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Abstract

'IWO mathematical programming approaches are presented for the assembly of ability

tests from item pools calibrated under a multidimensional WI' model. Items selection

is based on Fisher's Information matrix. Several criteria can be used to optimize this

matrix. In this paper the A-criterion and the D-criterion are applied. In a mathematical

programming approach, both criteria provide good results for the two dimensional case.

Empirical examples for a two-dimensional mathematics item pool illustrate the methods.

Recommendations are provide about when to apply either approaches.

Keywords: Greedy heuristic, linear approximation, mathematical programming,

multidimensional IRT, optimal test assembly, test design.
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Introduction

In educational measurement, item response theory (IRT), (Birnbaum,1968), is

generally used as a psychometric theory to govern the test assembly process. In this

process, three steps can be distinguished. First an IRT model is chosen and the items in

the item bank are calibrated. From an item bank many different tests can be assembled.

Therefore, the second step consists of specifying the properties of the desired test,

for example, the test length, the desired amount of information in the test, or the

administration time needed for the test. The third step of the process is to choose an

algorithm that selects items from the item bank such that the test specifications are met.

A mathematical programming approach is often used for this step.

The idea of using a mathematical programming approach was suggested by Yen

(1983) and Theunissen (1985). Ever since, several papers have proposed various LP

algorithms and heuristics to solve test assembly. problems. Recently, van der Linden

(1996), Segall (1996) and Luecht (1996) addressed the subject of assembling tests

measuring multiple abilities, i.e. from an item bank calibrated using a multidimensional

IRT (MIRT) model.

Measuring multiple abilities using a MIRT model is not always seen as a practical

option (Wainer et al. 1990). However, the main advantage of MIRT is increased

measurement efficiency (Segall, 1996). When the dimensions measured in the test

have non-zero correlations, items with-a content classification in one dimension provide

information about the other dimensions. MUT models have been subject of research

for many years (Bock, Gibbons and Muraki, 1988, Ackerman, 1994; McKinley and

Reckase, 1983, and Reckase, 1985). Much research has been carried out in order to decide

whether correlations are low enough to represent significant dimensions (McDonald,

1981; Reckase, 1979; Stout, 1987). Once a significant number of dimensions has been

confirmed, the item parameters can be estimated. Programs as NOHARM (Fraser and

McDonald, 1988) and TESTFACT (Wilson, Wood, and Gibbons, 1987) are often used in
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this step. Based on these parameters, items can be selected from an item bank, to assemble

specified tests.

In van der Linden (1996), an algorithm to solve the problem of assembling

constrained tests that measure multiple traits was provided. However, intervention by

the test assembler was needed to find the best solution. Therefore, the purpose of the

present study was to find a heuristic that provides good solutions to the problem of

assembling tests measuring multiple traits in a fully automated fashion. Two algorithms

were developed. The first algorithm is based on a linear approximation of the objective

function. Second, Luecht's (1996) algorithm for adaptive testing is adjusted in order to

apply it to the problem of assembling constrained multidimensional P&P tests.

In the remainder of the paper, the MIRT model used for calibrating the item is

described. Then a multidimensional version of a maximin model (van der Linden &

Boekkooi- Timminga, 1989) is presented. Subsequently, two algorithms developed to

assemble optimal tests are introduced. Both algorithms are compared by applying them

to empirical examples. Finally both algorithms are discussed and recommendations for

their use are provided.

A Linear Logistic MIRT Model

The MIRT Model

The model considered in this paper is a generalization of the two-parameter logistic

model (Lord, 1980) to the multidimensional case (Reckase,1985). It can be formulated

in the following manner:

j) = 11(ai, di, 9;))

1 + e(ao3i+di) '

(1)

(2)

where Pi(0i) is the probability that a person j = 1 . . . J with ability vector 0; gives a

correct response Uji to an item i = 1 . . . I, ai is the vector of discrimination parameters
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of item i along the abilities Oil m is the dimensionality of the ability space, and di

is the parameter representing the difficulty of the item. In this paper, the item parameters

are supposed to be known and the model is used to estimate the ability vectors Oi from

realizations of the response variables Ili.; = uji for i = 1 I and j = 1 . . . J.

Fisher's Information

In the multiparameter case, Fisher's information is a matrix instead of a scalar

(Lehmann, 1983; Segall 1996). Therefore, the (asymptotic) variances of the MLEs of the

ability parameters 01, .., Om are given by the diagonal elements of the inverse of Fisher's

information matrix. For notational simplicity we consider the case of m = 2. Then Fisher

's information matrix, and the variance-covariance matrix are of the following forms:

and

atia2iPiQi1(0) [E =1 iPiQi Li 1
i aita2iPIQ2 E1:--1

(3)

V(610) ./(0)-1. (4)

In order to optimize measurement precision, either Fisher 's Information matrix has

to be maximized or the variance-covariance matrix has to be minimized.

A Multidimensional Maximin Model

A maximin model was used to formulate the test assembly process. The model

consists of an objective function that has to be optimized over the set of possible tests

meeting the specifications. The set is typically delineated by a number of mathematical

constraints. But before the model is formulated, decision variables are introduced.

In the above mentioned matrices, sums are taken over the n items in the test. In the

test assembly process, it is unknown which items will be choosen in the test beforehand.

To guarantee that the matrices are calculated for the items that are in the test, decision

variables xi have to be introduced for every item, where x, = 1 if item i is in the
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test, x, = 0 if item i is not in the test. I is the number of items in the item bank.

All test specifications also have to be expressed in terms of the xi's. For example, the

variance functions, that is, the diagonal elements of the variance-covariance matrix, can

be rewritten such that:

V ar(6110) =-- (El
2 n, /-1a2i/lbeiXi)

2,(x-,/(E _i aLPaixi) (Ef-1413iPiQixi)

.and

(5)

l 2

Var(b210)
(E =1

D (-1
i

2 , (6)
v..t. 2 no n

i=i (LA=1 aria2iPiQixi(EI 2

where the sums are taken over the items in the item bank.

Objective Function

As described above, for precise measurement of multiple traits, either Fisther's

information matrix should be maximized or the variance-covariance matrix should be

minimized. From optimum design theory, several criteria for optimality of matrices are

known (see, for example, van der Linden, 1994). In this paper, A-optimality and D-

optimality are considered.

The A-optimality criterion minimizes the trace of variance-covariance matrix, that

is, the sum of the variance functions. By assigning weights to the variance functions,

the relative importance of the different abilities can be specified. In this way, different

cases of multidimensional test assembly can be treated. The optimallity criterion for the

two-dimensional case can be formulated in the following manner:

min wiliar(0110) + w2Var(61210). (7)

8
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When traits are considered equally important, both weights are set equal to each other. A

different case occurs when items are sensitive to multiple abilities, but the test is developed

to measure only one intentional ability, than the weights of the other abilities can be set

equal to zero. These and other cases are described in van der Linden (1996). Besides

these cases, weights can also be used in a different manner. When the magnitudes of both

variance functions differ, weights can be used to rescale both functions in the criterion

such that the larger term does not dominate the smaller one in the optimization process

any more.

The function defined in Equations 7 is not only a function of xi, but also a continuous

function of the variables (01, 02). However, in the test assembly process it suffices to

optimize these objective functions for a grid of points, instead of for the entire 9- region.

For example, Theunissen (1985) reduced the problem of maximizing the information

function over the 0-region the problem of maximizing the ability function at certain 9-

points. This technique can also be applied at a multidimensional 0-space. Let the two-

dimensional grid be defined by (s, t), where s = 1, S and t = 1, ...T. The resulting

objective function is:

min wiVar(91103t) + w2V ar(0210 st)s.i..s
t =1..T

(8)

This is a complicated objective function. Substituting both variance functions by

Equation 5 and Equation 6 would result in:

(El
,2

i=i ""2i4
ptWiXi)

min max w1 2s=1...3 / ,2 pdtr)t=1...T (ELi aLPiQixi) (Ei=1 L.20 (ELI: aiia2iPiQixi)

+1112

(Ef--1 4iPiC2ixi) (Efi alPiC2ixi) (E2= ana2tPsQixt

(Ej=i/ 2aliPiQixi

(9)

9

)2
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It should be noted that the denominators of both terms are equal. So, the objective function

can be rewritten into:

wl a20-iwixi) + w2x-,/ 2 2

min max 2 (10)
/ 2t=1...T 1 ,Ei=l ,.- (1-4=1 '1'20

2

The second criterion is the D-optimality. This criterion maximizes the determinant

of Fishers information matrix, that is:

max det /(0). (11)

When this function is optimized for a grid of points (s, t), the resulting objective

function is:

max min det /(93t).
s=1..S
t=1..T

For the D-optimality no simplifications are needed. In the two-dimensional case, the

objective function associated with D-optimality is equal to:

max min E 2 Dr) 2 Dc)
Uo2i1 E (E aiia2iPiQixi)2

s=1..S
t=1..T i=1 i=1 i=1

(12)

Model

Several kinds of constraints can be formulated. In van der Linden (1998) categorical

constraints, quantitative constraints and constraints on inter-item dependencies are

distinguished. Categorical constraints deal with, for example, content classification,

gender orientation, or minority orientation. For quantitative constraints one could think

of response times or word count constraints. When items contain clues to each other they

are in an enemy set and only one item from this set is allowed in a test.

10
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Using the maximin approach (van der Linden & Boekkooi- Timminga, 1989), the

following mathematical programming problem for A-optimality has to be solved:

subject to:

min max wi Var(Gi lest) + w2Var (92lest),
s=1...S
t=1...T

(13)

Exi < nc, (categorical constraints) (14)
iEC

Eqxi < 77,Q, (quantitative constraints) (15)
iEQ

E xi < 1, (enemy sets) (16)
iEE

E xi = n, (test length) (17)
i=i

xi E {0, 1} , i = 1 (18)

The parameters nc are the bounds that determine the number of items from the

subset C to be in the test. Bounds for the quantitative constraints are denoted by nc).

Constraint 17 determines the test length and constraint 18 defines the decision variables.

For the criterion of D-optimality a similar model can be described. However, the objective

function is defined by Equation 12.

Algorithms

In this paper, a new algorithm, based on linear approximation of the objective

functions, is proposed. This algorithm can be applied at unconstrained test assembly

problems, and at constrained ones. In order to evaluate the algorithm, two algorithm were

used as benchmarks. The first algorithm is a generalization of Lueght's (Lueght,1996)

greedy algorithm for MAT to the P&P case. The second algorithm randomly select
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items from the item bank. Therefore, it is only applicable at unconstrained test assembly

problems.

Linear Approximation of the Objective Function

The algorithm is based on linear programming techniques. These techniques are

often applied in automated test assembly. However, they optimize a linear objective

function subject to a number of constraints on the test attributes. In order to apply these

techniques to the problem at hand, a linear approximation of the objective function in

Equation 13 should be made. The general formula for the linear approximation of a

function f at a given point 5-c* is given by f (R) + 0 f (R)t (x 3), where V is the vector of

first order derivatives (See, for example, Bazaraa, Sheraldi and Shetty,.1993, page 121).

When a linear approximation of the objective function is calculated, a point 0 has

to be chosen where the function is approximated. Unfortunately it is unclear in advance,

which 0-point to choose. Therefore, it was decided to optimize the worst performance of

the linear approximation of the objective functions over the gridpoints (s, t). The linear

approximation of the simplified objective functions in Equation 10 and Equation 12 are

given in Appendix A.

In Appendix A it is shown that the approximations only differ in the values of kilt.

So, the resulting test assembly problem for both the objective functions in Equation 10

and Equation 12 can be formulated as follows:

I. I I

min max ki E aliP1Qixi + k2st E + k3st E alia2iPiQixi (19)
8,t

i=1 i=1 i=1

subject to:

Exi < ,, (categorical constraints) (20)
iEC

Eqxi < nc), (quantitative constraints) (21)
iEQ

E xi < 1, (enemy sets) (22)
iEE

12
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E xi = n, (test length) (23)

xi E {0,1} , i =-- 1 I. (24)

where the coefficients k je are determined by the linear approximation (see Appendix A).

Now the objective function is a linear function of the decision variables xi, and general

automated test assembly techniques can be used to solve the problem.

Greedy algorithm

For the assembly of adaptive tests that measure multiple abilities, different

approaches are at hand. In Segall (1996), a locally optimal item selection procedure for

MAT is described. Each time an item is selected that provides the largest decrement in

the volume of the credibility ellipsoid. In van der Linden (1999) the item is selected that

minimizes the variance of a linear combination of the abilities. In Luecht (1996), Segall's

approach is extended to the constrained case, by building the total test content constraints

into the objective function. In these procedures the item is selected that contributes most

to the objective function in each iteration. Therefore they are in the class of the so-called

greedy algorithms.

The adaptive strategies can be applied rather straightforwardly in the context of

assembling tests. Items that contribute most to the objective function have to be

sequentially selected, until the maximum number of items in the test is reached. In case

of no constraints this greedy heuristic selects the item whose value of

wi + w2
max
t=1...T (Ei=1 a2iPiQixi) alia2iP4Qixi)
8=1...s (-4 2 r 2

is minimal. Or when the objective function in Equation 12 is used, the heuristic selects

the item whose value of

min E a2iPiQixi E aLPiQixi (E
t=i..T j=1 i=1 i=1

13

)2
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is maximal. In case of constraints a different strategy should be used. All constraints can

be built into the objective function (Luecht, 1996). The composite objective function is

optimized. When this strategy is applied to the problem in equation 13 to 18, the following

problem has to be solved:

subject to:

4

min E ajdj
J=1

T min max wiliar(01105t) + w2Var(02108t) = d1,
8=1...S
t=1...T

ma)c(E xi nC, 0) = d2,
iEC

rnax(E qixi nQ, 0) = d3,
iEQ

max(E xi 1, 0) = d4,
iGE

E xi n,

xi E {0,1} ,

where T is a prespecified target for the objective function, di is the deviation of the j-

th constraint, and aj denotes the weight of the deviation of the j-th constraint. Like

the non-constraint case, each iteration the item is added to the test that minimizes the

objective function. A target T for the objective function can be obtained by solving the

non-constraint problem first.

Random Item Selection Algorithm

Items are randomly selected from the item bank until the maximum number of items

is reached. Since it is impossible to take constraints into account in this algorithm, it is

only applicable at unconstrained test assembly problems. The tests resulting from this

algorithm can be used as benchmarks. In order to be usefull, a proposed algorithm should

14
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produce test that are at least as good as the tests provided by the random item selection

algorithm.

Empirical Examples

An ACT Assessment Program Mathematics Item Pool was used to assemble tests

from. The item pool consisted of 176 items. The calibration of this items was carried

out with the program NOHARM (Fraser and McDonald, 1988), and an acceptable fit

was obtained by a two dimensional version of the model in Equation 1. The items were

classified according to content specification and skill.

First, the problem without constraints was solved for the A-criterion and the D-

criterion. The linear approximation, the greedy heuristic and the random selection

algorithm were applied. In this way the loss due to the linear approximation of the

objective function was examined for both optimality criteria. Second, the effects of

adding constraints to the model were investigated for the greedy heuristic and the linear

approximation. Therefore several sets of constraints were added to the problem (See Table

1).

The main program for solving these problems was written in PASCAL 7.0 and

heuristic seven of the program Contest (Timminga, van der Linden and Schweizer, 1996)

was used to solve the linear programming parts of the examples.

Example 1

In the first exampel tests were assembled over the complete grid. of points defined

by (0k, 02) E { -1, 0, 1} x { -1, 0, 1}. The test had to contain a fixed number of items.

No further constraints on item or test attributes were defined. The number of items in

the test varied from 10 to 50. The results of a heuristic that randomly selected the fixed

number of items from the item pool were added to serve as a bench mark. In Figure 1 the

resulting values for the A-criterion objective function are shown.

15
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Insert Figure 1 at about here

As can be seen, solving the test assembly problem with a linear approximation of the

A-criterion objective function does not provide good tests. The approximation performed

hardly better than random item selection algorithm. The greedy algorithm provided

much better results. For the D-criterion the results are shown in Figure 2. Remind that

the objective of the second criterion is to maximize the objective function instead of to

minimize, so the higher the results, the better.

Insert Figure 2 at about here

For this criterion, the linear approximation performed much better. The assembled

tests contained much more information than a random selection of items from the pool,

and almost as much information as the greedy test.

Example 2

For the D-criterion both the greedy algorithm and the linear approximation were

compared for a number of additional constraints. The following content and skill

constraints were added to the problem:

(1) The test should contain at least npG plane geometry, npA pre-algebra, nEA

elementary algebra, ncG coordinate geometry, nTG trigonometry, and nIA intermediate

algebra items.

(2) At least nBs basic skill items, nAp application items, and nAN analysis items

should be included in the test.

Hence the following additional constraints were obtained:

Exi > npc,
iEVpG

16

(25)
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E xi > n_pA, (26)
ievpA

iEVEA

> n_EA, (27)

Exi > ncc, (28)
iEVeG

iEEXi
> nTG) (29)

VTc

Exi > niA, (30)
iEV1 A

Exi > nBS) (31)
iEVBA

iEE II.

> 71Ap, (32)
VAP

iEE xi
> nAN ) (33)

vAN

where for example VPG is the set indices of the items with content classification Plane

Geometry (PG). Several sets of constraints were tested. Each violation of a constraint

was counted as a fault. The weights of all constraints in the greedy heuristic were set

equal to one. The lowest value of the D-criterion on the grid of 0-points defined by

(-1, 0, 1) x (-1, 0, 1) and the number of faults are presented in Table 1. In this example

the test length was set equal to twenty-five.

Insert Table 1 at about here.

The greedy heuristic assembled tests with a higher value of the D-criterion. When the

constraints were easy to meet, that is, when enough items were present in the item pool,

no violations of constraints were made. However, when the constraints were hard to meet,

violations occured when the greedy heuristic was used. For the sixth set of constraint even

seven faults were counted.
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Discussion

In this paper, a new algorithm for assembling tests from item pools that are calibrated

using a multidimensional IRT model was proposed . The performance of the algorithm

was compared with a greedy algorithm for both the A-optimality criterion and the D-

optimality criterion. In the first example both algorithms were compared without any

constraints in the model. For A-optimality the linear approximation did not prove to be

useful. For D-optimality good tests were obtained.

An explanation of these performances can be found in the formulas of both criteria.

When the formulas in Equation 10 and Equation 12 are compared, it is easy to see that

the first formula is far more difficult to approximate by a linear function than the second

formula. Therefore, the linear approximation performed much worse for the A-criterion

than for the D-criterion. The conclusion can be drawn that the algorithm based on a

linear approximation of the objective function only performs well for simple nonlinear

functions. In both examples the items were calibrated with a two-dimensional model.

Since higher-dimensional models result in more difficult formulas, the question how this

heuristic works out for higher-dimensional models needs additional research.

When the results of the second example are compared with the unconstrained case,

the differences between both algorithms are increased. In the unconstrained case, the

values for D-optimality were 2.13 for the greedy algorithm and 1.83 for the linear

approximation. The difference is 0.30. In the constrained cases the differences vary

from 0.67 to 0.95. An explanation can be found in the way the tests are assembled by

both algorithms. Because the greedy algorithm allows violations of constraints, it is

less restricted by the constraints than the linear approximation. Therefore, the difference

increases. As a result of this, it is hard to compare the algorithms.

It depends on the item pool and the preferences of the test assembler which of

both algorithms should be applied in practise. In large scale testing programs, different

versions of a test should be comparable and it is important that all constraints are met.

When the item pool is well designed and contains enough items to fulfill all constraints

the greedy algorithm should be applied. The first two sets of constraints in the second

18
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example illustrate this case. No violations were made and the resulting tests were far more

informative than the linear approximation. On the other hand, when many constraints are

formulated for the test and the item pool is hardly able to fulfill them, the greedy algorithm

will result in many faults. For these cases the algorithm based on the linear approximation

of the objective function should be applied. What remains are the cases where the greedy

algorithm results in a few faults. For these cases no general recommendations can be

given and the preferences of the test assembler will be decisive.

19
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Appendix A.

For a test the objective function for the A-optimality criterion is stated in Equation

10. It is formulated in the following manner:

min max
(E21 1 42P2Qtxt) + w2 (Ezi aielDiQtxt)

s=1..S 2 2t=1..T L aiiPaixi) (Ei=1 a2iPiQiii) (Ei=1

where the sums are taken over the items in the test. Three terms are present in this funcion.

Define:

For a given ability point (s, t), and a given test, the functions x, y, and z can be

calculated. The result is denoted by (1- ,-g ,-z).

The objective function can be rewritten into:

rain max f (x, y, z)
t=1..T

where

wlY w2x
xy z2

The linear approximation of the objective function in the point (1", "g, -2) is equal to:

f
min max

a f
x +

a f 7) y + a(1, y,7z) z + c
.5=1...s as ay az
t=1..T

20
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where c f (x, y, + 0 f(f, y,7)t (x, y, 7), and the partial derivatives are given by:

Of i W2 W2 Xst Ystklst = Cfst ? Yst, ha) = _ 2Ox xst Yst zst (-fat Vst 2L)2
of w1 W1 Yst Fstk2st = (1st, Vst)Zst) =ay Xst Yst 82t (1-8t *Fst 71)2
of 2 7 t (wlYst + w2gst)kut = (1 7 St, 8st g T t) =aZ (78t .Y.St 78t)2

Tests resulting from the greedy algorithm can be used to calculate kist, k28t, and /cut.

For D-optimality the objective function is stated in Equation 12;

2 2 n r-1 2max min E E (E alia2iPiQixi) .
s=1..S
t=1..T i=1 i=1 i=1

In terms of x, y and z the function is equal to:

max min xy z2.
s=1..S
t=1..T

The partial derivatives, that define the linear approximation, are given by:

1c1st =

k28t =

kut =

a f
kxst,g Tst) = Vstax
a f
ay ( ±- st,Vst, st) = Yst

f
a (xst, Yst Tst) = 2 78t

The coefficients kjd are equal to the partial derivatives V f evaluated at the points

(a, t) for a given reference test.

21
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Table 1.

Results of both algorithms for different sets of constraints.

PG PA EA
Sets of constraints

CG TG IA BS AP AN
Greedy

det(I) # Faults
Linear

det(I) # Faults

2 2 2 2 2 2 7 7 2 2.13 1.18

3 3 3 3 3 3 9 9 5 1.83 1.19

4 4 4 4 4 4 10 10 5 1.91 3 1.18

9 2 2 2 2 8 15 7 3 1.80 1 1.21

4 4 4 4 4 4 8 7 10 1.75 5 0.94
3 3 3 3 10 3 8 8 8 1.51 7 0.76
1 1 10 1 11 1 16 8 1 1.43 3 0.76
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Figure Captions

Figure 1: Results of different algorithms for the A-criterion.

Figure 2 : Results of different algorithms for the D-criterion.
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