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Abstract

Multiple regression analysis is used with considerable frequency

by researchers as a means of predicting the impact of predictor

variables on a dependent variable. Regression predictors are

typically correlated, often intentionally. To better understand

the relative contribution of each independent variable in

regression (and other) analyses, researchers can partition the

squared multiple correlation (R2) into constituent portions that

can be attributed to the independent variables both uniquely and

in various combinations with each other. The purpose of the

present paper is to explain and illustrate the use of

"commonality analysis." A small heuristic data set is used for

this purpose.
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A Primer on Regression and Canonical Analyses:

Partitioning Predicted Variance into Constituent Parts

Multiple regression analysis is used with considerable

frequency by researchers as a means of predicting the impact of

predictor variables on a dependent variable (Elmore & Woehlke,

1988; Goodwin & Goodwin, 1985; Willson, 1982). This usage has

increased as more researchers have become cognizant that all

parametric statistical analyses are part of a single general

linear model, e.g., regression, canonical correlation analysis,

and structural equation modeling, each in turn (Bagozzi,

Fornell, & Larcker, 1981; Fan, 1997).

Regression predictors are typically correlated, often

intentionally (Pedhazur, 1982). Notwithstanding myths to the

contrary, such collinearity is in no way problematic, except

that in such cases both beta weights and structure coefficients

must be interpreted (Thompson, 1997; Thompson & Borrello, 1985).

To better understand the relative contribution of each

independent variable in regression (and other) analyses,

researchers can partition the squared multiple correlation (R2)

into constituent portions that can be attributed to the

independent variables both uniquely and in various combinations

with each other. This method, "commonality analysis," is useful

precisely because it does not depend on a priori knowledge of

the influence of the predictors. According to Cooley and Lohnes
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(1976), "such neutrality allows the information inherent in the

data about the value of organizing observations in a certain

framework (that of the domains of predictors) to emerge" (p.

219) .

Because commonality analysis considers all possible orders

of entry of the predictors into the model, there is no

distortion of the results such as that which occurs when

stepwise analyses are conducted (Snyder, 1991; Thompson, 1995,

1998). As Thompson (1995) explained in detail, stepwise

regression analysis does not identify the best predictor set of

a certain size. Indeed, the best predictor set of a certain

size (a) may have a higher R2 than the variable set identified by

stepwise, and (b) may even include none of the predictors

selected by stepwise (cf. Thompson, 1995).

As Seibold and McPhee (1979) explained, commonality

analysis decomposes the squared multiple correlation into the

proportion of the explained variance of the dependent variable

associated (a) uniquely with each independent variable and with

the (b) common effects of each. They also noted that this

decomposition of R2 into its unique and common components is

rarely conducted and argued that:

Advancement of theory and the useful application

of research findings depend not only on

establishing that a relationship exists among

5
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predictors and the criterion, but also upon

5

determining the extent to which those independent

variables, singly and in all possible

combinations, share variance with the dependent

variable. Only then can we fully know the

relative importance of independent variables with

regard to the dependent variable in question. (p.

355)

The purpose of the present paper is to explain and

illustrate the use of commonality analysis (Cooley & Lohnes,

1976; Mood, 1969; Seibold & McPhee, 1979; Thompson, 1985;

Wisler, 1972). A small heuristic data set will be used for this

purpose. First, regression commonality analysis will be

explained and illustrated. Then a heuristic application will be

presented illustrating generalization of the method to canonical

commonality analysis (cf. Crossman, 1996).

The Logic of Commonality Analysis

Commonality analysis is a procedure that was originally

developed for use in the regression case (Thompson & Miller,

1985; Thompson,1985) and was extended usefully to the canonical

case, thus reinforcing the idea that canonical correlation

analysis is the most general linear model of classical

parametric statistics (Thompson & Borrello, 1985; Thompson &

Miller, 1985). As Thompson and Miller (1985, p. 2) explained,

6
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"the [commonality] analysis indicates how much of the

explanatory power of a variable is 'unique' to the variable, and

how much of the variable's explanatory power of a variable is

`common' to or also available from one or more other variables."

The unique contribution of an independent variable can be

defined as the squared semi-partial correlation between the

dependent variable and the selected independent variable after

all other independent variable components have been partialed

out (Wisler, 1969). According to Seibold and McPhee (1978, p.

355), "Commonality analysis thus sheds additional light on the

magnitude of an obtained multivariate relationship by

identifying the relative importance of all independent

variables, findings which can be of theoretical and practical

significance."

Regression Commonality Analysis

Regression techniques are often utilized by educational and

behavioral researchers, although these methods are most useful

when the independent variables are uncorrelated and can be

experimentally manipulated (Beaton, 1973; Pedhazur, 1982;

Rowell, 1996). However, this seems rarely the case in the

social sciences. To ascertain the relative contribution of the

independent variables uniquely and in various combinations with

each other, researchers may partition the squared multiple

correlation (R2) into constituent portions (Rowell, 1996).

7
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Data from a previous study published by Clay, Anderson, and

Dixon (1993) in the September/October issue of the Journal of

Counseling and Development and found in Murthy's (1994)

treatment of commonality analysis will be employed to illustrate

the steps in the process of conducting a commonality analysis in

the regression case. The study examined undergraduates'

perceptions of stress and anger as it was related to depression.

In this study, 247 undergraduates completed questionnaires

assessing stressful life events, depression, and anger

expression. According to Murthy (1994, p. 7),

The anger expression instrument yielded three

different subscales; anger in (IN) anger out

(OUT) and anger_ control (CONT), while the

stressful life events instrument yielded only one

score (STS). [Furthermore], the results from this

study concluded that anger in and stressful life

events were significantly related to depression,

and that anger out and anger control were not.

Thus, the authors decided to eliminate anger out

and anger control from further analyses and just

focus on the other two variables (STS & IN). But

because of the high degree of correlation between

all of these predictor variables, (IN, OUT, CONT,

& STS), commonality analysis can be used to

O
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determine the unique and common components of

these variables so that a more accurate

explanation in predicting depression can be

obtained.

In the heuristic example presented here, four independent

variables were utilized as predictors of depression: anger in,

anger out, anger control, and stressful life events. The first

step in conducting a commonality analysis for these four

predictors is to obtain the equations necessary for computing

the unique and commonality components of a four-predictor model.

These equations can be found in Table 1.

INSERT TABLE 1 ABOUT HERE.

All the R2 values, presented in Appendix A, are then

substituted into the 15 equations and results are organized in a

summary table that is easy to interpret and allows for a quick

inspection of arithmetic. The equations are fairly

straightforward algebraic product expansions of the independent

variables; however, as the number of predictor variables

increases, the calculations necessary to obtain the common

contributions get increasingly complex (Rowell, 1996).

In general, the number of possible unique and commonality

components can be determined by (2P-1) where P is the number of

independent variables employed in the model. Likewise as Rowell
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(1996) and others have noted, the number of unique components

equals P as well because P represents the number of independent

factors considered; the number of "common" components can then

be obtained by the equation (2P-1)-P, the difference between the

total number of components and the number of unique components.

For example, with the four predictor variables in the present

study, the total possible number of components (both unique and

common) are 24 1 = 15, with 4 being unique components and 11

being the common components.

To illustrate the commonality process, first and foremost,

the squared multiple correlation (R2) values from a statistical

program printout (e.g., SAS) must be applied to the appropriate

formulas in Table 1.. The calculations can be done easily with a

spreadsheet program or calculator. For example:

U4 (anger control) = -R2(123) + R2(1234)

= -.29347 + .30414

= .01067

Hence, the unique explanatory contribution of the predictor

variable, anger control, to the proportion of total dependent

variable (depression) variance was .01067, or approximately 1%.

Likewise, the commonality between stress(1) and anger control(4)

can be computed as:

10



Commonality Analyses 10

C14 = -R2(23) + R2(123) + R2(234) R2(1234)

= -.14669 + .29347 + .15977 .30414

= .00242

Therefore, the common variance in depression among undergraduate

students explained in common by either stressful life events or

anger control was .00242 or .2%. One would continue with these

computations until all 15 unique and common components were

determined.

The last step is to place the values obtained into a

commonality analysis table, such as the one presented in Table

2. Once the unique and common components are presented in

tabular form, arithmetic checks can be performed. As Rowell

(1996, p. 37) noted,

Row entries are the specific unique and

commonality effects of each independent variable.

The column totals of each independent variable

will equal to the R2 of the regression model in

which that independent variable is the only

variable entered into the model. Another check

is that the sum of all unique and commonality

values for all the variables as a set should

equal the R2 value of the regression model when

all the independent variables are entered into

the model.

1 i
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INSERT TABLE 2 ABOUT HERE.

The commonality analysis summary table presented in Table 2

indicates that the unique variance contribution of the

predictor, stress, is approximately 14% (.14437) and the common

variance contribution, the proportion of predictive ability of

stress that also exists in one or more of the other predictors,

is approximately 5% (.04923). Likewise, anger in has a unique

contribution of approximately 10% (.10107) and a common variance

of approximately 4% (.03583). Unfortunately, the remaining

variables (anger out and anger control) offer a small amount of

unique contribution to the variance.

Canonical Commonality Analysis

Canonical correlation analysis (Thompson, 1984, 1991, 2000)

is a multivariate analytic method for investigating the

relationship between two sets of variables, a set of dependent

variables and a set of independent variables, where each set

contains two or more variables. Each set of variables

(predictor and criterion) represents a latent construct which

the researcher is examining. As Crossman (1996, p. 96)

explained, "one reason that canonical correlation analysis is

such a powerful analytical technique is because it considers all

the relationships among all the variables and does not require

that variables be converted to nominally-scaled variables, which

12
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discards information or distorts reality." Furthermore, because

canonical correlation analysis subsumes multiple regression as a

special case, and commonality analysis has proven helpful in

interpreting multiple regression results (Thompson & Borrello,

1985), interpretation of canonical results is likewise

facilitated with the use of commonality analysis (Thompson,

1988).

The steps of canonical commonality analysis are as follows:

(a) perform a canonical correlation analysis, (b) calculate the

z-scores and criterion composite scores, also called "variate

scores", (c) conduct a multiple regression on the synthetic

composite criterion variables (obtain regression equations), and

(d) calculate the unique and commonality components.

A hypothetical data set found in Campbell's (1990) paper

addressing applications of multivariate commonality analysis

will be utilized here to make the discussion more concrete. As

Campbell (1990, p. 2) noted:

The hypothetical data set involved 22 cases or

observations. The variables were opinions (on a

scale of 1-20) about various events which

occurred during the Reagan administration. [Two]

variables were designated as predictor variables:

LESSFED (less federal aid), and MOREDEF (more

defense spending). Two variables were designated

13
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criterion variables: MORESS (more spending on

social security) and CATMED (catastrophic

medicine insurance coverage).

Table 3 presents the hypothetical data.

INSERT TABLE 3 ABOUT HERE.

The first step in canonical commonality analysis involves

performing a canonical correlation analysis to obtain the

canonical functions and canonical correlation coefficients

(Leister, 1996; Thompson & Miller, 1985). The second step in

this analysis is to calculate the canonical variate scores

(a.k.a. criterion composite scores) for all participants.

Thompson (1991, p. 83) provided an introduction to this method

of analysis. To do so, as Thompson and Miller (1985) and

Leister (1996) explained, the function coefficients are

multiplied by the z-scores on the criterion variables. These

products are then summed to create the synthetic criterion

composite variables-one for each function yielded by the

canonical correlation analysis. In the present example, the

computations for the two functions would be:

CRIT1 = (-0.752 x zCATMED) + (1.572 x zMORESS)

CRIT2 = (1.820 x zCATMED) + (-1.187 x zMORESS)

The third step involves calculating the regression

equations, using all possible combinations of predictors to

14
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predict the synthetic criterion composite scores. It is

important to note that when all the predictors are used

simultaneously, the squared correlation coefficient always

equals the squared canonical correlation since the two analyses

are identical in the full model case (Leister, 1996; Thompson &

Miller, 1985).

The final step in a canonical commonality analysis involves

partitioning the components into unique and common variance

effects. There are two predictor variables in this example, so

the reader is referred back to Table 1 for the three (22-1 = 3)

formulas required to calculate the unique and commonality

components. For example, the calculations for the unique and

commonality components for Function 1 are as follows:

U1 = -R2(2) + R2(12) = -.64018 + .71057 = .15705

U2 = -R2(1) + R2(12) = -.55352 + .71057 = .07039

C12 = R2(1) + R2(2) R2(12) = .55352 + .64018

.71057 = .48313

The commonality results for each function are presented in Table

4.

INSERT TABLE 4 ABOUT HERE.

As Leister (1996, p. 5) noted in his analysis of the canonical

commonality results:

15
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In this example, it is shown that on the first

function, the majority of the explanatory power

of predictors is common to both variables.

Although 64.0% of the variance can be accounted

for by the variable "Moredef" alone on the first

function, 48.3% of the total explanatory power is

common to both predictors. The unique

explanatory power of "Moredef" is therefore only

15.7%. The unique explanatory power of "Lessfed"

is only 7.0% (.553-.48313). Also, it can be seen

that the second function has virtually no

explanatory ability.

Conclusions

Commonality analysis is a straightforward method of

partitioning variance when relatively few (less than 5 or 6)

independent variables are of interest (Rowell, 1996). There is

no statistical significance test for commonalities. However,

this is not disadvantageous because commonality analysis is

generally conducted after a statistically significant canonical

correlation has already been found (Thompson & Miller, 1985).

Commonality analysis is attractive because the method honors the

relationships among variables in a set and the reality to which

the researcher is trying to generalize (Thompson, 1985; Thompson

& Miller, 1985). As Mood (1969, p. 480) pointed out, "The

16
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independent variables in any social process, and certainly in

education, are highly correlated among themselves, and this kind

of partition provides measures of the extent to which they

overlap each other in their association with the dependent

variable."

17
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Table 1

Formulas for Unique and Commonality Components of Variance

Two Independent Variables

U1 = -R2(2) +R2(12)
U2 = -R2(1) +R2(12)

C12 = R2(1) +R2(2) -R2(12)

Three Independent Variables

Ul = -R2(23)+R2(123)
U2 = -R2(13)+R2(123)
U3 = -R2(12)+R2(123)

C12 = -R2(3) +R2(13) +R2(23) -R2(123)

C13 = -R2(2)+R2(12)+R2(23) -R2(123)
C23 = -R2(1) +R2(12) +R2(13) -R2(123)

C123 = R2(1) +R2(2) +R2(3) -R2(12) +R2(13) -R2(23) +R2(123)

Four Independent Variables

U1 = -R2(234)+R2(1234)
U2 = -R2(134)+R2(1234)
U3 = -R2(124)+R2(1234)
U4 = -R2(123)+R2(1234)

C12 = -R2(34)+R2(134)+R2(234)-R2(1234)
C13 = -R2(24)+R2(124)+R2(234)-R2(1234)
C14 = -R2(23)+R2(123)+R2(234)-R2(1234)
C23 = -R2(14)+R2(124)+R2(134)-R2(1234)
C24 = -R2(13)+R2(123)+R2(134)-R2(1234)
C34 = -R2(12)+R2(123)+R2(124)-R2(1234)

C123 = -R2(4)+R2(14)+R2(24) +R2(34)-R2(124)-R2(134)-R2(234)+R2(1234)
C124 = -R2(3)+R2(13)+R2(23)+R2(34)-R2(123)-R2(134)-R2(234)+R2(1234)
C134 = -R2(2)+R2(12)+R2(23)+R2(24)-R2(123) -R2(124)-R2(234)+R2(1234)
C234 = -R2(1)+R2(12)+R2(13)+R2(14)-R2(123)-R2(124)-R2(134)+R2(1234)
C1234 = R2(1)+R2(2)+R2(3)+R2(4)+R2(12)+R2(13)-R2(14)-R2(23)-R2(24)

-R2(34)+R2(123)+R2(124)+R2(134)+R2(234)-R2(1234)

Note. From "Partitioning predicted variance components into
constituent parts: How to conduct regression commonality
analysis," by K. Rowell, 1996.
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Table 2

Regression Commonality Analysis Summary Table

Component
1

STRESS
2

ANGER IN
3

ANGER OUT
4

ANGER CONTROL

Ul .14437
U2 .10107
U3 .00016
U4 .01067

C12 .03917 .03917
C13 .00241 .00241
C14 .00242 .00242
C23 .00052 .00052
C24 -.00452 -.00452
C34 .0027 .0027

C123 .00203 .00203 .00203
C124 -.00113 -.00113 -.00113
C134 .00451 .00451 .00451
C234 -.00006 -.00006 -.00006

C1234 -.00018 -.00018 -.00018 -.00018

UNIQUE .14437 .10107 .00016 .01067
COMMON .04923 .03583 .01194 .00373
TOTAL .1936 .13690 .01210 .01440

Note. From "Commonality analysis for the regression case," by K.
Murthy, 1994.

23
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Table 3

Original Hypothetical Data

OBS

Criterion Variables

CATMED MORESS

Predictors

LESSFED MOREDEF

1 15 16 20 20

2 14 14 19 19

3 12 13 10 11

4 14 13 9 10

5 15 15 8 9

6 15 14 7 8

7 17 16 20 19

8 13 15 19 19

9 15 16 18 19

10 14 16 17 17

11 10 12 15 15

12 10 11 8 8

13 10 9 8 6

14 14 15 18 17

15 13 13 10 10

16 15 15 17 17

17 16 16 20 19

18 14 15 19 20

19 14 14 16 16

20 13 13 10 -9

21 11 12 15 15

22 13 12 9 9

Note. Adapted from "Canonical commonality analysis," by K. D.

Leister, 1996.
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Table 4

Canonical Commonality Analysis Summary Table

Component
1

LESSFED
2

MOREDEF

Function 1

.07039Ul
U2 .15705

C12 .48313 .48313

TOTAL .55352 .64018

Function 2

Ul .00031
U2 .00027

C12 -.00024 -.00024

TOTAL .00007 .00003

Note. From "Canonical commonality analysis," by K. D. Leister,
1996.
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Appendix A

R-Square Results for Four Predictors of Depression

Number of Predictors R-Square Variables in Model

1

1

1

1

2

2

2

2

2

2

3

3

3

3

4

.19360

.13690

.01210

.01440

.29061

.20239

.19692

.15719

.14669

.01953

.30398

.29347

.20307

.15977

.30414

1

2

3

4

1

1

1

2

2

3

1

1

1

2

1

2

4

3

4

3

4

2

2

3

3

2

STRESS
ANGER IN
ANGER OUT
ANG CONTROL

4

3

4

4

3 4

Note. From "Commonality analysis for the regression case," by K.
Murthy, 1994.
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