the reason why it seems interesting to study a few simple examples of
transformations that do not preserve some property (collinearity, distances, ...) they
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show its depth and non-obviousness. In other words, it is advisable to make students
question the validity of theorems about preserving properties, and in this case,
"deforming" transformations represent an unavoidable breach.

The use of a computer in such a kind of activity seems quite relevant, and using
Cabri-geometre is particularly convenient for this purpose. Let us mention two
notable approaches:

the characterisation of a transformation by means of its effects, especially by its
invariants. In Cabri, a transformation can be presented as a black box that can be
explored by moving around free elements of the figure and by experimenting with
the object, using the Cabri tools. We call this the black box approach.

the motivation of a pointwise conception of a transformation: that is to facilitate
students from seeing geometric transformations as more than global operations on
whole figures.

Black box approach
In this case, the starting point is not a textual definition of the transformation; rather,
the definition and its characterisation are to be constructed by the pupil from the
study of the effects of the black box on points or common figures, allowing to bring
to the fore the invariants of the transformation. Clearly, this type of situation is
impossible to carry out in paper/pencil environment as it is based essentially on
displacement, as well as on geometric interpretation of spatio-graphical behaviours.

The following activity, taken from the third situation in our didactic sequence,
provides an example of the black box approach. The students open a Cabri-menu
configuration, in which a macro-construction simulating an oblique symmetry is
available. This macro operates on points, that is it produces, on the basis of two
given lines (a directrix d and axis a), the image of a point. It is not possible using this
macro, or any other means, for the student to obtain directly the image of a entire
figure. With the inclusion of this macro, it is possible in Cabri to execute a
transformation, in principle unknown to the students and designated as X, in the
absence of any explicit definition, leaving the students the task of characterising the
transformation by studying the behaviour of a pair of points (P and P') and seeking
to establish the properties by which they are related.
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Transformation X

Figure 3 Oblique symmetry

In the transformation approach, this type of situation was well appropriated by the
students4; that is, its devolution was associated with positive results. Observations of
the strategies of the five case-study pairs indicated that students' first concerns were
limited to the consideration of perceptive relationships (for example, noting that the
points were always on opposite sides of the line a, or coincident when dragged onto
line a). The next step was to engage to explore the effect of different applying
different Cabri-instruments to the figure (a segment or joining P and P',
measurements of P and P' for the primitive lines etc). Through these manipulations
the properties behind the macro construction became evident and all the students
managed to construct their own point object image pair Q and Q' in which
Transformation X was successfully modelled.

In relation to validation, it was sufficient for the students to see either that when Q
was coincident with P, this was also the case for P' and Q' or that when the macro
Transformation X was applied to point Q, that the resulting image-point coincided
with the point Q' constructed by the students themselves.

4 In fact, students were already familiar with the black box approach having experimented with it before in relation to
different geometrical content.
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Figure 4: Two methods of Validation

The students also recognised that the constructed points, P' and Q' belong to the
same transformation, despite their difference in terms of the Cabri-tools utilised in
the process of their construction. This realisation was an important step towards the
conceptualisation of a transformation as a mathematical object. For these students, a
transformation is determined by a set of pairs of points, object-point/image point,
independently of the manner through which the image point was constructed or as
one of the students, Ludovic explained, "a transformation is a way of relating
points...You have one point here [he gestured with his hands] and the transformation
will connect it with another in some way" This definition contrasts with those that
emerged during an earlier discussion in which students had been asked to explain
what a transformation was to them. Their responses indicated that the general term
had little significance. Many students simply answered that they did not understand
the question. Others were able to produce adequate explanations only if a particular
type of transformation was specified (reflection, translation, etc), their initial
reactions of the form "...which transformation? Reflection?" or "...what do you
mean? Is it to talk about a rotation for example?".

Pointwise conception
For the notion of transformation as a pointwise mapping to be consistent, which is
necessary to achieve the high school objectives (or, in other words, if we want to
help the students develop the dual global/pointwise aspect of a transformation which
will facilitate the transition to the notion of pointwise mapping), the way of looking
at figures must change: the global point of view has to give way to the pointwise
point of view. This is far from natural for pupils at the beginning of high school. Our
recent research (Jahn, 1998) shows that the pointwise approach to figures, and
therefore to transformations, seems unthinkable in paper/pencil environment, it is
not operationally practical. Yet, as we described above, it is possible in Cabri to
define a transformation as a black box starting with the pointwise approach, i.e., by
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studying the procedure of construction of the image of a point and by giving its
pointwise definition. Leaving isometries aside to avoid the possibility to determine
beforehand the nature of the figure-image, the pointwise treatment is maintained and
one can start studying the figure F' formed from the set of points that are images of
the points of the figure F. The tool "Locus" available in Cabri appeals to a functional
interpretation and favours the pointwise aspect: to use it, a figure must be seen as a
set of points, and its image can be characterized as the set of points images of the
points of the figure-object.

In the follow-up to the black box activity described above, for example, the students
were asked to construct, with the help of Cabri, the image of a circle under
Transformation X (oblique symmetry). This task characterised the passage from
points to figures: how can the image of a circle be produced using the image of just
one point if the properties defining the transformation are not known5? To consider
this question, it was proposed to the students that they consider the images of 4
points of the circle-object and, through dragging, try to observe the behaviours of
these points. The analysis of the images of the 4 points created the first favourable
rupture: four pairs immediately began to doubt their initial idea that the image of a
circle is always another circle of the same radius. This was the first time that they
had observed a figure that was deformed under transformation.

OCabligeomelre II - [legume k121

Eie Eck Dikicrts Window Help
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Figure 5: 4 image points of the transformation

The fifth pair held onto the idea that the image had to have the same form as the
initial figure. Lil and Hortensia, tried to build a circle passing through the 4 image-

5 The resolution of the black box did not require an explicit analysis of the properties conserved by Transformation X.
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points, by constructing two perpendicular bisectors to determine the centre relative
to three points and then observing that third perpendicular bisector did not pass
though the same centre point.

111Ca6i-genmelm 11 - Owe 021

Figure 6: Trying to construct the circle

The rest of the students searched for Cabri-tools that would enable them to visualise
the trajectories described by the constructed points. In their attempts to identify the
form of the image-figure, they eventually made use of either the "Trace" tool (3
pairs) or "Locus" (1 pair). Lil and Hortensia also chose the "Trace" tool after their
abortive attempts to construct the circle.
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Figures 7: Resolving with "Trace"
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Passing through or arriving at Dynamic Understandings?

Even given the preliminary work with "Locus" and the inconveniences of "Trace"
the second situation was devoted to the simultaneous exploration of these tools it

was the second tool that the students preferred. Generally speaking, the students had
great difficulties in understanding the order in which inputs should be selected to
successfully apply the "Locus" tool. We suggest that the problems stem from the
complex reasoning associated with the automatic and instantaneous apparition of
this object on the screen, prioritising a static view of the notion of variable and
necessitating an initial input that is a member of another geometrical object.

The "Trace" tool provides a dynamic solution through which students can begin to
negotiate this complexity. The physical actions upon the variable point, under the
control of the student, facilitate them in constructing mathematically consistent
meanings which can be transferred to the more opaque functioning of the "Locus"
tool. The passage to the "Locus" tool emerged principally with the need to save the

figure, or because it is impossible to move the trace-trajectory (technical

characteristics of the software system). In fact, though important if it is to be acted
on, or with, in further constructions, the production of a (quasi) true geometrical
object was not strictly necessary for the resolution of any of the problems presented
in the didactic sequence.

Perhaps this is why the advantages of the inclusion into the learning milieux of the
dynamically-orientated "Trace" tool were more evident. In the beginning of the
study, this tool was viewed as an accessible starting point from which the ideas
behind its more static counterpart could be introduced. This view changed over the
course of the experiment as it became clear that the "Trace" tool helped students to

build meanings for a variety of mathematical notions figure as set of points, the
transformation as a functional relationship between input and output points, variable
in geometry. It also supports the development of a new set of heuristic strategies,
which, when actualised in the innovative problem situations like the black box

approaches also afforded by the dynamic environment of Cabri, enrich the
exploration of spatio-graphical phenomena in way which signal their possible
geometrical interpretations.
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Identifying and explaining geometrical
relationship:

Interactions with robust and soft Cabri
constructions

Lulu Healy

Institute of Education, University of London/Proem, PUC Sao Paulo

Abstract
This paper describes our attempts to introduce notions of proofs in Euclidean Geometry using

the software, Cabri- Geometre. The idea behind the teaching situations was that they would

support students in switching between inductive and deductive concerns as they constructed

various geometrical properties and justified the relationships between them. The paper

considers two different kinds of Cabri-construction that were built and investigated by

students as they interacted with this dynamic geometry system. It goes on to present an

analysis of some of the ways in which, during students' early interactions with the deductive

system of Euclidean proof the interplay between empirical and theoretical modalities and

the aspects of the proving process that are investigated can vary according to the type of

Cabri objects constructed by the student.

The process of constructing a geometry proof is clearly a complex one. It involves
both an appreciation that certain geometrical facts emerge as a consequence of certain
others and the organisation of a coherent sequence of transformations by which the
second set of properties can be inferred from the first. If the second of these factors,
the deductive-axiomatic form, is introduced to learners in the absence of connection
to any empirical reference, all the indications are that proof will be viewed as an
inaccessible and meaningless ritual involving memorisation and reproduction (see,
for example, Harel and Sowder, 1998). On the other hand, if attention to deductive
reasoning is delayed and proof introduced in the context of empirical experimentation,
students seem to understand better what is required of a proof, but are unable to
construct one (Healy and Hoyles, 1998). A third alternative is to search for learning
contexts which help students switch naturally between deductive and inductive
concerns contexts in which it makes sense to formulate statements and definitions
through agreed procedures of deduction without severing any connection from
empirical justification.

Dynamic geometry systems like Cabri-Geometre have several features to suggest
they might offer such a new context including:
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. the construction and creation tools through which students can produce a diagram
that is simultaneously a drawing and a figure (Laborde, 1993);

. the dragging tools which enable students to examine their constructions, both to
identify relationships which remain invariant and to impose further relationships
visually (Holz!, 1996; Arazello, Micheletti, Olivero and Robutti, 1998);

. the trace/locus tools that can be used to produce representations of set of points
that satisfy a particular property (Jahn, 1999);

. the tools to re-examine and re-play construction procedures and offer students
access to a language of descriptions and communication (Healy and Hoy les,
forthcoming);

. check-property tools which allow the students to consider the domain of validity of
visually identifiable properties of their constructions (Laborde and Laborde 1995);

. and measuring tools which permit students to consider particular cases and provide
a different means of focussing on invariant relationships (Healy, 2000).

While Cabri- Geometre offers the learner a model of Euclidean model with which
they can experiment, as Laborde and Laborde (1995) point out, it is quite possible
that the powerful tools of the system will legitimise empirical activity rather than
encouraging constructions and explanations motivated by the mobilisation of
geometrical knowledge. In terms the teaching and learning of proof this raises an
important question: Can we come up with new types of activities harnessing the
potential of the Cabri microworld to (a) encourage students to focus on the
relationships between geometrical objects and (b) provide the means for students to
develop arguments to explain why these relationships hold? This paper will outline
our attempts to devise activities' which could serve as an introduction to Euclidean
Geometry as a deductive system. The activities were created for use with for
mathematics students (aged 14-15 years) of above average attainment in our country.
It is important to stress that our expectation was that the students who worked on the
tasks we devised would be novices in two respects. The software was new to them
and, since this aspect of geometry does not have a high profile our current
mathematics curriculum, so were formal Euclidean geometry proofs'.

The work reported in this paper was carried out with Celia Hoyles during the project Justifying and Proving

in School Mathematics, funded by the Economic and Social Research Council (Grant No. R000236178). I

wish to acknowledge her central contribution to all aspects of the work reported here.

2 The term "formal proof" is intended to carry the same sense as suggested by Grenier (2000), torepresent a

argument presented as a succession of sentences, using conventional mathematical formulations, showing

how starting from assumptions(regarded as true) one can arrive logically to a conclusion.
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Designing the activities
A critical feature of the learning activities we were aiming to create was that they
would support an interplay between examples and their mathematical structure which
would permeate all aspects of students activity. We wanted students to attend
explicitly to the properties of the data they created from the outset during their
construction rather than only during their manipulation. Our view is that this is more
likely to occur in contexts where students actions are accompanied by a
corresponding mathematical description. An example may help clarify why.

The process of constructing a Cabri-square3 is quite different from the process of
producing a square using paper-and-pencil. When drawing a paper-and-pencil square
it is not necessary to be mindful of the geometric properties that define its

construction. A square-like sketch can be produced without actually constructing
any geometric properties and afterwards it is possible to signal various properties
indicating its squareness (see Figure 1). That is, the action of drawing a square can be
quite separate from the expression of its properties. In this scenario, all the properties
of the square arrive simultaneously as a block, there is little sense of any relationship
between the properties or, more particularly, that certain properties of the
construction emerge as a consequence of certain others.

A 9 A

1:1

AA 6c. cD.01

AA Dc

kDii 8c.

Figure 1: Sketching a paper and pencil square then signalling some of its properties

In contrast, the construction of a Cabri-square is the result of a process in which the
user necessarily makes its definition explicit (Laborde, 1993). Students' action
and the expression of mathematical properties are not disjointed or organised in a
linear fashion (first action, then expression). Instead they can be one and the same. In
this way the beginnings of a proof, the identification of the "given properties", is

embedded into the students' activity it is not something tagged on at the end, or
provided from "above", but forms part and parcel of the mathematical model by

3 "Cabri-square" is used to mean a robust construction which retains the properties of a square (cannot be

messed-up) regardless of which of its components are manipulated on the screen.

1-105



which the student chooses to represent the problem situation'. Furthermore, once
constructed (through a series of mouse clicks and menu selections) the user can re-
enact the process of construction and re-access the definition of the givens.

In the Cabri context, it makes sense to investigate relationships between the various
properties of a square by organising them in terms of given properties and those to be
deduced since this reflects its construction. This is an important step into the proving
process but it is not yet enough. The constructed objects need to be manipulated, in
ways that not only help to identify these further properties, but also to clarify the
transformations, the intermediary steps, by which these further properties can be
inferred from those used by the student as the givens. The software may have a role
in both these processes too, with the various means available to assist in formulating
and verifying conjectures also offering different methods through which the steps to
their proof may be made more visible.

Hence, our vision was one in which students employ the Cabri tools construct,
manipulate and check geometrical relationships, receiving computer feedback
brought about by their activities that could help towards the proof of any conjectures
they formulated. To this end we devised a sequence of activities, each of which
included a computer component with a common structure: students were to construct
mathematical objects on the computer, identify and describe the properties and
relations that underpinned their constructions, use the computer resources to generate
and test conjectures about further properties, and make explanations as to why they
must hold. The computer work was accompanied by paper-and-pencil exercises and
by teaching episodes in which new mathematical ideas or additional software tools
were introduced by the researchers.

Were students able to use the various facility of the Cabri software to successfully
negotiate the activities as we intended? Was it the case that they became more
cognisant of the geometrical properties and relationships of the visual artefacts they
built and manipulated? Did their interactions which these artefacts help them
understand why and when these relationships exist (or not)? In the remainder of the
paper, examples from the work of two different students pairs, Tim and Richard and
Karen and Abby, will be presented. These examples are not meant to be exhaustive5,
but have been chosen to consider two different methods that were be used to

°Note that these ideas are not limited to Cabri-Geometre but can be applied more generally to the analysis

of student activity in microworlds for mathematical learning for an elaboration see Noss and Hoyles (1996).

5 The overall results of both the geometry and algebra teaching experiments are described in Hoyles and

Healy (1999).
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construct Cabri objects and how each method can be associated with different ways

of traversing between empirical and theoretical modalities and with explorations of
different aspects of the proving process.

Experiencing geometrical dependency
In common with other researchers (see, for example, Mariotti, 1997; Gravina,2000),

when we began, it was our intention to encourage students to build robust
constructions like the Cabri-square described above. In practice, we found that some

students preferred to investigate a second type of Cabri-object, soft constructions, in

which one of the chosen properties is purposely constructed by eye, allowing the

locus of permissible figures to be built up in an empirical manner under the control of

the student. An examination of the different ways our two student pairs approached

the first set of activities might help clarify the differences between these two

construction types.

The idea of this activity-set was that students would explore various methods of

constructing a second triangle using different combinations of the properties (sides

and angles) of an existing (and general) Cabri-triangle with the eventual aim of

identifying which conditions were sufficient to ensure congruency. In this activity

were we not expecting students to construct any formal proofs, but we did want them

to experience how the construction of some properties necessarily (or not) results in

other geometrical by-products.

Before starting on this investigation, students were introduced to, and experimented

with, a small sub-set of the Cabri tools for creation, construction, manipulation and

verification of geometrical objects. These included (amongst others) the two

constructions tools macros which we had added to the Cabri construction menu

specifically for this task. The first, compass', allowed them to construct sides for

their triangle equal in length to that of the original. The second, angle-carry,

enabled the construction of congruent angles. So how did the students employ these

tools during the activity? Tim and Richard built robust constructions. Karen and

Abby preferred to work with soft constructions. Let us begin with the robust

approach.

The robust approach

These activities were all designed for Cabri-Geometre 6 I, hence the compass construction was not one

already provided in the default menu configurations as it is in Cabri-Geornetre II. The rationale behind the

choice of the older version is explained in Healy and Hoyles (forthcoming).
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To investigate each condition for congruency, Tim and Richard constructed a second
triangle so that it shared the appropriate three properties with the first. For example,
when exploring the condition Side-Angle-Side which they predicted would ensure
congruency they started by employing compass to construct sides equal in length to
CA and CB, created a line segment of length CB and then constructed an angle
congruent to BCA using angle-carry. The point of intersection where this
constructed line crossed the circle of radius CA was used as the third point of their
triangle. Their immediate reaction was that the constructed triangle (shown in Figure
2) was congruent to the first.

e. EqAth, yo.r prediald,

off preJiJsaA wah ab
em,it

IvotiM
4 tk,Litt ac ,, b-a.41

4 asa
kis Ac 4.1

Figure 2: A robust construction of triangle with the properties Side-Angle-Side of triangle ABC along

with Richard's attempt to explain the constructed triangle must be congruent to ABC.

The pair went on to discover that it was possible to drag two of the three vertices of
the constructed triangle, the point on the circumference of the larger circle, in which
case the triangle was rotated, or the centre point of the circles, which had the effect of
translating the triangle. In both these transformations, the dimensions of the triangles
are not changed, hence it remained congruent under dragging. Finally the boys
altered the measures of the original triangle. The three sides of their constructed
triangle side changed accordingly and the pair concluded their original prediction had
been correct.

Two observations can be made about Richard's attempt to explain why their
constructed triangle was necessarily congruent to the original (presented in Figure 2).
First, he appears to be thinking in general terms at least in the sense that he makes
no reference to the specific measures of the triangles with which he and Tim worked.
Second, the language he used suggests some grasp of idea of the geometrical
dependency that we were hoping the activities would foster the use of the word
"dictates" indicates a sense that the property of the third side of the triangle emerges
as a consequence of the three constructed properties.
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The two boys approached the condition Side-Side-Angle in exactly the same way,
with both predicting again this combination of properties sufficient for congruency.
To build their robust construction, they used the compass tool to copy the lengths CA

and CB from the original triangle and then employed the angle-carry option, this time

constructing a congruent angle corresponding to CIIA . The line resulting from
application of this tool (in Figure 3, this is labelled r) crossed the circle of radius CA

twice.

Figure 3: A robust triangle constructed using only one of two possible intersection points

At first, neither Tim nor Richard noticed the second point but, as they explored the
figure, using the characteristically radical dragging movements students tend to use
when exploring a robust figure that they believe cannot be messed up, they
eventually became aware of the second point. In this way, they saw that it was
possible to create both a triangle that is and a triangle that is not congruent to the
original one. Tim and Richard's investigations did not stop with this discovery,
instead they went on to attempt to uncover the conditions under which the second
intersection point disappears, uncovering one particular set of triangles, right-angled
ones, for which the Side-Side-Angle condition does guarantee congruency (Figure 4).

c. Explain why your pred,coon was "Of or

Atte/tdr tsrl ,
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Figure 4: Richard suggests a set of triangles for which Side-Side-Angle guarantees congruency

Perhaps this is rather like using very large numbers to test an algebraic generalisation.
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The soft approach
Karen and Abby approached the investigation in a different way. Instead of
constructing all three properties they constructed only two, using the compass tool to
construct sides of length CA and CB. Next they marked and measured the angle of
interest the angle corresponding to BCA for the Side-Angle-Side condition and
CBA when exploring Side-Side-Angle. Their strategy involved carefully dragging
the point on the inner circle until the angle measure matched that of the original
triangle ABC. In the case of Side-Angle-Side, Karen and Abby found that there were
two possible locations on the circumference of the inner circle for which the required
angle of 39° was obtained. Measurement of the one side that was not constructed
under their control confirmed that resulting triangle was congruent (Figure 5
illustrates one of the two "correct" locations and how Abby explained that her
predictions was correct).

C. &plan why your predmtiott tins right co wrong.
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Figure 5: Locating the triangle experimentally and the expanation following the activity

Although this construction strategy is clearly empirically motivated, Abby's
explanation indicates that she, like Richard, was thinking generally about triangles,
with, once again, no reference to specific measures. The original triangle seems to
have been treated as generic and the dragging test in this case involved an exhaustive
search. It is possible to see the nature of the girls' investigation reflected in the
language of Abby's explanation. Whereas Richard wrote about properties being
dictated, Abby suggested that they found the only "possible length", the condition is
accepted in the absence of a counter-example.

Karen and Abby went on to explore Side-Side-Angle condition using a similar soft
construction, by "fixing the sides" CA and CB then marking and measuring the angle
corresponding to CBA. This time, when the vertex on the inner circle was dragged so
this angle measured 26', it was easy to see that a triangle could be (soft) constructed
in which the measure of angle corresponding CBA matched the original, but the
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length of the third side did not (Figure 6 presents the counter-example along with the
explanation written by Karen).

c. Evian why your prediction was right or wrong.
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Figure 6: (Soft) constructing a counter-example and the corresponding rejection of the condition

Unlike the previous pair who went on to consider other configurations of the original
triangle, the investigations of Karen and Abby terminated with the location of a
counter-example. They were not motivated to search for types of triangles in which
the Side-Side-Angle property set would be sufficient for congruency in the same way
that Richard and Tim had been. Clearly, it would have been much more tedious and
time-consuming for Karen and Abby to have modified the original triangle and re-
applied their investigations to check for congruency than it was for Tim and Richard,
whose robust construction gave them immediate feedback. The robust construction
made amenable a consideration of the domain of validity or, more specifically, the
boys were able to investigate whether the condition for congruency holds when they
restricted the domain of validity from triangles to right-angled triangles. On the other
hand, the existence of the counter-example was much more obvious to the pair who
chose to build a soft construction.

Another difference between the two construction types was the manner in which
students experienced geometrical dependency. In robust constructions, dependency is
demonstrated by the fact that a relationship remains invariant through dragging.
During the dragging test attention can move from general to specific as a "family" of
Cabri-drawings with the same geometrical make up is produced. In soft constructions,
this is not the case. Instead dragging is part of construction not verification and
students observe how the dependent property becomes evident at the point in which
another property is manually (and visually) satisfied. That is, the general can emerge
from the specific during thorough searches for the set of loci in which the given
conditions are fulfilled. In the following section, the implications of this difference
and how the way we structured students' first experiences of formal proof so that it
prioritised only the first view of dependency for the construction of valid proofs in
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which dependent properties are deduced form those used as the givens will be
considered.

Proving geometrical dependency
The writing of formal proofs was introduced explicitly in the second set of activities.
The session began with a teaching episode in which a range of formal proofs (correct
and incorrect) were produced and discussed. This discussion took place in the
absence of any associated Cabri activity. The students were shown how formal proofs
should include all the transformations (a statement coupled with a reason that justifies
its truth) necessary to infer the conclusion from the givens organised into a logical
chain or list. We felt that, as long as they could formulate them as a statement-reason
couple, students should be free to use the few geometrical facts they already knew
(this included little more that the sum of interior angles of polygons, properties of
parallel lines, some basic angle and circle properties) even if strictly speaking these
had not yet been proven.

The computer activities that followed this introduction revolved around the
construction of special quadrilaterals parallelograms, rectangles, rhombus and
squares. The students were already familiar with these objects and had no difficulty
in generating a list of properties associated with each one (much in the way described
above and illustrated in Figure 1). To begin the tasks they had to define a robust
construction of each of these special quadrilaterals, starting with a parallelogram,
and then describing which properties they had chosen to be the givens.

In contrast to the congruent triangle activities, the approaches of Karen and Abby
were very similar to those used by Tim and Richard. To avoid repetition, the girls'
constructions only will be used to illustrate the interactions of both pairs. Despite
their limited experience with Cabri, the (robust) constructions, and the properties
(GPs) underlying them were successfully generated without any need for teacher
intervention and Figure 7 presents the written descriptions produced by Karen.
Having described the given properties, the pair carefully hid the construction lines
used leaving only the four sides of the parallelogram visible something that had not
occurred during the congruent triangle investigation. The identification and
verification of further properties (the DPs or deduced properties) was also undertaken
with out great difficulties, Karen's descriptions of the two properties that she and
Abby identified are also presented in Figure 7. They had marked and measured the
angles of the parallelogram to verify that opposite angles were equal and used check-
property confirm the congruency of opposite sides.
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Figure 7: Separating out the given properties from those to be proven

Finally, the task required that they choose one of these verified properties and
construct a formal proof to show how it could be deduced from the givens. Karen and
Abby opted for the equal angles property. After a period of seemingly aimless
dragging accompanied by increasing anxiety, a diagonal was finally added to the
parallelogram. After more dragging, they agreed as a result of the visual feedback
that various other angles created by the addition of the diagonal were also equal.
Tentatively, and only after some prompting, Karen started to write their formal proof.
Following the earlier instructions, she separated into separate boxes the given
properties from the one the wanted to prove and then drew a figure of their
parallelogram. Next she noted the equal angles created by the diagonal. The
beginnings of this proof are shown in Figure 8.

d. For one of your DPe,write a formal proof to show how this can be deduced from the GPs
in your construction. eiwalontl

Figure 8: The beginnings of a formal proof

Karen and Abby had enough information to come up with a proof of the chosen
property but they had absolutely no idea of what to do with this information. They

1-113 1$:



seemed to make no connection at all between the equal angles and the parallel lines
they had created. This was a little surprising, our assumption had been that this was
one of the few geometrical facts that the students would know about. Indeed, in the
discussion that had occurred just before they began constructing the quadrilaterals
this property had been considered and the girls had indicated previous knowledge of
what they called "z-angles". So why were the students at such a loss?

Dynamic Geometry good for construction but not for proof?

It might be tempting to conclude that interaction with a dynamic system like Cabri-
Geometre helps students in defining and identifying geometrical properties and the
dependencies between them, but not in proving them. The fact that nearly all the
students with whom we worked experienced similar difficulties in coming to formal
proofs of the parallelogram properties provides further fuel for such a conclusion.
But is this the only interpretation? Certainly, for this problem, their interactions
during the computer activity did not facilitate Karen or Abby in making the
connections necessary for the proof. Rather what seemed to happen was that after
starting on the writing of the proof, the computer interactions were suspended. The
way we had introduced formal proofs could be in some part responsible for this. In
the teaching episode during which formal proofs had been introduced we had chosen
to leave the software aside.

As we introduced the writing of formal proofs, we concentrated on the deductive only,
Cabri-figures did not enter into this introduction, and perhaps the effect was that
inadvertently the empirical connection had been de-emphasised or even disallowed.
In response, the students seem to have interpreted this aspect of the task as one of
ritual and reproduction, just as has been observed of those following traditional
approach to Euclidean proof.

A concern to reproduce teacher proof constructions may also have been the
motivation behind the addition by Karen and Abby of the diagonal to their
parallelogram construction. For sure, this was an action that we had encouraged. It
seems that, at least in this task, the girls found it difficult to made sense of this new
objects and the properties it brought about. During the construction of the
parallelogram, the pair had had no difficulty in abstracting from their computer
activities the mathematical properties defining their Cabri-constructions. In contrast,
the addition of the extra line was not part of either the definition process or the
process by which they had identified the property they were trying to prove. Might
the girls have had more success if they had focussed on the relations within the whole
Cabri-figure the hidden intermediary objects as well as the visible ones (Figure 9
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presents a possible scenario)? Put another way, if there had been more of a unity8

between construction and justification procedures, would the formal proof have been

easier to formulate?

Figure 9: Manipulations of the complete construction

Whatever the motivation behind the inclusion of the diagonal, it did enable Kate and

Abby to identify extra properties, potential intermediaries towards proof. The
problem was that they could not make the last two steps in the proof to explain why

angles the diagonal split the angles at opposite corners of the parallelogram into two

pairs of equal angles and to infer from this the equality of the opposite corner angles.

Could it have been different if the triangles defined by the diagonal had figured in the

construction of the parallelogram if, for example, it had been soft constructed, with

one pair of parallel lines built by means of the Cabri tool and then the second by
dragging (see Figure 10). In the soft construction, the equality of all angles becomes

evident at the moment BC is parallel to AD. Would this had made the reasons
necessary for the formal proof more obvious?

Figure 10: Soft constructing a parallelogram

Some final remarks
The issues raised in the previous section touch upon some of the complexities of
designing proof activities and especially of introducing formal proof. Students'

interactions with the first set of activities indicate how during the definition,
manipulation and explanation of Cabri-constructions various aspects of the process of
proving were encountered and students were able to negotiate these aspects using

different ways of traversing between empirical and theoretical modalities. Without

doubt, introduction of formal proofs in with the second activity-set was a
destabilising experience for all the students who took part in the teaching experiment.

a An interesting analysis of the cognitive unity of proof can be found in Mariotti, Bartolini Bussi, Boero,

Ferri, and Garuti, 1997.
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As the speculations about alternative approaches to the parallelogram problem imply,
the path may have been a little smoother if we have structured the transition to formal
proof so that the empirical-theoretical connections that characterised the construction
activities were integral to this phase too and particularly if that had been a more equal
emphasis on robust and soft constructions. Only further research will demonstrate if
such modifications make a significant difference or whether it is inevitable that, as
they attempt to enter into the particular discourse demanded for formal constructions,
students will need a little time to orientate themselves. The interactions of our
students with the third and final activity set in the teaching experiment, show that,
even after this relatively short Cabri-experience, some were beginning to find their
own ways to proof, spontaneously adopting to move between soft and robust
constructions and to engage in different modes of mathematical reasoning. Further
evidence of successful transitions from conjecture to proof in the Cabri-context can
be found in Arzarello et al. (1998). There is still a need however, to better understand
the various ways that this process can be negiotiated so that all of our students have
the greatest chance of completing the journey from construction to proof.
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Project Group PG1:
Intuitive Rules and Mathematics Learning and Teaching

Coordinators:
Pessia Tsamir, Tel Aviv University, Israel
Fou-Lai Lin, National Taiwan Normal University, Taiwan
Dina Tirosh, Tel Aviv University, Israel
Dirk De Bock, University of Leuven and EHSAL, Belgium
Regina Muller, Pedagogische Hochschule Erfurt, Germany'

In the last decades, researchers have studied students' and teachers'
conceptions and reasoning in the context of mathematics education. Many have
pointed out the persistence of alternative conceptions that are not in line with
accepted, scientific notions. Such 'conceptions cover a wide range of subject
areas. Most of this research has been content specific and aimed for detailed
descriptions of particular, alternative concepts. There has been several
explanations of this phenomenon, one of which is the intuitive rules theory
(Stavy & Tirosh, 1996; Tirosh & Stavy, 1999). The intuitive rules theory
suggests that external features of the tasks, which activate certain, intuitive rules,
determine students' incorrect responses to various tasks (intuitive in the sense
of Fischbein, 1987). Two main strengths of this theory are: (1) It accounts for
many of the observed incorrect students' responses to mathematical tasks, and
(2) It has great predictive power.

The intuitive rules theory has been introduced in several research reports in
previous PME meetings (Tirosh, Stavy, & Tsamir, 1996; Tsamir, Tirosh &
Stavy, 1997; 1998). A growing number of PME members from different
countries expressed interest in this theory. In PME23, the idea of constituting a
project group on the intuitive rules, starting from PME24, was suggested by
different colleagues from various countries. This group intends to explore
cultural and psycho-didactical issues related to the intuitive rules theory.

During the first meeting of the project group in PME24, the intuitive rules
theory will be described and discussed. The second meeting will be devoted to
developing mutual related research instruments.

Product: We plan to produce a book or a special issue on the intuitive rules.
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Project Group PG2:
Research on Mathematics Teacher Development

Coordinators:
Andrea Peter-Koop, University of Muenster , Germany
Vania Santos-Wagner, Federal University of Rio de Janeiro, Brazil

This Project Group has emerged from a Discussion Group (1986-1989) which
was continued as a Working Group between 1990 and 1998. One major asset of
this group has been its cohesiveness and its wide representation across many
countries.

In 1998 the group identified the need to investigate the various facets,
implications and cultural contexts of co-operative/collaborative enterprises with
respect to mathematics teacher education. While extensive literature based on the
joint work of the individuals and institutions involved in mathematics teacher pre-
and inservice education has been published, the choice and understanding of the
terms that were used to specify the joint work (such as working together,
collaboration, networking, co-operation, partnership or teamwork) as well as the
quality and requirements of the co-operative and/or collaborative process itself
frequently have not been the focus of attention. Consequently, the group decided
to produce a book with the working title "Collaboration in teacher education
Working towards a common goal" which systematically focuses on collaborative
processes in the different domains of teacher education from an international
perspective. The key questions addressed in the various chapters are concerned
with the ways in which collaborative endeavours can improve and enhance
mathematics teaching/learning and the identification of the characteristics and
conditions for successful collaboration.

The following issues are on the agenda of the two sessions during PME 24:
A central issue will be the discussion and preparation of the concluding
chapter of the book.
Furthermore, the contributing authors have expressed the desire to reflect on
the collaborative work that lead to the individual chapters and the compilation
of the book. Thus, each author was invited to prepare a brief statement on the
key aspects from his/her perspective in order to share reflections on and
implications of the individual as well as the joint work.
Finally, the group will have to decide about its future and a possible project.
This may involve an extension of the current work by using the multimedia
and database capabilities of the world wide web.

Please note: The preparation of the book and hence the work of this Project
Group is in its final stage. All chapters have been submitted and are in the review
process. Proposals for additional chapters therefore can not be considered.
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Project Group PG3:
Understanding of Multiplicative Concepts

Coordinators: Tad Watanabe, Towson University, USA
Angela Pesci, University of Pavia, Italy
Gard Brekke, Telemarksforsking-Notodden, Norway
Anne Reynolds, University of Oklahoma, USA

Mathematics concepts within the "multiplicative conceptual field" include
multiplication and division operations, fractions and decimals, ratio and
proportion and linear functions (Vergnaud, 1988). Understanding of these
concepts are significant milestones in children's mathematical growth. As a result,
these ideas have attracted the attention of many mathematics education
researchers. More recently, there seems to be a growing consensus that the
understanding of these concepts requires the articulation of cognitive
constructions which are closely inter-related (Harel & Confrey, 1994).

This group will provide an opportunity to mathematics education
researchers who are interested in studying students' understanding of
multiplicative concepts to share and discuss a variety of issues. The discussion on
two themes that began at PME 23 (Haifa, Israel) will serve as the starting point of
our discussion. They are: (1) proportional reasoning, and (2) teaching and
learning of multiplication and division operations in various countries.

For the first theme, a group of researchers have been conducting a
collaborative study, and they will share their experiences. This is motivated by
the study described in Pesci (1998). For the second theme, the participants are
encouraged to share the way 'these operations are introduced and developed in
their countries, paying attention to factors such as language, conceptual principles,
and the use of various representations.
One of the potential products of this Project Group is a series of cross-national
collaborative studies on students' understanding of multiplicative concepts. Such
studies will sure to add to the knowledge base in the field. It is hoped that the
findings from these studies will result in an edited collection of papers.

References
Harel, G. & Confrey, J. (1994). The development of multiplicative reasoning in the

learning of mathematics. Albany, NY: Macmillan.
Pesci, A. (1998). Class discussion as an opportunity for proportional reasoning. In A.

Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME (vol. 3, pp. 343-
350).

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behre (Eds.),
Number concepts and operations in the middle grades (pp. 141-161). Reston,
VA: National Council of Teachers of Mathematics.
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Discussion Group DG1:
Classroom Research

Coordinators:
Simon Goodchild, College of St Mark and St John, UK
Nora Linden, University College of Bergen, Norway

The Classroom Research Group provides a forum for sharing, discussion, support
and stimulation for researchers whose inquiries are based in the natural context of
regular classrooms. In recent years we have focused on issues such as: software
packages for collecting and analysing qualitative data; the use of video and audio
recording; alternative methodologies; and use of the internet as both learning
medium and research tool.

In Hiroshima we will consider how we can develop the germ of an idea into a
research plan. We want to focus attention on two issues. First, we want to
consider the range of research design models being used to conduct classroom
research and critically review some of the newer models. Secondly, we want to
take conjectures about teaching and learning in classrooms and sharpen these into
well-focused research questions. We will then consider what methods - practical,
realistic and purposeful might be employed to elicit data within the context of
the possible research design models.

Suppose, for example, the concern is to explore the interaction between students'
beliefs in self, in mathematics, and in classroom activity and the nature of
their engagement in the tasks set by the teacher. How could such a concern be
formulated into tightly focused questions? What methods might be employed to
elicit valid and reliable data? What analytic processes should be engaged to
ensure trustworthy interpretation?
It is hoped that the discussion group will attract both experienced and novice
researchers.
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Discussion Group DG2:
Cultural Aspects of the Teaching and Learning of Mathematics

Coordinators: Norman Presmeg, Florida State University, USA
Vicki Zack, St. George's School, Canada

The Ibur subgroups of this Discussion Group are as follows:

. Theoretical perspectives on cultural aspects of learning mathematics.

2. Classroom culture and social practices.

3. Power relations (political, socioeconomic, etc.).

4. Language and culture.

As in Lahti, Stellenbosch, and Haifa, the twin aims of the meetings will be

to welcome newcomers to the group as well as to continue the exploration

of issues introduced in the interactions of these subgroups in previous years.

This exploration has the purpose of deepening understanding of

mathematics as a cultural product, and thus of how sociocultural issues

impact the teaching and learning of mathematics around the world. As in

previous years, the diversity of cultures represented in the group will enrich

discussions; nevertheless many of the issues are common to all countries.

The complexities of these issues, and possible approaches and solutions to

problems, will be addressed.
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Discussion Group DG3:
Encouraging Reflective Practice

Coordinators:
Anne Cockburn, University of East Anglia, UK
Francis Lopez-Real, University of Hong Kong, H.K.,S.A.R.,China
Hagar Gal, David Yellin Teachers' College, Israel

This is a new discussion group that hopes to attract delegates from all levels of
mathematics education.

Its aims are:

to share methods for encouraging reflective practice which the co-ordinators have
found to be effective. (These include a wide range of strategies some of which
have only been possible through international collaboration.)

to consider techniques that other participants have used successfully.

to reflect on the differences between encouraging experienced and novice
practitioners to become more reflective.

to summarise the above with, if it seems appropriate, a view to producing a joint
paper on the topic.
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Discussion Group DG4:
Exploring Dilemmas of Research on the

Social Aspects of Mathematics Education

Coordinators:
Elsa Fernandes, University of Madeira, Portugal
Joao Filipe Matos, University of Lisbon and CIEFCUL, Portugal
Madalena Santos, CIEFCUL, Portugal

This discussion group continues the interest of the "Social aspects of mathematics
education" group in PME 22 and 23 about research methodology. Despite of the
previous work, there is still a need to deeply explore the endeavor of producing
knowledge about these social aspects. Furthermore, it is imperative for the
international research community in mathematics education, represented in PME,
to tackle in serious ways the social nature of the object of study we deal with
(Lerman, 1998).

For this discussion group we propose to explore the emergence of
dilemmas in mathematics education research from a social perspective. These
dilemmas are critical situations faced in the process of a study, where the
researcher has to make decisions in which the basic assumptions of mathematics
education investigations are strongly questioned. Based on the experience of the
group coordinators in two research projects adopting cultural and sociopolitical
approaches, we will discuss four main dilemmas. The dilemma of the
mathematical specificity refers to the tension between the high or low priority
and importance that a mathematical point of view is given, versus the high or low
priority and relevance given to the social, cultural and political settings and
relations in which the learning and teaching of mathematics are embedded. The
dilemma of the scope addresses the issue of the level and unity of analysis of the
investigation and the narrowness or openness of its focus. The dilemma of the
scientific distance refers to the complexity of the relationship between
observation and participation and highlights the issues of objectification of the
people "researched". Finally, the dilemma of the relevance of mathematics
education questions the very basic assumption of all research in the discipline
about the importance of mathematics teaching and learning in society, when these
practices are seen from the point of view of students and not the researcher.

The work of the group will be structured around the exploration of the
meaning of these dilemmas and its possible causes, as well as the identification of
other dilemmas that participants had experienced in their endeavor. The final aim
of the group will be to build a landscape of the potential critical situations that
emerge in research on the social aspects of mathematics education, and of the
possible ways of dealing with them.

References
Lerman, S. (1998). A moment in the zoom of a lens: Towards discursive psychology of mathematics teaching

and learning. In A. Olivier, & K. Newstead (Eds.), Proceedings of the 22nd. PME, vol. 1 (pp. 66-81).
Stellenbosch: University of Stellenbosch.
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Discussion Group DG5:
Imagery and Affect in Mathematical Learning

Coordinators:
Lyn D. English, Queensland University of Technology, Australia
Gerald A. Goldin, Rutgers University, USA

Representational systems in mathematical learning include not only external
structured physical situations, but also internal systems that encode, interpret, and
operate on mathematical ideas (Goldin & Janvier, 1998). We focus on imagery,
affect, and their interplay: with internal systems like natural language, formal
notations, and heuristic planning and control, and especially with each other. The
traditional view of mathematics as an abstract, formal discipline has tended to
relegate visualization, metaphor and metonymy, emotions, and the relation
between feeling and mathematical imagination to the status of incidental
concomitants. Yet we have a case for the centrality of imagistic reasoning:
analogies, metaphors, and images in mathematical learning (English, 1997;
Presmeg, 1998); Lakoff and Nunez (1997) even aim to recast the foundations of
mathematics in terms of metaphorical image schemas. The essential role of affect
has also been stressed (McLeod, 1992); affect may be taken as representational,
encoding information and influencing learning and performance, and it may be the
most fundamental and essential system in powerful mathematical learning and
problem solving (DeBellis & Goldin, 1997).

The purpose of this discussion group is to explore the nature and role of affective
and imagistic representational systems in mathematical learning and problem
solving. The first session will begin with brief presentations: by Lyn English on
analogies, metaphors, and images in mathematical reasoning, and by Gerald
Goldin on affect and meta-affect in problem solving. Participants are encouraged
to cite examples of imagery, affect, and their interplay in children and adults
doing mathematics, for discussion and interpretation by the group. Some of the
difficult issues in the empirical investigation of these topics through classroom
observations and structured clinical interviews will be discussed, and key
research issues identified that could form the basis for a future PME project
group.

DeBellis, V. A. & Goldin, G. A. (1997). The affective domain in mathematical problem solving.
In E. Pehkonen (Ed.), Procs. of the 21st Annual Conference of PME, Vol. 2, 209-216.

English, L., Ed. (1997). Mathematical Reasoning: Analogies, Metaphors, and Images.
Goldin,G.A. & Janvier,C.,Eds.(1998) Representations and the 'Psychology of Mathematics

Education: Parts I and II. Special issues of the Journal of Mathematical Behavior 17(I)and (2).
McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In

D. Grouws (Ed.), Handbk. of Research on Math. Tchg. and Learning, 575-596. NY:
MacMillan.

Lakoff, G. & Nunez, R. E. The metaphorical structure of mathematics: Sketching out
cognitive foundations for a mind-based mathematics. In L. English (Ed.), op. cit., 21-89.

Presmeg, N. C. (1998). Metaphoric and metonymic signification in mathematics. Journal of
Mathematical Behavior 17 (1), 25-32.
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Discussion Group DG6:
Stochastical Thinking, Learning, and Teaching

Coordinators: John Truran, University of Adelaide, South Australia
Jenny Way, University of Cambridge, UK
James Nicholson, Queen's University at Belfast, UK
Mario Barra, Universita La Sapienza Roma, Italy

The discussion group on Stochastical Thinking, Learning, and Teaching will
focus this year on the issue: The Relationship between Stochastical and
Mathematical Thinking, Learning, and Teaching. It is our intention to approach
this theme from multiple perspectives, including:
1. Philosophical, in terms of the perceived boundaries of the disciplines.
2. Historical, in terms of the developments of the disciplines.
3. Educational, in terms of the positioning and implementation of the teaching and

learning of stochastics within school and tertiary curricula, including such
fundamental issues as teacher development, assessment, and technology.

4. Psychological, in terms of the specific cognitive and sociocultural processes
involved in the teaching and learning of stochastics.

5. Research, in terms of cross-fertilization of theoretical frameworks and
methodologies.

The following short contributions will be presented in the meetings to provide a
focus for discussion, and to serve as an opportunity for feedback from other
participants.

1. Perspectives from students and teachers on the differences in thinking in
Mathematics and Statistics.

James Nicholson, School of Psychology, Queen's University of Belfast, N. Ireland.

2. Relations between probability and others languages of science, particularly
referred to the pitagorean "aritmo-geometry" carried on d-dimensions and in
the continuum and discrete spaces, closely connected: a didactic use.

Mario Barra, Dipartimento di Matematica, University "La Sapienza", Roma, Italia.

3. The Relation between Pattern and Randomness.
Jenni Way, NRICH Online Maths Project, University of Cambridge, UK.

The meetings will be closed with a brief discussion on identifying and pursuing
specific items for potential collaboration in the area of stochastics teaching and
learning, further research and its dissemination.

A mechanism for electronic communication between potential participants exists
through the PME Stochastics Teaching and Learning Newsletter, which has been
circulating for four years, and through the STL discussion group's website
(http://www.beeri.org. il/stochastics).
To join, write to: dani.ben-zvi@ weizmann.ac.il.
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Discussion Group DG7:
The Importance of Matching Research Questions and

Methodology to the Reality of Researchers' Lives

Coordinator: Kath Hart, University of Nottingham, UK

Researchers, have for many years, chosen the methodology to provide evidence
for a research problem in order to suit the problem and their own bias. Students
from countries which have no mathematics education research community enrol
in foreign universities to study for a higher degree and if successful return home
to be the leaders in the field. Their reputation as a researcher, their expertise as a
future supervisor and the knowledge they can pass on to their students are to a
large extent dependent on the doctoral /masters research and the thesis. Should
the methodology they use be chosen to reflect the context in which their career is
likely to be led?

We hope that government policy in mathematics for schools and colleges is
informed by the research carried out by mathematics educators. There is a
tendency in some countries to regard education research carried out in
universities as esoteric and of insufficient practical use to guide policy making. Is
the methodology used to blame? What criteria do we adopt when choosing how
we will do research?

The group will start by discussing the methodology used in various pieces of
research reported in short articles, then move onto statements made by reviewers
and examiners which display a belief in what is acceptable research practice.
Finally, we will consider at least two government or state policies on research.
The aim is to provide a forum for discussion of research methodology in the
context of 'who do we want to tell'?.
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Discussion Group DG8:
Theory of Embodied Mathematics

Coordinators:
Laurie D. Edwards, St. Mary's College of California, USA
Rafael E. Nidiez, University of Fribourg, Switzerland

Recent theoretical and empirical work in cognitive science has generated results
with implications for our understanding of mathematics and mathematical thought.
One line of research has investigated the ways in which thought is a

fundamentally embodied phenomenon. This work includes research into basic
innate capabilities of humans (and some other animals), including very simple
abilities to distinguish small quantities as well as perform a limited kind of
arithmetic: Another line of inquiry has focused on fundamental conceptual
mechanisms that underlie human understanding, including unconscious mappings
between conceptual domains that permit the transfer of inferential structures.

These two lines of inquiry come together when considering how it is that
human beings are able to think mathematically, and when looking at the subject
matter of mathematics from the point of view of cognitive science. The purpose
of this discussion group is to consider a number of questions that arise when we
accept several propositions: that mathematics, as we know it or can know it,
exists by virtue of the embodied mind; that all mathematical content resides in
embodied mathematical ideas; and that many of the most basic, as well as the
most sophisticated, mathematical ideas are metaphorical in nature.

A certain portion of the discussion group will be devoted to explicating
these ideas, but the bulk of the time will be spent in discussing their implications.
In particular, we will look at such questions as:

how are mathematical ideas grounded in our experience?
how do the mechanisms of conceptual metaphor and conceptual blends

work to permit the construction of specific mathematics content
(e.g., number, infinity, continuity, complex numbers)?

what accounts for the apparent universality, stability, consistency,
and generalizabiity of mathematics?

how do social and cultural factors interact with basic conceptual
mechanisms in the historical development and learning of mathematics?

The discussion group will be organized around readings drawn from a new book
by Lakoff & Nunez on embodied mathematics. The readings will be made
available in advance, on the Internet, as well as during the first session, during
which time the basic framework will be introduced. During the remaining time,
specific topics will be discussed in small group format, with a concluding general
discussion.
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Discussion Group DG9:
Underrepresented Countries in PME:
The State of Mathematics Education

Coordinators:
Bernadette Denys, I.R.E.M. - Universite Paris 7, France
Paola Valero, Royal Danish School of Educational Studies, Denmark

In PME NEWS-May 1999, our subgroup in PME's international Committee,
devoted to pro-actively strengthening and promoting the activities of PME in
underrepresented countries, expressed its concern about the policies of our
community in this area.

In previous PME Conferences, the underrepresented Discussion group
meeting explored the cultural, social, economic and political climate that supports the
development of mathematics education, as both research and practice communities in
under- or non-represented countries in PME.

The situation has not evolved much in recent years, as it relates to the
knowledge that the international community of research in mathematics education, .

represented in PME, has gathered about the state and conditions of the discipline and
practices in underrepresented countries. Therefore, our group proposes to develop a
plan for collecting experiences from under- or non-represented countries.
Information about the state of mathematics education in those countries will be
diffused in the ways that the participants in the Discussion Group participants will
choose.

The objectives are to bring to light the real situation of mathematics
education in under- or non-represented countries and to point out the relevant foci for
research in mathematics education in those national communities and contexts.
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RELATION BETWEEN DISPOSITION OF TASK AND STRATEGY OF
COMPUTATIONAL ESTIMATION ADOPTED BY STUDENTS 10 TO 17 YEARS OLD

SHIZUKO AMAIWA

FACULTY OF EDUCATION, SHINSIIU UNIVERSITY, NAGANO, JAPAN

The purpose of this research is to make clear how students' selection of computational estimation

strategy is influenced by the difference of disposition of calculation tasks. In this study, three kinds of

calculation tasks were given to 220 students from 5th graders (10 year olds) to 2nd grade students in high

school (17 year olds). Concerning the computational estimation strategy which students used, the next

points were expected. For solving Task (A) 38 X 99, it is easy to use the rounding strategy such as 40 x

100 or 38 X 100. For Task (B) 9250+25, strategy of 9000+30 or 10000+25 is effective, and for Task

(C) 0.24 X 439, it is available to use either the strategy of dividing both numbers by 5 or the strategy of

substituting 0.24 with 0.25 or 1/4.

The estimation strategy adopted by students was classified in the following 6 kinds of categories. (1)

Exact calculation. (2) Exact calculation at first, then rounding the answer. (3) Adopt a simplified

calculation method, and get an exact answer, e.g. in case of Task (B), 9250+5 4 1850+5, or 9250+100

X 4, 9000+25 = 360 4250+25 = 10 4360 + 10. (4) Round only one of the two figures, then calculate.

(5) Round both figures then calculate. (6) Adopt a simplified calculation method, and do estimation, e.g.

in case of Task (B), 10000+25 x 9, or in Task (C), 440 X 25+100 = 440+4 = 110, and 25+ 100 x 450 =

25+2 X9 = 25+2 X 10= 125.

The following results were clarified.

I. Strategy commonly used by students for all tasks were "Round both figures then calculate" and "Exact

calculation".

2. Strategy difference shown by students was influenced by the disposition of tasks. In Task (A) 38X

99, strategy of "Round one of the two figures" and "Round both figures" were adopted at the high rate

(61.8% in total). For Task (B) 9250+25, strategy of "Adopt a simplified calculation method, and get an

exact answer" was mainly used compared with other tasks (10.9%). In Task (C) 0.24 X 439, many

students intended to make a rough estimate by "Adopt a simplified calculation method, and do estimation"

strategy (11.4%).
3. Students' age affected their strategy use. Elementary and high school students used "Exact

calculation at first, then rounding the answer" more. Some high school students stuck to the exact

calculation, however, some prefered to use "Adopt the simplified calculation method" strategy.

4. According to the analysis of calculation errors, two kinds of error were found; calculation

error and place value error. Task (A) and (B) included "calculation error" but Task (C)

included both kinds of error.
It was showed that estimation strategies adopted by students were influenced by the

disposition of calculation tasks and calculation errors were introduced by their estimation

strategies.
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A CROSS-CULTURAL SELF-SELECTION PROCESS OF ELEMENTARY
PRE - SERVICE TEACHERS

Miriam Amit, Ministry of Education and Ben-Gurion University, Israel

A questionnaire based on Causal Attribution Theory (Fennema et. al., 1977), aimed at

examining confidence in personal mathematical ability, was administered to pre-service

elementary teachers who belong to three different cultures:

(1) Native born Israelis, mostly secular, who were raised in Israel; (2) Arabs, specially those

who were raised in a Beduine culture; (3) New immigrants from former Soviet Union.

Based on our previous acquaintance with the different types of population (Amit, 1988;

Amit et. al, 1989), we started with two conjectures: (a) there will be no gender differences

between Beduin boys and girls in attribution of success or failure; (b) female new immigrants

from the former Soviet Union will show a higher level of self confidence in mathematical

ability than their Native-Israeli and Beduin colleagues.

The first conjecture was based on the assumption that girls who "rebel" by rejecting the

traditional position of the Beduin woman and opt for further studies and a teaching career must

possess a very high degree of self-esteem and confidence in their ability. The second conjecture

rested on the very high proportion of women with degrees in engineering and other technical

professions among new immigrants as compared with Israelis; we reasoned that -this situation

reflected a general perception of equal mathematical abilities among men and women in the

former Soviet Union. These two conjectures were almost demolished.

Results show that: (1) Although Bedouin girls "rebel" by opting further studies, there were

still slight differences favoring Bedouin boys regarding self-esteem and confidence in

mathematical ability; (2) There was no significant difference in self-confidence in

mathematical ability between pre-service teachers among women immigrants from the former

Soviet Union and those in other two aforementioned population. These findings, that emerge

also from personal interviews with some of the participants in the study, can be explained either

by a "self-selection" process or by a socialization process, as we shall portray in the session.

Amit, M., (1988), "Career Choice, gender and Attribution Patterns of Success and Failure in
Mathematics", in: Borbas, A. (Ed.), Proceedings of the 12th Con ftrence of the PME, Vesperm,
Hungary, pp. 125-130.

Amit, M. and Movshovitz-Hadar, N., (1989), "Differences between Boys and Girls in Causes
Attributed to Success and Failure in Mathematics", Megamot (Hebrew), Vol. 32, No. 3,
pp. 361-376.

Fennema, E. & Sherman, J. (1977), Sex-related differences in mathematics achievement,
spatial visualization and affective factors", American Educational Research, 4, pp. 51-71.
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THE INFLUENCE OF THE SEQUENCE OF INFORMATION IN THE
SOLUTION OF A WORD PROBLEM

A.ArchettiT, S. Armiento©, E. Basile®, L. Cannizzaro®, P. Crocini®, L. Saltarelli®

0S M Buonarroti, Roma; ©S M Amaldi, Roma; ®S M Platone, Roma; ®Dipartimento di
Matematica, University Roma 1, Roma; ®1° Circolo, Aprilia; ©3° Circolo, Aprilia.

Reasearch question was if and how the solving of a word problem is influenced by
the coincidence of three temporal structures: the sequence of the informations in the
text, the sequence of the real actions evoked and the sequence of steps for processing
data in solving strategy. Our research hypothesis was that the reconstruction of the
action takes place in an implicit manner so if the temporal sequence of information is
different from that of the real action, the problem represents an extra difficulty to be
overcome. And data ratified with evidence the hypothesis (A complete report is to
appear in January issue of L'Insegnamento della Matematica e delle Scienze
Integrate).

Research design: five problems has been submitted to 171 children, aged 11 to 12 in
the last year of elementary school and in the first year of middle school, divided into
four problem solving ability levels and into three formal homogeneous groups.
Problems had been possed in three linguistic formats to coincide with different time
structures: in the TTC (Chronological Text Time) version the text time coincides with
the chronological time; in the TTS (Text Solution Time) version the text time
coincides with the sequence which was to be used in the solution algorithm;in the
TTD (Different Text Time) version the time of the text is different from the previous.
Other linguistic characteristics of the wording of the problems has been left unaltered
(the question, in explicit form, always placed at the end).

Observations. 1.11e temporal dimension doesn't have the same role in all problems.
2.The change in the text modifies also the reciprocal position of information. 3.There
are several TTD versions that should be investigated. And even the TTC or TTS
versions are not always unique.

At present we are examining protocalls to find traces of the genesis of the mental
processes of the able problem solvers with respect to the temporal reconstruction of
the action. The question is if such reconstructions are done implicitly or are skipped
altogether and if it may be described in term of prospective structure as identified by
Nunokawa (1993).

De Corte E. & Verschaffel L:, 1987, The effects of semantic and non-semantic
factors on young children's solutions of elementary addittion and subtraction word
problems, in Bergeron J. C., Herscovics N. & Kieran C. (eds), Proc. 11 PME,
Montreal, II, 375-381

Laborde C., 1990, Language and mathematics, in Nesher P., Kilpatrick J. (Eds),
Mathematics and cognition, CUP, 53-69

Nunokawa K., 1993, Prospective Structures in Mathematical Problem solving, in
Proceedings of PME 17, Japan, III, 49-53
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Students' confusion between verbal and visual
representations of geometric figures in Dynamic

Geometry Environment*
Nina Arshaysky, E. Paul Goldenberg

Education Development Center, Inc.
55 Chapel Street, Newton, MA 02458-1060

In this paper, we discuss some discrepancies between two ways that students
appear to represent a quadrilateral (and presumably other geometric objects) to
themselvesone has a more holistic, impressionistic character, and resembles a
visual image, and one has more the character of a verbal or propositional
description. We consider two possible ways that high school students might develop
their internal representations of plane geometric objects and we explore how they
reconcile these representations with conflicting external cues they get in a Dynamic
Geometry Environment (DGE). In our conclusion, we propose strategies for
helping students to consolidate their impressionistic images of concepts with their
propositional ones (definitions), and to improve their ability to formalize
information that they gain implicitly in visual (or other) images.
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PLUS, AND AND ADD: ADDITION AND ENGLISH ADDITIONAL
LANGUAGE LEARNERS OF MATHEMATICS

Richard Barwell, University of Bristol, UK.

Research into English Additional Language (EAL)1 learners of mathematics has
generally focused on language and attainment: there seems to have been little
investigation of the process of learning and understanding mathematics. This paper
outlines two small exploratory studies. Investigating the learning of EAL students in
mathematics involves several dimensions of complexity, including the learner's
intellectual and linguistic development. Vygotsky's (1962) theory of learning based on
the development of word meanings offers a framework which addresses these factors.

First exploratory study.
L (EAL) and V (monolingual) worked together on an arithmetic activity. A count of
the words used during the task to refer to addition reveals that in this activity L seems
to rely on the word 'plus' (see Table 1). Why does L use 'plus' as his word for

addition rather than an
alternative? The other
students in the study
generally used 'add'.

Perhaps L, who is new to the school, has carried 'plus' with him from elsewhere. How
would this affect L's communication in the mathematics classroom? What contexts or
previous experiences do EAL learners associate with classroom language? To explore
these questions, the second study focused more explicitly on word meanings.

Word used plus add and times Total

L 9 1 0 3 13

V 5 7 4 0 16

Table 1: addition words used by L and V

Second exploratory study.
As Vygotsky's (1962) theory was found to be limited by the lack of any framework for
analysing word meanings, Saussure's (1974) concepts of paradigms and syntagms
were introduced, which Luria (1981) has linked to the hierarchical relationship
between concepts, and thus to Vygotsky's (1962) 'scientific concepts'. In the second
study two EAL students were asked to identify addition words (on cards) which 'go
together'. While discussing LESS THAN and MORE THAN, one student, G, provided
a textbook example of meaning derived from paradigmatic opposition: yes/ cos like the
opposite/ MORE THAN LESS THAN// so like MORE THAN means give me a number that is MORE
THAN/ nine/ and LESS THAN means/ give me a number that is LESS THAN nine

G also makes sense syntagmatically: 'give me a number that is ... nine', surely an
example of 'teacher-talk', suggesting that for G, the meanings of MORE THAN and
LESS THAN are closely related to the discourse of the mathematics lessons in which
they are used, raising questions about how this may affect G's mathematical learning.
References.
Luria, A. 1981: Language and Cognition. Washington D.C.: Winston.
Saussure, F. de 1974 (Revised): Course in General Linguistics. Glasgow: Fontana/ Collins.
Vygotslcy, L.S. 1962: Thought and Language. Cambridge, Mass.: MIT Press.
I. English additional language (EAL) refers to any learner in an English medium learning environment for whom
English is not the first language and for whom English is not developed to native speaker level.
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CHARACTERIZING GENERATIVE AND SELF-SUSTAINING TEACHER CHANGE
IN A CLASSROOM PRACTICE THAT PROMOTES

STUDENTS' ALGEBRAIC THINKING
Maria L. Blanton James J. Kaput

University of Massachusetts Dartmouth, USA

Traditionally, the mathematical experience (and hence classroom practice) of most
elementary teachers has been deeply oriented to arithmetic and computation, not the
activities of generalizing and formalizing that are now widely believed to be an essential
part of elementary mathematics (Romberg & Kaput, 1998). The larger goal of our work,
part of which is reported here, is to develop elementary teachers' abilities to identify and
strategically build upon students' attempts to generalize and progressively formalize their
thinking via more powerful mathematical symbol systems. To this end, one of our
immediate goals was to consider the classroom practice of a teacher whose instructional
purpose was to promote students' algebraic thinking and, in particular, to understand how
that teacher's practice reflected generativity and sustainability in the development of
students' algebraic thinking. We report here results of our current work with a 3d -grade
classroom teacher (Jan pseudonym) who has participated with us in a two year, district-
wide project designed to integrate the various forms of algebraic thinking (Kaput, 1998)
into elementary classrooms. In particular, we have spent the past academic year in her
classroom, observing her two-period mathematics class approximately 3 days per week,
in order to characterize generative and self-sustaining teacher change in the context of a
classroom practice which extends beyond arithmetic to algebraic activity. Our data
consists of classroom field notes, audio recordings and Jan's reflections.

From our analysis, we see the following characteristics emerging as indicators of
generative and self-sustaining teacher change: (a) an ability to generalize an activity
(what we describe as "activity engineering"); (b) the seamless and spontaneous
integration of algebraic conversations in the classroom; (c) the spiraling of algebraic
themes over significant periods of time; and (d) the integration of independently valid
algebraic processes in a single mathematical task. We will present classroom vignettes
that concretely illustrate these characteristics and discuss the circumstances that led to
this kind of teacher change.

References

Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of
mathematical power by "algebrafying" the K-12 curriculum. In S. Fennel (Ed.), The
nature and role of algebra in the K-14 curriculum: Proceedings of a national symposium
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Romberg, T., & Kaput, J. (1999). Mathematics worth teaching, mathematics worth
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ARE YOUNG CHILDREN ABLE TO REPRESENT
NEGATIVE NUMBERS?

Borba R. & Nunes T.
Institute of Education, University of London

Oxford Brookes University

This study aimed to investigate how distinct systems of signs, such
as spoken language and use of manipulative material, influence young
children's ability to represent negative numbers.

Nunes (1993), in a series of studies that explored the role of
representation in the understanding of negative numbers, observed that
the written representation was the cause of most misunderstandings that
adults and children had in operating with negative measures.

In the present study 60 seven and eight-year-old children were
asked to solve 12 problems that involved negative numbers in the context
of games. The children were randomly assigned to four experimental
groups. Two of the groups were requested to solve the problems orally
and the other two solved the problems choosing some sort of
manipulative material (marbles, sticks, coloured papers, nilers, paper and
pencil or coloured pens). Half the children solved problems that resulted
in negative measures and the other half solved problems that resulted in
negative relations.

In all groups children were able to develop adequate
representations for negative numbers but the experimental groups that
solved the problems orally performed significantly better (p<.05) than
those that used manipulative material. There was also a significant
interaction (p<.05) between the form of representation (oral or use of
material) and number meaning (measure or relation). Amongst the
children that solved the problems orally those that dealt with negative
measures performed better than did those that dealt with negative
relations. The children that used material performed similarly whilst
dealing with both number meanings for negative numbers.

The ability to externalise their representations orally and to
manipulate these representations with much more ease than when
requested to use other modes of externalisation, suggest that in the
classroom close attention be paid to the role of systems of signs in the
understanding of concepts. Pupils are able to develop their own systems
of signs and must be encouraged to employ these signs in problem
solving and to discuss how they may be used.

Reference
Nunes, T. (1993). Learning mathematics: perspectives from everyday life. In R.

Davis & C. Maher (Eds.), Schools, mathematics, and the world of reality
(pp.61-78). Needham Heights, MA: Allyn and Bacon.
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INCLUSIVE SCHOOL AS A REALITY:
THE ROLE OF PEER INTERACTIONS IN MATHS CLASSES FOR PUPILS

WITH EDUCATIONAL SPECIAL NEEDS

Cesar M.
Centro de Investigacdo em Educacao da Faculdade de Ciencias da Universidade

de Lisboa

The importance of social interactions has been studied during the last three
decades. Under the influence of Vygotsky theory (1962, 1978), the relevance of
the context and social interactions in pupils' academic performances became more
evident. Working in a collaborative way promoted pupils' performances in the
Maths classes both for symmetric as well as assymmetric dyads (Cesar 1997,
1998, 2000; Cesar e Torres, 1997). Working in the zone of proximal development
was a very effective way of respecting and dealing with diversity. In the last
decade Schubauer-Leoni (1986) stressed the importance of the didactic contract
in the process of knowledge appropriation. Changing the traditional contract is an
essential step in order to implement innovative practices in the Maths classes.

In the last six years we developed an action-research project (5th to 12th
grades) whose main goals are to give opportunities to all children to develop
positive attitudes towards Mathematics, a positive self-esteem, to promote their
socio-cognitive development and their school achievement. This project is called
Interaction and Knowledge. The data that we are presenting now were collected
through participant observation (different observers), audio and videotaping,
questionnaires (to all pupils) and interviews (to selected pupils).

The most relevant result was that for many pupils this was the first
opportunity to experience a success related to Maths. The analysis of an
interaction illustrates the role of these innovative practices in the inclusion of
pupils with educational special needs (handicapped; learning disabilities). Some
phrases from pupils' questionnaires and interviews also stressed the importance of
this kind of work in order to accept their peers' diversity and to promote their
mathematical performance. In some schools which had a lot of pupils with special
needs diversity played a more important role and peer interaction was essential in
order to guarantee the integration and acceptation of all the elements of each
class.
References:
Cesar, M. (1997). Investigacdo, Interaccoes entre Pares e Matemhtica. Actas do VIII Semincirio

de Investigaciio em Educacao Matematica (pp. 7 - 33). Lisboa: APM.
Cesar, M. (1998). Y se aprendo contigo? Interacciones entre parejas en el aula de maternaticas.
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Cesar, M. (2000). Peer Interaction: a way to integrate cultural diversity in mathematics

education. CIEAEM 51 Proceedings. Chichester: Chichester University. (In press)
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Settibal.

Schubauer-Leoni, M. L. (1986). Le Contract Didactique: Un Cadre Interpretatif pour
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A THINKING MODEL OF MATHEMATICS CONJECTURING

Ing-Er Chen Fou-Lai Lin
Kaohsiung Normal University Taiwan Normal University

This study aimed to investigate students' thinking processes of
mathematics conjecturing. Five grade eleven students, 5 undergraduate
students and two mathematicians were interviewed with a special survey
in the study. The survey included two parts: The Mathematics
Conjecturing Test for students and The Expert's Interview Questionnaire
for mathematicians. It was found that the pictorial representations of
students' thinking processes of mathematics conjecturing could be
constructed as a unified model. It was further found that students'
conjecturing model and mathematicians' conjecturing model are

compatible. The conjecturing model contained two directed cycles, an
inner cycle and an outer cycle. The inner cycle represents the process of
refining the primitive conjecture and the outer cycle represents the
process of rejecting the primitive conjecture and reforming a new
conjecture. The conjecturing process appears to move dynamically and
recursively between four stages: gueSsing, checking, confirming and
refuting. When students work on tasks of guessing an unknown
conclusion, the model reveals that the starting point of students' thinking
and their thinking paths are more complicated than the corresponding
representation on tasks of judging the correctness of a proposition. This
model that we constructed can be used to study the difficulty of the tasks
and to evaluate the quality of individual thinking.

17 6
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ASSESSING HOW CHILDREN LEARN HIGHER ORDER

MATHEMATICAL THINKING

CHENG Chun Chor Litwin

Hong Kong Institute of Education

The Study

The project aims to study the development and assessment of higher order
mathematical thinking for primary four (age 10) children in Hong Kong. Romberg,
Zarinnia, & Collis (1990) commented: All learning involves thinking, but in the past,
most instruction focused on learning to name concepts and follow specific procedures.
Now the emphasis for all students must shift to communication and reasoning skill.
Although these skills resist precise definitions, they are now popularly called "higher
order" thinking skills.

Methodology and Result

The authors go to two schools and teach higher order thinking which match with the
objectives of the mathematics curriculum. The methodology of the study is as follow:
A class of primary 4 student from two schools were selected and examination results
of the students are recorded. A pretest using test items related to TIMSS is used and
the author taught the classes for 8 weeks with learning tasks, which meant to catalyze
higher order thinking. Tests were conducted every three weeks to see the development
of the thinking skills of the children. Finally, a test was given to all classes, to see if
there is any significance in changes in the mathematical achievement both in the
higher order thinking and the subject achievement.

Logically, the results of the performance of these two classes should out perform the
other classes after the 8 weeks instruction. The analysis showed that not only the two
classes were consistently better performed than other classes, but also that the
performance measured in SD range further away from zero, meaning that the
performances of the two classes improved at a greater pace than the others.

Reference:

Education Department (1983), Primary Mathematics Curriculum, Hong Kong
Government.

Romberg, Zarinnia, & Collis (1990), A new world view of assessment in mathematics,
in Kulm, G. (Ed.), Assessing higher order thinking in mathematics, 21-38, American
Association for the Advancement of Science, Washington, DC.
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MISCONCEPTIONS IN 3-D GEOMETRY BASIC CONCEPTS

Nitsa Cohen

The David Yellin College of Education, Jerusalem
Ministry of Education, the Israeli Curriculum Center

Basic concepts like "straight line" and "plane" and concepts of interrelation
between them like "perpendicular" and "parallel" are usually known in the
context of plane geometry. The extension of these concepts to three-dimensional
space does not change their basic meaning but it enlarges the variety of possible
relationships between them.

These new possibilities need an ability of visualization, which is often quite
limited in students who are used to seeing everything in a plane. Even if the
students are aware of the existence of different plans and directions, they tend to
see only one plane at a time. Moreover, some statements that were true and well
known in plane geometry are no longer true in 3-D geometry. This kind of
conflicts and confusion is usually a ground on which misconceptions could
easily arise.

This research is an attempt to locate and to analyze these misconceptions among
prospective teachers in a college of education.

The study consists of a questionnaire, which was given to 272 mathematics
majoring students and was followed by group discussions. During the discussion,
the students used models and were encouraged to argue, to explain and to
illustrate their opinions. Some of those discussions were video or audio taped.
In addition, some students were orally interviewed.

The research has also pedagogical aspects, such as:
The awareness of the students to their own misconceptions and to the

possible reasons that caused them.
The role of the models and the role of the discussion in trying to overcome

those misconceptions, etc.

In the oral presentation some of the findings will be presented and analysed,
with examples of episodes that took place during the discussions.
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Primary Teachers Interpretations of Graphical Representations Teachers:
Differences between Static and Dynamic Data Analysis Tools

Nielce M. Lobo da Costa , Lulu Healy and Sandra Magina,
PROEM, Pontificia Universidade Cab:Mica de SAo Paulo PUC-SP, Brasil

For the past three years, we have been investigating how primary teachers'
interpretations of statistical graphs and diagrams evolve as they work through
computer-based data-handling activities using Tabletop. Initially, our activities were
structured into sets, each organised around the use of a particular data analysis tool.
So, for example, tools to construct frequency graphs were introduced in the context of
questions about the distribution of single variables and, in activities involving
relationships between variables, teachers were directed to construct scatterplots. We
found that teachers quickly learnt how to construct the different graphs and to change
the variable under investigation. Reading the graphs was somewhat more
problematic, with, not surprisingly, teaching finding scatterplots considerably more
difficult to interpret than frequency graphs.

Through our observations of teacher interactions with the software, we became
aware that we had not taken into account the differences between static paper-and-
pencil graphs and the dynamic representations possible in Tabletop. Essentially, the
Tabletop tools had been presented as economic and efficient means of constructing
conventional graphs and figures and we had not considered how the tools of the
software might enable new mediations upon statistical ideas. This suggested a new
research focus, that of identifying if and how the dynamic Tabletop representations:
aid teachers in making connections between different types of graphs and figures;
provoke them to extend their intuitive strategies to include the institutional meaning
of particular statistical concepts (Batanero et al. 1998); and, in the long-run, support
them in adopting statistical perspectives in which they both co-ordinate and
differentiate between group properties and individual cases (Konold et al., 1996).

In this presentation, we intend to describe how our teachers chose data analysis
strategies which rarely corresponded to "standard" solutions and often would have
been impossible in a paper-and-pencil context. For example, to consider associations
between two variables, they tended to construct frequency graphs for one variable
and then visually modify the data points according to a second variable or label the
points with its value. A major advantage of working with the Tabletop software for
primary teachers seems to be that they could construct global visions of group
properties whilst preserving access to individual data.

References

Batanero, C., Godino, 1. & Estepa, A. (1998) Building the meaning of statistical association
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THE IMPORTANCE OF PRACTICAL FLUENCY IN PROBLEM SOLVING

Chris Day

South Bank University

In my report I am going to present some quantitative and qualitative data from my
research. This material will illustrate the importance of practical fluency in the
ability to apply knowledge flexibly when solving mathematical problems. Following
a teaching program based Gal'perin's principles of activity theory [see Haenen
(1996) for a summary of Gal'perin's work], a series of tests and a dynamic
assessment were carried out according to a method outlined by Ferrara (1987). I thus
looked both at what the children could do unaided and at what they could do in co-
operation with a more capable adult. I found that the greater the amount of help that
was needed in completing the practice papers, the lower the gains that were made
during practice. Also, the amount of help needed was an important factor in
predicting these gains and depended on the degree of fluency of mental actions
which had been developed.

I will present a video record from one of the lessons to show how a simple task
became problematic when fluency was not developed. The problems of a pupil who
scored poorly in the tests at the end of the program, and whose dynamic assessment
indicated a low level of fluency, will be summarised in terms of: ORIENTATION
(knowing what to do next); EXECUTION (an ability to carry out the action); and
CONTROL (checking the action against a model). The developing buds of her
ability (to use a gardening metaphor) were, however, clear in the video record and
she was able to make great progress in catching up given dynamic assistance in
practice papers during the dynamic assessment. The guidance I gave substituted for
the fluency she lacked. In this way her achievements were not only measured
sympathetically, they also revealed ways to help her improve. I will argue that
simply looking at test data in isolation could not provide this diagnostic help.

References:
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SPACE AS A LOCUS OF POLY- AND TRANS- DISCIPLINARITY
IN MATHEMATICS, ART AND GEOGRAPHY

Bernadette DENYS Bernard DARRAS

I.R.E.M. Centre de Recherche sur
Universite Paris 7-Denis Diderot Universite Parisl-Pantheon-Sorbonne

FRANCE FRANCE

1. A multidisciplinary group of educators and researchers in education engaged in
the study of the ways that students in compulsory education structure space, by
identifying and comparing the opportunities presented by each of the disciplines that
contribute to the development of spatial competency in students.

The group established two concurrent directions for its work:
the first, epistemological in nature, involved the expression of relationships with

space, both within the specific compass of each of the three disciplines, and in
ordinary communication.

the second was concerned with didactic and pedagogical analyses of the
implementation of the circumstances of spatial learning in contexts of
communication.

2. The project was multidisciplinary, interdisciplinary and transdisciplinary.
These three dimensions were supposed to become apparent spontaneously in the
course of our work. We made several assumptions:

the first assumption was that the disciplines, goals, and language of the three fields
were compatible. However, as our research and the analyses progressed, we
became increasingly aware of the incommensurability of our fields of discipline.
Indeed, we have practiced our respective disciplines (at an elementary level); we
have revealed the nature of spatial perception in each of them, and we have
experienced the obstacles presented by the terminology and concepts peculiar to
them.

the second assumption was that it was "necessary" for students to arrive at a
"unifying recombination" of their conception of space that would proceed from the
shattering of the individual disciplines.

3. The obstacles we encountered led us to view our assumptions as myths. However,
the various cognitive, perceptional, and linguistic components of spatial cognition
prompt us to transcend the boundaries of disciplines. Like Edgar Morin, we are
aware of the complexity of the organization of knowledge: "Developing the ability
to contextualize and globalize knowledge is becoming an educational imperative."
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WHAT MIGHT BE LEARNED FROM RESEARCHING VALUES IN
MATHEMATICS EDUCATION?

Gail E. Fitz Simons, Wee Tiong Seah & Alan J. Bishop, Monash University

Philip C. Clarkson, Australian Catholic University

In 1999 the Australian Research Council began funding a three year project which
had the goals of: (a) investigating and documenting mathematics teachers'
understanding of their own intended and implemented values, (b) investigating the
extent to which mathematics teachers can gain control over their own values
teaching, and (c) increasing the possibilities for more effective mathematics teaching
through values education of teachers, and of teachers in training. Details of this
qualitative, interpretative research project are available on the Values and
Mathematics Project [VAMP] website: http://www.education.monash.edu.au/proiects/vamp/

Values in mathematics education are the deep affective qualities which education
aims to foster through the school subject of mathematics and are a crucial component
of the classroom affective environment. While accepting that values, beliefs, and
attitudes are dialectically related, our concern is with the values of mathematics,
mathematics education, and education in general, rather than more global values such
as social, ecological, moral and so forth although these are by no means
incompatible. (See Bishop, FitzSimons, Seah, & Clarkson, 1999, for more theoretical
perspectives.)

Problems and tensions encountered during the first year of the project were
mirrored in a general reluctance by teachers to be involved, and included: (a)
teachers' sensitivity to being judged personally and professionally, (b) the need to
define operationally what we meant by values, (c) the relevance of the project to the
everyday work of teachers. In addition we were sensitive to factors impinging upon
the conditions of teachers' work, such as: (a) the ideological purposes of schooling,
(b) the sociocultural frameworks of the state and the particular school, and (c) the
community of practice within any particular classroom.

The means adopted to overcome these challenges were centred around the need to
inform teachers and to gain their confidence, as was the strategy in a parallel project
in Taiwan (F-L Lin, personal communication, January, 2000). To this end we
conducted a series of professional development workshops incorporating as focal
points for discussion the decision-making processes of classroom teachers through:
(a) video clips, (b) vignettes, and (c) comparative sample textbook analyses.

From the above we learned that teachers are committed to: (a) upholding their own
and their students' integrity, (b) the personal, social and educational development of
their students, and (c) the prime importance of context in its fullest sense.
Bishop, A. J., Clarkson, P. C., FitzSimons, G. E., & Seah, W. T. (1999). Values in Mathematics

Education: Making Values Teaching Explicit in the Mathematics Classroom. Paper presented at
1999 Australian Association for Research in Education conference. [World Wide Web:
http://www.swin.edu.au/aare]
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THE METALEVEL OF COGNITION-EMOTION INTERACTION

Markku Hannula, University of Helsinki

This paper examines the self-referential aspects of human cognition and emotion and

proposes a new conceptual framework for it. This domain will be divided into four
different categories: 1) cognitions about cognitions (metacognition), 2) cognitions
about emotions (emotional cognition), 3) emotions about cognitions (cognitive
emotions), and 4) emotions about emotions (metaemotions).

1) Metacognition is an established concept and it will not be elaborated here.

2) We are not always aware of our emotions, as we are not always aware of the shoes

in our feet. However, we can become aware of our emotions, reflect, and sometimes
even control them. Furthermore, we often know how we would feel in certain
situation. All this awareness, reflection, control, and knowledge of our emotions are

cognitive processes emotional cognition.

3) Emotions exist in relationship with goals. Cognitive emotions are emotions that
are related to cognitive goals. Cognitive goals may be explicit, like when one wants
to remember a fact or a. Sometimes the goal may be vague, like 'to understand' a
topic. Cognitive goals direct human cognition through such cognitive emotions as
surprise, curiosity, frustration, and pleasure.

4) Metaemotions are emotions that are related to emotional goals. Presumably all
humans share the goal to experience pleasure and avoid unpleasant emotions. There
are, however, different norms and individual coping strategies concerning emotions.
For example, successful problem solvers are prepared to tolerate frustration on their

way towards solution.

The distinctions made here are important theoretically and methodologically and
there are also implications for teaching practice. Relevant emotional education would
include the awareness of cognitive emotions and knowledge of their importance to
thinking skills, acceptance of emotions as part of cognitive processes, and finally,
increased control over one's own cognition. (See also Hannula, 1999).

References
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THE ROLE OF TENDENCY TO FOCUS ON NUMEROSITIES IN THE
DEVELOPMENT OF CARDINALITY

Hannula, Minna

University of Turku

The aim of this study is to explore, if the lack of spontaneous tendency to
focus on the quantities of objects indicates slower development of cardi-
nality in three-year-old children.

Cardinality grows out of children's experience with counting in a manner
similar to that in which a symbolic concept of print grows out of children's
experiences with the alphabet. Cardinality requires both explicit knowledge
of the relation between numbers and quantity, and the attentional proce-
dures for focusing on what is counted. (Bialystok & Codd, 1997.) In the
area of expertise research, it has been established that the amount of delib-
erate practice as well as the age at which it is started, is related to the level
of performance (Ericsson & Lehmann, 1996).

39 three-year-old children participated this study. The video recorded tasks
were presented individually. In the first task, the child was asked to imitate
the experimenter when the experimenter lifted carrots to a bunny. In the
second, task the child was asked to bring different multi-legged caterpillars
as many socks as they needed.

According to the analyses of videofilms, children who did not spontane-
ously focus on the numerosities in the tasks, were not as skilled in recog-
nising and producing small quantities than those who immediately focused
on the numerosity.

References
Bialystok, E. & Codd, J. (1997). Cardinal limits: Evidence from language
awareness and bilingualism for developing concepts of number. Cognitive.
Development, 12, 85-106.
Ericsson, K. A. & Lehmann, A. C. (1996). Expert and exceptional per-
formance: Evidence of maximal adaptation to task constraints. Annual
Review of Psychology, 47, 273-305.
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RESEARCH TASKS IN A CONTEXT OF VOCATIONAL EDUCATION

Dirk Hoek (Leiden University)

Gerard Seegers (Leiden University)

Mathematics education is gradually changing from teacher oriented learning'earning towards
student regulated learning within a co-operative learning context. This means that the
learning context and also the didactics for teaching mathematics have been changed,

implying that students have to plan, to discuss and construct their own knowledge. In
our study a didactical model was used in which students were working co-operatively

in small groups of four students, while the teacher coaches his students.

Within this context the mathematics curriculum for secondary education has

been reformed. Two components of this reformed mathematics are the use of

research tasks and the graphic calculator: research tasks are structured as problems

where the use of a graphic calculator is necessary. The aim of these research tasks is

to promote discussion between students when they start a new subject or to end a

subject. After a research task is completed students have to present their results or to
write a report about their findings.

In our study we observed students while working in small groups on the

research tasks. While observing these groups we were focused on the interaction

processes between of the students and the coaching of their teachers.

Effective problems allow a clear interpretation of the problem without

suggesting or pre-structuring the solution process. Preliminary analysis of verbatim

protocols and observation shows that students were highly motivated to work on

these tasks. Observations also showed that it is difficult for the teachers to coach

students while they are working on these problems.

On the basis of the observations and the preliminary analysis it turned out to be

necessary to develop a coaching program for the teachers to improve their coaching

behaviour. This means that the instruction to use a graphic calculator will be

improved and the feedback how to work in co-operative groups. In the future the

study will be directed towards the effects of improved coaching behaviour of the

teachers on the learning processes and learning outcomes. Both the preliminary

results of the protocol analysis and the coaching program for the teachers will be
discussed.
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SURPRISES IN INTEGRATING THE COMPUTER IN TEACHING MATHEMATICS
Ronit Hoffmann

Kibbutzim College of Education, Israel

Many agree that there should be greater integration of use of the computer in schools
in general and in the study of mathematics in particular. The NCTM Standards (1989)
and the Harari Committee Report (1992) already recommended this ten years ago.

In our efforts to integrate use of the computer in teaching mathematics in teachers
training colleges, we have developed a "Computer-Oriented Numerical Math" course
in which the computer is used as a tool for solving mathematical problems and as a
tool for exploring ,discovering and illustrating abstract terms (Hoffmann 1996, 1999).

We believe that there are many advantages to students building the mathematical
computer programs themselves, after exploring and discussing the various existing
methods. During the next stage, the students 'run' the programs they have written,
check the results obtained, discuss them and draw conclusions.

But sometimes at this stage, to the students' surprise, strange results are obtained,
very far from those expected. We shall discuss these surprises in our lecture.

We shall deal mainly with:
Surprises in the numerical computation of the numbers e and rt.
Surprises in solving linear systems.
Surprises in solving quadratic equations.
Surprises in performing basic algebraic calculations.

These surprising cases, serve as a source that motivates an increased interest in the
study material, and willingness to explore and deal with the subject further. We are of
the opinion that it is important to introduce these problems and deal with them.
Immediately following this, we discuss the reasons that caused the incorrect results to
be obtained, and propose various ways how they can be overcome.

Students learn that it is important to consider the results obtained critically even in a
case where the program they have written and studied in fact 'ran' faultlessly. They
are usually happy to discover (as one student put it) that "the computer can also err,
and the computer is not 'all-powerful' ".
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A Survey on Problem Solving Instruction of Elementary School Mathematics
from Constructivist Perspective in Japan

Shinji IIDA
Fukuoka University of Education, JAPAN

The high achievement in mathematics and high quality of mathematics teaching in
Japanese elementary school had caught the attention in many countries. Although we
do not really feel of such high level and quality in our own culture, many comparative
studies had provided strong evidence towards such tendency.

The purpose of this paper is to clarify the characteristics of problem solving
instructions in Japanese elementary school mathematics especially from the
constructivist perspective. After considering the theoretical background about problem
solving instruction from constructivist perspective(Cobb et al.,1992 & Kamii, 1990), I
would like to include the U.S.-side reports of the comparative study by Stigler et al.
(1988, 1996) as an external viewing of the Japanese mathematics teaching. At the
latter part in this paper, I will elaborate the Japanese elementary teachers' views in
teaching the algorithm of two-column addition from the constructivist perspectives
and illustrate a typical lesson of such algorithm in our textbooks.

Based on these considerations, we could agree that problem solving instructions
based upon constructivism are being practiced widely in elementary school
mathematics in Japan. There are three evidence in this paper to support such claim.
First, the U.S.-side viewing on teaching mathematics in Japan had suggested that the
predominance of Japanese mathematics education is to promote students' thinking in
problem solving. Second, more than 60% of novice teachers as well as the majority of
experienced teachers have the constructivist views in teaching the algorithm of two-
column addition in the lesson despite the fact that textbooks illustration is not in the
constructivist perspective. Third, experienced teachers are more strongly agreeable to
the teaching elementary school mathematics based upon constructivism than the
novice teachers. Although these evidence have reflected upon our success in teachers
education especially the in-service training, I would like to propose further
improvement of the description in the textbooks that I believe have a strong influence
on the actual teaching in classroom.
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WHAT ARE THE CHARACTERISTICS OF THE PROBLEM SOLVING
PROCESS ?

JUNICHI ISHIDA
Yokohama National University, Yokohama, Japan

1. Purpose

(1) What are the characteristics of the problem solving process, if students can

solve problems in variety way?

(2) Which solution method do students select as the best among several
methods they approach and from which view point do they evaluate it?

(3) Do the students plan to improve the method they select?

2. Method

Six students in the 6th grade were given two problems and interviewed. The
following is one of the problems used.

Using equilateral triangles of lcm on each side,

you can construct a triangle as below:

When you construct a triangle of seven levels,

how many triangles do you need?

3. Result

(1) Three types of problem solving process were identified.

I Students began to solve it by a poor but easy method, then they tried to solve
it by an improved method.

II Students repeated the same solution method.

M Students began to solve it firstly by using a better solution method, then they
tried poorer method.

The characteristic of type I appears to be an "improved" process, type II a

"revised expression" process and typerna "change of viewpoint" or "no
relationship" process.

(2) There are different reasons for the best method they select. For example,

general solution, easy solution, easy to see and understand, interesting method.

;(3) Some students do not evaluate the method of mathematical expression as the

best way.

(4) Students do not have any plans of improving the best method they select, even

if the best method is not improved mathematically.

zn
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GENDER-DIFFERENNCES RELATED IN ELEMENTARY SCHOOL
STUDENTS' MATHEMATICS ANXIETY OF JAPAN

Toshihiko Ito, Shimane University, Japan
Introduction:

The purposes of this study were to explore the general of gender-differences in
high -grade elementary school students' mathematics anxiety by considering the
following questions: Are there differences and gender-differences in affective
characteristics toward mathematics between students with high mathematics anxiety
and those with low mathematics anxiety ?

Procedures:
The Shimane -ACTM was used to measure four affective characteristics toward

mathematics ; self concept toward mathematics (SE), achievement motivation in
mathematics learning (MO), mathematics anxiety (AN), and attitudes toward
mathematics (AT). The Shimane Affective Characteristics Test toward School
Mathematics (the Shimane-ACTM) was developed by the author's investigation on the
affective domain in mathematics learning for 16 years. (Ito, T., 1995)

The subjects of this study consisted of 250 fifth- and sixth-grade public school
students (122 males and 128 females) in Matsue City, Shimane, Japan. They were
conducted during the beginning of the spring term of the 1995 to 1997.
Results:

When with the gender and the level of mathematics anxiety 250 students were
classified into 4 groups: M-L, F-L, M-H, and F-H group, it was obtained that there
was mathematics anxiety (AN) of M-L group > that of F-L group > that of M-H
group > that of F-H group in weak order of mathematics anxiety. Gender
differences in mathematics anxiety and self concept toward mathematics were found
between high mathematics anxiety students and low mathematics anxiety students .

Note.: > showed there was significant difference with mean difference test at 5 .

Conclusions:
The results of this study seemed to suggest that mathematics anxiety for elementary

school male students had the high interactive effect with self concept toward
mathematics whereas mathematics anxiety for female students had the interactive
effect not only with self concept toward mathematics but also achievement motivation
in mathematics learning and attitudes toward mathematics.
Reference
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The Devolution of Cabri Activities: From Researchers to Teachers to Students

Ana Paula Jahn, Lulu Healy and Tania Maria Mendonca Campos

PROEM, Pontificia Universidade CatOlica de S5o Paulo PUC-SP, Brasil

In Brazil, the current curricula for early years mathematics propose that
geometrical concepts should be presented through a variety of perspectives, linking
theoretical and empirical investigations with everyday experiences. The problem is
that most primary teachers, who received only a superficial education in geometry, do
not know how to implement such an approach. In the collaborative research project
Space and Shape, a group of teachers and researchers worked together to change the
way geometry was viewed and taught in a Sao Paulo school. One question that was
explored during this project was the role that the Cabri-Geometre might play in this
transformation.

In the early stages of the project, the idea was that we, the researchers, would
devise activities so that the teachers could appropriate all the Cabri tools as well as
extend their understanding of geometrical concepts by constructing and investigating
objects created with these tools. Once teachers were confident in manipulating the
software, we envisaged that they would modify our activities for use with their own
students. In practice, this turned out to be less efficient than we had imagined. The
teachers' concern from the beginning was classroom-use, whilst ours was on
geometry content. This mismatch meant that the teachers never truly appropriated the
activities as their own.

It was clear that a different approach was necessary. We decided classroom
integration should be given a more central role and that each week the teachers,
together with the researchers, would design two Cabri activities (one for students
aged 6-8 years and one for 9-11 year-olds) to be implemented in their own
classrooms. In the weekly meetings, the researcher no longer acted as the task-
provider. Instead, their role was to make suggestions, demonstrating relevant Cabri
possibilities, and to encourage the teachers to reflect on what happened when their
design decisions were applied in the classroom. Over the 6-month period of meetings,
we detected a number of changes in the types of activities that the teachers came up.
These changes were illustrative of transitions in the ways these teachers viewed the
teaching and learning of geometry.

We will present a sample of the teacher-designed activities to show: how
emphasis on uniform responses evolved into the consideration of student-generated
definitions; how tightly-specified worksheets were relaxed to encourage students to
make decisions about problem-solving strategies; how replications of static paper and
pencil tasks were replaced by tasks exploiting the dynamic processes afforded by
Cabri; and how the software became a way to introduce and explore new geometrical
ideas rather than just to illustrate those already studied in the paper and pencil
context. In summary, the evolution of the activities is consistent with a move from a
view of geometry learning as reproduction and memorisation to a view of geometry
teaching as the devolution of learning situations to students.
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The Formative Effect of Process-Oriented Assessment in the
Mathematics Teachers' Practices

Kristine Jess and Michael Wahl Andersen
The Royal Danish School of Educational Studies Copenhagen, Denmark

A process-oriented assessment is essential for teachers to gain insight into the
students' thinking processes, their mathematical understanding, competencies, and
knowledge. To facilitate this way of assessment we carried out a pilot project in
1997/98 aiming at developing new assessment material inspired by the work of van
den Heuvel-Panhuizeni and Neumann2. The material consists of written tasks,
including simple calculations, open-ended questions and problem solving, and it
intends to allow the students to explain their ways of solving a given task by writing
and/or making drawings. In this way it offers a means for teachers to get feed back
about their own teaching.

In 1998/99 we carried out an in-service education programme intending to
familiarise teachers with current ideas about assessment. As part of the programme
the material from the pilot phase was introduced and the teaching were encouraged to
use it as a part of their teaching practices. We were interested in knowing if, when
using the material, a) the teachers experienced new, unexpected insights into the
students' knowledge and competencies, b) students' activities provoked the teachers
to reflect differently on the teaching/learning processes, c) this way of assessment had

had any impact on the teachers' planning of their activities.
We tried to identify the formative effect of this type of assessment on the teachers'

practices by a qualitative analysis of questionnaires given to the teachers, and of the
experiences gained during the in-service education programme. We did so using the
model of teachers change presented by Clarke & Peter'. The conclusion was that the
information achieved about the students' learning processes had promoted reflections
and changes, or intentions of changes, in the classroom practices. This result suggests
that the use of process-oriented assessment material increases the teachers' awareness
on the teaching and learning processes and thus facilitates the teachers' possibilities
of supporting the students' individual learning processes.

Van den Heuvel-Panhuizen, M. (1996). Assessment and Realistic Mathematics Education. The Freudenthal Institute,

Holland
2 Neumann, D. (1997). Diagnoser i matematik or 2. Nordisk Matematikdidaktik (I), pp. 33 58.

3 Clarke, D. J. & Peter, A. (1993). Modeling teacher change. In B. Atweh, C. Kanes, M. Carss, & G. Booker (Eds.)
Contexts in Mathematics Education. Proceedings of the Sixteenth Annual Conference of the Mathematics Education

Research Group of Australia (MERGA), Brisbane, July 9 13, 1993. Brisbane: MERGA. Pp. 167 -175.
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THE CONTEXT IN THE DISCUSSION ACTIVITIES OF MATHEMATICS CLASSES

Yoshimichi Kanemoto

Saitama University, Japan

The purpose of this study is to present the framework for considering

the function of communication in the classroom communities and to analyze

some episodes of the class discussions. For this purpose we focus on the

multiple contexts that exist in discussion activities.

Cobb et. al. (1993) discussed two kinds of the teacher's utterances which

are on "talking about and doing mathematics" and on "talking about

talking about mathematics". The aim of the latter is to renegotiate

classroom norms, which are social norms and sociomathematical norms. They

are regarded as social contexts. In addition, there are mathematical

practices (Cobb,1999), which include contexts (Wood,1999). These form

the cultural space. With respect to the former, I present two different

kinds of contexts: the communal contexts, in which some ideas for the

goal are shared with the teacher and the students, and the participant's

contexts, which are individual. Within such a framework, I have

researched the features of the interactive discussion activities in two

different cases. The first case is related to forming the communal context

collaboratively. The second case concerns presenting the participant's

own context with regard to the communal context. These contexts exist

in the cultural space as a mathematics class and the interaction of

mathematical ideas works effectively.
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INCONSISTENCIES ON THE CONCEPT OF GEOMETRY

Michihiro Kawasaki
Faculty of Education and Welfare Science, Oita University

The phenomena of consistencies on mathematical concept have been investigated
in detail. But further investigation is necessary in the field of geometry. The purpose
of this research is to clarify the characteristics of inconsistencies on the concept of
geometry.

The term "inconsistency" is used as the situation that if p is a proposition, then
both p and p hold simultaneously. And the inconsistencies on the concept of
geometry can be classified into two kinds of types.
One kind of type is classified from a viewpoint of objects of inconsistencies.

External inconsistency inconsistency between the student's concept of geometry
and mathematical concept of geometry.

Internal inconsistency: inconsistency within the student's concept of geometry.
The other kind of type is classified from a viewpoint of student's consciousness.

Explicit inconsistency: inconsistency that is noticed by student.
Implicit inconsistency inconsistency that is not noticed by student.

External inconsistency has been called "conflict or "misconception" and explicit
inconsistency has been called "cognitive conflict" or "disequilibrium" .

Observers can easily find out student holding external inconsistency because
mathematical validity of the student's concept of geometry is judged on the basis of
absolute mathematical concept of geometry. On the other hand observers can't
always find out internal inconsistency which is generated from the difference
between verbal representation and imaginary representation in student's individual
concept of geometry.

As far as I investigated about the recognition of trapezoid, 71% of undergraduates
showed some evidences of external inconsistency and 82% of them showed
evidences of internal inconsistency. For example some undergraduates wrote a
correct definition of trapezoid by linguistic representation, but couldn't identify
figures of square, rectangle and so on as trapezoid because their shape were not
looked like trapezoid by imaginary representation. The results would appear to
suggest that many undergraduates hold inconsistencies on the concept of geometry
because of the effect of imaginary representation.

Other undergraduates who wrote definition of trapezoid: "a quadrilateral with only
one pair of opposite sides that are parallel" could identify the figures having only one
pair of parallel sides as trapezoid. They showed evidences of external inconsistency
in all problems, but their answers were all consistent with one another. These students
hold both external inconsistency and internal consistency.

What is significant in the teaching and learning of geometry in the light of
inconsistencies is to make student become aware of the inconsistencies that is to
exchange from implicit inconsistencies to explicit inconsistencies.
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IMPROVING MATHEMATICAL REASONING:
THE ROLE OF MULTILEVELMETACOGNITIVE TRAINING

Bracha Kramarski, Zemira R. Mevarech, Adiva Liberman
Bar-Ilan University, Israel

For more than a decade, research in the area of mathematics education has
looked for instructional methods that have the potential to enhance mathematical
reasoning. The present study investigates mathematical reasoning under three
settings: (a) cooperative setting embedded within Multilevel-Metacognitive
Training (implemented in mathematics and English classrooms); (b) a
cooperative setting embedded within Unilevel-Metacognitive Training
(implemented only in mathematics classrooms); and (c) a cooperative setting
with no metacognitive training. The metacognitive training was based on the
IMPROVE method (Mevarech & Kramarski, 1997) which emphasizes reflective
discourse in small groups by providing each student with the opportunity to be
involved in mathematics reasoning via the use of metacognitive questions that
focus on: (a) the nature of the problem/task (b) the construction of relationships
between previous and new knowledge; and (c) the use of strategies appropriate
for solving the problem/task.

We hypothesized that providing metacognitive training in both mathematics and
English classrooms would exert more positive effects on students' mathematical
reasoning than implementing metacognitive training in only mathematics
classrooms. The hypothesize is based on the assumption that students who are
exposed to multilevel metacognitive training may be able to generalize the use
of metacognitive processes beyond a specific domain.

Participants were 182 Israeli students who studied in six seventh grade classes.
Results indicated that students who were exposed to the multilevel
metacongitive training significantly outperformed their counterparts who were
exposed to the unilevel metacognitive training, who in turn significantly
outperformed the control group. The effects of the multilevel metacognitive
method were observed on students' mathematical reasoning, students'
mathematical explanations manifest during the solution of mathematical
problems, the solution of outhentic task, and on the activation of metacognitive
processes while solving mathematical problems. The theoretical and practical
implications of the study will be discussed.

Reference
Mevarech, Z.R. & Kramarski, B. (1997). IMPROVE: A multidimensional
method for teaching mathematics in heterogeneous classrooms. American
Educational Research Journal, 34 (2), 365-395.
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CHANGING TEACHERS ASSESSMENT PRACTICE THROUGH AN
IN-SERVICE PROGRAMME

Daniel Krupanandan. SACOL(South African College For Open Learning)

Curriculum 2005, South Africa's version of what is commonly known as Outcomes
Based Education(OBE) has been introduced in South African Schools since 1996.
The training programme followed by teachers implementing Curriculum 2005 has
been rigorous, intensive and philosophical. As one of the trainers for Curriculum
2005, I have made many observations about the training process and subsequently
become very sensitive to the needs and "cries" of the classroom teachers.

Implicit within this curriculum model is the crucial component of assessment. Many
teachers confess that introducing Curriculum 2005 is manageable, but developing
OBE assessment practices seems to haunt and elude many teachers. My earlier
research(Krupanandan ,1999) around assessment practices of teachers, revealed that
teachers were in the first place underprepared , and secondly many teachers have
fallen foul to moving their assessment practices to areas were they were more
comfortable, rather than conducting their assessments in the precise areas where
teaching and learning outcomes have been defined. The research also concluded, that
there is still a strong leaning by teachers, in using assessment strategies that were
used in the past and therefore no change in practice has taken place.

In 1999 I included studies around Curriculum 2005, and more deliberately
assessment in my in-service course offered by the teacher training college where I
am employed. These were to mathematics teachers who had enrolled with the
college for a Further Diploma in Education, and were working with Curriculum 2005
daily in their classrooms. I drew up a programme for the year, including 8 contact,
face to face sessions with the teachers. These sessions were designed to provide
hands on experience to practicing teachers, to develop and design assessment
practices that are consistent with an OBE curriculum model. Visits to schools or sites
of learning was also done, before and after the course.

This paper will provide the results of this research, in an attempt to meet the needs of
teachers in the critical area of assessment , and provide confidence to teachers to
implement a new curriculum model, that presents many challenges in practice.

REFERENCES:
1. Mogens Niss(1998): Investigations into Assessment in Mathematics Education.

Kluwer Academic Publishers. London.
2. Krupanandan,D.D.(1999). Mathematics Assessment in a new curriculum model

in South Africa. PME23(July,1999). Haifa. Israel
3. NCTM(Yearbook 1993). Assessment in the Mathematics Classroom.
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IMPORTANCE AND DIFFICULTY OF SCHEMA INDUCTION IN
ANALOGICAL PROBLEM SOLVING

Takahiro Kunioka

Hyogo University of Teacher Education

The purpose of this presentation is to illustrate importance and difficulty

of schema induction that is essential in mathematical problem solving
instruction by analogy.

In school mathematics textbooks, we find a common arrangement of
problems, where one typical problem (example problem) and its solution are
presented, then one or two problems (application problem) which can be solved

using the same method as one of the example problems will be posed. In this

plan, teachers expect students to learn mathematical methods to solve a class of

problems and to apply them to new problems. The reasoning which students

use in applying a prior solution to a new problem could be viewed as analogical

reasoning. In this type of lesson, it seems to be easy for students to solve the
following problems because they are very similar to the example. However, as

we well know, many students have difficulty solving problems on a later test in

which there is no example problem. In that case, students have to retrieve a
potential solution from various types of examples.

I will focus on critical roles of an abstract schema in analogical problem

solving and some conditions to facilitate schema induction. Cognitive studies

concerning analogical reasoning suggest that an abstract schema is important in

noticing a similarity between two analogs and in facilitating analogical transfer.

An abstract schema is important in learning and teaching of mathematical
problem solving, too. However given a practical situation, we face difficulty

making an abstract schema. Using some examples from school textbook, I will

illustrate that it may be impossible to formulate an abstract schema among
various problems which have different semantic situations but a common
solution.
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Representational Structure of Numbers in Mental Addition

Kazuhiro Kuriyama, Kyushu University of Health and Welfare,
Hajime Yoshida, Miyazaki University, Japan

Resnick(1983) assumed that a representation of numbers in
preschool children could be characterized as a mental number line
in which numbers were linked to each other by the next relationship.

However, Kuriyama and Yoshida(1988) suggested that preschool
children represented numbers to 5 as a firm structure or privileged
anchor for the numbers below 10. The purpose of this research was
to investigate whether or not elementary school children have the
representational structure of the number 5 by analyzing the
reaction times in mental addition tasks.
Method: Subjects. The subjects were 36 first graders and 34 fourth
graders attending a public school. Materials and Procedure.
Two-term addition problems were used in this experiment. Both the

augend and addend were single digits. All response recording were
accomplished by a laboratory microcomputer.

Results and Discussion: The data on reaction times showed that
the first-grade children solved the problems with 5 in either of the
two addends faster than the problems without 5 in both addends.
This suggests that school children represents the number 5 as a
privileged anchor. Further, fourth graders did not represent the
number 5 as a privileged anchor. This might suggest that by
learning the decade structure on numbers for four years, school
children integrated the number 5 as a privileged anchor to the
decade structure. It was proposed a new model of number
representation.
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SOUTH AFRICAN MATHEMATICS TEACHERS IN TRANSITION.
-MAKING SENSE OF THE MATHEMATICS SPECIFIC OUTCOMES.

Agatha Lebethe & Gabeba Agherdien , School Development Unit, University of
Cape Town, South Africa.

The implementation of an Outcomes-based education system in South Africa has
brought a wave of spontaneous debate among the South African schooling
community and abroad. Since its implementation in 1998, research has shown
teachers have different understanding of OBE, display uncertainty and insecurity
about their practice irrespective of the aggregate levels of institutional resources or
years of personal experience. (Jansen, 208).

As inservice providers we have been inundated with desperate pleas from teachers to
help them make sense of the outcomes, to understand the OBE jargon and to make
the "maths outcomes real" in their classrooms. The research became an urgent need
to assist us in our attempt to help these teachers and begin to understand
mathematics teachers in transition. It is also the intention of the study to contribute
to the conversations around the effect of the implementation of such a complex
system such as OBE on teachers who received minimum formal preparation and
training and very little change to the material resource base to enable the new
curriculum. We see the research as ongoing and necessary to demonstrate the
distance between policy and practice, between the intentions of Government and
what teachers experience and so contribute to the question posed by a noted South
African Academic, Jonathan D Jansen, 'What does the South African experience tell
about the classroom practice.
This paper will show the results of a research conducted among teachers described as
`key' teachers by an inservice project because of their dedication and involvement to
inservice, they are seen as initiators in their schools and should have a sound
understanding the Mathematics Specific Outcomes. The findings of this study are
based on an analysis of audiotapes, interviews and questionnaires with participants.

References
Jansen, J., & Christie P. (eds) (1999) Changing Curriculum: Studies on Ozacomes-hosed Education
in South Africa. Juta & co, Ltd.
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ON THE TRANSITION BETWEEN SPACE AND PLANE*:

A.L. Mesquita (U. de Lille/IUFM)

The study presented here concerns a longitudinal project on the utilization
of tridimensional geometry at school. Its aim is the valorization of
geometry and space at school (valorization which is claimed as a main
goal of the teaching at school level, cf. for instance Mammana & Villani,
1998) and it is being implemented in a primary school of the northern of
France since 1997/1998, with about fifty pupils during their school
attendance (from 6 to 11 years-old). We assume that a priority should be
given to space in the beginning of the learning of geometry; also, the
construction of objects and other activities of material and symbolic
manipulation, in the sense of Caron-Pargue (1981), have an important role
in our approach; finally, a special attention is given to the different
semiotic systems of presentation of knowledge used in geometry and to
their articulation (Duval, 1999). In some previous PME conferences we
report other phases of this study (cf. for instance Mesquita et al., 1999).

This presentation reports a particular moment of the study, the transition
(in both senses) between space and plane, with 7 to 8 years-old pupils. The
utilization "on situation" of the geometrical notion of orthogonal
projection is a crucial point in this phase of our study. In this presentation
we will show how, by the utilization of specific structured
problematization activities (Mesquita et al., 1999), pupils used this notion,
enabling such a transition between 3D- and 2D-points. We will present
some of these activities, focusing on the way of how pupils used this

notion, as a way to pass from a 3D-point to its projection in the plane, and
to associate 3D-points to a 2D-projection.
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Students' conceptual change of the equal symbol:
On the basis of the notion of epistemological obstacle

Tatsuya MI ZOGUCH1

Tottori University, Japan

The notion of epistemological obstacle(EO) is indispensable to studying for

identifying learners' difficulties encountered in their learning processes, and to

deciding more appropriate strategies for teaching. In the historical development of

mathematical concepts or knowledge, many EOs have been overcome. This means

that we have to overcome the EOs for developing our concepts or knowledge in the

learning of mathematics.

On the other hand, we need to study how to describe the processes of students

overcoming EOs, the condition for students to overcome EOs, and the significance

which a learner experiences the processes of overcoming EOs.

We need to distinguish three categories for description of students overcoming

processes; notion, event, and conviction. The category notion includes students'

ambiguous ideas, images, and mental models. The category event means students'

concrete experiences which notion is laden. The category conviction means students'

attitudes towards mathematical knowledge. By shifting conviction, the student can

change his/her knowing as a whole, that is, the student can overcome his/her EO.

Using these categories, tour states of learners confronting EOs are described: I)

persistence in subjective facility; 2) justification as social adaptation of event; 3)

becoming aware of an EO; and 4) overcoming an EO. Comparing these four states,

the tbllowing viewpoints are interred for identifying the learner's way of concerning

with EO: social context; reflection towards one's knowing, and the conviction -shift.

If we do not interpret their learning of mathematics with these viewpoints, we could

not understand the very process which a learner overcomes an EO. Hence, such

viewpoints are identified as the significance of the EO.

On the basis of the above theoretical framework, we discuss students' conceptual

change of the equal symbol in school mathematics, and construct a framework for it

as tbllows: I) evolution of the definition of the equal symbol; 2) change of the objects

connected by the equal symbol; 3) a student's "equality' which evaluates the equal.

symbol.
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CHILDRENS' STRATEGIES TO CALCULATE PRICES OF FRUIT

WITHIN A REAL WORLD SETTING

Regina D. Moller

Padagogische Hochschule Erfurt, Germany

One of the focal points within problem solving research is the impact of real world

settings and what skill children require to find respective answers. Since money

plays an important role in early arithmetic applications (e.g. prices of goods) there

is a need to explore the childrens' strategies in recognizing the relationship between

the prices and the weight of goods. This investigation into the "economic world" of

elementary school children proves to be essential of social constructivism,

functional thinking and the existence of subjective experiences.

Research questions

What are the students' reasoning strategies in calculating prices for different

amounts of fruit? How does the concept of proportionally develop?

Method

The sample comprises 99 students grade 1 to grade 4. Each student was indivi-

dually interviewed while he or she passed by four tables resembling fruit stalls in a

market. Each table carried a different sort of fruit (grapes, pears, apples and

plums). They varied in quantity (1 kilogram and more), they showed different sizes

and colours (green and blue grapes, green and red apples) and were marked with

different prices (e.g. 1 kilogram 3 DM, 1 kilogram 1,50 DM). For each of the four

sorts of fruit the students were asked about the prices of the different portions.

They could confirm the weight of the apples by using the scale.

Results

The answers reveal that first and second graders use criteria like taste, colour, size,

amount and usefulness to reason for their prices. The most frequently used

arguments are the amount and the size of the fruit pieces. Over half of the third and

forth graders use porportionality. One third of them are able to calculate with

prices like 1,50 DM and are able to find double as much with an additive or

multiplicative strategy.
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TEACHERS' POSITIONS IN ASSESSMENT DISCOURSES: INCLUDING A

SOCIOLOGICAL PERSPECTIVE ON THE MATHEMATICS CLASSROOM

Candia Morgan, Institute of Education, University of London

Steve Lerman, South Bank University

The study of assessment at PME has traditionally focused on what assessment can
reveal about students' mathematical understanding. More recently there has been a
turn to look at teachers' beliefs and practices. Morgan (1996) identified the
importance of recognising the interpretative nature of teachers' evaluations of their
students' performance and the ways these evaluations are influenced by the
resources teachers bring to the assessment situation. Empirical study of assessment
practices indicated that these resources were drawn from different, sometimes
contradictory, discourses and that the various ways teachers were positioned within
these discourses could lead to different evaluations of the same student texts
(Morgan, 1994; Morgan, 1998). This raises important questions about what these
discourses are and what positions, evaluation criteria, and orientations towards the
practice of assessment are available within them. We shall argue that a sociological
perspective, drawing on the work of Bernstein (e.g. 1996), can illuminate these
questions and enrich our understanding of teachers' assessment practices.

From the point of view of Bernstein's work, we are concerned with how official
discourses of assessment of mathematical performance are recontextualised at the
level of school. We can ask whether teachers accept or reject the criteria and
procedures of the official discourse, in which case they tend to speak the voice of
the legitimate text, or the voice of other texts. And we can ask: what resources do
they draw on to recontextualise the dominant discourse? We can say that they draw
either on recontextualisations of the specialised discourses produced at the field of
pedagogic knowledge production, such as the mathematics edudation research
community, or on non-specialised resources, i.e. everyday experiences. Accordingly,
the orientations of the teachers are either to the students' texts or to the student
himself or herself. We will illustrate these positions by drawing on texts of
interviews with teachers.

REFERENCES
Bernstein, B. (1996). Pedagogy, symbolic control and identity: Theory, research, critique. London:
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Teaching and Learning Statistics:
Diagnostic and Support Materials for Teachers and Students.

James Nicholson & Gerry Mulhern
Queen's University Belfast, School of Psychology

Recently, Batanero and Truran (1998) highlighted the need for
all adults to make some use of 'advanced statistical thinking'
in the form of making inferences from data. Hawkins (1989)
and reported a survey showing that a substantial proportion of
teachers surveyed in the UK were not well equipped to teach
the statistics which was demanded of them. Although some in-
service training has taken place since then, the volume and
level of sophistication required have also increased
dramatically, and the situation is arguably more acute now.
We are currently engaged in a project to help teachers devise
appropriate classroom strategies for diagnosing common
conceptual difficulties among their students, and effective
methods for overcoming such difficulties.
We will present examples of the materials developed in two
areas: Sampling Methods and Correlation & Linear Regression,
and report the outcomes of the initial trialling in schools.
These attempt to address some of the key issues identified in
interviews with teachers and examiners. For example:

that students have difficulty in assessing the reliability of
predictions made using a line of regression.
That students find it difficult to identify the contexts in
which different sampling methods are advantageous because
they have little or no experience of using them.
that students find it difficult to apply abstract principles to
concrete scenarios.

This work is supported by a grant from the Nuffield
Foundation.
REFERENCES:
Batanero, C. & Truran, J. (1998) Advanced stochastic

thinking. Paper presented at The Psychology of Mathematics
Education Conference (PME 22), Stellanbosch, South Africa.

Hawkins, A. ( Ed.) (1989) Training Teachers to Tench
Statistics. ISI, Voorburg: Netherlands.
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LEARNING AND TEACHING THROUGH PROBLEM-SOLVING:
REFLECTING ON TWO SPATIAL CASES'

Hercules D. Nieuwoudt

Graduate School of Education, Potchefstroom University,
Potchefstroom, South Africa 2520

Effective school teaching enables learners to perform relevant tasks of learning.
To this end learning conditions that are conducive to learning need to be
provided in classroom situations. From a constructivist-based social cognitive
view meaningful learning is defined as the goal-oriented, active, constructive,
cumulative and self-regulated processing of information into useful knowledge.
Moreover, social cognitive scientists posit not only that learning can best be
characterized as problem-solving, but also that teaching itself resembles
problem-solving. In addition, classroom ecological research suggests that the
context of teaching and learning in particular is an essential determining factor
regarding the success of classroom events. Hence, the utilization of problem-
solving in a relevant context seems to be an essential aspect of effective school
teaching and learning, particularly of spatial concepts.

The purpose of the paper is to reflect on the possibilities of problem-solving in
a relevant context with reference to effective teaching and learning of spatial
concepts in school classrooms. The analysis draws on two recent classroom
experiments concerning meaningful acquisition of spatial concepts, conducted
in multicultural South African classes. One comprised developmental research
with Grade 1 learners following an experimental problem-centred learning
program, based on the Van Hiele Theory. The other involved Grade 7 learners
following the prescribed school syllabus with two experimental groups
following a Van Hiele-based problem-centred program, while two control
groups followed a conventional program. The combined results of the two
cases:

Emphasize the importance of language in the learning of spatial concepts;
Reveal that young learners employ specific authentic strategies, some of
which are quite sophisticated, to resolve spatial problem situations;
Suggest that problem-solving in a co-operative social context renders
pertinent advantages for learners, particularly in respect of their level of
geometry thinking and conceptualization, concentration and motivation (at
practically significant levels, using effect sizes);
Suggest that such an approach impacts on school teachers' thinking about
classroom teaching and learning in a fundamental way, provided they are
open and committed to experiment with it in supportive working conditions.

The two cases form part of the Spatial Orientation and Spatial Insight (SOS!) Project,
sponsored by the National Research Foundation (NRF, formerly FRD) of South Africa.
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THE IMPACT OF A VIDEO CLASS SYSTEM ON THE TEACHING AND
LEARNING OF JUNIOR SECONDARY SCHOOL MATHEMATICS

Susan M. Nieuwoudt
Department of Mathematics, Potchefstroom College of Education,

Private Bag X07, Potchefstroom, 2520, South Africa

In outcomes-based education, as currently being implemented in South African schools,
the outcomes are focused on the learner, providing guidelines regarding competence in
respect of knowledge, skills and dispositions to be attained (Brodie, 1998). This implies
learner-centred teaching in mathematics classes (Department of Education (DoE), 1997).
Learners need to take responsibility for and make appropriate decisions regarding their
own learning; they have to be independent in their learning and thinking processes,
effective in their own learning activities; and able to apply self-assessment procedures
(DoE, 1998).

There are though obstacles in the effective implementation of a learner-centred approach,
e.g. the cost factor, rationalisation, shortage of aptly qualified mathematics teachers and
large classes. Hence, it is necessary to investigate workable ways to overcome these
restrictions. The main objective of the research was to investigate the VCS as a supportive
way to cost effective teaching, as well as to determine the influence of the VCS on the
teaching and learning of school mathematics.

Two secondary schools where the needed facilities could be provided, participated in the
project. At one school mathematics teachers for grade 8 who were willing to participate,
were involved. One grade 8 class (El) learned mathematics while the lesson was being
video-taped. A second class (E2) learned mathematics through the video-taped lesson
without the constant presence of a teacher in class; and a third class acted as a control
group, continuing in the "normal" way. The teacher of the experimental classes visited the
"video class" (E2) from time to time to supervise and conduct relevant tutorials. This
teacher was trained in appropriate methods of mathematics teaching. The same procedure
was followed at the other school, using grade 9 learners as the grade 8 learners were
already involved in another mathematics project.

A pretest-posttest experimental design was employed, using as dependent variables the
fields of the LASSI-High School Questionnaire (Weinstein & Palmer, 1990), adapted for
mathematics, and the learners' marks for mathematics. A self-constructed observation
schedule was used to qualitatively analyse events in the experimental classrooms.

Teachers used the VCS to reflect on their own teaching, while some learners used the
tapes to catch up with mathematics done while they were absent. In one school practically
significant differences (effect sizes) occurred between the three groups' mathematics
achievement. This could be attributed to the teacher adapting appropriate teaching
strategies, as well as the learners in E2 taking responsibility for their own learning. In the
other school learners in the "video class" perform as well as the others. The results
support Lowry and Thorkildsen's observation (1991) that a VCS does not have a negative
effect on the teaching and learning of mathematics, and that of Huge (1990) that video
recordings of mathematics lessons can successfully compensate for absent teachers. The
results suggest that a VCS can contribute toward solving problems due to rationalisation,
for absent or ill-trained mathematics teachers and large classes.
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TWO THINKING STRATEGIES IN WORD PROBLEM REPRESENTATION
Jarmila Novotna, Marie Kubinova, Charles University, Prague

History gives numerous proofs of the link between two semiotic systems the
word and the image and their important function in a student's progress in gaining
further concepts, processes and understanding in mathematics.

When a teacher/researcher marks students' activities, he/she perceives only one of
the two sides of a mathematical activity - the visible conclusion of the mathematical
objectives and the valid processes used to solve a given problem. He/she does not see
directly the hidden and crucial side (Duval, 1999, p. 24), namely the student's
thinking, which can only be inferred/estimated and in many cases is the most
important activity. The student's thought processes can be inferred from written
work. In this contribution we focus on graphical representations of a word problem
structure. We will study the spontaneous usage of geometrical/non-geometrical
figures (Kubinova, Novotna, 1999). We will concentrate on two thinking strategies
'advance organisation' and 'selective attention' (O'Malley, Chamot, 1990).

Sample. 12-14 year-old students from Prague and Ceske Budejovice. All classes were
non-specialised ones.

Method Analysis of written work. Each student received one A4-sheet with the
assignment written in the upper part of the sheet and was asked to put all calculations,
figures, schemes, notes etc. on this paper.

eackground. The word problem dealt with, consisted of two sub-problems, one
having a pure multiplicative structure, the other a mixed additive-multiplicative
structure.

Classification of the metacognitive strategies. The following criteria were used:
Advance organization: congruent/non-congruent (Duval, 1999), processual/concept-
ual (Kubinova, Novotna, 1999), complete/non-complete record (Novotna, 1999);
Selective attention: recorded information chosen by the solver, use of letters and
other supporting symbols (Novotna, 1999). Students' original pictorial records will
illustrate the results of the classification.
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The Research of Planning in Open-Approach Method
- Through the Description by Opportunistic Planning Model -

Yuichi Oguchi
Master's course in Education

Shinshu University

Purpose
There are two purposes on this research.

One is to find out a suitable model to describe
planning in Open-Approach (Nohda,1995)'.
The conclusion is that Opportunistic
Planning Model (Hayes-Roth, 1979)2 is a
suitable model. OPM is the abbreviation of
Opportunistic Planning Model. There are
four reasons to attain conclusion. C)OPM can

describe various reasoning. C) OPM can
describe partial planning. 3 OPM can
describe policies and intentions of the

planner that are driving-force in planning. 0
OPM can be made a change and become
suitable for Open-Approach.

The other is to propose the functions of
planning in Open-Approach. These are
planning as a means of problem solving,
planning as a means of creation and planning
as configuration of reasoning.

Meta-plan
Problem definition: Forms & Expressions.
Model: The order.
Policies: From an easy thing.

Plan abstraction
Intentions: From rectangles.

Schemes: Arrows.

Strategies: Using the expression solved
previously.

Knowledge base
Concepts:

Classification:

Analogy: 2(5 X X)_

TX2=9 becomes easy --... Procedures:

by transforming it. X)2=9

Plan
Outcomes: Values of
X.

Designs:
52 _ (5

Case Study
I questioned a boy who was a second-year high school student.
Situation: We would like to divide square flower bed which area is 25 rn into

four parts like a figure and plant the salvia which area is 9
Problem 1: Let's draw various forms for planting it! Xm

Problem 2: Let's make various equations!
Problem 3: Let's solve equations!
OPM can show various reasoning. For example, it can show causal reasoning as the arrows

from strategies to procedures. Also it can show partial planning. Though the planner does
planning on the basis of policies as a whole, he is dependent on strategies while some parts of
planning. It is more important than above reasons that OPM can describe driving-force in
planning. With OPM, we can notice planning in meta-level through some descriptions that are
"From an easy thing" in policies, "From rectangles" in intentions and "Using the expression solved

previously" in strategies.
'Nohda, N.(1995).Teaching and evaluating using "open-ended problems" in classroom. ZDM,27(2).
2Hayes-Roth,B.&Hayes-Roth,F.(1979).A Cognitive Model of Planning. Cognitive Science,3.

5m

Xm
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1 -178

2 0 7
-178



LEARNING GUIDANCE FOR DEVELOPING CREATIVE ABILITIES AND ATTITUDE

-APPLYING THE OPEN APPROACH METHOD IN THE MATHEMATICAL LEARNING PROCESS-

Hatsue okabe, Shinji Hirotani Hiroshi Sakata
Yuge Elementary School.Japan %num Agrinktuul High Schou !Japan Okayama University.Japan

In the process of teaching mathematics,it has been considered important to encour-
age children to have mathematical problems and concepts related to their own lives
and to give them an interest in creating solutions. Therefore questions which allow
children to try various ways of solving a problem and different approaches as well as
learning new ways to apply mathematics are needed. Moreover the opportunily for
children to create various solutions and to develop their mathematical thinking abili-
ties through communicating with other children is also necessary. We believe that
the Open Approoach Method developed by N.Nohda from research by S.Shimada is
useful and effective.

We developed the following question according to the Open Approach Method. A
variety of approaches are possible according to the individual's ability and age.

question : The following numbers are arranged in a certain order. What number
comes next? Why?

2 , 3 , 5 , 8 ,
Students in classes from grade 7 to grade 12 tackled the problem enthusiastically

and figured out 2 to 4 different answers for each. Tackling the problem
individually,students shared a lot of ways of mathematical thinking through communi-
cating with other students. Here are some of the answers the students come up
with. (We use this equation to describe the student's explanations briefly.)
(1) 2,3,5,8,0E,17,23,30 a +ia n (n=1,2,3)

Follwing difference progression goes to arithmetic progression. 90% of students
came up with this answer.
(2) 2,3,5,8,13,21,34,55 Fivonacei Progression, an+2.a.,+an or an+za..a.,

This answer is found by 85% of the students.
Examples (3) to (6) were found by approximately 15% of the students

(3) 2,3,5,8,ff1,11,14,15 oan+.a.+6 Obn=an+.a. 1,2,3,1,2,3 repeating series
(4) 2,3,5,8,a1,3,5,8,2 This is a cyclic progression. an+4=an

The clue of this progression is an analogue watch.
(5) 2,3,5,8,M,3,2,3,5,8, an+,..a. This equation describe a sine curve.
(6) 2,3,5,8,D1,18,27,41

OThere is one 2 in 2. 2 X 2 1 = 3 OThere is one 2 in 3. 3 X 2 1 = 5
OThere are two 2's in 5. 5 X 2 2 = 8 OThere are four 2's in 8. 8 X 2 4 =12
This can be expressed by the following equation : 1.+1=23.- [as/2] (n=Gauss)
Some other mathematically interesting answeres have been omitled because of

space
Since students were encouraged to figure out rules,expressions and various answers

in their own ways,they worked on the questions eagerly.
They enjoyed the creative and mathematical activity.
Their mathematical view point has been expanded by directing the students to solve
questions in individual ways and to exchange their ideas with each ather.

We believe we can develope a student's creative thinking ability and attitude to-
ward mathematics by introducing the Open Approach Method.

In conclusions,here is a proberb which describes the core message of learning gui-
dance. "I hear,and I forget.:1 see,and I remember.:I do,and I understand.:"

References
NOIIDA .N. (1983) , Research into Open Approach Guidance , Tohyokan Editions (in Japanese) .
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Geometric Construction as a Threshold of Proof:
The Figure as a Cognitive Tool for Justification

Masakazu OKAZAKI Hideki IWASAKI
Joetsu University of Education Hiroshima University

It is a global problem in mathematics education to understand how empirical
knowledge of elementary mathematics is transformed to theoretical knowledge in the
secondary level. In Japan, geometric construction is taught in 7'h grade and logical
proof in 8'h grade under geometry. We consider geometric construction an intermedi-
ate step towards proof (Mariotti & Bartolini Bussi, 1998). However, most teachers
tend to emphasize only its procedural aspect.

In this paper, we attempt to specify some conditions for students to sift from
construction to proof in geometry. We observed and analyzed several 7th grade class-
room lessons on geometric construction in which students were put in the context of
"justification". The main topics were to draw an angle bisector and a perpendicular
line by using various instruments and to justify the procedure.

We found that most students utilized another geometric figure (e.g. rhombus,
isosceles triangle) as a cognitive tool in constructing a figure and justifying the pro-
cedure. Therefore our analysis is focused on the thought processes as shown in the
geometric figures that the students expressed. The concept of image schema devel-
oped as a meaning-making function by DOrfler (1991) works well for our analysis.
Especially its categories: figurative, operative, and relational can be used to make
qualities of students' cognitive tools clear.

In the end, the following points are suggested.
The geometric figure (e.g. rhombus) as a cognitive tool makes it possible for stu-
dents to see another figure (e.g. angle bisector) in the figure, to read the theoreti-
cal relations in and between figures, to give them a logical form, and to estimate
failure or success in their justification of construction.
Factors for the student to succeed in the justification include; (1) externalization
of the geometric figure imagined, (2) reflection of steps in the construction as
conditions for determining the figure, and (3) reasoning based on operative image
schema.

References
DOrtler, W. (1991). Meaning: Image Schemata and Protocols. Proceedings of 15th PME
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Johnson, M. (1987). The Body in the Mind. The University of Chicago Press.
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EFFECTS OF BACKGROUND AND SCHOOL
FACTORS ON BELIEFS AND ATTITUDES TOWARD

MATHEMATICS

Constantinos Papanastasiou
University of Cyprus

The realization that mathematical skills are important to
economic progress has prompted many nations to
investigate the validity of their curricula in mathematics.
TIMSS had aim the measurement of student achievement
in mathematics and science and the assessment of certain
factors influencing student learning. This study will
examine predictors of beliefs and attitudes toward
mathematics, focusing on those related to school and
family. The data were collected in 1995. Altogether, 5852
students (Cyprus) participated in the study. The paths
from educational background to SES, to attitudes, to
beliefs, and climate were significant. The paths from
reinforcement to attitudes, to belief for success in
mathematics, and teaching were also significant, as were
the paths from climate to teaching, the path from teaching
to attitudes, and the path from SES to climate. Measures
of fit included chi-square, GFI, AGFI, CFI and RMSEA.
The results of this study indicated that two exogenous
factors-educational background of the family, and student
reinforcements-define a second order factor structure
which includes endogenous predictors, socioeconomic
status of the family, student attitudes toward mathematics,
beliefs regarding success in mathematics, the kind of the
teaching and the school climate.
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GEOMETRIC DYNAMIC ENVIRONMENT AS A MEDIATOR AGENT FOR
LEARNING GEOMETRY

Giselia Correia Piteira

EB 2,3 Roberto Ivens Portugal

Under the perspective of Activity Theory, the mathematics classroom can be viewed
as a system of activity, where students interact with each other and with the teacher,
using mediational agents in their action (Wertsch, 1991; Engestrom, 1998). In that
system of activity, knowledge is shared among its elements, and mathematical
meanings are constructed and negotiated (Meira, 1996). If the students are working in
geometry, geometric dynamic environments such as Sketchpad can be a potential
agent in that system of activity and a resource for learning (Laborde, 1998).

Drawing on a qualitative approach, we focus our ongoing research project on the
mathematical activity of two middle classes, working in geometry with Geometer's
Sketchpad. Lessons were observed and video-recorded. Students' group work was
saved to be analysed and interviews were carried on.

From the analysis of data there is evidence to suggest that: i) when students use
geometric dynamic environments (GDE) to think on geometrical objects and
properties their activity is mediated in particular ways by those tools; ii) the
exploration of the constructions that students make are more rich and purposeful if
they are guided by the teacher; iii) geometrical meanings are constructed in the
relation between the GDE used in the action, the tasks proposed and the conceptual
framework.

The aim of this paper is to present and discuss these preliminary results.
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Reflections about the work with teachers

Vtinia Maria Santos-Wagner, Universidade Federal do Rio de Janeiro, Brazil

In the last two decades the work with practicing teachers, future teachers, and my own work have

lead to reflecting about our work as teachers. A teacher journey includes enthusiasm and problems

as well as the development of professional knowledge fuelled with the discoveries and complexities

of the teaching practice. We, mathematics teachers and mathematics educators around the world,

feel many times a sense of being lost. It's a feeling that we do not know: a) what is going on in the

classroom; b) why students are having trouble to grasp the content; c) how to incorporate

innovations in the mathematics curriculum; d) how to accept the idea that we should change our

teaching practice; and e) how to make alternative moves. In many situations we are stimulated and

even pressed to think that we need to change our beliefs, attitudes, and implicit theories about

mathematics and its pedagogy as well as our teaching and thinking about knowledge acquisition. In

this work, I talk about a path followed towards becoming more experienced into acquiring

knowledge about mathematics teaching and teaching education (Olson, 1997; Santos & Nasser,

1995). Through this path, theory can or cannot shed some lights on our understanding of math

classroom; as well as may suggest ways to cope with teaching dilemmas. This is an interpretive

study of the collaborative partnership experienced by a mathematics educator and a group of

teachers. It pursues the following questions: a) How can teachers' knowledge and professional

experience be taken into account when teachers are learning to become teacher-researchers? b)What

forms of collaboration between a mathematics educator who acted as a mentor and supporter of

teachers' work stimulate, enhance, block and/or disturb teachers' autonomy and learning process?

Data includes written documents produced by the teachers, field notes from meetings and

interviews. Exemplars of teachers' insights, reflections and actions show how evolved teachers'

thinking about their teaching, the collaborative experiences and the interplay of theory and practice

(Lester, 1996; Santos & Nasser, 1995). The study stresses the importance for teachers of working

collaboratively towards the goal of becoming more knowledgeable in a community in which mutual

respect, trust, collegiality, and concern are present.
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UNDERSTANDING HOW CHILDREN SOLVE COMPARE PROBLEMS
Analacia D. Schliemann, Susanna Lara-Roth, and Jessica Epstein

Tufts University, USA

Research has found that comparison problems are typically more difficult than change
problems. It is not yet clear, however, how previous experiences and logical, linguistic, and
representational factors interact, facilitating or hindering children's solutions to compare
problems. In traditional mathematics classrooms and textbooks, combination and change
problems are widely explored while compare problems are much rarer, thus depriving children of
experiences that would allow them to deal with comparative statements flexibly. Students are
often told that the keyword "more" suggests joining, adding, or buying, and "less" means taking
away, eating, or losing. In this exploratory study we look in detail at how 12 third-grade
American children interpret, represent, and solve compare problems. Analysis of the video-taped
interviews, verbatim transcripts, and children's written productions will facilitate deeper
understanding of children's multiple interpretations of compare problems and of the tension they
experience in considering comparative terms as information about changes in quantities versus
comparison statements.

Children were interviewed after participating in a series of five two-hour weekly meetings
that were part of a broader year-long classroom intervention study (Carraher, Schliemann, &
Brizuela, 1999). In the first two meetings, when given combine, change, and compare problems,
the children overwhelmingly used addition to solve problems with the word "more" and
subtraction for those with the word "less", thus providing wrong answers to the compare
problems. During the following three weeks the children dealt with comparison statements, using
"arrows" to represent and compare different amounts of discrete and continuous quantities. In
none of the last three meetings were they given compare problems similar to those analyzed here.
During the sixth and seventh weeks, pairs of children were interviewed and asked to solve the
following compare problems:
(a) Peter has 9 candies. He has 3 candies less than Susan. How many candies does Susan have?
(b) Paul has 9 candies. He has 3 candies more than Karen. How many candies does Karen have?

Eight children solved both problems without difficulties or, after giving a wrong answer,
immediately realized their mistake and corrected it. The other four children, who constituted two
interview pairs, showed an interesting pattern of interpretation for comparative statements.
Detailed analysis of their interviews shows that a correct answer to the main question in a compare
problem does not guarantee that the child fully understands the relationships involved in it. It was
also found that children may treat a comparison statement as if it were providing information
about changes in quantities. Such interpretation will sometimes work in unison with the correct
comparative interpretation, thus leading children to a correct answer despite misunderstanding of
the problem. Why and how this occurs seems to be, at least in part, a result of their previous
school experiences that focused mainly on change problems and keywords.
References:
Carraher, D., Schliemann, A., & Brizuela, B. (April, 1999). Bringing out the algebraic character

of arithmetic. Paper presented at the Annual Meeting of the American Educational
Research Association, Montreal, Canada.
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COLLEGE STUDENTS' BELIEFS ON NUMBER SYSTEMS:
An Aesthetic Approach to Understanding

Jacqueline S. Sklar
Florida State University

The discipline of mathematics is unique in that it can be interpreted as
both a natural science and an art. In the classical sense, mathematics has
been known as the queen and servant of the sciences. Although it is perhaps
subjective and culturally defined, many have attested to an aesthetic quality
of mathematics. Moreover, Aristotle, Poincare and Dirac have all written of
its beauty (refd. by Davis and Hersh, 1981). And, I believe few
professionals, if any, in the field would dispute that mathematics is at least
partly aesthetic in nature. This study explores the aesthetic characteristics
of mathematics in relation to the individual learner, and how the perceived
aesthetic affects student's mathematics learning.

The study was conducted in a senior-level number systems course
offered at Florida State University that is intended primarily for future
secondary mathematics teachers. A hermeneutical approach to
understanding is employed to uncover what Dilthey referred to as "the
intimate connection between experience and expression" (refd. by Odman
and Derdeman, p. 189, 1999). My methodology includes classroom
observations, in-depth interviews and various activities to continually
encourage the reflective understanding of both the participants' cognition of
mathematics and myself as the researcher. Students' drawings of their views
of mathematics will be presented with profiles of their aesthetic insights and
mathematical comprehensions.

Davis, P., and Hersh, R., (1981). The Mathematical Experience, Houghton
Mifflin Company, New York, NY.

Odman, P.-J., and Kerdeman, D., (1999). Hermeneutics, Issues in
Educational Research, Elsevier Science Ltd., UK.
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THE IMPACT OF ATTENDING PROFESSIONAL DEVELOPMENT
AS A GROUP OF TEACHERS

Ron Smith
Deakin University, Victoria, Australia

Sixteen primary teachers were involved in a research project (Smith, in preparation)
which investigated whether teacher reactions to features considered to be effective
for professional development [PD] (Clarke, 1994) could be explained by their
beliefs and practice. Initial classroom observations and interviews classified each
teacher as either 'mainly instrumental' or 'mainly relational' based on the ideas of
Skemp (1976) and Ernest (1989). The teachers, from five different schools,
attended a series of workshops and were further interviewed about the impact of the
workshops on their classroom practice. One of the features of effective PD was
'Attending as a group of teachers'. This feature was given a high rating by most of
the participants although the 'mainly instrumental' teachers as a group placed more
importance on it than did the 'mainly relational' teachers. Other related aspects of
PD, such as wanting to sit together as a group in 'table discussion', assisted in the
explanation of this unexpected result. The impact of this effective PD feature also
influenced the extent of trialing of activities in the participant's classrooms.
Influences included the way teachers shared with each other when back in the
school environment and whether they taught at the same year level. Differences in
the extent of classroom trialing of workshop activities could be explained by these
influences as well as the relationship that existed between this PD feature and
whether the teacher was 'mainly instrumental' or 'mainly relational'.

References
Clarke, D. (1994), Ten Key Principles from Research for the Professional
Development of Mathematics Teachers, In D.B. Aichele (Ed), Professional
Development for Teachers of Mathematics: 1994 Yearbook, Reston, Virginia:
National Council of Teachers of Mathematics, pp 37-48.
Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. In P.

Ernest (Ed), Mathematics Teaching: The state of the art. London: Falmer Press,

249-254.
Skemp, R. R. (1976). Relational Understanding and instrumental understanding.
Mathematics Teaching, 77(Dec), 20-26
Smith, R. (in preparation). Teachers' beliefs and their preferred organisation and
content for professional development. To be submitted for Doctor of Philosophy,
Monash University, Victoria.
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TAKING A SECOND LOOK
Jesse Solomon Ricardo Nemirovsky
City On A Hill School, Boston TERC, Cambridge

The Urban Calculus Initiative is a collaborative professional development project
involving two public high schools in Boston: the Jeremiah E. Burke and City On A Hill
Charter School. A group of ten math teachers and three researchers from TERC
meets monthly in an all-day seminar, focusing on the ideas of the mathematics of
change. Participants do math together during the seminar mornings, explicitly
focusing on their own understandings as learners, and in the afternoons reflect upon
and analyze their teaching practices and selected classroom episodes.

We have been interested in the extent to which participant teachers' work in the
mornings supports and is relevant to the afternoon work. We have received much
anecdotal evidence from the teachers that they value the morning time just to 'do'
mathematics. We find that teachers' time and effort concentrating on their own
mathematical learning reappears in the form of recognizing similar experiences in what
students say and do. The opportunity and structure that the seminar provides in the
mornings seems to encourage participant teachers to look more closely at ideas and
algorithms they once learned, or thought they knew, often with the results that they
understand more mathematics or that previously unsuspected connections emerge.
Those same teachers, in the afternoons, have begun to express fresh insights regarding
their students' approaches. Where once a teacher might have skimmed over a
student's seemingly incorrect answer, or where that teacher might have automatically
approved of an idea which seemed 'right,' the participant teachers are reporting that
they are asking kids to say more about what they are thinking, that they are asking
further questions, or that they are pursuing an idea with a student afterclass.

This year, all the teachers in the project are writing case studies of episodes in their
classes. One teacher describes overhearing two students discuss how the area of a
parallelogram changes as one "tilts down" its slanted sides (maintaining the same
length for all the sides). The students were arguing whether the area remained the
same. The teacher realized that he made a quick decision about who was right but
held back from stating his judgment and asked them to have a conversation about this
problem after class. He audio-taped the conversation and by working with the tape
and the students' work came to see aspects of correct approaches in both students'
arguments and to refine his own ideas about the area of a parallelogram.

During the presentation we will examine evidence for the inner relationship between
content and pedagogy in professional development (Shulman, 1986, and Warren &
Rosebery, 1995). We have found that addressing both at once encourages teachers to
think about and understand higher level mathematics while becoming more attentive
and sensitive to their student's ideas. Asking teachers to take a second look at the
mathematics they once learned has become inextricably linked to having them take a
second look at their students' ways of understanding math.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher, 15(2), 4-14.
Warren B. & Rosebery, A. (1995). Equity in the future tense: Redefining relationships
among teachers, students, and science in linguistic minority classrooms. In W. Secada,
E. Fennema, & L. Adajian (Eds.) New Directions for Equity in Mathematics
Education. New York, Cambridge University Press.
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AN ANALYSIS OF A JAPANESE HIGH SCHOOL STUDENTS ABILITY
TO INTERPRET GRAPHS

Satoshi_Sstehiro
Okayama Kourakukan senior high school JAPAN

I observed a student's interpretation of a graph
that shows the connection between workers and
production capacity. He saw the labor decrease from
the curved line image, but could not read value of
the x-axis and y-axis. It's surprising that there are so
many students of this type. The question how to
teach students how to read the graph is so difficult
because we have a few teaching materials. This is a
problem because there are a number of such
students who can't read the value in the graph even

[student Al The larger the number of the

workers is, the larger the productivity is. The

smaller the number of the workers is , the smaller

the productivity is.

-t

8
ca.

The number of the workers
after learning linear function and quadratic function. I conducted an investigation into the ability of
Japanese students to read graphs and think graphically.

I think that there are many teaching materials for drawing graphs in Japan but very few are
intended for how to read and use graph information. So I conducted a research to find a correlation
between understanding how to analyze(interpret) graph information with the skill used in drawinga
graph and /or reading graph information. I presented this problem to a 1' grade high school student
as follows,(CTo read a value from a plotted coordinate ,CTo plot a point from a coordinate, CTo
express the connection between labor and production capacity (seeing a graph), OTo make a graph
of rectangle's area that has the same length, CTo express the connection between time and distance
seeing graph CTo make a table from algebraic expression OTo make a table from a point on the
graph To read a maximum or minimum on the graph Olb make a graph the connection
between a work and a pay. ab make a graph of the connection between time and distance from
ground.

As a result of this research, I found out the followings.

1.These ten problems are categorized into 3 groups. A lot of studentsare poor at the problem
belonging to groupffi.

2.There is no interrelation between each group. The gap of student's reaction is widely
caused by qualitative difference.

3.1 noted an interrelation between group I and group II . Therefore students can plot a point
on the coordinate or read a coordinate, but they can't always read the point on the graph.

4.1 noted an interrelation between group II and group M. Therefore students can read the point
on the graph, but they can't analyze(interpret) graph information.

In conclusion, the ability to make use of graph and to process problems mathematically is one of
the abilities which are regarded as an aim of our course of study in Japan. Students are poor at the
problem belonging to grouplII, which asks them to put the connection they express into algebraic
expression and graph. It has been thought that students can get these abilities using the ordinary
teaching method. Learning how to draw a graph or reading a graph is not necessarily the way of
obtaining the ability to interpret a graph.

References
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FUNCTION CONCEPTS: WHAT COLLEGE STUDENTS HAVE

Tsuyoshi Sugaoka

Joetsu University of Education, Japan

One of the contents of secondary mathematics understood least by students is function

in Japan. Thus it was investigated by asking the meaning of some functions in a

questionnaire what concepts Japanese college students have for typical continuous

functions learned in junior high school and high school.

The responses of subjects were classified into categories such as formula, graph, rule,

and functional dependence. The following results were obtained:

1. On linear functions and quadratic functions, right function concepts were acquired

comparatively well. There were a few subjects who made no response. It is noteworthy

that there were not few subjects (8.7%) who consider the general definition of function to

be a property peculiar to linear functions. This response is attributable not only to the fact

that linear functions tend to be prototypes (Schwarz & Hershkowitz, 1999), but also to the

secondary mathematics curriculum in Japan.

2. On exponential functions, more than half of the subjects did not have the concept of

uniform multiple changes of exponential functions.

3. On logarithmic functions, there were many subjects who have only the function image

of something using "log".

4. On trigonometric functions, there was no response belonging to the category of graph.

No respondent pointed out the periodicity. It may be assumed that uniform periodic

changes of trigonometric functions are not fully grasped for most subjects.
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THE DIFFICULTIES OF VOCATIONAL SCHOOL STUDENTS
IN PROBLEM SOLVING

Julianna Szendrei, Budapest Teacher Training Institute

Vocational instruction is a subject of increasing interest for mathematics
education research (cf: Burton, 1987; Forman & Steen, 1987; Hahn, 1999). In
Hungary, a research project was started in 1995 to identify and prevent damage
from social and cultural disadvantages in vocational schools. Some initial results are
presented in this paper. We had 237 14-15 year-old students in our project. They
represented the total number of first-year pupils in five different vocational schools
in the same region of Hungary. Five word problems were given to them in October,
and no time limits were set. One of the problems was the following:

We are planning to nail a decorative band onto a corridor wall. For one side of the wall
we need one piece, which is 315 cm long, and for the other a 442-cm-long one.
What length of band do we need exactly?
How many pieces of band should we buy if it is only available in 2-meter-long pieces?

Some data and comments
i) In many cases the pupils skipped or left out problems.
ii) In hardly any cases did we find explanation of the problem or checking of

results. These skills are usually stressed in earlier school years.
iii) In many cases the result merely consisted of numbers, without any kind of

word communication, running against the current practice in earlier school years.
iv) The students had many difficulties with the conversion of units, in spite of the

fact that conversion techniques ought to have been practised for over 6 years.
v) A high number of pupils built up a solution but failed because they did not

check whether their answer was suitable for the given context.
Possible interpretations and further research: One immediate and general

interpretation of the available data might be that the routines that were developed in
the preceding schooling only confused the students' common sense in problem
solving. Other interpretations are related to preceding comments and data:

a) Most of these students had had difficulties in mathematics; the didactical
contract with them was probably centred on low-level technical performance.

b) Due to their difficulties in mathematics these students frequently did not
reach a solution, so their solution-checking practices were not developed.

c) The prevailing style of classroom work had featured only "ritual" attention to
checking, word answering, etc.; the main "value" had been a correct answer.

d) The fear of failing and expectations of poor performance (so frequent in slow
mathematics learners) prevented these students from true "reasoning".

Each of these interpretations may offer some keys to interpreting the reasons for
some students' failure. In order to find which of these interpretations is the most
reliable, further research will be performed, including interviews with the students
and analysis of students' exercise books from preceding schooling.
References
Burton, L.: 1987, From Failure to Success, Educational Studies in Mathematics, 18, 305-316
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A STUDY OF THE FEATURES AND TEACHING OF MATHEMATICAL CONCEPTS OF
MENTALLY RETARDED CHILDREN

TETSURO UEMURA

KAGOSHIMA UNIVERSITY, JAPAN

Generally, physically disabled or mentally retarded children have disadvantages which
caused by the handicap. In order to overcome the handicap, a special educational environment
must be prepared for the handicapped children. At present, however, we cannot say that any
effective and full measures are taken to remedy the situation.

From the viewpoint of arithmetic education, for example, the traditional way of teaching in
the arithmetic class does not fit the situation of mentally retarded children (henceforth, MRC).
As there is much difference in the ability among the individual MRC, we must prepare an
education program appropriate for each of them.

For about 10 years, I have studied mathematics education for handicapped children,
especially for MRC. The study has been mainly based on the following two viewpoints;

0 To grasp the present situation and problems of education for handicapped children and
to search for the most appropriate education for them.

0 To understand the characteristics of the cognitive development precisely and to develop the
most appropriate ways of teaching.

Here, I will report the results of the study from the viewpoint O.

In the present study, we set the following research hypothesis:
Research hypothesis: It is possible to make MRC understand arithmetic concepts correctly, if

we set arithmetic systems which suit the current state of the children and prepare appropriate
teaching materials .

To verify this hypothesis, we have done research for 4 MRC (including 3 Down's
Syndrome children and I learning-disabled child) and given instructions to them about 25 times a
year for 10 years. We have investigated the characteristics of the recognition of number concepts
by the Down's Syndrome children and made the education program suitable for them. Especially,

as the instruction using computers seemed to be effective, we tried it.

1 will introduce the example of the learning method using a computer, which has to be very
successful. Concerning the addition of I digit numbers which have carrying up, for example

8+7=15, we analyzed the system of the teaching in detail and programed the system into a
computer, and then conducted their learning.

The teaching of the calculation (addition with carrying up) was roughly divided into the
following three steps. The first step is the operational activities with teaching tools, the second
step is the activities using computers, and the third step is the calculation which is due to numeral
expression only.

As a result, one of the MRC (with Down's Syndrome) developed abilitty to smoothly
calculate the addition with carrying up. At the presentation of the meeting, the actual scene will
be shown with a VTR.

1-191
r;



Daniel: a student with learning difficulties in College but competence in the

workplace?

G. D. Wake & J. S. Williams

University of Manchester, U.K.

Our project "Using mathematics to understand workplace practice"
investigates the ways in which students can understand workplace practices drawing
on their College mathematics. We are interested in exploring the well known
obstacles to transfer but also the potential to bridge the gap between academic and
practical competences. The key question for the project is 'what mathematics is
transformable and what is specifically situated?'

We have found the activity systems theory of Engestrom (see, e.g. Engestrom
& Cole, 1997) particularly useful in helping to identify features in the systems of
College and work which are in conflict and which create obstacles for the student.
The schema below illustrates the model. The student on work placement in a sense
embodies and lives the contradictions between two activity systems when they move
from College to work and try to make sense of the latter with the tools of the former.

Instruments

Rules

PRODUCTION
Subject Object

CONSUMPTIO

ISTRIBUTION EXCHANGE

Community
Division of
labour

This presentation describes one case study in which we explore Daniel in two
situations: in College and on work placement at the council gardens department. The
contrast between the activity systems of College and workplace seems stark. The
College provides a surprisingly threatening social situation, and focuses on strictly
mathematical learning objectives which seem to highlight Daniel's weaknesses. He
perceives the curriculum as a rush to cover material which he can't easily learn and is
frustrated and gives up when he fails. On the other hand, the work system is
supportive: the objective of the activity is work-production and the maintenance of
quality is paramount. Thus the system encourages teamwork in which the division of
labour protects Daniel. But incidentally Daniel is offered many opportunities to
learn, and he and his colleagues have a sense that there is plenty of time for him to
pick things up. This activity system therefore has a quite different division of labour
from the school, as well as objective.

Engestrom, Y. & Cole, M. (1997) Situated cognition in search of an agenda, in D.
Kirschner & J.A. Whitson (Eds.) Situated cognition: social, semiotic and
psychological perspectives, (pp. 301-309). NJ: Lawrence Erlbaum.
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SEPARATION MODEL BASED ON DORFLER'S
GENERALIZATION THEORY

Takeshi YAMAGUCHI Hideki IWASAKI
Fukuoka University of Education,Japan Hiroshima University, Japan

We have already considered the division with both decimals and fractions
so far (Yamaguchi & lwasaki,1999). What we had noticed is that the
generalization in the division with fractions is quite different from that with
decimals. That is to say, fractions in the former are going up to the unknown
number system i.e. rational numbers and their division is universalized as the
special case of multiplication. On the other hand, decimals in the latter
anchor to the known number system i.e. natural numbers and their division is
confirmed as the development of division over natural numbers. These two
kinds of generalization are in striking contrast if they have a direction.

Dorfler proposed his generalization model which distinguished between
generalizations which were extensional and intensional(1991). We, however,
could not explain the above structural difference sufficiently on the single
track of his model because it set intensional generalization after extensional
one. As a result of this research, we propose the following three points.
The first is to propose the alternative framework for generalization, which is
called as "Separation Model" based on Ddrfler's generalization theory. Our
Separation Model distinguishes the generalization process of division with
fractions from that with decimals by calling the former extensional
generalization and the latter intensional one. The second is to clarify the
cause of much difference on performance between both making an expression
of division with fractions and that with decimals as one example of
application for our model. The third is to improve teaching and learning
process of division with fractions changing the traditional perspective to the
new one on the basis of the Separation Model. Our approach is summarized
as the following Table 1. The teaching experiment and its analysis showed
the relevance of the new teaching for the cornerstone of algebraic sense.

Table I. The Comparison of the present framework with the alternative one
in the case of division with fractions

Present framework Alternative framework
Making an expression Schema of proportion Schema of comparison
Understanding the
algorithm

Schema of proportion Deduction from properties of
fractions and rules about division

References
Dortler,W.(1991), Forms and Means of Generalization in Mathematics, Bishop,A.J. (ed.),

Mathematical Knowledge : Its Growth through Teaching, Kluwer Academic
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ANALYZING CHILDREN'S PROBLEM-POSING RESPONSES
Ban-Har Yeap & Berinderjeet Kaur

National Institute of Education, Nanyang Technological University

Problem-solving and problem-posing have both been identified to be at the
heart of doing mathematics. While there has been much research into
mathematical problem-solving, problem-posing research is only gaining
momentum in recent years.

This paper reports one aspect of an on-going investigation into children's
mathematical problem-posing. Such an investigation requires the
development of a framework to analyze responses to problem-posing tasks.
This paper aims to describe the development and validation of such a
framework and to use the framework to investigate the relationship between
problem-posing and problem-solving.

Various frameworks have been proposed to analyze responses to problem-
posing tasks to reveal the complexity of the responses. Silver and Cai (1996)
used the number of situations in the posed problems as a measure of
mathematical complexity. Marshall (1995) has earlier identified five basic
situations that are found in arithmetic word problems. Word problems with
varying number of situations and categories of situations were written,
controlling other factors. Fifteen word problems were randomly arranged
and given to 250 subjects. The results indicate that the number of categories
in a word problem as well as the number of unknown information that has to
be handled simultaneously make the problem more complex, and hence
more difficult. The empirical findings refine the framework proposed by
Silver and Cai (1996).

The framework was subsequently employed to analyze written responses by
240 children in grades three and five to five problem-posing tasks. These
children also completed a six-item problem-solving test. The problem-
posing ability and problem-solving ability of these children were
quantitatively compared. The findings suggest that although problem-
solving ability and problem-posing ability are related, they do not involve
the same processes.

References:
Marshall, S. P. (1995). Schemas in problem solving. New York: Cambridge
University Press.

Silver, E. A. & Cai, J. (1996). An analysis of arithmetic problem posing by
middle school students. Journal of Research in Mathematics Education,
27(5), 521-539.
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Informal knowledge in children before learning ratio in schools formally

YOSHIDA Hajime' & KAWANO Yasuo2

I Department of Psychology, Miyazaki University, Japan
2 Ariake elementary school, Kushima city, Japan

Previous studies pointed out that children have a rich informal
knowledge in multiplicative one as well as additive structure. For example,
some investigators showed such rich informal knowledge in fraction,
decimal fraction. However, almost all of previous studies paled very few
attention to ratio. It is highly hard to understand ratio concept in middle
school students as well as elemenatary school ones in Japan. So, it is also
very hard for teachers to teach ratio concept. Recent investigation indicated
that students before learning ratio in their schools acquired informal
knowledge on ratio (Yoshida & Kawano, 1999). Many of students
understood part-whole relation in ratio, composition or decomposition in
ratio.

The present study aimed to investigate how students before learning
ratio in school formally solved ratio problems by using informal
knowledge. The subjects were thirty-five fifith graders who did not learn
ratio concepts in their schools and thirty-seven sixth graders who had
learned the concepts for ten months before. One of problems used were

[There were 40 beans. What is 50 % of the beans?] Format of other
problems were just same to it except percentages. Percentages used in
other problems were 25%, 75%, and 90%, respectively. Problems was
presented in 50, 25, 75, and 90%. Order of presentation was fixed. Each
problem was given to each student. After he/she read the problem, the
experimenter instructed to solve it by pencil and paper or by using real
beans on right corner of a desk. In a case of sixth graders, if students solved
all problems by computation, they were required to solve them without
relying upon computation. Or vise versa.

Correct percentages in 50, 25, 75% problems for fifth graders were 67,
52, and 46%. On the problem 90%, there were many answer of "35".
Because it is very difficult for them to solve the 90% problem exactly, we
set two criteria of both strict (36) and lenient (35) answers. Correct
percentages in strict and lenient were 9 and 40%. None of fifth graders
learn ratio concepts, neverthless, 40% of them were able to solve the 90%
problem which was fairly hard for students, based on the lenient criteria.

How did they solve such difficult problem? In order to answer this
question, we have to analyze strategies in which students adopted in
solving the problems. We will show such strategies in poster session.
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A STUDY OF EVERYDAY CONCEPTS AND MATHEMATICAL
CONCEPTS BASED ON VYGOTSKY'S THEORY

liaorallshida
Hiroshima University Graduate School, Japan

Vygotsky's theory seems not to be examined enough in mathematics education.
Despite some Japanese mathematics teachers recognize the importance of his theory,
in particular the idea of Zone of Proximal Development [ZPDJ, implications for the
teachers' roles in the process of teaching and learning mathematics concepts have not
been clarified. It is needed to materialize Vygotsky's theory to be useful in the
practice of mathematics education. The purpose of this paper is to examine the
relationship between everyday concepts and mathematical concepts based on
Vygotsky's theory, and to determine children's everyday concepts in fraction.

Vygotsky (1975) mentions everyday concepts and scientific concepts in the
manner of related to ZPD. In the present paper, the term of mathematical concepts is
employed for scientific concepts. Everyday concepts depends on concrete contexts,
whereas mathematical concepts refers to a general system. However, these two
concepts complement each other when children acquire meaningful and mathematical
concepts. Consequently it is important to make clear the relationship between them.
Such relationship will be understood much better when adopting the idea of
sublating.

In this paper the word of sublating means a sequence of three activities:
canceling, lifting and storing, related to everyday concepts and mathematical
concepts. When children meet certain mathematical concept and are aware of an
inconsistency with a part of their everyday concepts, which are opposite to the
mathematical concept, children cancel the inconsistency and lift both the
mathematical and everyday concepts to higher levels, and they store these two
concepts as a whole, which is so-called sublated concept, that has both a concrete
context in their real life and a general system in mathematics.

An interview research, whose purpose is to find children's everyday concepts of
fraction, has also been conducted. Subjects consisted of six Japanese third graders.
They have never studied fraction in school, but some of them seemed to have been
studied in cram schools. As a result, some cases of children's everyday concepts in
fraction are determined. For example, even though some children were aware of the
meaning of "one third" in different size of circles, they tended to pay attention to the
differences of the quantity. Also, some children had both sublated and everyday
concepts in fraction. For example, one child knew that "one second" means half, but
she could not regard "one second" as half of one thing but one part of two things.

References
Vygotsky, L.S. (1975), Thought and Language, Tokyo: Meiji Tosho (in Japanese).
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RELATIONSHIP BETWEEN PROBABILITY AND OTHER LANGUAGES
USED IN THE SCIENCES: THE PYTHAGOREAN "ARITMO-GEOMETRY"
EXPANDED TO D-DIMENSIONS AND IN THE CONTINUUM AND THE
DISCRETE SPACES. A DIDACTIC PROPOSAL

Mario Barra
Dipartimento di Matematica, University "La Sapienza", Rome, Italy

Starting from:
1) experimentation with students, ages 10-24, and teachers
2) the responses of students and teachers to several questionnaires
3) an analysis of the peculiarity of probability and its teaching
4) a short analysis of the new requirements of our society
5) some of Bruno de Finetti's suggestions.

I propose for consideration to establish a close relationship between
probability and other languages, particularly, geometry, used in the sciences.
Combinatorial calculus, physics, analytic calculus, numerical analysis, and theory of
numbers are also related to geometry and probability.

My purposes are to promote:
a) a better understanding and mastering of probability, "seeing probabilistic
measures" and their properties in geometry and in some other languages used in
sciences
b) a better consideration of different cognitive styles
c) a growth, in the students, of a positive correlation between inductive and

deductive thinking, developing the abilities to visualise and to generalise.
More precisely the above will be reached using the Pythagorean "Aritmo-
geometry" expanded to d-dimensions (dinamically, with Cabri also in 4-dimensions)
and in the continuum and the discrete space, considered in close connection.

References
- Tall D. 0. (ed.), 1991. Advanced Mathematical Thinking, Kluwer: Holland.
- Barra M., 1985, Knowing how to prove, Proceedings of the XXXVII , CIEAEM

(Leiden,1985), p. 206-215, and Proceedings of the IV-enze Ecole d'Ete de
Didactique des Mathematiques (Orleans, 1986), p. 175-183.

- Barra M., 1995. Random images on mental images, in R. Sutherland, J. Mason
(eds.), "Exploiting Mental Imagery with Computers in Mathematics Education",
Springer, p.263-277.
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THE FROG AND THE PRINCE CHARMING:
CHANGES ON PUPILS' SOCIAL REPRESENTATION ABOUT MATHS

Cesar, M., Fonseca, S., Martins, H., & Costa, C.
Centro de Investigacao em Educacao da Faculdade de Ciencias da Universidade

de Lisboa

Mathematics is a very important subject for pupils' vocational and
professional choices. At the same time, in Portugal, it is also the subject which has
the highest rate of underachievement and the one pupils rejected most. Pupils
who fail describe it as difficult and that can only be learnt by those who have
very high abilities.

The importance of pupils' beliefs about Mathematics has been emphasized
in many studies (Brown, 1995; Civil, 1995; Rodd, 1997). A previous study
(Cesar, 1995) showed that 7th graders from a school in Lisbon had quite
traditional ideas about Mathematics. They thought Maths was important for their
future life but they associated it mainly with computation and "memorizing
things". Another study (Cesar, 1996) stressed the influence of innovative practices
on pupils' ideas about Maths and on the changes that took place during a school
year's work.

Following these previous studies we started a project called Interaction and
Knowledge which aim is to implement peer interactions in Maths classes as a way
to promote pupils' attitudes towards Maths, their socio-cognitive development
and their school achievement. The data of this poster are focused upon students'
social representations about Maths, comparing their ideas in the beginning and at
the end of the school year. Our sample comprises 7th to 10th graders attending
20 classes from 4 schools, both urban and rural. Our analysis is based upon their
phrases and drawings about Maths in an attempt to use instruments of a more
projective nature.

In the beginning of the school year many students had a negative image of
Mathematics, as we can see in their phrases and drawings. There were also great
discrepancies: a small part of them love it; all the others hate it. At the end of the
school year and after being part of daily practices that are based on collaborative
work pupils' ideas about Maths had deeply changed. Working in dyads led them
to a more positive attitude towards Maths and so they slowly transformed the
fro°

b
into a prince charming.

References:
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Education (Vol. 2, pp. 154-161). Recife: Universidade Federal de Pernambuco.
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NEW EXPERIMENTAL COURSE OF GEOMETRY

Valery A. Gusev, Moscow Pedagogical State University

Today's development of school education is characterized not only by the
creation of new curricula and adoption of new subjects, but also by changing points
of view on the structure and aims of school education in general.

We will give a short description of our general points of view on school
geometrical education and explain main characteristics of the new "Geometry 6-9"
(for pupils aged 12 to 15 years) course we are developing.

Today the primary school, the contents and methods of primary mathematics
are rapidly developing in Russia. It is clear that primary school can and must promote
the formation of the geometrical culture of pupils and that some minimal amount of
notions should be precisely defined.

The most important stage of the mathematical education is lower secondary
(grades 6-9). Our course "Geometry 6-9" is based on geometric notions learned by
pupils in primary school. Primary school must provide basic knowledge and skills
demanded by official standards of mathematical education for secondary school,
reveal pupils' abilities and help them to determine their further ways of education and
professional activity.

In grades 10-11 geometrical knowledge should be used by pupils with
consideration of their interests, abilities and the profile of their future educational or
professional activities.

The main strategy of learning the course "Geometry 6-9" is "I am in the (3-
dimensional) space". Traditionally, in Russian secondary school geometry course
consists of two main parts: planimetry geometry on the plane, and stereometry
geometry in the space. However, geometry as a science arose from the experience of
the mankind, and in the nature there are no purely flat objects. Further shortcomings
of the traditional approach are the following:

studying planimetry and stereometry separately, one encounters a lot of
duplications;
separate study of properties of figures on the plane and in the space does not
allow a pupil to see many common results in geometry, and a pupil regards
plane geometry and space geometry as two different sciences;
applications of planimetry are artificial and oversimplified, they do not reflect
the connection of geometry to with the reality adequately; however, pupils
rather early study a lot of things about the 3-dimensional nature in courses of
physics, chemistry etc.
pupils leaving school after the 9-th grade do not have the opportunity to study
space geometry.
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21 PUZZLE BLOCKS - A TANGIBLE GAME
INTEGRATED WITH A COMPUTER PROGRAM

Bat -Sheva Hany, Haim Orhach

Beil Berl College & Or International Co.

The program combines tangible aids and games with activities performed on the

computer. In this manner, the child is engaged on two levels: motor activities

carried out with tangible aids and games and the abstraction step, performed on the

computer. The computer program enables each child to progress at his own

development rate and ability level. Part of the software is open, enabling the child to

create activities on the computer, then apply these to working with tangible aids,

and vice versa. The construction created by the child, tangible and on the computer,

can be printed out and used as activity cards for him, and for other children. The

child thus experiences a two-way transition from a three-dimensional space the

cubes, to two-dimensional space the computer.

The game contains 21 building blocks designed on special principle and cards for

activities.The game enables the preschool child to learn to differentiate shapes,

colors, sizes and to adapt a tangible shape to a drawing of that shape. The game

also facilitates learning through the discovery that blocks of varying shapes can be

the same size.

The computer program is designed on the principle of the game, facilitating a

greater variety of activities, and their deliberate grading. The grading is expressed

in the number and size of the blocks and the position of blocks that are to be used

for building on the card. Namely, at the first stage the blocks are presented in a

manner that the child only needs to move and rotate them, while at the more

advanced stages, the blocks are asymmetrical, requiring them to be turned over as

well. Each child is offered five different possibilities of working: The building card

specifies the block colors, Only uncolored blocks appear on the card, The building

card is inlaid, Only a contour of the shape is provided, Free form creation.
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WHAT IS THE DIVERGENT THINKING? :
FOUR TYPES OF LOCAL DIVERGENT THINKING

Koji Iwata
Hiroshima University Graduate School, Japan

One of the most popular cognitive theories of creativity is Guilford's theory of divergent production,
and creativity has come to mean divergent thinking in much research in, assessment of, and theorizing
about creativity (Baer, 1993). "The unique feature of divergent production is that a variety of responses
is produced" (Guilford, 1959, p.473). However, if divergent thinking were considered as global
thinking that produces a variety of solutions or answers to a given problem in school mathematics, the
concept of divergent thinking would become narrow. Because it is not to say that divergent thinking
does not come into play in the total process of reaching a unique conclusion (Guilford, 1959). That is,
divergent thinking has a necessity to be considered as a local thinking that emerges throughout global

process both of divergent and convergent thinking.
Another issue suggested by Baer (1993) is that "divergent thinking may play an important role in

creative performance if one knows when to use it" (p.69). Therefore, it is necessary for mathematics
teachers who attempt to foster children's creativity and creative thinking, to grasp the essential concept
of divergent thinking and how and when it comes into play in the process of creative thinking.

The purpose of this paper is to identify and classify local divergent thinking, which could be con-
sidered to contribute to the number and variety of children's responses, in order to foster children's
creativity and creative thinking effectively from the viewpoint of mathematics education.

Four types of local divergent thinking that can be considered as different from each other are
identified in this paper. They are the following.

*Divergent Perception: This type is the thinking activity

for perceiving diverse attributes in the object at hand.

*Divergent Remembrance: This type is the thinking
activity for accessing to diverse knowledge by using the
perceived attributes and accessed knowledge as a clue.

*Divergent Transformation: This type is the thinking
activity for transforming the perceived attributes and
accessed knowledge to diverse information.

*Divergent Connection: This type is the thinking

activity for connecting perceived attributes and accessed

knowledge to themselves in diverse ways.

Divergent
Transformation

Divergent
Perception

Divergent
Remembrance

Divergent
Connection

Fig. 1: The Structure of Interrelationship between

Four Types of Local Divergent Thinking

These types of local divergent thinking do not emerge independently throughout the total process of

creative thinking, because of their complex structure of interrelationship (see Figure 1).

References
Baer, J (1993), Creativity and Divergent Thinking: A Task-Specific Approach, Lawrence Erlbaum

Associates
Guilford, J. P. (1959), Three Faces of Intellect, American Psychologist, 14, August, pp.469 -479
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FEATURES OF CHILDREN'S SPATIAL THINKING
AT VAN HIELE'S LEVELS 1 AND 2

Kazuya KAGEYAMA
Hiroshima University Graduate School, Japan

In psychology and mathematics education, various problems about spatial ability,
visualization and the relationship between mathematical performances and cognitive actions of
students have been studied. In this study, I define spatial thinking as the integration of spatial
ability and mathematical thinking, and characterize it globally from the points of both van Hie le's
levels of thinking and its components ( "imaging and visualization", "representation" and "spatial
reasoning"). In this presentation, I especially focus on and describe the modes of thinking at
levels 1 and 2 in respect of image schemata (Dorfler, 1991).

At van Hide's levels 1 and Z it is the feature that is transition of object and way of thinking
from material to its properties through abstracted shape. Especially focusing on verbal
representation in the components of spatial thinking, mathematical languages aren't used
appropriately by children nor significant for them. That is because for example, a way of
recognition at such levels is based on a naive sense (regular, beautiful,...) and the,fitnction of
object (arranged in order, round,...), hence there is a difference of constructing image schemata
between natural language in everyday context and mathematical one in classroom context.

Besides, since children at so-called low level cannot manipulate visual images freely
enough, image schemata they construct aren't 'rich'. That is to say, for children don't recognize
relationships among components of object, it is great stride to do cognitive actions on the
geometric-figurative schemata, such as interpretation, application, projection and transformation
(Didier, 1991).

As a consequence, I could list following features of children's spatial thinking at van Hide's
levels 1 and 2:

Children construct the single figurative image schemata under the effect of their naive sense
(for example, when asked to draw a triangle, they only do regular or isosceles one.)

Children construct the operative image schemata based on everyday life under the effect of
the function of the object (for example, they don't recognize a 'pointed' triangle as a
triangle, rather a pointed material.)

Reference
Dorfler, W, (1991) , Meaning : Image schemata and protocols, Proceedings of the 15th

Conference of the International Group for Psychology of Mathematics Education, Assisi,
pp17-32.
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Mathematics Education in Germany and in Japan

Yuji Kajikawa

Yonago National College of Technology

Shimon Uehara

Yonezawa Women's College of Yamagata Prefecture

In German upper secondary schools Mathematics is taught

in various applied ways. For example teachers make
examples such as to buy a car with many options. They
calculate how to buy a car in an optimal way i.e. to pay how

much money in a month. Their way of teaching
Mathematics is not only very practical but also very
theoretical.

On the other hand in Japanese way we pay too much heed

to calculate the expressions (i.e. formulae). For example in

differential and calculus Japanese students can calculate very

well and very fast But the big problem is that they don't

know what they are doing.

It is said that German people and Japanese people have

many things in common in their characters. But in my
opinion the differences on Mathematics Education between

two countries are very big. We should hike to talk about these

differences in a form of poster session in PME24. Hiroshima

References

Mathematics Education in Germany and in Japan I , II , IQ

Journal of Tottori prefectural society for Education and

Information Science

Mathematics easy to understand E best Prof F. Hiroshi
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EFFECTS OF TEACHING
FOR DEVELOPMENT OF METACOGNITIVE ABILITY

Hisae Kato

Hyogo University of Teacher Education, Japan
SUMMARY

The purpose of this paper is to investigate the effects of teaching for developing of
metacognitive ability. This experiment involved 27 fourth grade children. According to the
purpose, group teaching sessions were carried out for an experimental group that consisted of 4
pairs of children. In the group teaching sessions a researcher promoted a pair of children to do
metacognitive activities through the framework of teaching for development of metacognitive
ability (Table 1). These sessions were not carried out for a control group that consisted of 19
children. Instead, a pretest and posttest were carried out for all 27 children.

The main findings of this investigation are the followings :
Both metacognitive and cognitive growth of the experimental group are higher than those
of the control group
In the posttest, some children in the experimental group did some metacognitive activities
that they had not done in the pretest Table 1 Framework of teaching for development of

METHOD metacognitive ability

Group Teaching Session Table 1 is the framework
of the teaching. It is based on Schoenfeld (1987) and
others.
Pretest and Posttest In the tests, each child was
asked to solve the problem on the work-sheet and to
answer the stimulated recall questionnaire. The work-
sheet was used to analyze his/her problem solving
process, and the stimulated recall questionnaire was
used to represent his/her metacognitive activities.
Analysis These problems of the pretest and posttest
were the same. Then from the tests, children's
metacognitive growths and cognitive growths were
respectively identified as followings.
Metacognitive growth is defined as
[the number of his/her metacogriitive activities on the posttest]

[the number of his/her metacognitive activities on the pretest].
Cognitive growth is defined as
[the marks at his/her work-sheet on the posttest] [the marks at his/her work-sheet on the pretest].

The results of teaching will be reported in this poster and the processes of teaching will be
presented on video.

REFERENCES
Schoenfeld,A.H.,(1987). What's All the Fuss about Me ration ? In Schoenfeld, A. H. (Ed), Cognitive Science and

Mathematics Education, pp.189-215, Hillsdale, NJ : Lawrence Erlbaum.

. Solving the problem by oneself
111 . Tallcing about cognitive activities.

.Tallcing about metacognitive activities.

IV .Using the metacognitive activities for a
similar problem.

Table 2 Framework of investigation of metacognitive
activity

1. Method of Investigation
(1-1) Solving a problem on the work-sheet
(1-2) Answering the stimulated recall

questionnaire
2. Method of Analysis

(2-1) Scoring the mathematical problem
solving processes

(2-2) Counting of metacognitive activities

* This means to subtract



A STUDY OF THE PROBLEM OF TEACHING MATERIALS
UTILIZING A GRAPHICAL Fl .FCTRONIC CALCULATOR

Ryugo KATO
Hikarigaoka Senior High School of Tokyo Metropolitan of Government

SUMMARY
In this paper, we discuss about a small computer, especially, a graphical electronic

calculator. We consider about its present situation and its problem.

§ 1 INTRODUCTION
In the second half of the 20th century, the computer technology was innovative. A

graphical electronic calculator was developed in 1985. T-3 which is called T cubed-Teacher
Teaching with Technology begins to attract attention and then a graphical electronic calculator
has begun to be used in case of mathematics education.

Therefore, the purpose of this paper is to consider the problem that it should attend to by
the use of a graphical electronic calculator.

§ 2 THE PURPOSE OF A GRAPHICAL ELECTRONIC CALCULATOR
There are two purposes to use a graphical electronic calculator for the use of a computer

in case of mathematics education.
Firstly, it is important to how to make lead to the conclusion having to do with

mathematics more than the way of the use of computer. Secondly, the real-model is
complicated to compute more than the ideal-model. However, it is to have the characteristic of
which it is possible to let out a result having to do with mathematics by finding out it without
the computation by hands.

§ 3 THE PROBLEM WHICH IT SHOULD ATTEND TO THE USE OF A
GRAPHICAL ELECTRONIC CALCULATOR
There are three problems to use a graphical electronic calculator.The first problem is

how mathematical model use. Because the real-model has some various elements. The second
problem is the range of the graphical scene. Because students has to know how mathematical
function. The third problem reduced scale on the plane of the graphical scene.

§ 4 THE INVESTIGATION BY HIGH SCHOOL STUDENTS AND CONCLUSION
In 1999, these problems was investigated by twelfth grade students.
As the conclusion, it found that the knowledge with some degree having to do with

mathematics was to be necessary for the use of a graphical electronic calculator.

<REFERENCES>
[1 ]Waits,B.&Demana,F. (1996). A computer for all students-revisited. Mathematics Teacher.

89. 712-714.
[2]Blum,W.&Niss,M. (1991). Applied Mathematical Problem Solving, Modelling,

Applications, and links to Other Subjects-State, Trends and Issues in Mathematics
Instruction-. Educational Studies in Mathematics. vo122. 37-68 1
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A REPRESENTATIONAL MODEL ON THE CONCEPT OF GEOMETRY

Michihim Kawasaki
Faculty of Education and Welfare Science, Oita University

There have been many researchers who investigated into the concept of geometry.
I would like to focus attention on the representations of the concept of geometry. The
main purpose of this research is to reflect on the meanings of the representations on
the concept of geometry and clarify the epistemological model. For this purpose I
considered two issues as follows and insisted on the representational model.
1. What are the characteristics of representations used in the teaching of geometry?
2. What is the epistemological model on the concept of geometry?

The representational model is an epistemological model on the concept of
geometry that is constructed with two types of concept: mathematical (objective)
concept and individual (subjective) concept. These two concepts are characterized by
difference between output and input of information in the teaching of geometry or
between external (physical) representation and internal (mental) representation.

The mathematical concept of geometry holds epistemological meanings in the
external representations that are informed by teachers in the teaching of geometry.
There are five styles of representations on the mathematical concept of geometry:
realistic, operational, figural, linguistic, and symbolic representation. And we have to
clarify the crucial roles of them in the teaching of geometry. For example linguistic
representation is a representation that is used natural language. One of the
representational style is "term", that is to say the names of the concept of geometry
and another style is "sentence": definitions, characteristics, and propositions. Figural
representation is to represent shapes of geometrical figures and relationships among
figures. And the epistemological meanings of figural representation are summarized
into five points: spatiality, visuality, entirety, typicality, and generality.

The individual concept of geometry is the information that is stored in student's
memory subjectively and represented internally by two types of representation:
verbal representation and imaginary representation. Names and definitions of
geometrical figures and sentences are all represented by verbal representation. On the
other hand shapes, distances, positions, and directions of geometrical figures can be
represented by imaginary representation.

This idea of the individual concept of geometry is similar to the "dual-code theory"
in cognitive psychology, the "concept definition and concept image" in Tall &
Vinner's theory, and the "figural concept" in Fischbein's theory. But the fundamental
difference is that the individual concept of geometry in my theory is represented both
by verbal representation and by imaginary representation simultaneously.

For example some students can recall names and definitions of both parallelogram
and rhombus by verbal representation, nevertheless they can't identify these shapes
by imaginary representation if geometrical figures are placed in the unstable positions.
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THE CHANGING MATHEMATICS CURRICULUM IN SOUTH AFRICA.
-JUST ANOTHER GRAND NARRATIVE? OR PURE SIMULATION?

Agatha Lebethe, School Development Unit, University of Cape Town, South Africa.
Gabeba Agherdien, School Development Unit, University of Cape Town, South
Africa.

The poster describes the results of a research conducted among teachers described as
`key' teachers by the School Development Unit (SDU) at the University of Cape
Town. These teachers have developed a strong relationship with the SDU, have been
trained to undertake a range of development activities, participated as consultants
and workshop and course presenters. These teachers have also delivered at regional
and national mathematics education and inservice conferences. The study
investigates these teachers conception of the specific outcomes and the application
the mathematics classroom considering their strong relationship with a mathematics
inservice project. The objective of the study is to contribute towards teacher
inservice, to conversations around the effect of the implementation of such a
complex system such as OBE on teachers who received minimum formal preparation
and training and very little change to the material resource base to enable the new
curriculum. We see the research as ongoing and necessary to demonstrate the
distance between policy and practice, between the intentions of Government and
what teachers experience and so contribute to the question posed by a noted South
African Academic, Jonathan D Jansen, 'What does the South African experience tell
about the classroom practice?"

The poster will be presented in a postmodern form and use symbols and images to
question whether the implementation of a new curriculum is not another Grand
Narrative or have we entered a period in South African Education that can be
referred to as an age of simulation, in which advanced forms of fakery and illusion
are now dominant elements of culture and society.
References
Jansen, J., & Christie P. (eds) (1999) Changing Curriculum: Studies on Outcomes-based Education
in South Africa. Juta & co, Ltd.
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Moments of Decision Making in Teaching for Understanding

Judith A. Mous ley
Deakin University

"The understanding" has been a focus of the philosophy of education from at least
the time of Aristotle. Teaching for understanding was a recurring theme of early
debates on learning, and this stream of thought can be followed through to today's
emphasis on, for example constructivism, socio-cognitive theory, cognitively-guided
instruction, and connected knowingamong other relevant theories. Much of PME's
work has centred itself around students' understanding of particular concepts.

There is an implicit expectation that children will construct their own
understanding of the mathematics they use, and at times this is made explicit. For
instance, the influential and overarching curriculum document in Australia, presents a
set of key learning principles, the first of which points out that learners construct their
own meanings from, and for, the ideas, objects and events which they experience.
Similarly the USA's Curriculum Evaluation Standards for School Mathematics and
the Professional Standards for Teaching Mathematics also stress the importance of
children making their own mathematical meaningsalthough these documents take a
more socially-situated view of learning than their Australian counterparts.

Despite such indications, and the fact that teachers and teacher educators
frequently expound the importance of teaching mathematics in ways that allow
children to make meaning, there are tensions between statements of expectations and
features of the learning and teaching environment. This poster explores some of those
tensions, and the ways that they are played out at particular "moments of decision
making". These moments include teacher's readings of curriculum documents, their
conversion of given learning objectives into pedagogical activities, the introduction
of key concepts through these activities, teacher-student interactions, and teachers'
assessing what was learned.

In the project reported, case studies of four primary-school teachers were
undertaken. Each teacher was videotaped for about ten lessons, and pre- and post-
lesson interviews were held. One longer interview with each teacher, the curriculum
documents they used, and a questionnaire provided further data on the teachers'
constructions f their own roles in mathematics lessons.

The poster presents findings that relate to the tensions between (a) the expectation
that children will understand the mathematics they are expected to use, and (b) the
realities of teacher's work as it is situated in institutions. Each of the moments above
creates its own set of potential roles. The poster presents what one teacher was
thinking at these moments. The teacher's decision-making processes were explored
through video-stimulated recall and interview.
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A STUDY OF DEMOCRATIC COMPETENCE THROUGH
MATHEMATICS EDUCATION

- Recommendation for the implantation of critical mathematics education in Japan

Takashi NAKANISH I
Shiga Oral School for the Deaf

The purpose of this study is to suggest that democratic competence through
mathematics education, modeled the schools of critical education in England and
Denmark, be promoted in Japan from now on. It, as defined by Skovsmose, can not
be defined only by reference to technical competence at creating and using models
or technologies (mathematical application), it must also involve the reflective
knowledge necessary to reconstruct implicit mathematics and explicate the interests
and intentions which brought them into existence (reflection through mathematics).

democratic competence technical competence

present

human

society

reflection link

X >
mathematics

reflection link

application link

application link integrated academics

Fig. I: Mutual relation to two links Fig. 2: Integrated learning and two links

The following information in Keitel's paper; "a re-analysis of the political
and scientific debate of environmental problems", is seen to be of use in building
up our practice in Japan.

((Example)) In those projects le.g. an analysis of the contamination of water by local industrial production

in a North Italian community (OECD-CERI, 1991) or a re-analysis of the political and scientific debate on the

building of a bridge over the Northern Belt in Denmark (Christiansen, 1994), pupils are confronted with the

'practical social use of mathematical models and political argumentations underpinned by mathematical methods

of manipulating measured data. They are also designing mathematical models to cope with contamination issues

or the economic arguments used to justify decisions by those who advocate the building of the bridge. They are

going further to inform the public of their findings, presenting these at public hearings, and pressing for

alternative courses of action. Here mathematics is studied and used within a highly political context existing in

reality and actually influencing daily life of pupils and their environment.

Japan's mathematics education should lead to both mathematical application
and reflection through mathematics. In mathematics education it was overlooked to
begin to ask social questions such as For whom and whose benefits?" Planning to
introduce the new subject "Basic Mathematics" and "Integrated lessens", we will
need to incorporate students to confront with reporting an social investigation such
as Project methods devoting to reflection through mathematics especially.
[References]
Keitel.C.(1997). Perspective of Mathematics Education for 21st. Century

Mathematics Curricula: For Whom and Whose Benefits? The 30th Annual
Conference of Japan Society of Mathematical Education, basic lecture.
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THE SPECIFIC TECHNIQUE OF CUSTOM
REQUIRED TO NEGOTIATE MATHEMATICAL MEANING

Toshiyuki Nakano
Faculty of Education, Kochi University, Japan

L.Wittgenstein pointed out that the idea "the rule is understood by the interpretation" is

fallacy. And he insist that we should admit the existence of the grasp of the rule without
interpretation. The reason why we can do some acts by following the rule is not because the
game consist of some specified rules, but just because we do the practice customary based on no
ground, that is without conceiving other possibilities. It is not the agreement of the interpretation,
but the agreement of the judgement that is most essential to play the language game and to talk
with each other.

From this point of view, the customary practices based on no ground in mathematics learning
is essential to negotiation of mathematical meaning.

For example, when we negotiate the meaning of fractional addition, someone might show
figure 1 to explain the calculation
2/3 +1/2= 4/6 +3/6 =( 4+3 )/6=7/6.

Usually we believe that one can perceive

mathematical truth from figure 1 directly. And we believe figure 1 show the sum of two quantity
by connecting two figures based on the transcendental recognition that congruent figures are
equivalent.

But we require using some specific techniques as the assumption to perceive 2/3+1/2=7/6
from figure 1. For instance, we use the right figure to shown 2/3 .

And we use figure 1 to express the operation of addition.

It is the specific technique to do so. If we use the other additional technique by which we
unite two figure as follows, we cannot explain the fractional addition with figures.

1830,111 %%PEN
(figure 1)

;;;.1A111

The techniques are customary because we use them with no reflection on the reason why we
should do so, such as the reason why we draw the rectangle, the reason why we draw the slash
on a part of the rectangle, the reason why we vertically draw the delimitation line and the reason
why the capitation of the quantity can be shown by dividing length equally. As the evidence,
according to a certain elementary school teacher, not a few children do not understand figures
below shows 2/3.

It is most important educational task for teachers to form some customary practices or
techniques that are required to negotiate mathematical meaning.

References:

Bloor, D (1994). What can the Sociologist of Knowledge Say About 2+2=4 ?. in P.Ernest(eds.)
,Mathematics, Education and Philosophy: An International Perspective. The Falmer Press
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HIGH CONTEXT AND HIDDEN AGENCY IN JAPANESE
MATHEMATICAL DISCOURSE: A VYGOTSKIAN PERSPECTIVE

Minoru Ohtani
Kanazawa University, JAPAN

Recent research has a common and persuasive vision of mathematics classroom as
socioculturally mediated milieu. Different classroom cultures mediate different
values with respect to classroom interaction, especially to mathematical discourse.

As Leont'ev (1959: 513) illustrates, in classroom discourse, teacher assume an
authoritative position and ask instructional question (the question to which teacher
knows the answer), which consists of three-part exchange: Teacher initiation-Student
response-Teacher evaluation. Such specifically organized interactional patterns in the
classroom may influence the development child's mental functioning. Newman and
others (1989) provide a detailed description of functions of the last turn. It functions
repair system and acts as "a gatekeeper" which let the correct responses into the
lesson and keep out negative answer, and that such discourse type gives
high-achieving students extra support and get them richer. Ohtani (1996) illustrate
that, in mathematics classroom discourse, teacher's telling mathematical
definitions and conditions serve such a gate keeping role in which
decontextualized representation privilege over contextualized vernacular
representation. Telling definition and condition obtain its privileged
status because they are characterized by high context and hidden agency.

Such tendency as high context and hidden agency in classroom mathematical
discourse may be reexamined in light of Japanese culture. Japanese value implicit
communication that requires speaker and listener to supply context without explicit
utterances and cues. This tendency is typically found in leaving the sentences
unfinished. In Japanese discourse, it is often that agency or action are hidden and
left ambiguous. Many English verbs are originally transitive or do-verb and
intransitive verbs become passive if an agent is mentioned or implied (Alfonso &
Nishihara, 1989). For example, in mathematics classroom, when we solved the
problem, we would say "Toketa" rather than "Toita". In English, when we introduce
definition, they would express in do-verb: "We define". In Japanese mathematics
classroom, teacher often introduces definition in intransitive sense ("Sou Natte Iru")
as if it is beyond ones concern.

References

Alfonso, A. & Nishihara, S. (1989). Japanese II. Tokyo: University of the Air.
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PUPILS' VIEWS OF MATHEMATICS TEACHING IN TATARSTAN

Ildar Safuanov, Pedagogical Institute of Naberezhnye Chelny

This is a comparative study of pupils' views on mathematics teaching in
Tatarstan (Russia) and 6 countries: USA, Sweden, Hungary, Estonia, Finland and
Germany. Data were taken from recently published papers (Graumann&Pehkonen,
1993; Pehkonen, 1994; Pehkonen &Safuanov, 1996). All the data were gathered with
the help of a questionnaire consisting of 32 structured statements about mathematics
teaching and learning for which the pupils were asked to rate their views on a 5-step
scale (from 1 = completely agree to 5 = completely disagree). The sample for each
country consisted of more than 200 pupils. Using statistical and heuristic methods,
we have revealed 6 (not disjoint) clusters and checked means of responses for each
country across these clusters. We obtained the following mean values of responses
for countries and clusters:

Clusters \Countries USA SWE HUN EST FIN GER TAT
Demand on pupils 3,6 2,85 2,95 2,45 2,85 2,65 2,45

Democracy 2,18 2,40 2,38 2,20 2,31 2,36 2,54

Independent work 3,10 3,07 2,93 3,15 2,88 3,18 2,83

Problem anxiety 4 3,6 3,53 3,37 3,87 3,83 3,33

Mechanical procedures 2,97 2,56 2,54 2,34 2,69 2,79 2,17

Problem orientation 2,7 2,7 2,76 2,56 2,42 2,6 2,4

Note: the lower numbers correspond to higher agreement.

-6-Demand on
pupils

-la- Problem
anxiety

4 Mechanical
USA SWE HUN EST FIN GER TAT procedures

We see that for clusters "Demands on pupils", "Problem anxiety" and
"Mechanical procedures" pupils in Tatarstan and Estonia (i.e., representatives of
regions of the former USSR) displayed highest agreement. Indeed, strong demands
on pupils, learning mechanical procedures and quick solving of large amounts of
problems were cultivated in Soviet Union.

Generally, one may conjecture that in forming pupils' views of mathematics
teaching/learning not only social circumstances and educational policy play
important role, but also the cultural and historical traditions.

References:
Graumann, G., Pehkonen, E. (1993). Schulerauffassungen uber Mathematikunterricht in Finnland and Deutschland im
Vergleich. Beitraege zum Mathematikunterricht. Hildesheim: Franzbecker p.144 -147.
Pehkonen. E. (1994). On differences in pupils' conceptions about mathematics teaching. Math. Educator 5(10), p. 3-10.
Pehkonen, E., Safuanov, I. (1996). Pupils' views of mathematics teaching in Finland and Tatarstan. Nordic studies in
Mathematics education 4 (4), p. 35-63.
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THE DEVELOPMENT OF THE SUPPORT SYSTEM
FOR ACTIVATING STRUCTURAL THINKING

SAITO NOBORU

Naruto University of Education

AKITA MIYO

Seibu Junior High School

We propose the support system for activating structural thinking by utilizing

computers in this paper. This system makes it possible to judge the level of
students' structural comprehension of their lessons.

The outline of this system is as follows;
* The teacher selects important ten to twenty learning elements from a unit of the

textbook and gives the cards of learning elements to the students.

* The students input the structural relation among the learning elements to the
computers.

* The students repeat the procedure from twice to five times before they complete

a concept-map of the unit.

The computers provide feedback to the students, depending on the students' levels

of comprehension. This feedback is broken down into 13 categories.

In general, the fewer the number of attempts, the less precise the information

provided for students becomes. By increasing the number of attempts, students
can receive more detailed feedback. The students were instructed to use this
system in their mathematics classes. The students' performance and the

effectiveness of the system were studied.

Fifty students in the third year of the junior high school participated in the

study. The results of the study show that the mean values of the transfer
coefficient increased exponentially in proportion to the number of inputs. This is

because the feedback provided by the computers to the students was appropriate.

This shows that the developed system was effective.
FurthermOre, with cluster analysis, two different patterns were seen in the

increases in the mean values of the transfer coefficients in proportion to the
number of inputs. One of the patterns represents the exponential increase while
the other illustrates the logarithmic increase.
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Concept mapping and writing: Implications for continuous teacher education

Vania Maria Santos - Wagner, Universidade Federal do Rio de Janeiro, Brazil

Valeria de Carvalho, Universidade Pau lista, Brazil

Concept map and writing have been used as ways to help students learn and externalize their

thinking about mathematics (Santos & Kroll, 1992). In this study we used concept mapping and

writing as tools to enhance teachers' communication and to provide them a way to reflect and

develop awareness of what they think about teaching. The main goals of the present work were: a)

to propose a form of on-site inservice education through the collaborative elaboration of a

pedagogical approach, and b) to explore the role of reflection in the processes of teacher

enhancement and professional knowledge acquisition. This was an interpretive investigation in

which the close collaboration of one of the authors, who was also a mathematics teacher in the

school, with two other teachers provide us the scenery of an action research project. Data for the

study included: semi-structured interviews; concept map construction and explanatory written texts;

joint meeting for course and lesson planning; informal conversation; exhibition of videos followed

by joint discussion, problem solving activities and reflections. In sum, the researchers wanted to

investigate the potential of collaborative work and teachers' reflections to the enhancement of

teaching practice and to the development of teachers' metacognitive awareness (Olson, 1997;

Santos & Nasser, 1995). The power of concept mapping and writing come into place exactly when

the authors pursued the aforementioned goals and implemented the work with the teachers. In this

presentation it will be showed the concept maps and the texts produced by two teachers who

participated in the study and the evolution process of their reflections and metacognitive awareness.

It will also be discussed the implications of this form of collaborative inservice education mediated

through the use of concept mapping and writing as tools to enhance awareness. This report is part of

a research project undertaken in a school environment to investigate: What contributions to the

professional enhancement of mathematics teachers could have the collaborative elaboration and

discussion of a pedagogical approach mediated by the use of videos to the education of the citizen

as a consumer human being? (Carvalho, 1999).
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STUDENTS' INTERPRETATIONS OF GRAPHICAL REPRESENTATIONS
INVOLVING CHANGING SPEED

Roberta Y. Schorr and Gerald A. Goldin

Rutgers University, New Jersey, USA

At Rutgers University, we are engaged in a long-term research and implementation
study with SimCalc (Kaput and Roschelle, 1997), where disadvantaged, inner-city
high school students are provided with technological tools intended to develop their
understandings of the conceptual building blocks of calculus. The overall goal of
the study is to understand how best to help such students learn essential
mathematical ideas, making use of a technology-based environment in which
phenomena can both be created for students to experience, and represented for
students to manipulate and discuss. The particular analysis presented here addresses
the question of cognitive obstacles associated with graphical representation of
changing speed vs. time. We have chosen this because graphical representation of
position vs. time, and velocity vs. time, is a fundamental tool in calculus, where the
notion of velocity comes to embody the idea of an instantaneous rate of change of
position or displacement with time, and research has shown that students frequently
experience great difficulty with the interpretation of graphical representations and
problems involving the concept of speed (Monk and Nemirovsky, 1994; Thompson,
1994).

The students with whom we are working show some evidence of cognitive obstacles
similar to those previously inferred in children, college students, and adults.
However, the rich structure of linked external representations provides a valuable
experimental context for exploring and overcoming these obstacles. We will discuss
our observations in the context of expectations based on theories of internal and
external representations and their development.

Kaput, J.J., Roschelle, J. (1997). Deepening the impact of technology beyond
assistance with traditional formalisms in order to democratize access to ideas
underlying calculus. In E. Pehkonen (Ed.), Proceedings of the 21st International
Conference for the Psychology of Mathematics Education (pp. 105-112). Lahti,
Finland.

Monk, S., Nemirovsky, R., (1994). The case of Dan: student construction of a
functional situation through visual attributes. Research in Collegiate
Mathematics Education. 4, 139-168.

Thompson, P.W., (1994). The development of the concept of speed and its
relationship to concepts of rate. In G. Harel and J. Confrey (Eds.), The
development of multiplicative reasoning in the learning of mathematics (pp. 181-
234). Albany, NY:SUNY Press
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SINGLE-DIGIT MULTIPLICATION PERFORMANCE IN JAPANESE
ADULTS: ASSESSING THE PROBLEM SIZE EFFECT

Hideaki Shimada
Doctoral program in Psychology, University of Tsukuba, Japan

hshimada@human.tsukuba.ac.jp

1. Introduction
Cognitive approach to simple computation have developed over about 30 years. One

of the most interesting phenomenon is "problem size effect", which generally means
that small operands problems is solved faster than large, for example, " 3 X 4 " is
solved faster than " 6 X 7 ".

Many researches and experiments have been made, but almost all experiments made
in Europe, Canada and America. I think that Japanese show different pattern of
problem size effect because of differences of educational programs. The purpose of
this research is to examine single-digit multiplication performance, and to show
pattern of problem size effect in Japanese adult.
2. Experiment
Procedure: 12 University students participated in this study. They solved the 100
multiplication and addition problems (addition was excluded from this analysis)
which consisted of the combinations of all single-digit (0-9). Problems were presented
on a video monitor. When problems were presented, participants were required to
make oral answers, and to press the key on starting to make answers. These answers
were recorded by experimenter in order to judge errors, and RT (Reaction time)
which is the time participants took from presenting problem to pressing the key was
counted and recorded by computer.
Result: Figure shows mean RT for each operand family. The effects of problem size,
5-operand and tie occured. These effects matched many researches.
3. Conclusion and Discussion

Canadian and Japanese shows different patterns for large problems in Figure (data
of Canadian is by LeFerve et al., 1997, and note that they used voice key). The larger
size of problems was, the larger differences were. Chinese was similer to Japanese
(LeFevre et al., 1997). I expected that this phenomenon ocuured because of
differences of educational programs. In Japan, children learn multiplication at 2-grade,
and all of them are requred to

1400 r
memorize multiplication table by
recitation. For example, children 1200 I-

memorize "7 X 9 = 63" by
saying "Shichiku rokujuu-san". So E 1000

almost all adults from Japan 800

probably solve large size
problems by recitation procedure. 600

Reference 0

LeFevre,J. & Liu,J. (1997) The role of
experience in numerical skill: multiplication

performance in adults from Canada and

China. Mathematical Cognition, 3, 31-62. alap/use Cam ad in

I 2 3 4 5 6

Operand family

Figure: M ran RT for operand family (note that

the data of C anadian is by LeFevfe el aI.,1997)
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Proposal to Junior High School Mathematics Education
Based on "The Third International Mathematics and Science Study"

Siro SUWAKI
Okayama University of Science

We have long appreciated the seriousness of the problem that more and more
pupils dislike maths and science. By using the data of "The Third International
Mathematics and Science Study", I analyzed the factors to cause them to like
maths both from the pupil viewpoint and from the teacher viewpoint. Based on the
analysis, I would like to propose the following as a solution to the problem.

1. Generally, when teachers force pupils to reach high levels of accomplishment in
maths, their scholastic abilities are surely improved. On the other hand, they tend
to dislike it. As in Singapore, however, with an earnest effort of the government
and teachers, it is possible to maintain a high level of scholastic ability in maths
and hold pupils' interest in it at the same time.

2. The more homework and guizzes, the more pupiles tend to come to like maths ,
though they should not be excessive. Therefore, teachers must not hesitate to give
their pupils homework.

3. Pupils who are interested in "proportion" in maths tend to like maths. Teachers
should make use of it in order to make their pupils interest in maths. It is advisable
to cite many examples of "proportion" in actual life.

4. Pupils who find maths easy and interesting, consider it important in life, and
seek work using it tend to like maths. Teachers should keep it in mind in class.

5. The clearer the pupils' motivation to have good marks, the more they like maths.
Of all the pupils from many countries, Japanese ones have the least motivation that
they want to make their parents happy. Perhaps family affection is necessary to
enhance pupils' motivation to do well in the test.

6. Pupils who can explain the reason for their own answers tend to like maths. As
often as opportunity allows, teachers should encourage their pupils to express
themselves without being afraid of making mistakes.

7. When teachers decide how to teach under the guidance of the Ministery of
Education, their pupils tend to like maths. Therefore, besides textbooks, teachers
should make the best use of the manual by the Ministery of Education.

8. Pupils give strong support to evaluations of their homework. Homework is to
establish a bond between teachers and pupils, so it is necessary to give and grade
homework.
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FUNCTIONAL RELATIONS AMONG INTERNAL REPRESENTATIONS OF
MATHEMATICAL WORD PROBLEMS

Atsumi Ueda

Hiroshima University

For the last few decades, mathematics educators have been concerned with
problem solving. Many theories related to problem solving have regarded it as a
process of refining internal representation of problems to be solved. The concept
of internal representation plays an important role in explaining the essential parts of
problem solving.

Generally, if we attempt to realize a phenomenon as a refining process of some
related aspects, we have to make clear the essential characteristics of its main aspect
and describe its refining process by some way. We need to explain what is the
internal representation of a problem and contrive some ways to grasp its refining
process operationally. The latter is the focus of this proposal.

Silver (1979) investigated students' perception of mathematical problem
similarity by using the Card-Sorting Task (CST). According to the principle of
"second-order isomorphism" (Shepard & Chipman, 1970), CST is certainly a kind
of convenient way to seek the structure within the relations among internal
representations of mathematical problems. But it may not be able to get the
information about internal representation from CST, because the problems that are
classified into the same group have to be regarded as having made the identical
representation.

In the present study, multidimensional scaling was used as a class of effective
statistical procedure for the purpose of seeking the structure of the relations among
internal representations of mathematical word problems. Possible effectiveness of
this kind of procedure will be presented by using the pictorial configuration that
indicates the structural relations among internal representations.

References
Shepard, R. N., & Chipman, S. Second-order isomorphism of internal
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1-220



ENRICHMENT FOR MATHEMATICALLY PROMISING STUDENTS

IN THE UK

Jenni Way

University of Cambridge and Royal Institution of Great Britain

Provision for talented young mathematicians in the United Kingdom takes a variety
of forms. Two complimentary national programmes have arisen out of the generous
sponsorship of several organisations that recognise the need to nurture the abilities of
school students who exhibit enthusiasm and/or high ability in mathematics.

NRICH Online Maths Club http: / /nrich.maths.org.uk
One of these programmes, based at the University of Cambridge, is a website that
provides mathematical puzzles, problems, games, articles and news for students aged
5 to 16 years and their teachers, free of charge. New material is made available on
the first day of each month and students are encouraged to send in solutions and
other items for publication. There are also well utilised communication services,
such as the Ask-a-Mathematician service and a discussion web-board. The website
has in excess of 40 000 regular users, has 4 334 registered members from 73
countries and receives about 10 000 hits per day. About 25% of children are
accessing the site from home.

The poster will show a screen shot of the website and a graphical display of some
site statistics. Brochures outlined the website's content will be made available.

Royal Institution Masterclasses
The other programme consists of a national network of mathematics 'masterclasses',
supported by the Royal Institution (Registered Charity 227938), but run by local
volunteers. The secondary-level network, catering for students of about 15 years of
age, began 20 years ago and currently consists of 40 groups, running 60 series.
Schools are invited to nominate students to attend a series of Saturday morning
classes, run by volunteer teachers and guest lecturers. Participants are challenged by
problems and tasks on a particular topic, and encouraged to interact with other
students. Some groups run special summer camps or programmes.

In the latter half of 1998, a similar network was by initiated the Royal Institution for
Primary school age children. A wide range of organisational models has developed
in response to local needs and resources. Some classes are held on weekends, some
during school time. Some groups work in partnership with secondary schools, some
utilise the enthusiasm of pre-service teachers, others rely on various volunteers.

The poster will include some captioned photographs that illustrate some the attitudes
and achievements of the `masterclass' programmes.
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CASE STUDY OF CONCEPTION ON LIMIT CONCERNING CHILDREN

YOHSUKE YAMAGISHI

MUKOGAWA WOMEN'S UNIVERSITY

10 age children in japanese experimental elementary school attached to Univ. could find density of
rational number. They found that there are many fractions for instance 5/12, 7/18, 8/18, 9/24, 10/24,
11/24, next 4 fractions, after next will emerge 5 fractions soon after immeasurable, between two
different fractions 1/2 1/3.

It was the learning that teacher assigns subject matter, then pupils advance it. This result of learn-
ing is in agreement with report of the Cambridge Conference on School Mathematics thet pupils in
grade 3 6 begin to consider infinite sequences of real number. Piagte and Inhelder examined that
the child at age of 8 reaches four hundred points at age of 10 suggeste "nine thousand points, may
be even more" for a 1cm. square.
Note on Mathematics in Primary School(Cambrige1969), gave a description that the mathematical
experiences of a child before the age of eleven and responses determine his potential mathematical
development.

In this essentials I choose divergent problem. Stanley Tabach gave me much of information. The
result is shown for 8, 10 age level in Table 1.

Age task
Divergent square

degree of understanding
concrete level(%)

degree of understanding
abstract level (%)

* ** *** * ** ***
8 70 20 20 36 36

(72) (28) (20) (24)

10 80 16 48 36 12

(80) (64) (12) (12)

Table 1 *clear *uncertain ***none ( ) result of S.T.

The subject of this study are pupils of elementary school in average area.
lOyear old subject (80) were understand on the concrete level,and 48% on the abstract level.
This is remarkable result, I think.
In japan Ministry of Education distributed new course of study in 1999. It emphasized the impor-
tance of doing research on mathematical activity.
Teater gives subject, then pupils can advance. Up to now that would not have been allow to advance
beyond grades except experimental school. This report is worth understanding stage of pupils for
teaching.

REFERENCES
Myron F.Rosskoph, Editor Children's Mathematical Concepts Teachers College Press
Piaget and Inhelder The child's conception of space London Routledge and Kegan
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VISUALIZATION OF THE PRODUCT OF COMPLEX NUMBERS IN
THE TEACHING

Kiyosi Yamaguti and Ken-ichi Shibuya
Kyushu Sangyo University, Fukuoka 813-8503, Japan

The problem on teaching of complex number in high school mathematics
is old and new. The reasons of difficulty to teach a complex number would
be caused by its abstract character, that is, the ambiguous expression of
complex number and also this number is the one of 2-dimensional. To
visualize the complex number and its compositions, the complex number
plane is introduced. Then, a complex number is a vector or point in this
plane. The sum is the fourth point of parallelogram formed from two
number vectors.
The purpose of this paper is to visualize elementary the product in this

plane from the viewpoint of I zw I=IzI I w ...(1) instead of the polar
form of complex number, where I I denotes the absolute value of
complex number. It is well known that this relation characterizes the
complex number in the orthogonal coordinate plane with product
satisfying some conditions.
At first, call a+bi, i2 = 1, a complex number. Define the equivalence,

sum, and product as usual. Next, introduce the 2-dimensional real vector
space with inner product or the orthogonal coordinate plane. For complex
numbers z=a+bi, w=c+di, the product zw is constructed as a sum of
vectors a(c,d)+b(d,c). From the known identity (acbd) 2 +(ad+bc) 2 = (a2
+b 2)(c2+d2), which is equivalent to the relation (1), we have a usual
construction of the product as a rotation about the origin and an
extension of vector. The relation (1) and the Pythagorean theorem imply
the addition theorem of trigonometric function. The roots of a quadratic
equation are taught as the intersection of the parabola and the x-axis if
the discriminant is non-negative and the one of the axis of parabola and a
certain circle with the origin as center if the discriminant is negative. We
believe that such visual explanation of the product would assists student
for his understanding of complex number and its properties.
[1] I.L. Kantor and A.S. Solodovnikov, Hypercomplex numbers, An elementary introduction to

algebras (Translated by A. Shenitzer), Springer-Verlag New York, 1989.

[2] K. Yamaguti, Visualization of solutions of a quadratic equation, Proc. PME 23, Vol. 1, 330

(1999).
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Brief Guidance to Japanese Mathematics Education

Tadao Nakahara
Toshiakira Fujii
Masataka Koyama

Hiroshima University
Tokyo Gakugei University
Hiroshima University

1. Educational Framework
After the end of World War II, the educational system in Japan has was reorganized, both

in structure and curriculum. The so-called 6-3-3-4 system of schooling has been implemented

and fundamentally continued up to now. It is essentially composed of six-year Elementary

School, three-year Junior High School, three-year Senior High School and four-year of

university. These schools and universities can be classified as national, local public or private.

The first two levels - Elementary and Junior High- are compulsory education.

Children usually start their formal education at 6 years old and change from Elementary to

Junior High school at age 12 years. Unlike in many other countries, the school year in Japan

begins on 1st April and ends on 31st March of the following year.

The basic school system is summarized in Figure 1.

Age Grade Type of School

18-22 University

17-18 12

16-17 11 Senior High School

15-16 10

14-15 9

13-14 8 Junior High School

12-13 7

11-12 6

10-11 5

9-10 4 Elementary School

8-9 3

7-8 2

6-7 1

3-6 K Kindergarten

Figure 1. Educational System in Japan
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2. Changes of Mathematics Curriculum
The basic framework for school curricula is outlined in the Course of Study issued by the

Ministry of Education. It is the aim of the Course of Study to help ensure that an optimum

level of teaching and learning be secured in all Elementary, Junior High and Senior High

Schools, based on the principle of equal educational opportunity for all. A Course of Study
has been revised approximately every ten years. We could point out the following as main
features of mathematics education based on each course of study for mathematics.

(1) Life-unit Learning (from 1947 to 1958)

The Course of Study in this time was made under the strong guidance of the American

educational mission. The so-called "Life-Unit-Leaning" began to be implemented. The

goal of life-unit-learning was to learn how to use mathematics in every day life. This

curriculum was severely criticized, because the level of children's performance in

mathematics had dropped.

(2) Systematic Learning (from 1958 to 1968)

Japan changed the Course of Study from life-unit-learning to studying mathematics
systematically in 1958. The level of content to be learned became higher.

(3) Modernization (from 1968 to 1977)

The Course of Study in this time was made according to the direction of the international

movement of Modernization of Mathematics Education. For example, the concept and
symbols of "set" were introduced and pure mathematics was emphasized. However, many

children could not understand New Math, so the mass communication, parents and some

mathematicians criticized this curriculum.

(4) Back to Basics (from 1977 to 1989)

This Course of Study was influenced by many criticisms to the results of modernization

and was characterized as Modification of Modernization. The basic contents of
mathematics were emphasized, so the level of mathematical content was pulled down.

(5) Integration of Cognitive and Affective Aspects (from 1989 to 1999)

The Course of Study for mathematics education was revised toward integration cognitive

and affective aspects in 1989. For example, the following objective was set up in
elementary level. "To help children develop their abilities to consider daily-life problems

insightfully and logically, and thereby foster their attitudes to appreciate the mathematical

.N .1
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coping with and to willingly make use of it in their lives.

(6) Latitude through Intensive Selection of Educational Content (from 1999)

During these ten years, such problems as unschooling and "classroom in crisis" have

become quite notable and they are attributed to excessively stressed life of children.

Therefore the Course of Study was revised and its educational contents were slimmed down

intensively. The 30% of them was eliminated from the Elementary and Junior High School

level.

The revised Course of Study put into effect in April, 2002 for all grades in Elementary

School, 2003 for all grades in Junior High School, 2004 for the first grade in Senior High

School, and so on.

3. Teaching and Learning in Mathematics Education
Throughout the Elementary phase of education, mathematics teaching is inclined towards

a child-centered and problem-solving approach. For example, a typical 45 minute lesson will

follow the pattern shown below.

(Children's standing up and bowing)
(Reviewing the last lesson or presenting some familiar topic)

5 (Understanding a problem)
The teacher presents a problem which contains mathematical
concepts, facts and skills. Children try to understand it.

10 (Solving the problem for themselves)
Each children solves the problem individually. The teacher

Minutes encourages their children to solve the problem for themselves.
25 (Reporting their solutions)

The teacher asks several children to write their solution on
the blackboard and explain their way of thinking in solving.

30 (Discussion of the solutions)
Children discuss and compare their solutions with help of
the teacher, and find common ideas or a refined solution.

40 (Summing up by teacher)
The teacher summarizes the day's mathematical ideas, facts
and skills.

45 (Children's standing up and bowing)

Teachers usually use a blackboard to record a lesson. Two parts are stressed: one is the

thinking processes and the other is the important mathematical thinking. Investigations and

practical work have been encouraged, particularly for children in Elementary School.
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In Junior High School, the teaching style may be the one that the teacher explains the

mathematical concepts and skills by using examples, manipulative aids and published resources,

and gives enough exercises for pupils to become skillful in computation. In mathematics

teaching for Senior High School, a more traditional style of teaching is normally adopted.

4. Assessment in Mathematics Education
In Japan, there exist the national curricula as we mention above, but the national tests for

assessment do not exist. Many teachers appreciate, in general, the importance of formative

evaluation, but they also tend to depend on summative evaluation using paper and pencil tests.

Teachers frequently give brief tests to ascertain and control achievement levels of learners.

They will try their best to help pupils acquire knowledge and use skills.

Formally, there are two aspects of evaluation: an academic evaluation and the four
additional points of evaluation. The former designates 5 (the most upper level) to 1 (the

lowest level) scales to denote the performance of each pupil. The four different viewpoints of
the latter aspects are:

1. Interest / Willingness / Attitude,

2. Mathematical thinking,

3. Representation / Processing,

4. Knowledge / Understanding.

In Japan, the entrance examination of the Senior High School is the first external
examination of its kind given to pupils. Its public examinations are set by each Prefecture.

However, each private Elementary and High School sets also its own entrance examination.

The examination for entrance to a national university is usually taken at the age of 18 and
above. This takes two distinct forms. The so-called center examination is the common test

given for all candidates. The other is administered by each national university. Each private

university usually sets its own entrance examination.

5. Teacher Training Routes
5.1. High School Mathematics Teachers

There are two main routes:

(1) 4-year undergraduate course in Mathematics Education, with substantial periods of

teaching practice, at Faculty of Education in a university. Students in this course are
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awarded a B.Ed. degree leading to a teaching certificate (First Class Certificate) when

they have completed their course by obtaining the required number of credits including

mathematics, mathematics education, didactics, psychology, etc.

(2) 4-year undergraduate course in Mathematics at a Faculty of Science or the like. Most

Students on this course are awarded a B.Sc. degree and get a teaching certificate (First

Class Certificate) when they have obtained the required number of credits including

mathematics, mathematics education, didactics, psychology, teaching practice, etc.

Moreover, there is a 2-year postgraduate course for those Students with such suitable

qualifications as a B.Ed. or B.Sc. degree and a First Class teaching certificate. Students on

this course are awarded a M.Ed. or M.Sc. degree leading to a teaching certificate (Advanced

Certificate) when they have obtained the required number of credits and passed the final

examination based on a submitted Master's thesis.

5.2. Elementary Teachers

There are two main routes:

(1) 4-year undergraduate course at Faculty of Education or the like, leading to a B.Ed.

degree and a teaching certificate (First Class Certificate). There will be a major

mathematics component for all students in this course, with extra courses for some

students intending to specialize in mathematics.

(2) 2-year course provided at a junior college. Students on this course are awarded a

teaching certificate (Second Class Certificate) when they have completed their course by

obtaining the required number of credits.

Moreover, there is a 2-year postgraduate course for those students with such suitable

qualifications as a B.Ed. degree and a First Class teaching certificate. Students in this course

are awarded a M.Ed. degree leading to a teaching certificate (Advanced Certificate) when they

have obtained the required number of credits and passed the final examination based on a

submitted Master's thesis.

There is also a part-time route and correspondence courses in education for those
students who have graduated a junior college or a university without a teaching certificate.

1-231 257



6. Issues of Concern
It is sure that the average score of Japanese students' achievement in mathematical

knowledge and skill is relatively high. However, as we mentioned above, the educational

contents are slimmed down in the new Course of Study. Therefore, we are worrying that the

level of children's mathematical abilities will drop. And many students at High School level

do have a negative attitude toward mathematics. So, we must endeavor to foster children's

positive attitude toward mathematics. On the other hand, a new direction in the aim of
mathematics education are proposed as "development of foundation for creativity". This is

very important aim. So we are expected to realize this aim in mathematics education.

These situation will force mathematics teachers to reflect seriously on their educational

philosophy and teaching methods. The teacher training courses at universities will be also

change to meet those needs.
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Lesson Plan (1st Grade)

Teacher: Yasushi Miyamoto
0. Date, Place, Class

Date: 25th July, 2000,Tuesday (13:40 14:30)
Place: Elementary School attached to Hiroshima University, Music Room
Class: 1st Grade(Elementary School), 40 pupils (20 boys and 20 girls)

1. Teaching Unit: Subtraction

2. Teaching Objectives and Teaching Schedule
(1) Teaching Objective

Pupils should be able to understand the meaning of subtraction through various situations to
be handled with subtractions.

(2) Teaching Schedule (8 hours as a whole)
Step 1: To think about a method of subtraction that is to find a complement of a number

5 hours
Step 2: To think about a type of subtraction that is to find the difference of two numbers

3 hours (Today's lesson is the 1st of 3.)
3. About Teaching Material

The pupils in the class have been learning the composition of numbers up to ten by using
some objects, models and number cards etc. Besides they have been learning relations between
two subsets and a universal set and some conditions of addition in the way of combining two
amounts into one with numbers up to ten.

I want to set activities to think about the conditions for using subtraction and the meaning of
subtraction in a concrete situation since the pupils are getting ready to consider compositions and
decompositions of numbers up to ten. For that purpose I encourage the pupils to examine
meanings of two different types of subtraction i.e. to find a complement and to find a difference as
I put an emphasis on their operations to compose and decompose numbers by using concrete
objects.

In this lesson I introduce the topic with a different number of examples from the ones they
used in the previous lessons, and then I encourage them to think about the target problem of this
lesson. After that I direct them to pay attention to the difference from the problems / operations of
subtraction given in the previous lessons so that they discuss their aim of the lesson and think
about correspondence between the expressions and the operations.

At the stage of practical operations, I direct their attention to the difference of the operations,
such as operation for moving which they have been using by now, and operation for
correspondence or operation for coupling which are expected to be used in this lesson, and
encourage them to think about expressions to get the correct answers.

4. Problems to be Offered
The pupils should pay attention to the differences of the situations and of the operations of

Ohajiki; (small disc), and work out the expressions to find a difference, and think that, as an
expression, the two operations, i.e. to find a complement and to find a difference, come to the
same subtraction, the same expression and the same answer. That leads them to the idea that the
two types of subtraction can be integrated into one expression.

The comparison of the two subtractions that have different operations should be emphasized
so that the integration of the meanings of subtraction would be discovered by the pupils.
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5.Today's Lesson
(I) Title of the Lesson: Explanation of subtraction by using operations.
(2) Objective of the Lesson

Pupils should be able to consider the difference and the common characteristics of the two
types of subtraction; to find a difference and to find a complement.

(3) Teaching and Learning Process of the Lesson

Learning Activities Intention and Process of Teaching Points of Evaluation
I. Setting up a task
(I) Discuss the problem of the There are 8 white flowers and 4 red

lesson. ones.
Discuss the problem the pupils Can the pupils pose the
can pursue from the given
situation.

problem by themselves?

Pay attention to the question,
"Which is and how many more?"

(2) Make sure the aim of the Try to explain how to calculate.
lesson is understood by the Think the situation by using Do the pupils understand
whole class. Ohajiki or blocks. the aim?

Pay attention to the difference Can the pupils explain the
between how to find a
complement and to find a
difference.

operation with the objects?

2. Investigating the task
(I) Examine expressions and Explanation with an operation of Can the pupils get the

answers by using the objects. moving. expression and the answer?

E.0.00,)
0000 0-06c)

(2) Integrate the ideas by mutual Explanation with an operation of Do the pupils pay attention
consent. correspondence. to the difference from the

topics in the previous

00000000 lessons?

MI
*OW.

3. Developing the task
(I) Discuss the problems for the Summarize what the pupils

next lesson. noticed from the difference of the
operations of the objects and from
the fact that bcith operations come
to the same expression and
answer.

Do the pupils understand

Discuss what comes in the next the problems in the next
esson?lesson?
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Lesson Plan (4th Grade)

Teacher: Takeshi Nakamura
0. Date, Place, Class

Date: 25th July, 2000,Tuesday (13:40 14:30)
Place: Elementary School attached to Hiroshima University, Special Room(2)
Class: 4th Grade(Elementary School), 40 pupils (20 boys and 20 girls)

1. Teaching Unit: Division of Whole Numbers

2. Teaching Objectives and Teaching Schedule
(1)Teaching Objective

Pupils should be able to understand how to operate divisions by 2-digit divisors and
calculate them properly.

(2)Teaching Schedule (12 hours as a whole)
Step 1: Division by a 2-digit number (Part 1) 6 hours (Today's lesson is the 2nd of 6.)
Step 2: Division by a 2-digit number (Part 2) 3 hours
Step 3: Rules of division 3 hours

3. About Teaching Material
The pupils in the class have been learning the meanings and operations of division ofa 2-digit

number by a single digit number. Therefore this topic aims to expand the range of numbers for the
calculation and seek the proper operation for division of a 2 or 3-digit number by a 2-digit number.
Besides it aims to cultivate ideas of units and those of correspondence, and also to deepen the
students' ideas and senses about numbers.

At first, I assign the pupils a calculation such as 80+20 and direct the pupils' attention to a
unit of ten which enables them to apply Ku-Ku; a multiplication table of single digit numbers, to
the calculation with some operations of objects like some blocks. Secondly, the pupils are
encouraged to verbalize their aims by highlighting the difference from the divisions they used in
the previous lessons. The pupils are to notice that Ku-Ku is applicable to the calculation when we
consider place values and utilize approximation.

Furthermore, the pupils should characterize each way of calculations while they discuss and
examine each process of the calculations so that they can find out the ways that they can be
applied to various cases of division. Hopefully the pupils can understand the advantages of
mathematical thinking and operations in their daily life through this kind of work, and they can
improve their ideas and attitudes to look for new problems and develop them.

4. Problems to be Offered
I want to derive various types of calculation from the pupils' activities by asking for the ways

of division of 84+21. And then I encourage the pupils to discuss new problems to operate
divisions while calculating some divisions of a 2-digit number by a 2-digit number in as many
ways as they can find.

5.Today's Lesson
(1) Title of the Lesson: Division of 2-digit numbers.
(2) Objectives of the Lesson

Pupils should be able to solve problems by calculating various kinds of divisions by exploring
the way of divisions of 2-digit numbers
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(3) Teaching and Learning Process of the Lesson:

Learning Activities Intention and Process of Teaching Points of Evaluation
I. Setting up a task
(I) Discuss the problem of the We have 84 pencils. How many people Do the pupils try to

lesson. get pencils when we distribute them 21 make their problem for
pencils each? themselves?

(2) Identify the aim of the Focus the problem in comparison with Do the pupils catch the
lesson. the question, "80+20," which is given

in the previous lesson.
aim?

2. Investigating the task
(I) Think about how to How can we work out a division of 2-digit

calculate the problem. numbers?

Seek different ways for calculating the Do the pupils express
problem so that each pupil has his/her
own idea.

their own ideas clearly?

Examine their ideas with practical Do the pupils verify
activities or multiplications. their ideas?

(2) Present individual ideas to
the class.

Calculate every place separately.

80+20=4
44-1=4

Use approximate numbers.

80±20d4
21 X 4=84

(3) Observe ideas from the Think about advantages of the ideas Do the pupils construct
others and express own given by the classmates by comparing and express their
ideas. them with their own ideas. opinions related to the

Think about the exception which we
can not apply in the usual way.

other opinions?

3. Developing the task
( I) Discuss the problems for Think about the problems for the next Do pupils catch the

the next lesson. lesson through various divisions to problems in the next
(2) Conclude the lesson. know the problem considered to find an

interim quotient,.

lesson.

Review the whole work of the lesson.
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Lesson Plan (5th Grade )

Teacher: Toshiyuki Akai
0.Date,Place,Class

Date: 25th July, 2000,Tuesday (13:40 14:30)
Place: Elementary School attached to Hiroshima University, Special Room(1)
Class: 5th Grade(Elementary School), 39 pupils (19 boys and 20 girls)

1.Teaching Unit: Areas of Figures

2.Teaching Objectives and Teaching Schedule
(1) Teaching Objective

Children can find areas of triangles and quadrilaterals by making use of the area of rectangle
they learned previously.

(2) Teaching Schedule (14 hours as a whole)
Step 1: Ways of finding areas 1 hour (Today's lesson)
Step 2: Areas of quadrilaterals 5 hours
Step 3: Areas of triangles 4 hours
Step 4: Elaboration of ways of finding areas 4 hours

3.About Teaching Material
The objective of this teaching unit is to let children find areas of triangles and quadrilaterals

by reducing the areas to those of rectangles and squares which they have learned previously.
Children learned about areas of squares and rectangles when they were in grade 4. Children

also learned, through activities such as tessellations, that a figure can be seen as different figures
by moving parts of it and looking at it from various angles. In grade 5, it is desired that children
make use of these previous learning experiences and come up with ways of changing novel
figures into rectangles, such as moving parts of parallelograms and rhombuses without changing
their areas, or putting together two congruent triangles.

In the teaching, to encourage children's spontaneous development of different ways, I plan an
activity of making quadrilaterals by 4 congruent right triangles. In the activity, I want children to
recognize that they can change the quadrilaterals into rectangles and make use of previous
learning. In doing so, I want children to focus on the question "which lengths do we need to know
in order to calculate the area by making use of the area of rectangles," which will lead them to
formulas for areas of parallelograms and so on. I also want to utilize this idea to find areas of
triangles.

4.Problems to be Offered
Make various quadrilaterals by using 4 congruent right triangles. Then think about ways of

finding the areas of quadrilaterals made based on the right triangles.

5.Today's Lesson
(1) Title of the Lesson: Making quadrilaterals from right triangles and find the areas
(2) Objective of the Lesson:

Children can think about ways of finding areas of quadrilaterals based on the movement of
right triangles.
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(3) Teaching and Learning Process of the Lesson:

Learning Activity Intention and Process of Teaching Points of Evaluation

I. Setting a Task
(I) To make figures by 4

congruent right

triangles.

Let children make figures by 4
congruent right triangles.

Can they make figures
learned previously?

Can they grasp the task?

Can they recall the way
of finding areas of
rectangles?

Can they change the

figures into rectangles?
Can they find the

lengths, which are needed
to find the areas?

Do they know the task
for the next lesson?

Make figures by using 4 congruent right
triangles, and think about the ways of finding
areas of these figures.

..i%::14(1)
4144

(2) To find areas.

2. Investigating the Task

(I) To think about the
ways of finding areas.

Let children think about areas of the
figures they made.

Let children recall rectangles, of
which they can find areas.

In what way can we find the areas?

(2)To change the figures
into rectangles.

3. Developing the Task
(I) To think about the

ways of finding areas
of various figures.

Let children change the figures into

rectangles.
Let children think about the ways of

finding areas by calculation.

Let children imagine various ways of
finding areas of parallelograms and
triangles.
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Lesson Plan (7th Grade)
Teacher: Atsushi Nagao

O.Date, Place, Class
Date: 25th July ,2000, Tuesday (13:40-14:30)

Place: Junior and Senior High School attached to Hiroshima University,
Kenshu-kan #3 Room

Class: 7th Grade (Junior High School, 1st grade), 40 students (20 boys and 20 girls)

1.Teaching Unit: Positive Numbers and Negative Numbers

2.Teaching Objectives and Teaching Schedule
(1) Teaching Objectives

1. Using positive and negative numbers in order to show their complementary relationship

2. Able to do addition and subtraction of positive and negative numbers

3. Able to do multiplication and division of positive and negative numbers

4. Able to use four operations with positive and negative numbers

5. Convert fractions to decimal numbers in order to deepen students' interest toward
mathematics

(2) Teaching Schedule (10 hours as a whole)

Step 1: Positive numbers and negative numbers 2 hours

Step 2: Addition and subtraction 3 hours

Step 3: Multiplication and division 4 hours

Step 4: Advanced work (fractions and decimals) 1 hour (Today's lesson)

3.About Teaching Material
For the Special Activity in PME24, I have planned an extra 1 hour class period for some

advanced work on Positive and Negative Numbers. The content is based on my own personal
experience. When I was in elementary school, I learned how to convert fractions to decimal
numbers: by dividing the numerator by the denominator and found that the answer could be either

a finite answer or a recurring decimal. However, it was only when I become a teacher 20 years

ago, that I thought about the reason for this. Few students do pay attention to the facts, such as
"the answer should be finite only when the denominator is a multiple of 2 or 5 (which are the

measures of 10)", "an answer becomes recurring when the remainder is smaller than divisor, and
finite", and so on. Through this lesson, I intend to get students to reconsider the numbers which

they have learnt, as well as their ways of studying mathematics.

Although few students in this class hate mathematics, not many of them tend to pursue
mathematical ideas enthusiastically and aggressively. I hope this lesson will help students change

their attitudes toward mathematics in this way.

4.Today's Lesson
(1) Title of the Lesson: Fraction and Decimal Numbers

(2) Objective of the Lesson: Get student to think their answers and reason "which numbers would

be finite or recurring when they convert fractions to decimal numbers."
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(3) Teaching and Learning Process of the Lesson

Teaching Content Teaching Process Notes
I. Introduction

Presenting the
Problem

2. Development
Posing Task I

Solving Task I

Posing Task 2

Solving Task 2

3. Summary
Summary of
the lesson and
students'
impressions.

Have the students choose any irreducible fraction,
and get them to convert this fraction to a decimal
number.

Ask some students to write their numbers on the
blackboard.

Identify the kinds of decimal numbers obtained
when converting from fractions.

Find out whether
the students know
how to convert to
decimal numbers.

If necessary,
introduce the terms
"finite" and
"recurring".

The groups will be
4 to 6 people, with
neighbors.

Take plenty of time.

Ask repeatedly for
confirmation of
results.

Make optimal use
of concrete
examples.

What kinds of fractions would be finite? Why?

Students discuss in small groups, and present their
ideas.

Discuss the presented ideas. Questions, any other
ideas, and comments.

Summarize the discussion, and confirm the
correctness of their reasons for obtaining decimals.

If the answer is not finite, why does it become
recurring?

Give students opportunity to make comments.

Discuss the comments, and deepen their ideas.

Make sure reasons are given and understood for the
presence of recurring decimals.

Summarize the day's topic, and ask some students
to make any comments on the lesson.



Lesson Plan (9th Grade)
Teacher: Yasuhiro Inosako

0. Date, Place, Class

Date: 25th July, 2000, Tuesday (13:30 14:30)

Place: Junior and Senior High School attached to Hiroshima University,
Information Processing Room, Information Processing Center

Class: 9th Grade(Junior High School, 3rd grade), 40students (20 boys, 20 girls)

1. Teaching Unit: Properties of Circles

2. Teaching Objectives and Teaching Schedule

(1) Teaching Objectives
1.To help students: investigate the properties of chords and tangents of a circle by paying

attention to the symmetry of circles, understand the properties of inscribed circle of a
triangle or of a quadrilateral, and deepen the understanding of the relation between the

positions of two circles.
2.To help students understand the relation between the angle at the circumference and the one

at the center of a circle and expand their ability to prove the properties of circles by using

this relation.
3.To help students understand the properties of a cyclic quadrilateral and the condition that

four vertices of a quadrilateral are on a circumference with the relation between the angle at

a circumference and the one at the center.
4.To help students understand and grasp synthetically the relation of the angle between a

tangent to a circle and a chord through the point of contact and the angle subtended by the

chord at a circumference with the theorem which has already been learned.

(2) Teaching Schedule (11 hours as a whole)

Step 1: Properties of circles 4 hours

Step 2: Angle at the circumference 4 hours (Today's lesson is the 1st of 4.)

Step 3: Circles and Quadrilaterals 3 lessons

3. About Teaching Material
Students have already learned geometry from the construction of basic figures and solid

geometry in the 1st year of Junior High School (7th grade), and the conditions for congruent
triangles or similar triangles and the properties of parallelograms in the 2nd year (8th grade). In

the 3rd year in the Junior High School (9th grade), the aim is to expand the students' ability to

measure figures by making comprehensive use of the properties and theorems concerning cyclic

quadrilaterals and Pythagoras' theorem.
In order to help students understand the properties of figures clearly, the students should first

surmise discover and make sure of the properties of a particular figure, and then build up theorems

with understanding of the necessity and the validity of definitions. Such a teaching method has not

been easy so far, but the introduction of simulation software has made it possible and easier. This

lesson is intended to get students to surmise the relation between the angle at the circumference

and the one at the center of a circle, and to examine the cases where the vertex is inside the circle

or outside of it, and to understand all these cases synthetically.
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4. Today's Lesson
(I) Title of the Lesson: Surmise the relation between the angles at the circumference and at the

center of a circle

(2) Objective of the Lesson: There is a circle, center 0, and its sector OAB on a

plane. To help students observe the change in size of LAPB, take any

point P on plane. They should then examine the relationship between the

size of LAPB, that of the angle at the circumference and the position of

the point P, and attempt to understand all these cases synthetically.

(3) Teaching and Learning Process of the Lesson

Pt

Teaching Content Teaching Process Notes

1. Introduction
Presentation of
problem

2. Development
To examine the
size of angle to
solve the
problem.

Confirmation of
the properties
Consideration for
summary

3. Summary
Confirmation
and summary of
this lesson

The problem of this lesson The software indicates the

size of L APB with fixed
points, A and B, and point P
moving freely.

A

There is a circle, center 0, and its sector

OAB shown as the right figure. Move the

point P on the plane, examine the size of

L APB. What can be found about it?

1. To observe the size of angle APB and to surmise
the possible property by changing the position
of point P with the following procedure.

To examine the case where the size of different
angles ABP are equal.

To examine the case that the point P is in the
circle or out of circle.

To move the points, A and B, if necessary.

2. To present the discovered properties.
1)When the point P is at the circumference,

Z APB=const.( a)
2) a is a half of the angle subtended by the

minor arc AB at the center.
3)When the point P is in the circle,

L APB > a
4)When the point P is out of the circle,

LAPB <a
5)It is impossible to sum up shown as from 1)

4) in case that the point P is in the opposite
side to the point 0 with respect to the line
AB.

Summary of this lesson
To confirm that L APB is called the angle
subtended by the arc AB at the circumference
based on the properties 1) and 2).
To confirm the discovered properties.

Take arc AB as a minor arc

2) should be found by
students' spontaneous
thinking.
When the point P is in the
opposite side to the point 0,
help students notice the
following points.

Which angle should be

to examined, the obtuse
one or the reflex one?

It is impossible to sum
up the common
properties

etc.

The assignment is whether
the same properties can be
found or not about major arc

Software: Cabri Geometry II for Windows (Texas Instruments)
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Lesson Plan (10th Grade)
Teacher: Yoshihumi Inoue

0. Date, Place, Class
Date: 25th July, 2000, Tuesday (13:30 14:30)

Place: Junior and Senior High School attached to Hiroshima University,
Kenshu-kan #4 Room

Class: 10th Grade(Senior High School, 3rd grade), 40students (24 boys, 16 girls)

1. Teaching Unit: Quadratic Functions

2. Teaching Objectives and Teaching Schedule
(1) Teaching Objectives

1.To help students deepen their understanding of change and correspondence and grasp clearly
the concept of function through problems.

2.To help students deepen their understanding of graph of general quadratic function,
y=ax2+ bx+c.

3.To help students determine a quadratic function from conditions regarding graph.

4.To help students find out maximum and minimum values of quadratic function with help of
graph.

5.To help students deepen their understanding of the relation between the graph of quadratic
function and the solution of quadratic equation and inequality.

6.To help students solve various problems with help of quadratic function

(2) Teaching Schedule (26 hours as a whole)

Stepl: Quadratic function and its graph 8 hours

Step2: Maximum and minimum of quadratic function 4 hours

Step3: Positional relation between graph of quadratic function and x axis 3 hours
(Today's lesson is the 2nd of 3)

Step4: Quadratic function and quadratic equation 4 hours

Step5: Quadratic function and quadratic inequality 4 hours

Step6: Application of quadratic function 3 hours

3. About Teaching Material

Students have already learned about the function concept from the point of the relation between
concrete variables in the domain, Quantitative Relations, in Junior High Schools. The content in the

first year in the Senior High School is aimed at deepening students' understanding of functions and

proceeding to the learning of quadratic function and its graph. One main objective here is to
consider the maximum and minimum values of quadratic functions and their graphs and to solve
problems using this knowledge.

Students can sometimes make a guess at an answer to geometrical problems by focusing on such

aspects as symmetry, but often they are not sure about validity of their answers, when being asked a

question "Is it really so?"

This lesson is aimed at getting students to intuitively guess an answer to geometrical problems
and then to verify them. Students are expected to feel that mathematics can be a useful tool in
justifying their guess.
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4. Today's Lesson
(1) Title of the Lesson: Application of quadratic function

(2) Teaching Objective of the Lesson: To solve problems using quadratic function and appreciate

the significance of a mathematical way of viewing and processing solutions.

(3) Teaching and Learning Process of this Lesson

Teaching Content Teaching Process Notes
1. Introduction

Review

2. Development
Presentation of
problem

Guessing an
answer and its
verification

3. Summary

*Application of quadratic function
-To confirm that various problems have been solved so

far using quadratic functions and their graphs.

*Presentation of problem

A \B

C
The ends, A and B, of a 10 meters piece of rope are
fixed at 8 meters apart. If any point C along the rope

is taken and a triangle ABC is formed, find the
position of C which results in the greatest possible
area of triangle ABC.

8

To help students have
their own guess.

To confirm that the
area becomes the
biggest when the
length of CH
becomes the biggest.

C

To help students find at first the area of the triangle
when AC=4 and BC=6.
To help students guess an answer to this problem and
its reason.

*Maximum of the area
When both L A and L B are acute, a perpendicular
line from vertex C is drawn onto the side AB and
their intersection is named H.

1) To help students consider relation between x
and y when AC=x and AH=y.

2) To express CH in terms of x.
3) To consider the case when CH becomes the

biggest.

To consider the case when L A (or L B) is obtuse.
To conclude, as a result of consideration, that the area
becomes the biggest when the figure is an isosceles
triangle with AC=BC.

*Summary of this lesson
To help students realize that the problem has been
solved using quadratic function and to confirm
practicability of function.

H
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