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Abstract

The purpose of this study was to compare and evaluate five online pretest item
calibration/scaling methods in computerized adaptive testing (CAT): the marginal maximum
likelihood estimate with one EM cycle (OEM) method, the marginal maximum likelihood
estimate with multiple EM cycles (MEM) method, Stocking’s Method A, Stocking’s Method B,
and the BILOG/Prior method. The five methods were evaluated in terms of item parameter
recovery under three different sample size conditions (300, 1,000, and 3,000). The MEM
method appears to be the best choice among the methods used in this study, because it produced
the smallest parameter estimation errors for all sample size conditions.  Stocking’s Method B
also worked very well, but it requires anchor items, which would make test lengths longer. The
BILOG/Prior method did not seem to work with small sample sizes. Until more appropriate
ways of handling the sparse data with BILOG are devised, the BILOG/Prior method may not be
a reasonable choice. Because Stocking’s Method A has the largest weighted total error, as well
as a theoretical weakness (i.e., treating estimated ability as true ability), there appears to be little
reason to use it. The MEM method should be preferred to the OEM method unless amount of
time involved in iterative computation is a great concern. Otherwise, the OEM method and the
MEM method are mathematically similar, and the OEM method produces larger errors than the

MEM method.



A Comparative Study of Online Pretest Item Calibration/Scaling Methods in CAT
Introduction

In computerized adaptive testing (CAT), pool replenishing is a necessary process for
maintaining an item pool because items in the pool would be obsolete or overexposed as time
goes on. To be added as .new items in the pool, the pretest items should be calibrated and be on
the same scale as items already in the pool.

Online calibration refers to estimating the parameters of pretest items which are presented
to examinees during the course of their testing with operational items (Stocking, 1988; Wainer &
Mislevy, 1990). Since the item parameter estimates obtained from the paper and pencil delivery
mode are not necessarily comparable to the item parameter estimates calibrated from the CAT
mode, due to such factors as item ordering, different mode of test administration, context, local
item dependency, and cognitive difference (Parshall, 1998; Spray, Parshall, & Huang, 1997),
pretest item calibration/scaling methods that utilize the online testing system should be
developed.

The complication in online pretest item calibration results from the fact that, typically,
item response data obtained from CAT administrations are sparse, based on a restricted range of
ability (Folk & Golub-Smith, 1996; Haynie & Way, 1995; Hsu, Thom;\).son, & Chen, 1998;
Stocking, 1988), and a relatively small number of items are administered compared to the paper
and pencil delivery mode. These data characteristics may lead to inaccurate item parameter
estimates for the pretest items. Nevertheless, the oniine preteét itcm'ca‘libration/scaling has
several advantages such as preserving testing mode and utilizing the ﬁrétest data obtained during
operational testing, and reducing the impact of motivation and representativeness concerns

coming from the administration of pretest items to volunteers (Parshall, 1998).



Several studies have proposed online pretest item calibration methods (Folk & Golub-
Smith, 1996; Levine & Willams, 1998; Samejima, 2000; Stocking, 1988; Wainer & Mislevy,
1990). Among them, some methods involve using parametric item response functions in which
pretest item characteristic curves are estimated as a three-parameter logistic model, whereas
other methods employ nonparametric methods of estimating item response functions. In the
present study, pretest item calibration/scaling methods that use the parametric item response
model were compared.

Although it is valuable to identify the general properties of each method, it is difficult to
compare and evaluate results across studies because most studies have included only one or two
methods, and used different research designs and criteria.

It is necessary that these online pretest calibration/scaling methods be compared under
identical conditions to reveal their relative strengths and weaknesses in pretest item parameter
estimation. The purpose of this study was to compare and evaluate parametric online pretest
item calibration/scaling methods in terms of item parameter recovery for different sample sizes.
In the next section, we discuss the characteristics of each online calibration method in greater
detail.

Online Pretest Item Calibration Methods
One-EM Cycle Method

Wainer and Mislevy (1990, pp. 90-91) described the marginal maximum likelihood
estimate with one EM cycle (OEM) approach for calibrating online pretest items. In this paper,
the three-parameter (3-PL) logistic item response model is used to model item responses. For the
3-PL model, the probability of a correct response to item i by an examinee with ability & is

1-c,
P, =110) = PO = ¢, +— s m
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where a;, b;, and ¢; are the item discrimination, difficulty parameter, and lower asymptote of
item i (i=1,..., n), respectively, and D is the constant 1.7. The likelihood function of observing

an item response, u;;, on an operational item for an examinee with ability 6 (j=1,..., N) is

L(u; |6;)=P@)" 1~ RG] )
Similarly, the likelihood of-observing the response, xi; (k=1,..., K), on a pretest item for an
examinee with ability &;1s

L(x;16,)=P@)"[1-P.6)]". (3)
The joint likelihood of N different item responses on a pretest item is the product of the separate

likelihoods. This joint likelihood 1s

N . N
L:HL(xkj IHI) :Hpk(Hj)xkj[l_Pk(Hj)]l-.\'kj ] (4)

j=1
In the OEM approach, the item parameters are estimated by maximizing the marginal
likelihood. OEM takes just one E-step using the posterior distribution of ability, which is
estimated based on item responses only from the operational items, and just one M-step to
estimate item parameters, involving data from only the pretest items (Wainer & Mislevy, 1990).

The M-step finds parameter estimates that maximize

N
L* = H'[ L(xkj | H)g (9 I uj ’ ﬁ(zpermi(uml )dg 4 (5)

J=l
where g(6)is a posterior distribution of € given the responses to the operational items and item

parameters for the operational items, and B,perarionar 1S @ vector of the known item parameters of

the operational items. Maximization of Equation 5 with respect to item parameters produces

parameter estimates of the pretest items based on one M-step in the EM algorithm for marginal



maximum likelihood estimates. With this approach, the item parameter estimates of the pretest
items would only be updated once because only one M-step of the EM cycle is computed.

In implementing this method in practice, a Bayesian modal estimation approach may be
used by multiplying the marginal maximum likelihood equations by a prior distribution for the
pretest item parameters.

Some advantages of this approach are that since the operational items are used to
compute the posterior ability distribution, the pretest items are automatically on the same scale as
the operational items, and that no pretest item can contaminate other pretest items because the
pretest items are calibrated independently of other pretest items (Parshall, 1998).

Multiple-EM Cycles Method

As a variation of the OEM method, we increased the number of EM cycles until
convergence criterion was met. This method is called here the marginal maximum likelihood
estimate with multiple EM cycles (MEM) method. MEM is very similar mathematically to _
OEM. The first EM cycle with MEM is the same as OEM approach. That is, MEM computes
the posterior distribution using the operational items and finds item parameters that maximizes
Equation 5 to obtain item parameter estimates.

However, beginning with the second E-step, MEM uses item responses on both the
operational items and pretest items to get the posterior distribution. It should be noted that for
each M-step iteration, the item parameter estimates for the operational items are fixed, whereas
parameter estirﬁates for the pretest items are updated until the item parameter estimates
converge. With this method, the pretest items are also automatically on the same scale as items

in the pool.



A prior distribution for pretest item parameters may be assumed when the MEM method
is implemented in practice, in which case the resulting parameter estimates are Bayes modal
estimates.

One important advantage of this method is that it fully uses information from item
responses on pretest items for calibration by taking multiple EM cycles. Because this method
uses the item responses on the pretest items in the E-step, however, some poor pretest items may
affect the computation of the posterior distribution from the second E-step and the resulting
pretest item calibrations, particularly when the number of operational items is small (e.g. 10
items).

BILOG with Strong Prior Method

This method uses the computer program BILOG with strong priors on the operational
items. By putting strong priors on the operational items, the BILOG with Strong Prior
(BILOG/Prior) method in essence fixes the operational item parameters while estimating pretest
item parameters. As an example, Folk and Golub-Smith (1996) calibrated the operational items
concurrently with the pretest items and anchor items using BILOG. They used an option in
BILOG to put strong priors on the operational, pretest, and anchor items. The original item
parameter estimates were specified as means of strong priors for the operational CAT items and
the means of itern parameter estimates in the CAT item pool were designated as priors for pretest
and anchor items.

We used different priors in this study from those used in Folk and Golub-Smith (1996).
We put strong priors on the item parameter estimates for operational items by setting the prior
means equal to the their calibrated parameter estimates with very small prior variances. Default

priors were used for the item parameter estimates for pretest items. More specific procedures are



described in the methods section. When using the BILOG/Prior method, however, the re-
estimated operational item parameter estimates would be different from the operational item
parameter estimates that were in the item pool, depending on the magnitude of the prior standard
deviations for each parameter. Note that MEM does not re-estimate the operational item
parameter estimates, but instead uses the previously obtained item parameter estimates.

BILOG/Prior and MEM are the same in that both methods use the marginal maximum
likelihood method and multiple EM cycles, but are different in that while the BILOG/Prior
method calibrates the pretest items concurrently with the operational items, MEM calibrates only
the pretest items.

Stocking’s Method A

Stocking (1988) investigated two online calibration methods: Method A and Method B. Method
A computes a maximum likelihood estimate of an examinee’s ability using the item responses
and parameter estimates for the operational items. The log-likelihood function of observing the

responses, u;;, on n operational items for N examinees with ability &;is

InLU |8,.....0,) = Zﬁ:{u,j log P.(8,) + (1-u;)log[l- P,(8,)}} . (6)

j=l i=l
Taking the derivative of Equation (6) with respect to the ability parameter yields

0
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There would be one such derivative for each of the N examinees. For a given examinee, a
maximization procedure (e.g., Newton-Raphson) can be performed to produce the maximum
likelihood estimate of ability using the item responses on the operational items.

Stocking’s Method A fixes the ability estimates (i.e., treats the ability estimates as the
true abilities) obtained from Equation 7. The fixed abilities are then used to estimate item
parameters for the pretest items. The log-likelihood function of observing the responses, xy;, on a

pretest item for N examinees given true abilities is

N N
InL(X |6,,....0,)= Y log L(x,,|0,) = Y x; log P, (6,)+ (1—x,)log[l- P (8] (8)
J=l

j=t
Taking the derivative of Equation 8 with respect to the item parameters for an item (A = ay, by,

or ¢;) yields three equations of the form

—inL(X]8,...0,)=) x, j
TR 16,....6,) ;*‘f @) o, )
. ) I ACH)

1—x,
Nt M,)l_Pk(gj) Ty

j=l

For a given pretest item, a maximization procedure (e.g., Newton-Raphson ) can be applied to
produce the maximum likelihood estimate of item parameters using the item responses on the
pretest items. Because the ability estimates are on the same scale as the operational item pool
and the ability estimates are fixed in the calibration of the new items, rescaling of the item
parameter estimates of the pretest items is not required.

The problem with Stocking’s Method A is that it treats ability esti’nﬁ‘ates obtained from
the item responses on the operational items as true abilities in order to maintain the scales of

subsequent item pools. Therefore, errors will be introduced in calibrating the pretest items
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because estimated abilities may be different from true abilities. Nevertheless, this method is a
natural and simple way to calibrate the pretest items.
Stocking’s Method B

Stocking’s Method B (Stocking, 1988) is an enhanced version of Stocking’s Method A.
The method uses a set of previously calibrated ‘anchor’ items for scale maintenance to correct
for scale drift that may result from the use of estimated abilities, rather than true abilities. The
item parameter estimates of the anchor items are on the same scale as that of the operational
items. Each examinee is administered some operational items, pretest items, and anchor items.
As in Stocking’s Method A, the ability estirﬁate of each examinee is obtained using the
operational item responses. The ability estimate is, then, fixed to calibrate the pretest items and
anchor items. The two sets of item parameter estimates for the anchor items, the original item
parameters and the re-estimated parameters, are used to compute a scale transformation to
minimize the difference betwe,eﬁ the two test characteristic curves (Stc‘)cking & Lord, 1983).
This scale transformation is then used to place the parameter estimates for the pretest items on
the same scale as the item pool.

In using this method, it is important for the set of anchor items to be representative of the
adaptive test item pool in terms of difficulty. Otherwise, inappropriate scale transformations
derived from the anchor items would be applied to all the pretest items. The quality of the
anchor items should be good, because poor anchor items could distort the scale transformation
(Stocking, 1988, p. 20). The increase in the actual test length due to the inclusion of anchor

items is a disadvantage of this method.
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Method

Data

This study used nine 60-item ACT Mathematics test forms (ACT, 1997). Randomly
equivalent groups of about 2,600 examinees took each form. The computer program BILOG
(Mislevy & Bock, 1990) was used to estimate the item parameters for all items assuming a 3-PL
logistic JRT model. These estimated item parameters are treated as population “true” item
parameters, and they were used for generating simulated data. A total of 540 items were
allocated as follows: 520 CAT operational item pool, 10 pretest items, and 10 anchor items. The
10 pretest items were randomly selected from the 540 items. The 10 anchor items were selected
to be representative of the 520 operational items in terms of item difficulty.
CAT Simulation Procedure

Since true item parameters are never known in real world, this study used true item
parameters only for generating item responses and for evaluating the performance of each item
calibration method. We used estimated item parameters (hereafter referenced to as “baseline”
parameter estimates) for item selection and ability estimation in CAT simulations. The baseline
parameters for all 540 items were estimated from a full item-simulee response matrix generated
using the true parameters and 3,000 randomly selected simulees from a standard normal
distribution. The computer program BILOG-MG was used to concurrently calibrate the full
response matrix.

Fixed-length adaptive tests (30 items) were administered to the randomly selected
simulees with sample sizes of 300, 1,000, and 3,000 from the standard normal ability

distribution. The 10 fixed-length “nonadaptive” pretest items were simulated using the same
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theta distribution. The data on pretest items here consisted of a full matrix, while the matrix of
item responses on the operational CAT items was sparse.

The CATs were scored using Bock and Mislevy’s (1982) expected a posteriori (EAP)
ability estimation procedure. The initial prior distribution for EAP ability estimates was assumed
to be normal with a mean of 0.0 and a standard deviation of 1.00. The simulated CAT began with
an item of medium difficulty and used maximum information selection procedures thereafter.

At the end of the 30 fixed-length tests, ability estimates were computed using maximum
likelihood estimation (MLE) procedures. This simulation was replicated 100 times for each
method and sample size.

Pretest Item Calibration Procedures

The pretest items were calibrated and put on the same scale based on the methods
described in the previous section. The computer simulations were done using programs written
in Visual Basic and C++. An open-source C++ toolkit for IRT parameter estimation (Hanson,
2000) was used to implement the item parameter estimation for all methods except the
BILOG/Prior method.

For the BILOG/Prior method, BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1999)
was used for pretest item calibrations’. Strong priors were based on the baseline parameter
estimates described in the previous section. For each of the operational items in the pool, priors
of each parameter were specified as follows: mean of log normal prior for a was the log of the
baseline parameter estimate of a, standard deviation of log normal prior for @ was 0.001; mean of
normal prior for b was the baseline parameter estimate of b, standard deviation of normal prior

for b was 0.005, alpha parameter for beta prior distribution for ¢ was the value of ((1,000xthe

¥ Since BILOG (Mislevy & Bock, 1990) and BILOG-MG (Zimowski et al., 1999) work in the same way for one-
group, the results in this study would likely be the same if BILOG had been used instead of BILOG-MG.
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baseline parameter estimate of ¢)+1), and beta parameter for beta prior distribution for ¢ was the
value of ((1,000x (I- the baseline parameter estimate of ¢))+1). This way of setting priors is
recommended by the BILOG-MG manual for setting an item parameter to a fixed value (see
Zimowski et al., 1999, pp. 89-90). The BILOG-MG default priors (¢ ~ Beta(5,17) and a ~
lognormal (0, 0.5)) were used for the pretest items.

BILOG-MG needs some responses on the operational items for calibration, even though
strong priors were set on the operational CAT items. Due to the nature of the CAT
administration, however, the operational items had a sparse item-simulee response matrix in
which some items were never administered to simulees. In running BILOG-MG, we selected the
operational CAT items that had at least 50 responses for the 300 sample size condition. Since
many BILOG-MG runs with the minimum of 50 responses produced errors and stopped, we
increased the minimum response (sample size) per item from 50 through 70 up to 100. We
decided 100 responses per item to be a minimum for all different research conditions. Setting a
high number for the minimum responses per item results in the small number of operational
items available to compute the posterior distribution.

Using both the OEM and MEM methods, the operational items were completely fixed to
be the same as the corresponding baseline parameter estimates. The same default priors on the
pretest items as used for the BILOG/Prior method were set for comparison.

Stocking’s Method A used the adaptively administered operational items to estimate the
simulees' ability and treated them as true to calibrate pretest items. The same priors as the

BILOG/Prior method were used for the pretest items.
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When implementing Stocking’s Method B, the item parameters obtained by Stocking’s
Method A were further transformed through the anchor items using the Stocking-Lord method
(Stocking & Lord, 1983).

Criteria

In each condition (3 different sample sizes) studied, simulations are replicated 100 times.
This produced 100 item parameter estimates for each of 10 pretest items in each condition for
each method. The estimates were on the same scale as items in the operational item pool. The
performance of the pretest item calibration methods was evaluated by the extent to which the

true item characteristic curves of the pretest items were recovered.

Let P(6|a,.b,,c,) be the true item characteristic curve for the 3-PL logistic item
response model, where a;, bi, and ¢, are the true item parameters for pretest item k. Let

P@|a,.b,.c,) be the estimated item characteristic curve for item k on replication r, where

~

a,.b,,.c, areestimated pretest item parameters. An item characteristic curve criterion (Hanson

& Béguin, 1999) for pretest item & is

l 100

6 ~ 2
Ezj_G[P(e |a,,b,,c,) - P@|a, b, ¢ ) wO)d0, (10)
r=1

where w(6) is a weight function based on a N(0, 1) distribution. The integral is approximated
using evenly spaced discrete 6 points on the finite interval (-6, 6) at increments of 0.1. Each
finite O point was weighted by its probability under a normal distribution.

Equation 10 is the weighted mean squared difference between the true item characteristic
curve and the estimated item characteristic curve, which is called the weighted mean squared
error (WMSE). WMSE may be decomposed into the weighted squared bias (WSBias) and the

weighted variance (W Variance):
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1 100

6 R -~ . 5 _
100 2 L (POl ay.bic) = POy by ) WO =

100

6 5 l ~ ~ ~ )
I_G[P(G |aubisc0) = my (O w(O)0 + - 2[_66[19(0 |4,,,b,,,¢,.)—m, (O)> w(6)d6, (11)

where

100

1 A oA
m, (0) =E2P(0 la, b, ¢ )

r=1
and WSBias and WVariance are the first and second terms on the right side of Equation 11.
Also, average mean values and standard deviations of the WVariance, the WSBias, and the
WMSE across pretest items in each condition were computed.

Results

The empirical results of the performance of the pretest item calibration/scaling methods
appear in Tables 1 and 2 and Figures 1 through 3. WMSE, WSBias, and WVariance are
presented in Table 1 for each pretest item, calibration method, and sample size. In addition,
average values and standard deviations of the error indices over pretest items are presented in
Table 1. Average WMSE along with the standard error of the average WMSE appear in Table 2.
Figures 1 through 3 plot the means of error indices for different methods and sample sizes.

Many BILOG-MG runs were not successful under the 300 and 1,000 sample size
conditions. Because of the sparseness of the data for the operational items, BILOG-MG very
often produced errors in estimating item parameters and stopped, particularly in the 300 sample
size condition. Under the 3,000 sample size condition, however, BILOG-MG worked properly.
The results of BILOG-MG runs are provided in Tables 1 and 2 only for the 3,000 sample size

condition.
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Weighted Variance

The weighted variances of each of five methods are presented in Table 1 and the average
weighted variances of each method are displayed in Figure 1. One expected result that holds for
all methods was that the weighted variances decreased when the sample size increased. OEM
method produced the smallest weighted variance under the 300 and 1,000 sample size
conditions, Stocking’s Method A the second smallest weighted variance, MEM method the third
smallest weighted variance, and Stocking’s Method B produced the largest weighted variance.
For the 3,000 sample size condition, the BILOG/Prior method produced the largest weighted
variance while the rank order of the weighted variances was the same for the other methods.
However, differences in the weighted variance across Amethods appeared not to be substantial.

The results in Table 1 and Figure 1 show that although MEM utilized item response
information on both operational and pretest items more intensively by taking multiple EM cycles
than OEM did, it produced a larger weighted variance. The results also show that Stocking’s
Method B, which transforms the scale of pretest items that were calibrated by Stocking’s Method
A to the scale of operational items, resulted in a larger weighted variance than Stocking’s
Method A did.
Weighted Squared Bias

The weighted squared biases of each method for different sample size conditions are
presented in Table 1, and the average weighted squared biases of each method for different
sample size conditions are plotted in Figure 2. The weighted squared bias was less affected by
the changes of sample size than the weighted variance across all methods. For example, for

OEM, Stocking’s Method A, and Stocking’s Method B, there were only minor differences in the
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weighted biases between the 1,000 and 3,000 sample size conditions. In particular, Stocking’s
Method B produced similar weighted squared biases across all sample size conditions.

Comparing the results of the methods in terms of the weighted squared bias, the MEM
method performed better than the other methods in this study. The MEM method produced the
smallest weighted squared bias écross all sample sizes. Even the weighted squared bias of the
MEM method under the 300 sample size condition was smaller than the weighted squared biases
of most methods for any sample size, except that of the BILOG/Prior method for a sample size of
3,000. The BILOG/Prior method worked well for the 3,000 sample size. The results of MEM
and BILOG/Prior show that the methods using MMLE with multiple EM cycles tend to produce
smaller weighted squared biases than other methods. Table 1 and Figure 2 indicate that
Stocking’s Method B produced the second smallest weighted squared biases across all sample
sizes, except that of the BILOG/Prior method for the 3,000 sample size. The weighted squared
biases of Stocking’s Method B became slightly larger as sample sizes increased, which was not
the case for the other methods. However, the absolute differences among the biases for the
various sample sizes were small, so the differences may be due to sampling error. Stocking’s
Method A shows the largest weighted sqﬁared biases across all sample size conditions.

Unlike the weighted variance, MEM and Stocking’s Method B produced obviously
smaller weighted squared biases than OEM and Stocking’s Method A, respectively, across all
sample sizes.

Weighted Mean Squared Error

The weighted mean squared error of each method for different conditions are presented in

Table 1. Table 2 presents the average weighted mean squared errors by the methods and sample

sizes along with standard errors of the average weighted mean squared errors over replications.
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Figure 3 plots a + I standard error band around the means of the weighted mean squared errors,
which is about a 68% confidence interval.

Figure 3 clearly shows that when BILOG/Prior is put aside, MEM tends to have the
smallest WMSE, Stocking’s Method B the second smallest WMSE, OEM the third smallest
WMSE, and Stocking’s Method A tends to produce the largest WMSE across all sample size
conditions. The BILOG/Prior method under the 3,000 sample size performed similarly to MEM.
It seems that since BILOG/Prior and MEM are mathematically the same (although they are
different in actual implementation), the WMSEs of both methods were similar. The results in
Figure 3 show that Stocking’s Method B produced smaller total errors in parameter estimation
than Stocking’s Method A. This reflects that the scale transformation through anchor items is
associated with decreases in total error for Stocking’s Method B. The MEM method also
produced smaller total error than OEM did.

The relative values of WMSEs for the methods were consistent across different sample
size conditions. Some WMSE intervals for the methods within sample size conditions
overlapped (see Figure 3). However, the MEM method always produced the smallest WMSE
and Stocking’s Method A produced the largest WMSE under the different sample size conditions
studied.

Conclusion and Discussion

Our primary goal in this study was to compare the properties of five online pretest item
calibration/scaling methods (MEM, OEM, Stocking’s Method A, Stocking’s Method B, and
BILOG/Prior) under three different sample size conditions (300, 1,000, and 3,000). We expected
that the results would provide CAT practitioners with guidance on which method(s) produce

smaller parameter estimation error under small to large sample size conditions.
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The MEM method produced the smallest total error (i.e., WMSE) in pretest item
parameter estimation from small to large sample sizes. The BILOG/Prior method did not work
appropriately under the 300 and 1,000 sample size conditions, but it performed similarly to
MEM under the 3,000 sample size. Stocking’s Method B produced the second smallest WMSE
under the 300 and 1,000 sample size conditions (and the third smallest WMSE under the 3,000
sample size condition). The OEM method produced the next smallest WMSE. Stocking’s
Method A provided the largest total error.

The MEM method appears to be the best choice among the methods used in this study
because it produced the smallest parameter estimation errors for all sample size conditions.
Stocking’s Method B also worked very well, but it requires anchor items that would make test
lengths longer when other things are equal. The BILOG/Prior method did not seem to work with
small sample sizes. Until more appropriate ways of handling sparse data with BILOG are
devised, the BILOG/Prior method may not be a reasonable choice. Because Stocking’s Method -
A has the largest weighted total error as well as a theoretical weakness (i.e., treating estimated
ability as true ability), there appears to be little reason to use it. The MEM method should be
preferred to OEM unless amount of time involved in iterative computation is a great concern.
Otherwise, OEM and MEM are mathematically similar and OEM produces larger errors than the
MEM method.

It is emphasized that the results reported here should be interpreted with caution due to
the small to modest size of some of the reported error differences among the methods and the use
of qualified pretest items. The pretest items used in this study were actually operational items, so
the quality of the items was relatively high. When the pretest items are poor or do not fit the 3PL

model, the performance of the methods considered in this study may be different. In practice,
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OEM may perform better than MEM when there are some bad pretest items. Further research
should look at performance of methods when some pretest items are bad and there is a sparse

matrix of item responses for pretest items.
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