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Outlier detection 2

Abstract

Researchers are often faced with the prospect of dealing with

observations within a given data set that are unexpected in

terms of their great distance from the concentration of

observations. For their potential to disproportionately

influence the mean, and thus many statistical analyses, outlying

observations require special consideration on the part of the

researcher. It is suggested that decisions about how to go about

discarding or incorporating such outliers be made with careful

consideration as to the implications associated with the various

procedures for doing so.
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In order to review methods of dealing with outliers in a data

set, it is first necessary to examine briefly the nature of an

outlier in order to make explicit why handling them requires

such care. Defining the cutoff for what makes an extreme

measurement an outlier requires some subjective judgement. When

dealing with a data set that is normally distributed, a

particular data point could theoretically exist anywhere within

the range of the distribution (Sachs, 1982). As do many

authors, Barnett and Lewis (1984) defined an outlier in a set of

data as "an observation (or subset of observations) which

appears to be inconsistent with that set of data."

The researcher's understanding of the source and degree of

this inconsistency may guide the decision on the best method of

dealing with an outlier. Usually, the researcher is concerned

with the type of variability the outlier represents. Within the

broad category of outliers, Beckman and Cook (1983)

distinguished between the nature of an outlier as either a

discordant observation or as a contaminant. They define a

discordant observation as "any observation that appears

surprising or discrepant to the investigator" (p. 121).

Alternatively, they define a contaminant as "any observation,

that is not a realization of the target distribution" (p. 121).

Clearly, the two types of outliers represent different types of

miscalculations'on the part of the researcher. It is the latter
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type, however, which is potentially more troubling on a

technical level.

Without specifically addressing the idea of contaminants,

Anscombe (1960) discussed the types of variability that may

exist within a sample, including the concepts of measurement

error, which is a failure of the measurement instruments, and

execution error, which represents a discrepancy between what was

intended to be measured and what actually was. When confronted

with an observation or set of observations that deviate markedly

from the expected range, a thoughtful researcher must consider

the accuracy of the measurement, for no observations are

absolutely trustworthy (Anscombe, 1960). In certain cases,

measurement error may be a result of faulty recording or coding

of an observation, or the result of an imperfect measurement

apparatus. Indeed, there exist numerous reasons why measurement

error may be to blame for an incongruent observation (Anscombe,

1960). In this regard, Iglewicz and Hoaglin (1993) pointed out

that identifying the cause of such miscalculations and

subsequently amending the procedures whereby they were produced

is vastly important in reducing the error rate in future

samples.

Sample size also factors into the detection of outliers, as

the smaller a sample is, the less probable are outliers (Sachs,

1982). In collecting a sample by means of random selection from
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a normally distributed population, the odds favor selecting a

data point from where the concentration of data points is

highest. As the size of a sample grows, it begins to mirror the

population from which it is drawn more accurately (Sachs, 1982).

Evans (1999) discussed the challenge researchers face in

determining the cause of outliers. Although the researcher is

rarely certain of the singular cause of an outlier,

understanding the source of the unexpected variability is

important in making a decision on a course of action for dealing

with such an observation. Researchers may wish to recode,

retain, or eliminate observations altogether.

In addition to measurement and sampling errors, several

other sources for outliers exist. For example, outliers can

exist as the result of an incorrect distributional assumption

(Iglewicz & Hoaglin, 1993). This may be the case if, for

instance, the researcher assumes that a sample is normally

distributed when in fact it is not. Such a case may exist if the

distribution were skewed in one direction, or if it was

rectangular. If this is indeed the cause, anomalous observations

are not true outliers. Rather, their examination may assist the

researcher in adopting a more suitable statistical model that

leads to more valid inferences (Iglewicz & Hoaglin, 1993). As

Barnett and Lewis (1983) declared, the analysis of the data may

sound a warning in terms of the distribution. Douzenis and Rakow
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(1987) supported this perspective by pointing out that the

presence of an outlier may indicate a weakness in the

statistical model and that outliers may distort statistics which

assume an interval level of measurement or a normally

distributed sample.

Another possible cause of outliers is that the data contains

a different structure than is accounted for by the sampling

method. Iglewicz and Hoaglin (1993) used the example of a

researcher employing random daily samples when in fact morning

and afternoon subsamples might be more appropriate and accurate.

In cases such as this, qualitative differences between data

points may exist within a sample that could produce the

appearance of outliers. Barnett and Lewis (1983) used an example

of data that refer to purchases of cereal packets over a 13 week

period, where 2 apparent outliers are recorded at 52 and 39

packets sold. It is suggested that purchasing trends unseen by

the researchers may account for these outliers, as they are both

multiples of 13.

Another factor to consider in studying outliers is that they

may not be mistakes at all, but indicators that within a sample,

such values are possible (Iglewicz & Hoaglin, 1993). In such a

case, the presence of an outlier can lead the researcher to an

important discovery in terms of the potential for what is being

studied.
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While examining a set of data points, researchers face the

difficulty of accurately identifying outliers. Visual inspection

alone, without the use of analytic or graphical tools, is an

inadequate means of analysis in this regard, and can lead to

missing or mislabeling outliers (Iglewicz & Hoaglin, 1993).

One method of identifying outliers would simply be to

convert the data points to Z scores and screen for high absolute

values (Donzenis & Rakow, 1987). A Z score is the observed value

minus the mean, divided by the standard deviation. A data

point's Z score represents the number of standard deviations it

falls from the mean. Donzenis and Rakow (1987) suggested that Z

scores of plus or minus 2.70 should be considered "outside"

because they are "1.5 times the interquartile range (a step)

below the twenty-fifth or above the seventy-fifth percentiles"

(p. 4). In turn, Donzenis and Rakow (1987) suggested that Z

scores of plus or minus 4.72 should be considered "far out",

because those values are "beyond three times the interquartile

range (two steps) below the twenty-fifth or above the seventy-

fifth percentiles" (p. 4.).

Although this method of identifying outliers is appealing

for it's simplicity, Iglewicz and Hoaglin (1993) pointed out the

method's inherent inaccuracy. The maximum possible Z score for

each data point is constrained by the subtraction of the mean

and the division of the standard deviation. A large difference
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between the data point and the mean contributes to a large

standard deviation, which confines the resulting Z score.

Consider this small heuristic data set: 1.0 .91 1.04 .89

1.20 .90 1.10 2.0.

For these data points, the mean is equal to 1.13. The

standard deviation is then .361. The respective Z scores then

are: .360 .61 .249 .665 .194 .637 .08 2.37.

Given this method, a researcher would not conclude that the

score of 2.0 with Z = 2.37 is an outlier, though it is clearly a

departure from the other data points. The Z score of 2.37 falls

short of the proposed criteria for categorizing a data point as

"outside", let alone the criteria for what constitutes

consideration for "far out". The process of identifying outliers

by their Z scores is particularly problematic in small data

sets, because as Iglewicz and Hoaglin (1993) pointed out, the

maximum Z score for any given data point is equal to (n-1)

divided by the square root of n.

The Box Plot

One method of identifying outliers graphically is by

examining a box plot (Tukey, 1977). A box plot's measure of

central tendency is the median, beneath which 50% of the data

points fall. The "box" surrounding the median represents the 75th

and 25th percentiles of the data. This is known as the

interquartile range. Additionally, the highest and lowest scores
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are represented. Tukey (1977) suggested that outliers can be

determined by the use of "fences" around the interquartile box.

The fences may be drawn to extend 1.5 to 3 times the difference

between the first and third quartiles, depending on the

researcher's interest in sensitivity in determining an outlier.

Thus, observations that fall beyond these fences are viewed by

this method as outliers. Figure 1 shows a box plot of the

heuristic data set used earlier. As the difference between the

first and third quartiles is equal to .25, drawing the fence to

1.5 times the difference would extend the boundary for an

outlier to .375 above and below the interquartile range. Using a

more conservative multiple of 3.0, the fence would extend .81

beyond the interquartile range. Within this data set, either

method would mark a score of 2.0 as a clear outlier. Most

striking, however, is the box plot's utility in making outlying

scores of stand out against the concentration of data points.

INSERT FIGURE 1 ABOUT HERE.

Statistical Significance Testing

Sachs (1982) suggested several methods for testing a data

set for outliers based on the size of a random, normally

distributed sample. The first is to be used for relatively small

samples, where n is less than or equal to 25. First, the

individual values are ranked in terms of magnitude. The
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researcher then finds the difference between the suspected

outlier and the observation closest to it, then divides this

value by the difference between the suspected outlier and the

value of the least magnitude. As the data set increases in size

to where n is equal to between 8 and 13 the equation changes

slightly so that denominator is computed by finding the

difference between the suspected outlier and 1 minus the

observation of the least magnitude. When the data set is between

14 and 25, the denominator is computed by finding the difference

between the suspected outlier and two less than the observation

of the least magnitude. The result of this equation is then

compared with specified significance values. see Table 1.

Consider the heuristic data set of: 1.0 .91 1.04 .89

1.20 .90 2.0. In order of magnitude, the data set is: .89

.90 .91 1.0 1.04 .120 2.0.

Using the formula in Sachs (1982), where 2.0 is the

suspected outlier, we find that: 2 1.20/ 2 .89 is equal to

.870. The critical value in Table 1 for n=7 at a .05 statistical

significance level is .507. Because .870 exceeds this values,

the null hypothesis that there are no outliers in this data set

is rejected.
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INSERT TABLE 1 ABOUT HERE

For data sets larger than 25, Sachs (1982) provided a test

statistic and a table of critical values. If the value of the

test statistic, T, equals or exceeds the upper statistical

significance boundary of the standardized extreme deviation, it

can be assumed that the extreme value originated from a

population other than the data points in the remainder of the

sequence (Sachs, 1982). An approximately normally distributed

sample is assumed for this test. Table 2 provides the critical

values.

For this test, the formula is:

T = xl- x bar/ s

Here, xl is the extreme value and s is the standard deviation of

the sample.

For instance, consider a sample of 50, where the mean was

equal to 100 and the standard deviation was equal to 15. If the

extreme value was recorded at 175, the formula would be:

T= 175-100/ 15.

This formula results in the value 5.0. From Table 2, we see

that the critical value for a

statistical significance level

exceeding this critical value,

sample of

is equal

it could

this size,

to 3.083.

be assumed

at a

Thus,

that

95%

by

the
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extreme score is representative of a different population than

the remainder of sample represents.

INSERT TABLE 2 ABOUT HERE

This paper excludes multiple methods of detecting outliers

statistically for the purpose of regression analysis. The

interested reader can find an in Evans (1999) an exceptional

primer on this topic in particular.

Accommodating Outliers

Once an outlier has been identified, the researcher is left

with the question of how to deal with it, for it's presence

impacts statistical analysis, perhaps most basically by

affecting the mean. As is widely recognized, the mean is

disproportionaly impacted by outliers (Wilcox, 1997, 1998).

Because other statistics employ deviations from the mean,

distortions in the mean in turn distort other statistics.

It is best to conduct statistical analyses both including

and excluding the potential outliers once they have been

identified. The difference between the two analyses can guide

the researcher in the best course of action for dealing with the

outlier (Sachs, 1982).

One option is simply to discard the outlier. Sachs (1982)

suggested that in a data set of at least 10 individual values, a

value may be discarded if it exceeds 4 standard deviations from

13
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the mean, where the mean and standard deviation are computed

without the suspected outlier. Sachs (1982) points out that

99.9% of the data exists within 4 standard deviations from the

mean in a normal distribution and that 97% of the data exists

within this range in symmetric, unimodal distributions.

Another method is to use a "trimmed" mean. As the mean is

particularly vulnerable to being influenced by outlying

observations, computing a trimmed mean allows for a potentially

more reliable estimator of central tendency (Iglewicz & Hoaglin,

1993). The process of trimming the mean is not necessarily one

designed to accommodate outliers, though it can certainly be

used for that purpose (Sachs, 1982). To trim the mean, a

researcher eliminates the observation or observations that have

been flagged as potential outliers. To retain the symmetry of

the sample the researcher then eliminates an observation or

observations at the opposite end of the sample. For accuracy

purposes it is best not to trim more than 15% of the sample when

computing the mean (Iglewicz & Hoaglin, 1993). Thus, the mean

is computed using the trimmed sample. However, the eliminated

data points are then reinserted into the sample for the

remaining analyses.

It is simplest to illustrate the process of trimming the

mean with a small data set of, say, 11 observations. Consider

this heuristic data set: 100 97 91 109 116 89 101 119 87

14
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92 191. To compute the trimmed mean, the data points are first

ordered in terms of magnitude: 87 89 91 92 97 100 101 109

116 119 191.

After having identified the highest score of 191 as a

potential outlier, it is dropped temporarily from the data set,

as is the lowest score of 87. The original sample yields a mean

of 108.36. The trimmed mean is 101.56, which resembles more

clearly the whole of the sample.

Another method of accommodating outliers is to compute a

winsorized mean. Winsorization is an alternative to trimming

which substitutes a copy of the adjacent value in a data set for

the observation that is considered an outlier (Sachs, 1982).

Iglewicz and Hoaglin (1993) proposed the process of

winsorization be parallel to the mechanics of trimming, that is,

that trimming should be performed on a data set symmetrically,

with an equal number of values trimmed from each end of the data

set. In this case, to compute a winsorized mean, the researcher

replaces observations of both high and low magnitude with the

adjacent observations in the data set.

To illustrate the process of winsorization, consider the

heuristic data set from the previous example: 100 97 91 109

116 89 101 119 87 92 191. The researcher first orders the

data points in terms of their magnitude: 87 89 91 92 97 100

101 109 116 119 191.
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As with the trimmed mean, the scores of 191 and 87 are

dropped from the data set. Next, the scores closest to these

values in terms of magnitude replace the dropped scores in the

data set. The winsorized mean is the computed as:

89 + 89 + 91 + 92 + 97 + 100 + 101 + 109 + 116 + 119 + 119/11.

Thus, the winsorized mean is equal to 102.0. Recall that the

trimmed mean is equal to 101.56, and that the mean of the

uncorrected data set equals 108.36. This slight increase over

the magnitude of the trimmed mean illustrates that computing a

winsorized mean does not discard outliers completely, but rather

decreases their distance from the center of the sample (Barnett

& Lewis, 1984). The interested reader can find a more complete

treatment of the multiple facets and uses for trimmed and

winsorized means both in Barnett and Lewis (1984) and in Beckman

and Cook (1983).

16



Outlier detection 16

References

Anscombe, F.J. (1960). Rejection of outliers.

Technometrics, 2, 123-147.

Barnett, V. & Lewis, T. (1984). Outliers in statistical

data. Chichester, England: John Wiley & Sons.

Beckman, R.J. & Cook, R.D. (1983). Outlier....s.

Technometrics, 25, 119-149.

Douzenis, C. & Rakow, E.A. (1987, November). Outliers: a

potential data problem. Paper presented at the annual meeting of

the Mid-South Educational Research Association, Mobile, AL.

(ERIC Document Reproduction Service no. ED 291 789)

Evans, V. (1999, January). Strategies for detecting

outliers in regression analysis: An introductory primer. Paper

presented at the annual meeting of the Southwest Educational

Research Association, San Antonio, TX. (ERIC Document

Reproduction Service no. ED 427 059)

Iglewicz, B. & Hoaglin, D.C. (1993). How to detect and

handle outliers. Milwaukee, WI: ASQC Quality Press.

Sachs, L. (1982). Applied statistics: A handbook of

techniques (2nd ed.). New York: Springer-Verlag.

Tukey, J.W. (1977). Exploratory data analysis. Reading,

MA: Addison-Wesley.

Wilcox, R.R. (1997). Introduction to robust estimation and

hypothesis testing. San Diego: Academic Press.

17



Outlier detection 17

Wilcox, R.R. (1998). How many discoveries have been lost

by ignoring modern statistical methods? American Psychologist,

53, 300-314.



2.2 .

2.0

1.8.

1.6.

1.4.

1.2.

Outlier detection 18

Figure 1

Boxplotof values from the heuristic data set
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Table 1
Significance Bounds for Testing a Smaller Sample for the

Presence of an Outlier

N alpha=.10 alpha=.05 alpha=.01 Test statistic

3 0.886 0.941 0.988

4 0.679 0.76 0.889

5 0.557 0.642 0.780

6 0.482 0.560 0.698 xl x2

7 0.434 0.507 0.637 xl xn

8 0.479 0.554 0.683

9 0.441 0.512 0.635 xl x2

10 0.409 0.477 0.597 xl xn-1
11 0.517 0.576 0.679

12 0.490 0.546 0.642

13 0.467 0.521 0.615

14 0.492 0.546 0.641

15 0.472 0.525 0.616

16 0.454 0.507 0.595

17 0.438 0.490 0.577

18 0.424 0.475 0.561

19 0.412 0.462 0.547

20 0.401 0.450 0.535

21 0.391 0.440 0.524

22 0.382 0.430 0.514

23 0.374 0.421 0.505

24 0.367 0.413 0.497 xl x2

25 0.360 0.406 0.489 x1 x n-2

20
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Table 2
Significance Bounds for Testing a Larger Sample for the Presence

of an Outlier

N S=95% S=99% N S=95% S=99%

1 1.645 2.326 55 3.111 3.564

2 1.955 2.575 60 3.137 3.587

3 2.121 2.575 65 3.160 3.607

4 2.234 2.806 70 3.182 3.627

5 2.391 2.877 80 3.220 3.661

6 2.386 2.934 90 3.254 3.691

8 2.490 3.022 100 3.283 3.718

10 2.568 3.089 200 3.474 3.889

15 2.705 3.207 300 3.581 3.987

20 2.799 3.289 400 3.656 4.054

25 2.870 3.351 500 3.713 4.106

30 2.928 3.402 600 3.758 4.148

35 2.975 3.444 700 3.797 4.183

40 3.016 3.479 800 3.830 4.214

45 3.051 3.511 900 3.859 4.240

50 3.083 3.539 1000 3.884 4.264
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