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Abstract

Many variables in social science research occur naturally

in continuous form. For example, attitudes, intelligence, and

personality are often measured at an interval level of scale. Of

course, not all variables occur in continuous form (e.g.,

gender, pass/fail grading, etc.). When nominal variables

naturally occur, traditional analysis of variance-type methods

are certainly warranted. However, when nominal data happen to be

the dependent variable, both ANOVA and multiple regression

techniques are insufficient. The purpose of this paper is to:

a) present an overview of logistic regression, b) illustrate the

method along with the data transformations that are conducted,

and c) provide discussion concerning how to interpret logistic

regression results. To make the discussion more concrete,

analysis of a data set will be presented in which logistic

regression is used to predict the likelihood of a college

student withdrawing or failing a course.

Introduction

Several analytical options are available for examining

discrete dependent variables, including discriminant analysis,

logit multiway frequency analysis, and logistical regression. Of
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these methods, Tabachnick and Fidell (1996) noted that logistic

regression is the most flexible because,

Unlike discriminant function analysis, logistic regression
has no assumptions about the distributions of the predictor
variables; in logistic regression, the predictors do not
have to be normally distributed, linearly related, or of
equal variance within each group. Unlike multiway frequency
analysis,.the predictors do not need to be discrete; the
predictors can be any mix of continuous, discrete and
dichotomous variables. Unlike multiple regression analysis,
which also has distributional requirements for predictors,
logistic regression cannot produce negative probabilities.
(p. 575)

Furthermore, logistic regression can handle dependent variables

with more than two outcomes that may or may not have an inherent

ordinal ranking. It should be noted, however, that logistic

regression is essentially a univariate analysis and is limited

to a single dependent variable (Huck, 2000). By contrast,

discriminant analysis is multivariate in nature (Klecka, 1980).

Logistic regression approaches have been popular in some

fields (e.g., health/medical sciences) due to the nature of the

research questions often asked in these settings (Tabachnick &

Fidell, 1996). The discrete outcome in logistic regression is

often disease/no disease. For example, can risk of heart disease

be predicted from blood pressure and age? Logistic regression is

especially useful when the distribution of responses on the

dependent variable is expected to be nonlinear with one or more

of the independent variables. For example, the probability of

heart disease may be little affected (say 1%) by a 20-point
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difference among people with low blood pressure (e.g., 105 vs.

125) but may change quite a bit (say 5%) with an equivalent

difference among people with high blood pressure (e.g., 190 vs.

210) .

One reason for logistic regression's popularity lies with

its ability to explain outcomes in terms of an odds ratio (Huck,

2000). The odds ratio can be intuitively understood (e.g. "the

participants were about 5 times more likely to have. .") by

most applied researchers. However, the mathematical foundation

of the ratio and the equations underlying logistic regression

are a bit more complex. Because the outcome variable is discrete

in nature, special data transformations, called logits, are

required.

Theory

The basic premise behind multiple regression analysis (MRA)

is that a continuous outcome variable is, in theory, a linear

combination of a set of predictors and error. Thus, for an

outcome variable, Y, and a set of n predictor variables,

X1,...,Xn, the MRA model is of the form:

Y = a + 13)(1 + 13X2 + . . . + + = a + E 13jXj +E
J=1
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where a is the Y-intercept (i.e., the expected value of Y when

all X's are set to 0), 13, is a multiple (partial) regression

coefficient (i.e., the expected change in Y per unit change in Xn

assuming-all other X's are held constant) and s is the error of

prediction. If error is omitted, the resulting model represents

the expected, or predicted, value of Y. We can interpret the MRA

model as follows: each observed score, Y, is made up of an

expected, or predictable, component that is a function of the

predictor variables X1,...,Xp, and an error, or unpredictable

component that represents error of measurement (i.e.,

unreliability) and/or error in the selection of the model.

Logistic regression is a variation of ordinary regression,

useful when the observed outcome is restricted to two values,

which usually represent the occurrence or non-occurrence of some

outcome event, (usually coded as 1 or 0, respectively). It

produces a formula that predicts the probability of the

occurrence as a function of the independent variables. Just like

linear regression, logistic regression gives each regressor a

coefficient p that measures the regressor's independent

contribution to variations in the dependent variable. But there

are technical problems with dependent variables that can only

take values of 0 and 1.
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Suppose we want to predict whether someone is male or

female (DV, M=1, F=0) using his or her foot size in inches (IV).

We could plot the relations between the two variables as we

customarily do in regression. The plot might look something like

Figure 1. The Y-axis is P, which indicates the proportion of l's

at any giveh value of height
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Notice that none of the observations actually fall on the linear

regression line. They all fall on zero or one. The regression

model will also allow estimates below 0 and above 1. The

predicted values will become greater than one and less than zero
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if you move far enough on the X-axis. Such values are

theoretically inadmissible. Another problem lies in that one of

the assumptions of regression is that the variance of Y is

constant across values of X (homoscedasticity). This cannot be

the case with a binary variable, because the variance is PQ.

When 50 percent of the people are l's, then the variance is .25,

its maximum value. As we move to more extreme values, the

variance decreases. When P=.10, the variance is .l *.9 = .09, so

as P approaches 1 or zero, the variance approaches zero.

A hint at the solution lies in observing that a logarithmic

curve best "fits" the data. The logistic transformation of p,

also called taking the logit of p, is the log (to base e) of the

odds or likelihood ratio that the dependent variable is 1. In

symbols it is defined as:

logit(p)=log(p/(1-p))

Whereas p can only range from 0 to 1, logit(p) ranges from

negative infinity to positive infinity. The logit scale is

symmetrical around the logit of 0.5 (which is zero). The logit

transformation spreads out the differences between extreme

probabilities; the differences of logits between gender

likelihoods of .95 and .99 is much bigger than that between .5

and .7. The success of logistic regression is based on the
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characteristic that the logit transformation changes the non-

linear probability scale into a linear "logit" scale.

It follows that logistic regression involves fitting to the

data an equation of the form:

logit (p) = a + 131x1 + 132x2 + P3x3 +

Although logistic regression finds a "best fitting" equation

just as linear regression does, the principles on which it does

so are rather different. Instead of using a least-squared

deviations criterion for the best fit, it uses a maximum

likelihood method, which maximizes the probability of getting

the observed results given the fitted regression coefficients. A

consequence of this is that the goodness of fit and overall

significance statistics used in logistic regression are

different from those used in linear regression.

The logistic regression model is identical to the multiple

regression model except that the log-odds in favor of Y = 1

replaces the expected value of Y. There is a relatively simple

exponential transformation for converting log-odds back to

probability:

P
1

1 + exp[- (a + 13 x + 132x2 + ...)
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The odds of an event is defined as the probability of the

outcome event occurring divided by the probability of the event

not occurring. The odds ratio for a predictor tells the relative

amount by which the odds of the outcome increase (O.R. greater

than 1.0) or decrease (O.R. less than 1.0) when the value of the

predictor value is increased by 1.0 units.

Methodology

Logistic regression forms a predictor variable that is a

linear combination of the explanatory variable. The values of

this predictor variable are then transformed into probabilities

by a logistic function. To illustrate this process, analysis is

presented of a data set consisting of various predictors

characteristic of students at Brookhaven College in the Dallas

Community College District. The goal of the logistic regression

model is to predict whether or not a student will fail or drop a

course (as opposed to receiving an A, B, C, or D) based on basic

characteristics of the course and student. These course/student

indicators include gender, residency status, ethnicity, TASP

testing status, credit hours of course being taken, type of

course taken, date of course registration, number of students in

the class, and number of weeks in the course. Of particular

9 10
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interest is the ability to identify and predict the success of

"high-risk" students. High-risk students are defined as being

more likely to be unsuccessful in a course for various reasons.

Because the logistic regression model can calculate individual

probabilities of dropping/failing a class for each student, it

provides a quantitative way to identify students most likely to

be unsuccessful in class, i.e. high risk. It is important to

note that logistic regression analysis does not suggest that an

indicator (such as gender) "causes" high or low probability of

event occurrence. Logistic regression, like all regression

analyses, is based on correlations or relationships between

variables, which in many cases are indirect. A relationship does

not imply cause.

Results

PC SAS was used to run the logistic regression analysis of

the data that consisted of over 18,000 courses taken Fall of

1999. Of the model's predicted probabilities, 67.8% where

concordant with the model, and 31.8% where discordant. This

gives an initial impression of a moderate fit to the data.

Tables 1 and 2 show other output relevant to determining the

success of the model. The Wald Chi-Square statistic indicates

that the model overall was statistically significant (Table 1),

meaning it did better than if someone where to simply guess with
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50-50 odds of a correct prediction. The large data set and

moderate fit also led to most of the indicators having a

statistically significant impact on the model (Table 2 Chi-

Square). Table 2 also gives the individual logit coefficients

(Estimate) and intercept for the logistic equation.

TABLE 1 The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1778.3700 29 <.0001
Score 1629.6605 29 <.0001
Wald 1474.1096 29 <.0001

TABLE 2 Analysis of Maximum Likelihood Estimates

Parameter DF p Coeff Error Chi-Square Pr>ChiSq

Intercept 1 -2.9090 0.4525 41.3196 <.0001
Reg Diff 1 -0.0168 0.000981 293.2318 <.0001
NO WEEKS 1 0.0455 0.00755 36.2428 <.0001
NO STUDENT 1 -0.00543 0.000963 31.8188 <.0001
AGE 1 -0.0128 0.00209 37.8408 <.0001
CRED 1 1 -0.3759 0.0830 20.5340 <.0001
CRED 2 1 -0.1400 0.1808 0.5997 0.4387
CRED 3 1 -0.1660 0.0704 5.5553 0.0184
CRED 4 1 0.2571 0.0756 11.5710 0.0007
TYPE 1 1 0.3373 0.0362 86.5930 <.0001
TYPE 2 1 0.0192 0.0470 0.1663 0.6834
RESIDENCY 1 1 0.3111 0.0446 48.6582 <.0001
RESIDENCY 2 1 0.2083 0.0489 18.1273 <.0001
RESIDENCY 3 1 0.2387 0.1018 5.4997 0.0190
ETHNICITY 1 1 0.1508 0.0557 7.3236 0.0068
ETHNICITY 2 1 0.1660 0.0668 6.1734 0.0130
ETHNICITY 3 1 0.0434 0.0610 0.5076 0.4762
ETHNICITY 4 1 -0.1316 0.0696 3.5795 0.0585
ETHNICITY 5 1 0.6133 0.1611 14.4868 0.0001
ETHNICITY 6 1 -0.3644 0.1013 12.9468 0.0003
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TABLE 2 continued...

Parameter DF 0 Coeff Error Chi-Square Pr>ChiSq

GENDER F 1 -0.1151 0.0163 50.0788 <.0001
MP 0 1 0.3489 0.0204 291.9072 <.0001
MPB 0 1 0.4803 0.2000 5.7672 0.0163
MRC 0 1 0.4151 0.0513 65.3768 <.0001
RF 0 1 -0.4760 0.0307 240.2258 <.0001
RFB 0 1 0.5827 0.2675 4.7436 0.0294
RP 0 1 -0.3799 0.0247 236.3726 <.0001
RPB 0 1 -0.2911 0.0644 20.4301 <.0001
WFB 0 1 0.7360 0.2763 7.0977 0.0077
WRC 0 1 0.2852 0.0450 40.2318 <.0001

The analysis now deviates from typical checks for logistic

regression model success. Of primary interest in this study is

the ability to accurately predict high-risk students. To best

evaluate this model, predictions for dropping or failing a

course where made for Fall 2000 students based on the logit

equation derived from the Fall 1999 data. Again, a similar

number (67.4%) of the predictions where accurate, or "matched"

the model. But most of the "bad" predictions occurred around

probabilities of 50%, which is also the probability region in

which most students fell. Figures 2 and 3 illustrate. Notice

that at the extreme probabilities (less than 10% = successful

students, more than 70% = high-risk students), the number of

correct predictions is much higher than between, say, 30% and

60%. Table 3 illustrates the accuracy of the model by showing
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Table 3 Accuracy of Logistic Model

"AT-RISK" STUDENTS

LOGIT Prob Predict Actual
W or FW or F W or F W or F

for High/Low Probabilities

"SUCCESSFUL" STUDENTS

LOGIT Prob PredictActual
W or FW or FW or F W or F

1.25 77.80% 1 1 -3.64 2.60% 0 1

1.20 76.80% 1 0 -3.64 2.50% 0 0

1.19 76.70% 1 1 -3.65 2.50% 0 0

1.14 75.70% 1 1 -3.65 2.50% 0 0

1.14 75.70% 1 1 -3.68 2.50% 0 0

1.10 75.00% 1 1 -3.69 2.40% 0 0

1.10 75.00% 1 1 -3.69 2.40% 0 0

1.10 74.90% 1 1 -3.70 2.40% 0 1

1.09 74.90% 1 1 -3.70 2.40% 0 0

1.09 74.80% 1 1 -3.72 2.40% 0 0

1.09 74.80% 1 1 -3.73 2.30% 0 0

1.09 74.80% 1 1 -3.73 2.30% 0 0

1.08 74.70% 1 1 -3.77 2.20% 0 0

1.08 74.70% 1 1 -3.78 2.20% 0 0

1.05 74.10% 1 1 -3.78 2.20% 0 0

1.05 74.10% 1 0 -3.78 2.20% 0 0

1.05 74.10% 1 1 -3.78 2.20% 0 0

1.05 74.00% 1 1 -3.79 2.20% 0 0

1.02 73.60% 1 1 -3.80 2.20% 0 1

1.01 73.30% 1 1 -3.81 2.20% 0 0

1.01 73.20% 1 1 -3.82 2.20% 0 0

1.01 73.20% 1 0 -3.82 2.20% 0 0

0.99 73.00% 1 1 -3.88 2.00% 0 0

0.99 73.00% 1 1 -3.91 2.00% 0 0

0.99 72.90% 1 1 -3.91 2.00% 0 0

0.99 72.90% 1 0 -3.94 1.90% 0 1

0.98 72.70% 1 1 -3.96 1.90% 0 0

0.96 72.40% 1 1 -3.97 1.90% 0 1

0.96 72.30% 1 1 -4.11 1.60% 0 0

0.96 72.30% 1 1 -4.64 1.00% 0 0

0.96 72.20% 1 1 -4.64 1.00% 0 0

0.95 72.20% 1 1 -4.64 1.00% 0 0

0.95 72.20% 1 1 -4.65 1.00% 0 0

0.95 72.20% 1 1 -4.66 0.90% 0 0

0.95 72.10% 1 1 -10.24 0.00% 0 0

0.95 72.10% 1 1 -10.66 0.00% 0 0

0.94 71.90% 1 0 -10.66 0.00% 0 0

0.93 71.70% 1 1 -11.13 0.00% 0 0



predictions for the actual data for the highest and lowest 38

cases. Although the prediction model does only a moderate job

overall, for those high-risk and successful students, it does

very well. Incorporating better predictors may greatly improve

even these results.

The model is further useful in that it allows the

comparison of various configurations of indicators by observing

the effect they have on the logit of the probability of failing

or withdrawing. Table 4 shows the effect of changing various

indicators, while holding the others constant to achieve a high-

risk status. Because the logit scale is a transformation of

probabilities to a linear scale, the ratio of two logits

indicates how many more times likely the event will occur. For

example, the ratio of the male to female logits indicates that

males are 1.3 times as likely to fail or withdraw as females.

A constant increase in logit(p) has a reasonably

straightforward interpretation. It corresponds to a constant

multiplication (by exp(,8)) of the odds that the dependent

variable takes the value 1 rather than 0. This leads to a

convenient way of representing the results of logistic

regression by a plot (Figure 4) showing the odds change produced

by unit changes in different independent variables.
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TABLE 4

Gender

Logit Ratios

LOGITS LIKELIHOOD RATIOS
Compared to

Next
Compared to

Lowest

Male 1.01 1.3
Female 0.78

Credit Hours for Course
Cred 4 0.78 2.3 5.4
Cred 3 0.34 2.3
Cred 1 0.15

Number Days until End of Registration
3 1.21 1.6
30 .0.76

Number Weeks in Course
32 1.94 1.6
16 1.21

Course Type
1 - General Academic 1.53 1.3 1.8
2 1.21 1.4
4 0.83

Residency
In District 1.53 1.1 3.3
Out of State 1.46 1.0 3.2
Out of District 1.43 3.1
Out of Country 0.46

# Students in Course
5 1.56 1.1

20 1.47

Ethnicity
American Indian/Alaskan 1.53 1.4 3.5
African-American 1.08 1.0 2.5
White 1.07 1.1 2.4
Hispanic 0.96 1.2 2.2
Asian/Pacific Islander 0.78 1.4 1.8
Non-Resident Alien/Foreign National 0.55 1.3
Unknown 0.44

Age
22 1.07 1.2 1.7
35 0.90 1.4
55 0.64

MP
No 1.07 2.9
Yes 0.37



FIGURE 4 Relationship of Probability to P's

0.9

0.8

0.7

0.6

0.5

0.4

la 0.3

0.2

0. 1

0
-5 -4 -3 -2 -1 0

values of x

2 3 4 5

Conclusion

Logistic regression is a particularly well-suited analysis

technique when a dichotomous dependent variable is involved. The

logit transformation allows for direct linear comparisons of the

effect different indicators have on the outcome. Logistic

regression also aids in defining quantitatively what combination

of predictors leads to varying degrees, or probabilities, of the

outcome variable. The application to identifying high-risk

students in educational settings is especially practical.

Refinement of the logistic model presented will hopefully lead

to improved accuracy in predicting students at high-risk of

academic failure, with successful interventions to follow.
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