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Monte Carlo Simulation 2

MONTE CARLO SIMULATION FOR PERUSAL AND PRACTICE

Ideally, a theoretical mathematical analysis would be offered to describe the efficiency of
a statistical method (Halperin, 1976; Harwell, 1990). However, several conditions may not
permit such an analytic analysis. For example, mathematical analysis is not possible when (a)
statistical assumptions do not hold, (b) conditions required for mathematical theory are not met
(e.g., the null hypothesis is known not to be true), or (c) the mathematics of the sampling
distribution have not yet been worked out for a statistic (Mooney, 1997).

Monte Carlo Simulation
Fortunately, meaningful investigation of many problems in statistics can be solved

through Monte Carlo methods. As noted by Mooney (1997), Monte Carlo simulation "offers an
alternative to analytical mathematics for understanding a statistic's sampling distribution and
evaluating its behavior in random samples" (p. 2). That is, a Monte Carlo study can help solve
problems that are mathematically intractable.

Monte Carlo simulations perform these functions empirically through the analysis of
random samples from populations whose characteristics are known to the researcher. Using
Monte Carlo simulation, the values of a statistic are observed in many samples drawn from that
known population. The statistic's sampling distribution is then estimated by the relative
frequency distribution actually observed in the study. The many samples are usually generated
artificially through the use of computer algorithms.

Monte Carlo methods use computer assisted simulations to provide evidence for
problems that cannot be solved mathematically, such as when the sampling distribution is
unknown or the null hypothesis is not true. Monte Carlo simulation often is used to study the
robustness of a statistic (Kleijnen, 1974). That is, Monte Carlo conditions are set up to violate
underlying assumptions of a specific statistic or procedure to determine how sensitive it is to the
given violations. Kleijnen also described Monte Carlo studies designed to study the sampling
distribution of a statistic or to compare the distributions of more than one estimate of a
parameter.

For example, a researcher may-develop a modified statistical test or procedure that is
expected to be more robust to some underlying statistical assumption (e.g., non-normality or
heterogeneity of variances). The researcher may use simulation to determine Type I error rates
of the modification over many samples, which are created under a true null hypothesis but with
violations of the assumption in question. The researcher would assess the actual proportion of
Type I error levels, t, of the statistic, knowing that any rejection (i.e., statistically significant
result) would be a Type I error under the true null hypothesis. Based on these results, the
researcher may determine that the new modification is nearly equal (rc=a), more conservative
(rc<a), or more liberal or inflated (m >a) than the error levels chosen as acceptable by the
researcher. For example, if the actual proportion of Type I error rates were rc=.10, and therefore
too far above the expected a=.05, the new modification or procedure may not prove worthy of
further consideration.

Statistical power analyses follow similar procedures, but generating data such that the
null hypothesis is known to be false. The number of true rejections of the null hypothesis are
counted for the series of simulated experiments in order to calculate empirical statistical power
rates. After all samples are completed, a proportion is calculated that represents the actual
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Monte Carlo Simulation 3

statistical power rate. As described for the Type I error situation, this rate may indicate that
Type II errors are higher or lower than expected (recall that power is 143, where (3 is the
probability of a Type II error).

Design of Monte Carlo Simulation Studies
Mooney (1997) has described the following steps for a basic Monte Carlo simulation:
1. Specify the pseudo-population in symbolic terms in such a way that it can be used

to generate samples. This usually means developing a computer algorithm to
generate data in a specified manner.

2. Sample from the pseudo-population (a pseudo-sample) in ways reflective of the
statistical situation of interest, for example, with the same sampling strategy,
sample size, and so forth.

3. Calculate 0 in the pseudo-sample and store it in a vector, 0.
4. Repeat Steps 2 and 3 n times, where n is the number of trials.
5. Construct a relative frequency distribution of the resulting 0,, values, which is the

Monte Carlo estimate of the sampling distribution of 0 under the conditions
specified by the pseudo-population and the sampling procedures. (p. 4)

It should be noted that the Monte Carlo design is not very different from more standard research
design, which typically includes identification of the population, description of the sampling
plan, data collection, and data analysis. Although most of the Monte Carlo design is
straightforward, Mooney (1997) noted that the two most difficult facets are writing the computer
code to simulate the desired data conditions and interpreting the estimated sampling distribution.
In what follows we consider in more detail each of Mooney's first four steps.
Step 1: Specify The Pseudo-Population

In this section we describe how random numbers are created on computers and how they
are used to generate data from normal and multivariate normal distributions. We begin with a
discussion of research that has been done on the center piece of random number generation,
generating random number from a uniform distribution.

Uniform Number Generation. The uniform distribution, often designated U(0,1), is the
building block of all Monte Carlo simulation work. From the uniform distribution, variables
with all other distribution functions are derived (Mooney, 1997). This is because the uniform
distribution has a range from zero to one, which can define a range for random probabilities.
These uniform random numbers, then, can be used as probabilities to be input into other
distribution functions using the appropriate inverse transformations and acceptance-rejection
methods (Mooney, 1997).

Although there are a variety of methods by which more nearly and theoretically random
uniform numbers can obtained, most Monte Carlo research generates these numbers by applying
a deterministic algebraic formula. It is interesting to note that Intel is expected to include a
hardware solution for random number generation in future chip sets (Miller, 1999). This process
will generate random numbers by measuring the random thermal noise. The benefit to a
hardware solution is that "for a variety of geeky reasons, it's virtually impossible to generate
truly random numbers using software alone" (Miller, 1999, p. 58).

For practical purposes, the numbers produced by deterministic methods are considered to
behave as random numbers if they have passed rigorous testing for uniformity and mutual
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independence (Kleijnen, 1974; L'Ecuyer, 1988; Mooney, 1997; Rubinstein, 1981). Because
these numbers are generated in a deterministic fashion, they are said to be pseudorandom. The
primary advantage of deterministic generators over the use of random numbers chosen in some
other fashion is that a sequence of pseudorandom numbers can be reproduced with repeated use
of the same initial seed value (Kleijnen, 1974; Mooney, 1997). The most important disadvantage
is that after some period or cycle, the same sequence of numbers begins to repeat (Kleijnen,
1974).

Linear congruential generators (LCG) are the most commonly used generators for the
uniform distribution (Bratley, Fox, & Schrage, 1987; Knuth, 1981; L'Ecuyer, 1988). Linear
congruential generators follow the algebraic formula:

X,+1 = (aX, + c) MOD m,
where a is called the multiplier, c is called the increment, and m is called the modulus (Knuth,
1981). The modulo function, MOD, takes as it result the remainder of a division (e.g.,
10MOD3=1). Also required is an initial seed value Xo to serve as the starting value for the
pseudorandom sequence. The modulus usually is chosen to be a large prime integer and the
multiplier is some integer less than m (Park & Miller, 1988). When c = 0, a special class of
linear congruential generator called multiplicative congruential generators result (Bratley, Fox, &
Schrage, 1987; Kleijnen, 1974; Mooney, 1997). A multiplicative congruential generator (MCG)
is more computationally efficient because the addition operation is not performed (Fishman &
Moore, 1982).

Pseudorandom numbers generated through any procedure should be tested, especially for
uniformity and independence (Kleijnen, 1974). For instance, for any LCG, the values chosen for
a, c, m, and Xo, which Knuth called "magic numbers" (p. 9), determine the statistical quality of
the generator and therefore are usually chosen for their proven performance. As stated by
Bratley, Fox, and Schrage (1987), "linear congruential generators are not universally reliable" (p.
224). In particular, some LCGs produce numbers that cause the common Box-Muller method for
generating random normal deviates to be very poor. For example, the use of the Box-Muller
transformation in conjunction with a multiplicative congruential generator can result in too few
large normal values (Hauck & Anderson, 1984) or data that falls along a spiral if graphed in two
dimensions (Bratley, Fox, & Schrage, 1987).

Also, Knuth (1981) showed that one particularly poor combination of values for a, c, m,
and X0 produces the sequence: 7, 6, 9, 0, 7, 6, 9, 0,..., for which the period is only four. Several
studies have compared values for a, c, and m constants (e.g., Fishman & Moore, 1982; L'Ecuyer,
1988; Park & Miller, 1988; Wichmann & Hill, 1982). For example, Park and Miller (1988)
compared many combinations of these constants against what they called the minimal standard
generator (a = 16807 and m = 231 - 1), that is:

f(z) = 16807z MOD 2147483647
which is chosen because (a) it is known to be full period (i.e., all numbers less than m are
produced), (b) it is demonstrably random, (c) it can be implemented correctly on almost any
computer system, and (d) it has been tested exhaustively and as a result its characteristics are
well understood.

Park and Miller (1988) have suggested that a generator that combines individual
generators (e.g., Wichmann & Hill, 1982) is a logical extension of their minimal standard
generator. Indeed, Golder and Settle (1976) have recommended that when the Box-Muller
algorithm for generating random normal deviates is used, two MCGs should be combined. In
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particular, L'Ecuyer (1988) has described a method by which two MCGs can be combined
efficiently to produce a generator that, on a 32-bit computer, has a period of approximately
8.1x1018, compared to a period of about 108 for the minimal standard generator (Press,
Teukolsky, Vetter ling, & Flannery, 1992). The combined generator recommended for 32-bit
computers by L'Ecuyer (1988) uses a=40014 and m=2147483563 for one generator and a=40692
and m=2147483399 for the second. Press, Teukolsky, Vetter ling, and Flannery (1992) have
implemented L'Ecuyer's (1988) generator with an additional shuffle, which is used to break up
serial correlations in the sequence produced by a generator. They have wagered (literally) that
this generator "provides perfect random numbers; a practical definition of 'perfect' is that we will
pay $1000 to the first reader who convinces us otherwise" (p. 272).

Following the recommendation of Brat ley, Fox, and Schrage (1987) that one should
"seek protection by using a hybrid generator not known to have pathologies but having
theoretical support" (p. 224), the L'Ecuyer (1988) generator is recommended. A combined
generator is recommended for two reasons. First, for more extreme cases of the Monte Carlo
simulation, the number of independent pseudorandom numbers may exceed the period of most
generators. Press, Teukolsky, Vetterling, and Flannery (1992) have noted that the minimal
standard generator is not known to fail any statistical test, "except when the numbers of calls
starts to become on the order of the period m, say >108" (p. 271). Second, it has been
recommended that a combined generator be used when the Box-Muller method is used to
generate random normal deviates. Finally, based on Mooney's (1997) recommendation, the
generator should be "reseeded" occasionally, e.g., at the beginning of each outer loop, to ensure
no problems with periodicity.
Normal Deviate Generation. One of the most popular methods for generating normally
distributed data is the Box-Muller transformation (Golder & Settle, 1976). The Box-Muller
method, called the polar method for normal deviates by Knuth (1981), applies the
transformations

and
zi = \I(-2lnui) (cos27m2)

z1 = \J(- 2lnui) (sin27m2)
to two independent uniform numbers, uj and u2 , to obtain two independent standard normal

deviates, z, and z2 (Golder & Settle, 1976; Knuth, 1981; Press, Flannery, Teukolsky, &
Vetterling, 1989; Rubinstein, 1981). Golder and Settle (1976) have argued that no other method
for generating normal data has the simplicity and computational efficiency of the Box-Muller
transformation; Bratley, Fox, and Schrage (1987) have characterized it as an "ingenious method"
(p. 161).

Joint Multivariate Normal Data Generation. The correlation matrices that may be created
to generate multivariate normal data following a Cholesky decomposition procedure (also known
as the square root method) recommended by several scholars (Bratley, Fox, & Schrage, 1987;
Chambers, 1977; International Mathematical and Statistical Library, 1985; Karian & Dudewicz,
1991; Kennedy & Gentle, 1980; Knuth, 1981; Mooney, 1997; Morgan, 1984; Ripley, 1987;
Rubinstein, 1981). The Cholesky decomposition of a matrix produces a lower triangular matrix,
L, such that

LLT = E
where E is a symmetric, positive definite matrix such as a covariance or correlation matrix. This
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lower triangular matrix, L, can be used to create multivariate pseudorandom normal variates
through the equation

Z = + XLT
where Z is the multivariate normal data matrix containing zu , A is the vector containing the

variable means pti, and X contains vectors of independent, standard normal variates. When A=0,
the multivariate pseudorandom data are distributed with mean vector zero and covariance matrix
E.
Step 2: Sample From The Pseudo-Population

In this section four methods for generating data from a pseudo-population will be
discussed. The first three of these methods will be described and illustrated using SAS
programming commands and the last using FORTRAN commands. For didactic purposes we
will investigate what happens to the actual Type I error rate of the single group t-test when its'
assumption of normality is violated. For the first three methods we will violate the assumption
of normality by using the contaminated normal distribution discussed by Andrews, D. F., Bickel,
P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. & Tukey, J. W. (1972). For the fourth method
we will use data described by Sawilowsky and Blaire (1992).

We created a contaminated normal distribution by generating a proportion of the scores
from a normal distribution with a mean of zero and a standard deviation of one. i.e., a standard
normal distribution, and included among these scores a proportion of the scores from a normal
distribution with a mean of zero and a standard deviation of four. These latter scores were the
contaminates. This was done for four situations where the proportions of scores from the
standard normal distribution were: 1.00 (no violation), .90, .80, and .60, and therefore, the
proportions of contaminates were: 0, .10, .20, and .40. For each of these situations, we
performed a single group one-tailed t-test on a sample of ten units. We then randomly generated
samples of ten units and calculated a single group one-tailed t-test 1,000 times for each of the
four situations. For purposes of illustration we also repeated this process 10,000; 50,000 and
100,000 times. The latter numbers are referred to as the number of replications or iterations and
the authors of most Monte Carlo studies only choose one such number.

The question of interest using the first three methods in this study was: Will there be
differences among the four contaminating situations with respect to the one-tailed Type I error of
the single group t-test? In this study the Type I error rate (referred to as the nominal level of
significance) was set at .05. We kept track of the actual level of significance in each
contaminating situation by adding up the number of times we rejected the null hypothesis that
the group mean was equal to zero. For example, if when we generated the 1,000 replications we
counted 39 rejections when the proportion of contaminants was .20, then our actual alpha would
be found to be 39/1000 = .039. When this result is compared with the number of rejections in
the no violation situation, approximately .05, we would say that our test was performing
conservatively under this violation of normality.

(1) Standard Method: Generate Data Using Different Random Number Seeds. As was
described at Step 1, in most Monte Carlo studies the data are generated by computer using what
is called a pseudo-random number generator. The process is begun by supplying the generator
with a seed value which is a number usually of between 5 to 9 randomly selected digits. [These
seed values may be selected from tables of random numbers found in most statistics books. Or,
you may select one seed value from a table of random numbers and use this seed to have your
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computer generate further seed values.] In most studies a different seed value initiates each
violation situation. This process is illustrated in the SAS program found in Appendix A. In this
program the four data contamination situations were created in four sections of the program: (1)
DATA NORMAL, (2) DATA NORM_10, (3) DATA NORM_20, and (4) DATA NORM_40.
Following the CARDS statement in each of these sections are three or four numbers. The first
number is the seed value, the second number is the size of each sample (10), the third number
(here, 100,000) is the number of replications, and the fourth number is the proportion of
contaminants. The first situation has no contaminants and has no fourth number. The respective
seed values in these sections are: 3445167, 9221023, 5787747, and 1272301.

The estimates of Type I error from each data creation section and for each number of
replications (ITERATE) are shown following the SAS program code. In this output, the
different contaminating situations are labeled OBS and numbered 1 (no contamination), 2 (.10),
3 (.20), and 4 (.40). The seed values are in the column labeled SEED, the sample size is in the
column labeled SAMPLE, the number of rejections are in the column labeled CK and the actual
Type I error rate is shown under the heading ACTUAL. The differences among the actual Type
I error rates are shown in the line under the latter values beginning with the labels OBS and
DIF 12. For example, given 1,000 replications, the difference between the Type I error rate of
.046 for the no contamination situation and .044 for the .10 contamination situation is .002. You
may observe that as the number of replications increases to 100,000 the differences among the
actual Type I error rates begin to stabilize.

(2) Olson's Method: Generate A Single Set Of Data And Perform All Treatments On
These Data And Use Monte Carlo Critical Values. In his dissertation, Olson (1973) generated a
single set of random data and then performed different treatments on these data. In our context
this is equivalent to using the same set of random numbers in each situation and then
contaminating some (a fixed proportion) of them. Olson did this..."so that comparisons among
factor combinations would have much higher precision than if they were diluted by fluctuations
between batches of random numbers." (p. 35).

Olson also used what he called a Monte Carlo critical value. If ITERATE is the number
of replications, and if we arrange the t values from our non-contaminated group in order from
largest to smallest, then the mean of (ITERATE times .05)th and of (ITERATE times .05 + 1)th
largest of the ITERATE values is the Monte Carlo critical value. For example in our data when
ITERATE = 1,000, the Monte Carlo critical value was the average (1.77145) of the 50th =
1.76615 and 51th = 1.77676 largest values.

The SAS program illustrating Olsen's method is shown in Appendix B, and the output
from this program follows. The same set of random numbers can be generated each time by
using the same seed to initiate the sequence. The seed used here was 3445167, and the Monte
Carlo critical values (MCCV) were ITERATE = 10,000, MCCV = 1.77012; ITERATE = 50,000,
MCCV = 1.81086; ITERATE = 100,000, MCCV = 1.82323. The theoretically derived tabled t
value (one-tailed, a = .05, df = 9) is 1.833. Note that because of the method of finding the
Monte Carlo critical value the actual level of significance in the output is .05 in the non-
contaminated situation across all sizes of ITERATION.

(3) Modified Olson Method. Another approach to generating Monte Carlo data is a
modification of Olson's method where instead of using Monte Carlo critical values one uses
theoretically derived t-values. The results from this approach using the SAS program reported in
Appendix A with the constant seed value of 3445167 are presented in Appendix C. These results
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compare favorable to those presented in Appendix B.
(4) Create A Population Like Those Found In Real Life And Take Random Samples

From This Population. Micceri (1989) investigated the characteristics of 440 large-sample
achievement and psychometric measures and found the distributions of all of these measures to
be nonnormal. Sawilowsky and Blair (1992) investigated the Type I and II error properties of
the t-test by generating data from populations like those found by Micceri. Appendix D contains
the Fortran code used by Sawilowsky and Blair to generate random samples of discrete data from
what Micceri called a multimodal lumpy achievement score distribution. The output for 1,000
iterations follows the program code.
Step 3: Calculate 0 In The Pseudo-Sample

Some common statistics calculated during a Monte Carlo simulation study include Type I
errors, statistical power, bias, root mean square error (or deviation), and relative efficiency.
More formal definitions are provided below.

Type I Error. By setting the parameters for the study the researcher is able to manipulate
the conditions such that, as was shown in the examples for Step 2, the statistical null hypothesis
is known to be true in each sample. By forcing the population to reflect a true null hypothesis, a
researcher performs a Monte Carlo study to test the robustness of a statistic, usually to violations
of assumptions. Type I error is calculated as the proportion of the total number of false
rejections of the true null hypothesis to the total Monte Carlo samples performed. For example,
if 10,000 Monte Carlo samples are created and the nominal level of significance is set at a=.05,
if 800 samples are actually found to be statistically significant (a rate of 0=.08), then the Type I
error rate is considered to be liberal because more than the expected 500 samples were
significant. Fewer significant samples than expected would result in a conclusion that the
statistic is conservative, and hence robust to the particular violation of the assumptions.

Statistical Power. Statistical power will be calculated as the proportion of the total
number of correct rejections to the total tests performed for each testing situation. Because the
statistical null hypothesis is known to be false in each sample of a statistical power study, each
rejection at an a=.05 significance level (for example) qualifies as a correct rejection and will be
recorded as such. For each of these conditions, then, empirical statistical power rates will be
calculated simply as the proportion of the tests for each sampling condition that were correctly
rejected.

Bias. Because the relative frequency distribution of the simulated 0; estimates the
sampling distribution of 0, the characteristics of the frequency distribution can be informative
(Mooney, 1997). For example, the central tendency can be used to estimate a statistic's bias; the
variability of a statistic can be used to compare two statistics in terms of efficiency (Mooney,
1997).

Statistical bias is defined as the difference between the population value and the expected
value of its estimate in the sample (Drasgow, Dorans, & Tucker, 1979; Kromrey & Hines, 1995;
Mooney, 1997). Specifically, the central tendency of the sampling distribution for a statistic
allows us to estimate that statistic's bias:

Bias = E(0) 0,
where 0 is the population parameter and E(0) is the expected value of the sample statistic
(average of the statistic over infinite samples).

In a Monte Carlo simulation, unlike real life, the population parameter is a known value
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that is set to a given value in the computer algorithm. Therefore, bias is estimated within a
Monte Carlo study through the calculation of the simple difference between the mean of the
parameter estimate over all samples created for a given condition and the known population
parameter for that condition:

Bias = (E0,)/n - 0,
where 0 is the known population parameter (as set in the computer algorithm), 0, is the estimate
of that parameter obtained in sample i of the Monte Carlo simulation, and n is the total number
of samples taken in the Monte Carlo study.
RMSE. The Root Mean Squared Error (RMSE) is another common statistic used to evaluate the
results of Monte Carlo simulations. RMSE provides an indication of the statistic's variability.
Unlike the statistical bias, which is calculated after all the simulations have been performed,
mean squared error is the average of the squared differences between the population parameter
and its estimate for each sample. RMSE, then, is the square root of the mean squared error for
the given statistic. That is,

RMSE(0) = qE(0 0,)2 / Jn ,

where 0 is the known population parameter (as set in the computer algorithm), 0, is the estimate
of that parameter obtained in sample i of the Monte Carlo simulation, and n is the total number
of samples taken in the Monte Carlo study (Darlington, 1996; Drasgow, Dorans, & Tucker,
1979; Kennedy, 1988; Mooney, 1997)

Relative Efficiency. Mooney (1997) defined relative efficiency as the ratio of two RMSE
values, multiplied by 100 to convert it to a percentage:

Relative Efficiency = 100 x RMSE(0A)/RMSE(0B)
where OA and 013 are two different estimates the same parameter (Mooney, 1997). That is, in
order to compare to two estimates, OA and OB, of a particular population parameter, the researcher
converts their respective RMSE values into a relative efficiency percentage. Values under 100
would indicate the superiority of estimator OA (i.e., OA with smaller RMSE), whereas values over
100 would represent the superiority of OB. Wichern and Churchill (1978) have used a similar
efficiency criterion in order to compare two estimators directly.
Step 4: Repeat Steps 2 And 3 n Times

How many times should I estimate 0? In this section we discuss how a researcher might
select the number of trials for their simulation study when 0 estimates Type I or Type II error.

Assessing the error properties of an algorithm (i.e., a or Type I error, and (3 or Type II
error) requires that the researcher not only define criterion values (e.g., a=.01 or (3 =.01), but also
tolerances for departures form those values. Since it is unreasonable for an observed error rate
obtained through simulation to equal exactly the nominal level, the researcher must set an
interval about the nominal error rate (either a or (3) that defines the limits of tolerable departure.
Said differently, a researcher must not only define a nominal error level of interest (e.g.,
a = 0.05 ), but also define what constitutes a meaningful departure from that nominal level.

By setting the unilateral width of an interval about a as some fraction of a, Bradley
(1978) defined tolerance intervals for departures from nominal a in studies of robustness.
Bradley (1978, p. 146) defined a 'fairly stringent criterion' as a±1/10a, and a 'liberal criterion'
as a±1/2a. In this paper, these criteria are supplemented by an intermediate criterion (i.e.
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a ±1 /4a) and a very liberal criterion (i.e. a ±3/4a) in an effort to address a range of interests. In a
more general sense, Bradley's definitions/intervals can be considered as definitions/intervals for
departures for 13 as well. That is, Bradley's intervals can be generalized from
definitions/intervals regarding tolerance for acceptable Type I error to definitions/intervals
regarding tolerance for either kind of error (i.e., Type I or Type II). As such, we can think of the
four intervals as levels of error tolerance (gradations from conservative to liberal). Within this
framework, the application of hypothesis testing logic is straightforward and can yield the
number of iterations necessary to detect meaningful departures from the null hypothesis under
tolerable error probabilities (Robey & Barcikowski, 1992).

The general form of the non-directional null hypothesis that a population proportion (i.e.,
it which is estimated as ft through simulation) equals some constant (c) is written as
Ho : it = c . In Monte Carlo experiments, this null hypothesis is adapted to the form of

Ho : a = c in studies of robustness (where a represents Type I error of the algorithm under

test) or as Ho : 1-13 = c in studies of statistical power (where 13 represents Type II error of the

algorithm under test). The tenability of null hypotheses like these can be directly evaluated
through applications of the two-tailed proportions test.

Since the statistical power of the two-tailed proportions test to detect departures of TC from
c is not the same when it > c as it is when it < c , comparison of TE and c are facilitated by
transforming each using

(I)p = 2 arcsin rp

where arcsin is given in radians and p is a proportion (Cohen, 1988). The value of (1), CI is

tested against the critical value

Z1-wiz AF1 -/3

where Z is the standard unit normal deviate, and where co is the Type I error rate of the
proportions test (Cohen, 1988, pp. 548 and 212).

Once the Type I error rate ( co) and the statistical power level (1 y) for the proportions
test have been selected, the necessary number of iterations (n) is given by Cohen (1988, p.549)
as

n = 2 [Z1-0)/2 Zi-y

(1),. Hid

where c' is the upper bound (i.e., greater value) of the error-tolerance interval. The upper bound
is used in the calculation of n since the arcsin transformation causes the interval about (I)c to be

asymmetric where the distance from (I)c to (1), is less than the distance from (I)c to the

transformed lower bound. As a result, critical departures from c in the direction of .5 are harder
to detect than critical departures from c that are further out in the tail. The former departures,
therefore, require a few more observations than do the latter to achieve criterion power. When
an investigator is not interested in detecting conservative departures from c (i.e., values less than

11
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c), n is accordingly calculated for a one-tailed test.
Computing resources can be conserved when examining multiple levels of c by testing

the null hypothesis at the lowest interesting value of c only. Using the sample size necessary to
detect departures from the lowest value of c in an effort to detect departures from greater c
values would result in a very high level of statistical power in the application of the proportions
test. Further, no advantage would be realized by analyzing the greater values of c using lesser
values of n. As a result, the lc values for the greater values of c might just as well be based on
the greatest n and interpreted as population values.

Tabled values of n. Table 1 contains the number of iterations necessary for the two-tailed
proportions test to detect departures from c relative to each of the four error-tolerance
definitions. In this table, the values for c include .10, .05, and .01. For each c, the entries are
indexed by three Type I error rates for the two-tailed proportions test, w (i.e. w = .01, .05, and
.10), and by three statistical powers for the two-tailed proportions test, 1 y (i.e., 1 y = .7, .8,
and .9).
From a hypothesis-testing-logic perspective, Table 1 reveals that the frequently encountered
practice of carrying out 1000 iterations is appropriate only for larger values of c in combination
with more liberal definitions of error tolerance. The detection of a departure from a small value
of c, say .01 or less, from one of the more stringent error-tolerance definitions requires an n
which is substantially larger than that found in many Monte Carlo studies. For example, 121312
iterations are required to detect departures from the most stringent definition of error tolerance at
c=.01, when the power for the proportions test is set at .80 and w is set at .01.

Verification of the Data Collection Procedures
According to Bratley, Fox, and Schrage (1987), verification of the algorithms should

include (a) manual verification of the logic by comparing results of the computer analysis with
results calculated by hand, (b) modular testing to ensure that each subroutine produces sensible
output for all possible inputs, (c) checking the results against known solutions, (d) sensitivity
testing to ensure that the behavior of the computer model is sensible when parameters are varied,
and (e) stress testing to ensure that strange values do not cause unexpected problems. Each of
these steps was performed in preliminary analyses to verify program integrity. As changes in the
program occurred as it developed, testing was repeated.

Manual verification of the logic of the computer code can be performed in several ways.
Most of these verifications require that the program be run for either a single sample or for a few
samples so that hand calculations and counts can be made easily. First, several of the variables
may be derived mathematically from other of the statistical information gathered for each
sample, and therefore can be calculated for single or several samples by hand to compare to
program results. Similarly, the RMSE for several statistics can be verified to produce expected
results based on the values of the statistics. Also, the number of rejections of the statistical
hypothesis are counted to ensure the correct number for whatever type of study is being
performed. Manual verification also entails verifying the aggregated output over several
iterations. Specifically, to ensure that averages taken over the total number of iterations are
correct, output is produced for several samples and averages are calculated by hand (well, by
hand with the aid of a calculator). Similar procedures can be performed for the RMSE, standard
deviations, and number of rejections compiled.

Modular testing is performed in a similar manner to manual verification. For example,

12
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the adaptations of the pseudorandom number generators used in a computer program can be
tested to ensure that they do indeed produce uniformly and normally distributed data, as required.
The Cholesky decomposition procedure, or some other procedure to generate multivariate
normal data, must be tested with several matrices to ensure its performance. Data from the
pseudorandom number generators should be verified to have appropriate means and variances.
Finally, algorithms adapted from other sources can be verified to produce the same output as
their original sources. The results of the statistical modules usually are verified by comparison to
results from an accepted statistical package, such as SAS or SPSS.

Summary
In this paper we have discussed and illustrated the steps an educational researcher would

take to complete a Monte Carlo study. We began by discussing how one chooses a pseudo-
random number generator and then we discussed how to use these generators to simulate data
from normal and multivariate normal distributions. We then provided several examples of how
one might sample from a pseudo-population; what statistics are commonly calculated during a
Monte Carlo investigation, and how many trials might be used when investigating Type I and
Type II error. We completed the paper with a discussion of the processes one might use to verify
that a researcher's simulation process is indeed doing what it was intended to do.

13
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Table 1
Necessary Iterations For Two-Tailed Proportions Test To Detect Departures Of it From a.

1 -y c±1/10c c±1/4c c±1/2c c±3/4c

.10 4419 750 204 94
.7 .05 5796 983 268 128

.01 9027 1531 417 200

.10 5810 986 269 129
.10 .8 .05 7375 1251 341 163

.01 10973 1861 507 243

.10 8047 1365 372 178
.9 .05 9873 1675 456 218

.01 13980 2371 846 309

.10 9356 1594 437 211
.7 .05 12271 2091 573 276

.01 19111 3256 893 430

.10 12301 2096 575 277
.05 .8 .05 15614 2660 729 351

.01 23233 3958 1085 523

.10 17038 2903 796 383
.9 .05 20902 3561 976 470

.01 29600 5042 1382 666

.10 48852 8348 2300 1113
.7 .05 64072 10948 3017 1460

.01 99790 17051 4678 2274

.10 64227 10975 3024 1464
.01 .8 .05 81527 13931 3838 1858

.01 121312 20729 5711 2764

.10 88963 15201 4188 2027
.9 .05 109141 18649 5138 2487

.01 154556 26409 7276 3521

Note: The value of c is a criterion proportion

being tested. The value of (0 and 1- y are
proportions test.

for either Type I error (a) or Type II error (1 [3) of the algorithm

a priori Type I error and statistical power levels of the two-tailed

Appendix A
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SAS Programming Code Illustrating
The Standard Method Of Generating Random Data

Using Different Random Number Seeds.

DATA NORMAL;
INPUT SEED SAMPLE ITERATE;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAMPLE;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X.* X;
N+1;

END;

XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);
T = XBAR / SQRT(VARX/N);
DF = N - 1;
P T = 1-PROBT(T,DF);

IF P T < = .05 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;

CARDS;
3445167 10 100000

DATA NORM 10;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE SAM1;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;

TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM1=;
END;
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XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);
T = XBAR / SQRT(VARX/N);
DF = N 1;

P T = 1-PROBT(T,DF);
IF P T < = .05 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;
CARDS;
9221023 10 100000 .10

DATA NORM_20;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE SAM1;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM1=;
END;

XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);
T = XBAR / SQRT(VARX/N);
DF = N - 1;
P T = 1-PROBT(T,DF);

IF P T < = .05 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;
CARDS;
5787747 10 100000 .20

DATA NORM 40;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE - SAM1;
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DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X =NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

*PUT X= TOTX= SSX= N= SAM1=;
END;

XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);
T = XBAR / SQRT(VARX/N);
DF = N 1;

P T = 1-PROBT(T,DF);
IF P T < = .05 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;
CARDS;
1272301 10 100000 .40

DATA ALL;
SET NORMAL NORM 10 NORM 20 NORM 40;

PROC PRINT;
DATA DIFF;
ARRAY DIFD {4} V1-V4;
DO I = 1 TO 4;
SET ALL;

DIFD(I) = ACTUAL;
END;

DIF_12 = V1 - V2;
DIF 23 = V2 V3;
DIF 34 = V3 V4;

KEEP DIF 12 DIF 23 DIF 34;
PROC PRINT;
RUN;
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OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 1000 46 0.046
2 9221023 10 1000 44 0.044
3 5787747 10 1000 49 0.049
4 1272301 10 1000 37 0.037

OBS DIF 12 DIF 23 DIF 34

1 .002 -.005 0.012

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 10000 461 0.0461
2 9221023 10 10000 405 0.0405
3 5787747 10 10000 440 0.0440
4 1272301 10 10000 450 0.0450

OBS DIF 12 DIF 23 DIF_34

1 .0056 -.0035 -.001

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 50000 2429 0.04858
2 9221023 10 50000 2007 0.04014
3 5787747 10 50000 1937 0.03874
4 1272301 10 50000 2220 0.04440

OBS DIFL2 DIF23 DIF 34

1 .00844 .0014 -.00566

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 100000 4924 0.04924
2 9221023 10 100000 4022 0.04022
3 5787747 10 100000 3894 0.03894
4 1272301 10 100000 4420 0.04420

OBS DIF 12 DIF 23 DIF_34

1 .00902 .00128 -.00526
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Appendix B
SAS Programming Code Illustrating

Olson's Method: Generate A Single Set Of Data
And Perform All Treatments On These Data

And Use Monte Carlo Critical Values.

DATA NORMAL;
INPUT SEED SAMPLE ITERATE;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAMPLE;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X *
N+1;
END;

XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);
T = XBAR / SQRT(VARX/N);

IF T > = 1.77145 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;

CARDS;
3445167 10 1000

*

DATA NORM 20;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE - SAM1;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;

TOTX = TOTX +
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM1=;
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END;
XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);

T = XBAR / SQRT(VARX/N);
IF T > = 1.77145 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;
CARDS;
3445167 10 1000 .20

DATA NORM_40;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE SAM1;
DO I = 1 TO ITERATE;
TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;

TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM1=;
END;

XBAR = TOTX / N;
VARX = (SSX - N * XBAR**2) / (N-1);

T = XBAR / SQRT(VARX/N);
IF T > = 1.77145 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;

CARDS;
3445167 10 1000 .40

DATA NORM_60;
INPUT SEED SAMPLE ITERATE PROP;
SAM1 = PROP * SAMPLE;
SAM2 = SAMPLE SAM1;
DO I = 1 TO ITERATE;
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TOTX = 0;
SSX = 0;
N = 0;

DO J = 1 TO SAM2;
X = NORMAL(SEED);
TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM2=;
END;
DO J = 1 TO SAM1;
X = NORMAL(SEED) * 4;

TOTX = TOTX + X;
SSX = SSX + X * X;
N+1;

PUT X= TOTX= SSX= N= SAM1=-;

END;
XBAR = TOTX / N;
VARX = (SSX N * XBAR**2) / (N-1);

T = XBAR / SQRT(VARX/N);
IF T > = 1.77145 THEN DO;
CK + 1;
ACTUAL = CK / ITERATE;
END;

KEEP SEED SAMPLE ITERATE CK ACTUAL;
END;
CARDS;
3445167 10 1000 .60

*;

DATA ALL;
SET NORMAL NORM 20 NORM 40 NORM_60;

PROC PRINT;
DATA DIFF;
ARRAY DIF{4} V1-V4;
DO I = 1 TO 4;
SET ALL;
DIF{I} = ACTUAL;
END;
DIF 12 = V1 - V2;
DIF-23 = V2 V3;
DIF-34 = V3 - V4;
KEEP DIF 12 DIF 23 DIF 34;
PROC PRINT;
RUN;
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OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 1000 50 0.050
2 3445167 10 1000 42 0.042
3 3445167 10 1000 39 0.039
4 3445167 10 1000 47 0.047

OBS DIF 12 DIF 23 DIF 34

1 .008

OBS SEED SAMPLE

.003 -.008

ITERATE CK ACTUAL

1 3445167 10 10000 500 0.0500
2 3445167 10 10000 406 0.0406
3 3445167 10 10000 437 0.0437
4 3445167 10 10000 473 0.0473

OBS DIF 12 DIF 23 DIF 34

1 .0094

OBS SEED SAMPLE

-.0031 -.0036

ITERATE CK ACTUAL

1 3445167 10 50000 2500 0.05000
2 3445167 10 50000 2045 0.04090
3 3445167 10 50000 2017 0.04034
4 3445167 10 50000 2341 0.04682

OBS DIF 12

1 .0091

OBS SEED SAMPLE

DIF 23 DIF 34

.00056 -.00648

ITERATE CK ACTUAL

1_ 3445167 10 100000 5000 0.05000
2 3445167 .10 100000 4065 0.04065
3 3445167 10 100000 3957 0.03957
4 3445167 10 100000 4576 0.04576

OBS DIF 12

1 .00935

DIF 23 DIF 34

.00108 -.00619

BEST COPY AVAILABLE
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Appendix C
Output Using The Modified Olson Method

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 1000 46 0.046
2 3445167 10 1000 35 0.035
3 3445167 10 1000 35 0.035
4 3445167 10 1000 44 0.044

OBS DIF 12 DIF 23 DIF 34

1 0.011 0 -.009

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 10000 461 0.0461
2 3445167 10 10000 357 0.0357

3 3445167 10 10000 373 0.0373
4 3445167 10 10000 419 0.0419

OBS DIF 12 DIF 23 DIF 34

1 0.0104 -.0016 -.0046

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 50000 2429 0.04858
2 3445167 10 50000 1965 0.03930
3 3445167 10 50000 1916 0.03832
4 3445167 10 50000 2253 0.04506

OBS DIF 12 DIF 23 DIF 34

1 .00928 .00098 -.00674

OBS SEED SAMPLE ITERATE CK ACTUAL

1 3445167 10 100000 4924 0.04924

2 3445167 10 100000 3977 0.03977
3 3445167 10 100000 3875 0.03875

4 3445167 10 100000 4487 0.04487

OBS DIF 12 DIF 23 DIF 34

1 .00947 .00102 -.00612
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Appendix D
Sawilowsky and Blair's Fortran Code

For Generating Data From A Population
Like Those Found In Real Life

(Here Only The Multimodal Lumpy Achievement Measures)

C Multimodal Lumpy, Achievement
C MODIFIED FOR THIS EXAMPLE BY BARCIKOWSKI, MARCH 1999
C

DIMENSION IR(467), AIR(467), TED(467)
OPEN(4,FILE='SAW.TXT')
OPEN(5)
OPEN(6,FILE='SAW.OUT')

C NRA IS THE SAMPLE SIZE
C IDUM IS THE NEGATIVE RANDOM NUMBER SEED
C KPOP IS THE SIZE OF THE POPULATION
C IR IS A VECTOR CONTAINING THE ELEMENTS TO BE
C SAMPLED FROM THE POPULATION
C

READ(4,*) NRA, IDUM, KPOP, ITERATE
PRINT 5, NRA, IDUM, KPOP, ITERATE

5 FORMAT (1H0,'THE SAMPLE SIZE IS:',I7,/,
<1H0,'THE SEED IS:',I10,/,1H0,'THE POPULATION SIZE IS:',I7,/
<1H0,'THE NUMBER OF ITERATIONS IS:',I10)

C

C READ IN TED'S (MICCERI, 1987, FERA) TABLE 8:
C ACHIEVEMENT MEASURE EXHIBITING MULTIMODALITY
C AND LUMPINESS. K=467
C

K=467
DO 710 1=1,5
TED(I)=0.

710 CONTINUE
DO 711 1=1,8
TED(5+I)=1.

711 CONTINUE
DO 712 1=1,8
TED(13+I)=2.

712 CONTINUE
DO 713 1=1,3
TED(21+I)=3.

713 CONTINUE
DO 714 1=1,8

TED(24+I)=4.
714 CONTINUE

DO 715 1=1,6
TED(32+I)=5.

715 CONTINUE
DO 716 1=1,3
TED(38+I)=6.

716 CONTINUE
DO 717 1=1,9
TED(41+I)=7.

717 CONTINUE
DO 718 1=1,12
TED(50+I)=8.

718 CONTINUE
DO 719 1=1,18

TED(62+I)=9.
719 CONTINUE

DO 720 1=1,11
TED(80+I)=10.

720 CONTINUE
DO 721 1=1,23

BEST COPY AVAILABLE
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TED(91+1)=11.
721 CONTINUE

DO 722 1=1,22
TED(114+I)=12.

722 CONTINUE
DO 723 1=1,24
TED(136+I)=13.

723 CONTINUE
DO 724 1=1,20
TED(160+I)=14.

724 CONTINUE
DO 725 1=1,15
TED(180+I)=15.

725 CONTINUE
DO 726 1=1,18
TED(195+I)=16.

726 CONTINUE
DO 727 1=1,12
TED(213+I)=17.

727 CONTINUE
DO 728 1=1,9
TED(225+I)=18.

728 CONTINUE
DO 729 1=1,10
TED(234+I)=19.

729 CONTINUE
DO 730 1=1,10
TED(244+1)=20.

730 CONTINUE
DO 731 1=1,7
TED(254+I)=21.

731 CONTINUE
DO 732 1=1,8
TED(261+I)=22.

732 CONTINUE
DO 733 1=1,10
TED(269+I)=23.

733 CONTINUE
DO 734 1=1,3
TED(279+I)=24.

734 CONTINUE
DO 735 1=1,5
TED(282+I)=25.

735 CONTINUE
DO 736 1=1,10
TED(287+I)=26.

736 CONTINUE
DO 737 1=1,9
TED(297+I)=27.

737 CONTINUE
DO 738 1=1,3
TED(306+I)=28.

738 CONTINUE
DO 739 1=1,10
TED(309+I)=29.

739 CONTINUE
DO 740 1=1,6
TED(319+I)=30.

740 CONTINUE
DO 741 1=1,11

TED(325+I)=31.
741 CONTINUE

DO 742 1=1,15
TED(336+I)=32.

742 CONTINUE
DO 743 1=1,13
TED(351+I)=33.

743 CONTINUE

BEST COPY AVAILABLE
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C

DO 744 1=1,15
TED(364+I)=34.

744 CONTINUE
DO 745 1=1,10

TED(379+I)=35.
745 CONTINUE

DO 746 1=1,12
TED(389+I)=36.

746 CONTINUE
DO 747 1=1,17

TED(401+I)=37.
747 CONTINUE

DO 748 1=1,10
TED(418+I)=38.

748 CONTINUE
DO 749 1=1,6

TED(428+I)=39.
749 CONTINUE

DO 750 1=1,11
TED(434+1)=40.

750 CONTINUE
DO 751 1=1,9
TED(445+I)=41.

751 CONTINUE
DO 752 1=1,6
TED(454+I)=42.

752 CONTINUE
DO 753 1=1,7
TED(460+I)=43.

753 CONTINUE
RN = NRA
Dl = 1
D2 = RN 1.0
ALPHA = .05
DO 14 IBIG = 1, ITERATE
TOTX = 0.0
SSX = 0.0
DO 1 I = 1, KPOP
AIR(I) = RAN1(IDUM)
IR(I) = I

1 CONTINUE
CALL SORT(IR,AIR,KPOP)
DO 2 I = 1, NRA

2 CONTINUE
DO 3 J = 1, NRA
II = IR(J)
X = TED(II)
TOTX = TOTX + X
SSX = SSX + X * X

3 CONTINUE
XBAR = TOTX / RN
VARX = (SSX -RN * XBAR**2)

THE MEAN OF THE POPULATION IS
/ (RN-1)

21.1477516; HA: u >
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21.1477516
T = (XBAR-21.1477516) / SQRT(VARX/RN)
IF (T .LE. 0.0) GO TO 14
F = T * T
P = BETAI(0.5*D2, 0.5*D1, D2/(D2+D1 *F))
P = P/2.0
IF (P .LE. .05) THEN
CK = CK + 1
ENDIF

14 CONTINUE
ACTUAL = CK / ITERATE BEST COPY AVAILABLEPRINT 15, CK, ACTUAL

15 FORMAT(1X,'THE NUMBER OF REJECTIONS:',F7.2,/,
<1X,'THE ACTUAL ALPHA:',F8.4)
STOP
END
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FUNCTION RAN1(IDUM)
DIMENSION R(97)
PARAMETER (M1=259200,1A1=7141,IC1=54773,RM1=3.8580247E-6)
PARAMETER (M2=134456,1A2=8121,1C2=28411,RM2=7.4373773E-6)
PARAMETER (M3=243000,IA3=4561,1C3=51349)
DATA IFF /0/
IF (IDUM.LT.0.OR.IFF.EQ.0) THEN

IFF=1
IX1=MOD(IC1-IDUM,M1)
IX1=MOD(IA1 *IX1+IC1,M1)
IX2=MOD(IX1,M2)
IX1=MOD(IA1 *IX1+IC1,M1)
IX3=MOD(IX1,M3)
DO 11 J=1,97

IX1=MOD(IA1 *IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
R(J)=(FLOAT(IX1)+FLOAT(/X2)*RM2)*RM1

11 CONTINUE
IDUM=1

ENDIF
IX1=MOD(IA1 *IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
J=1+(97*IX3)/M3
IF(J.GT.97.OR.J.LT.1)PAUSE
RAN1=R(J)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1
RETURN
END

C RMA01680

C RMA01690

C SORT THE UNIFORM NOS LARGEST TO SMALLEST
C RMA01710

C RMA01720
SUBROUTINE SORT(NUMS,RIKE, NOCELL)
DIMENSION RIKE(467), NUMS(467)

20 FLAG = 0 RMA01760
DO 10 I = 1, NOCELL-1 RMA01770
IF(RIKE(I) .LT. RIKE(I+1)) THEN

TEMP = RIKE(I)
RIKE(I) = RIKE(I+1)
RIKE(I+1) = TEMP
LT = NUMS(I)
NUMS(I) = NUMS(I+1)
NUMS(I+1) = LT
FLAG = 1 RMA01850

END IF RMA01860
10 CONTINUE RMA01870

IF (FLAG .EQ. 1) THEN RMA01880
GO TO 20 RMA01890
END IF RMA01900
RETURN RMA01910

END RMA01920
FUNCTION BETAI(A,B,X)
IF(X.LT.0..OR.X.GT.1.)PAUSE 'bad argument X in BETAI'
IF(X.EQ.0..OR.X.EQ.1.)THEN

BT=0.
ELSE
BT=EXP(GAMMLN(A+B)-GAMMLN(A)-GAMMLN(B)

+A*ALOG(X)+B*ALOG(1.-X))
ENDIF
IF(X.LT.(A+1.)/(A+B+2.))THEN
BETAI=BT*BETACF(A,B,X)/A
RETURN

ELSE
BETAI=1.-BT*BETACF(B,A,1.-X)/B
RETURN

ENDIF
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END
FUNCTION BETACF(A,B,X)
PARAMETER (ITMAX=100,EPS=3.E-7)
AM=1.
BM=1.
AZ=1.
QAB=A+B
QAP=A+1.
QAM=A-1.
BZ=1.-QAB*X/QAP
DO 11 M=1,ITMAX
EM=M
TEM=EM+EM
D=EM*(B-M)*X/((QAM+TEM)*(A+TEM))
AP-AZ+D*AM
BP=BZ+D*BM
D=-(A+EM)*(QAB+EM)*X/((A+TEM)*(QAP+TEM))
APP=AP+D*AZ
BPP=BP+D*BZ
AOLD=AZ
AM=AP/BPP
BM=BP/BPP
AZ=APP/BPP
BZ=1.
IF(ABS(AZ-AOLD).LT.EPS*ABS(AZ))G0 TO 1

11 CONTINUE
PAUSE 'A or B too big, or ITMAX too small'

1 BETACF=AZ
RETURN
END
FUNCTION GAMMLN(XX)
REAL*8 COF(6),STP,HALF,ONE,FPF,X,TMP,SER
DATA COF,STP/76.18009173D0,-86.50532033D0,24.01409822D0,

* -1.231739516D0,.120858003D-2,-.536382D-5,2.50662827465D0/
DATA HALF,ONE,FPF/0.5D0,1.0D0,5.5D0/
X..XX-ONE
TMP=X+FPF
TMP=(X+FIALF)*LOG(TMP)-TMP
SER=ONE
DO 11 J=1,6

X=X+ONE
SER=SER+COF(J)/X

11 CONTINUE
GAMMLN=TMP+LOG(STP*SER)
RETURN
END
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OUTPUT

THE SAMPLE SIZE IS: 10

THE SEED IS: -35612893

THE POPULATION SIZE IS: 467

THE NUMBER OF ITERATIONS IS: 1000
THE NUMBER OF REJECTIONS: 37.00
THE ACTUAL ALPHA: 0.0370

31
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