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Assessment is one of the most fundamental of classroom activities. Research by

Brookhart (1993, 1994) demonstrates that assessment and assessment-related activities

permeate almost all aspects of classroom life including (among others) identifying

timing and sequencing of activities, determination of homework assignments, timing of

assessments, timing of feedback, and the like. There has been a fair amount of research

on teacher grading practices (see Stiggins, Frisbie & Griswold, 1989; Terwilliger, 1989).

Much of this research has focused on the various academic and non-academic factors

teachers include in grades, and the various weights given to those factors.

Additionally, there have been many theory-based recommendations about the

construction of items for classroom assessments and how to display and interpret scores

on classroom assessments (see Airasian, 1994; Haladyna, 1994, 1997; McMillan, 1997,

2000). However, there has been little if any discussion of two conventions common

within classroom assessment: (1) the convention of representing a student's

performance on an assessment using a single score, and (2) the convention of using the

average score to summarize a student's performance over a set of assessments. This

article attempts to demonstrate that the assumptions underlying these conventions are

questionable at best. Additionally, this article attempts to demonstrate that the use of

these conventions renders classroom assessment a poor feedback device. Finally,

alternative conventions that make classroom assessments more accurate and useful

feedback mechanisms are presented and discussed.

Before addressing the two conventions of interest, I should note that my comments
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assume that feedback is one of the primary purposes of classroom assessment. Indeed,

a strong case can be made for this assumption. To illustrate, in their meta-analyses of

over 7,800 studies, Fraser et al. (1987) found that feedback was one of the most robust of

classroom practices in terms of its impact on learning. In his reporting of the findings

from the Fraser et al. study, Hattie (1993) commented that "the most powerful single

innovation that enhances achievement is feedback. The simplest prescriptions for

improving education must be 'dollops' of feedback" (p. 9). Finally, in their meta-

analysis, Bangert-Drowns, et al. (1991) found that assessment has an effect size of .74

(Cohen's d) on student learning when feedback is timed properly. Effective feedback,

then, is the filter through which classroom assessment is discussed in this article. It

should be noted, however, that some teachers might consider other purposes for

assessment equal to or greater than feedback (for discussions see Airasian, 1994;

McMillan, 1997).

SINGLE SCORES ON ASSESSMENTS

The use of a single score to represent a student's achievement on a classroom

assessment has strong theoretical roots, one of the strongest of which is the assumption

that competence in a given domain is governed by a single trait. Indeed, this

assumption underlies most discussions of true score theory. For example, in one of the

foundational discussions of true score theory, Lord (1959) notes that "A mental test is a

collection of tasks; the examinee's performance on these tasks is taken as an index of his

standing along some psychological dimension" (p. 473). Implied in Lord's comment is
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the assumption that a single dimension or a single trait underlies a collection of tests

within a given domain. Other discussions of true score theory are more explicit

regarding the single trait assumption. For example, Gulliksen (1950) notes that true

score theory assumes a monotonic relationship (most commonly isotonic) between

scores on a test and a single underlying latent trait (p. 28). Similarly, Magnusson (1966)

explains that: "The trait measured by a certain performance test can be represented by a

latent continuum, an ability scale on which every individual takes up a certain position.

The position an individual takes up on the ability scale determines. . . his true score on

the test, his position on the true-score scale" (p. 63). Finally, the single trait assumption

is evident in many IRT models. To illustrate, Hambleton, et al. (1991) note that ". . . a

common assumption of IRT models is that only one ability is measured by a set of items

in a test" (p. 9). Indeed, a fundamental assumption underlying an item characteristic

curve (ICC) is that an increase in the level of proficiency in a unidimensional trait,

increases the probability of correctly answering an item designed to measure that trait

(Hambleton, et al., 1991, p. 7).

Certainly, it is possible to construct tests in such a way that performance on them is a

function of a single underlying trait. One hopes that those who construct standardized

tests have the time, expertise, and resources to craft items in such a way that they are

unidimensional. However, this is probably not the case with assessments designed by

classroom teachers. To illustrate, consider Exhibit 1 which contains an adaptation of a

classroom assessment (a quiz) designed by a junior high school science teacher.

3 Marzano\Grading\Chap 1.100
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Exhibit 1
Science Quiz

The table below shows the temperature and precipitation (rain or snow) in five different towns on the
same day.

Town A Town B Town C Town D Town E

Low Temperature 13°c -9°c 22°c -12°c 10°c

High Temperature 25°c -3°c 30°c -4°c

,

12°c

Precipitation 0cm
_

5cm 2cm 0cm 10cm

Humidity Low High Medium Low
.

High

1. Which town had the highest temperature?

2. Which town had the most precipitation?

3. Which town or towns had a combination of high humidity and high precipitation?

4. Which towns are the most likely to be located close to each other?

5. Imagine that the table was turned on its side so that the towns (A, B, C, D, and E) were the rows
and the information about temperature, precipitation, and humidity was reported in the columns.
Would this make it easier or harder to read the table? Explain your answer.

6. Pick one town that probably received snow and two that probably did not but for different
reasons. Explain why you think each of the three towns did or did not receive snow.

7. Explain what might have happened if the low temperature in Town E had dropped to -5°c.

8. Explain the relationship between humidity and precipitation if there is one.

As described by the teacher, this quiz was used to assess student achievement within a

unit on weather. An analysis of the eight items on this quiz indicates that performance

on this assessment is a function of at least two traits; items 1, 2, 3, and 5 appear to

address the ability to read tables; items 4, 6, 7, and 8 appear to address an

understanding of the formation of snow and its relationship to temperature. Assuming
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that this is a valid grouping for these items, consider the interpretation of the overall

scores for two students on the quiz. Student A answers items 1, 2, 3, and 5 correctly and

student B answers items 4, 6, 7, and 8 correctly. Both receive the same overall score on

the quiz (under the assumption that all items were equally weighed). However, the

students would most probably have very different levels of understanding and skill

relative to the two traits addressed in the assessment.

This example implies that the convention of designing assessments that measure

multiple traits and then using a single score to designate achievement on an assessment

can mask extreme differences in student competence. To illustrate, consider Exhibit 2

which depicts a hypothetical set of assessments that might be administered over a nine-

week grading period.

Exhibit 2
Assessment and Trait Coverages Across Nine Weeks

Assessments Trait #1 Trait #2 Trait #3 Trait #4 Trait #5

1. Homework #1 (15 points) 5 points 5 points 5 points

2. Homework #2 (15 points) 5 points 5 points 5 points

3. Quiz #1 (30 points) 10 points 10 points 10 points

4. Homework #3 (20 points) 5 points 5 points 5 points 5 points

5. In-class Assignment (40 points) 5 points 5 points 10 points 10 points 10 points

6. Performance Task (60 points) 10 points 10 points 20 points 20 points

7. Quiz #2 (30 points) 5 points 10 points 15 points

8. Homework #4 (25 points) 15 points 10 points

9. Homework #5 (25 points) 10 points 10 points 5 points

10. Final Exam (90 points) 20 points 20 points 15 points 15 points 20 points

Total 350 points 60 points 75 points 60 points 75 points 80 points

5
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The nine assessments depicted in Exhibit 2 address five different traits. For each

assessment a certain number of points applies to specific traits. To demonstrate the

possible effects of these traits differentially nested within assessments, again, consider

the hypothetical scores for two students across these nine assessments. This is depicted

in Exhibit 3 (students A and B).

Exhibit 3
Scores for Two Students

Student A

Assessment I Total
Scores for
Student

1 Student's I

Scores on
Trait #1

Student's
Scores on
Trait #2

I Student's
Scores on
Trait #3

I Student's
Scores on
Trait #4

I Student's
Scores on
Trait #5

Homework #1 10/15 5 out of 5 3 out of 5 2 out of 5

Homework #2 12/15 4 out of 5 5 out of 5 3 out of 5

Quiz #1 25/30 8 out of 10 10 out of 10 7 out of 10

Homework #3 18/20 5 out of 5 5 out of 5 4 out of 5 4 out of 5

In-class
Assignment

32/40 5 out of 5 5 out of 5 5 out of 10 8 out of 10 9 out of 10

Performance
Task

40/60 10 out of 10 10 out of 10 6 out of 20 14 out of 20

Quiz #2 25/30 5 out of 5 5 out of 10 15 out of 15

Homework #4 20/25 11 out of 15 9 out of 10

Homework #5 18/25 8 out of 10 6 out of 10 4 out of 5

Final Exam 85/90 20 out of 20 18 out of 20 10 out of 15 15 out of 15 20 out of 20

285/350
(81%)

57/60
I (95%)

69/75
(92%)

38/60
(63%)

50/75
(67%)

71/80
(89%)

6 Marzano\Grading\Chap 1.100
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Student B

Assessment Total
Scores for
Student

Student's
Scores on
Trait #1

Student's
Scores on
Trait #2

Student's
Scores on
Trait #3

Student's
Scores on
Trait #4

Student's
Scores on
Trait #5

Homework #1 6/15 0 out of 5 1 out of 5 5 out of 5

Homework #2 8/15 3 out of 5 2 out of 5 3 out of 5

Quiz #1 20/30 4 out of 10 8 out of 10 8 out of 10

Homework #3 15/20 2 out of 5 4 out of 5 5 out of 5 4 out of 5

In-class
Assignment

35/40 5 out of 5 3 out of 5 10 out of 10 10 out of 10 7 out of 10

Performance
Task

50/60 8 out of 10 8 out of 10 18 out of 20 16 out of 20

Quiz #2 23/30 4 out of 5 10 out of 10 9 out of 15

Homework #4 22/25 14 out of 15 8 out of 10

Homework #5 25/25 10 out of 10 10 out of 10 5 out of 5

Final Exam 81/90 18 out of 20 16 out of 20 15 out of 15 12 out of 15 20 out of 20

285/350
(81%)

40/60
(67%)

56/75
(75%)

56/60
(93%)

68/75
(91%)

65/80
(81%)

Both students receive the same composite score of 81% or 285 out of 350 possible points.

In many grading schemes, this composite score would translate to a grade of C+ or B-.

Either way, one might assume that both students have attained the same level of

expertise relative to the traits addressed in the unit. However, an inspection of the

composite scores for the five traits provides a very different picture of the two students.

Student A has obtained relatively high scores on traits 1, 2, and 5 (i.e., 95%, 92%, and

89% respectively) and relatively low scores on traits 3 and 4 (63% and 67% respectively).

Student B demonstrates a very different pattern of achievement across the five traits.

He has performed relatively well on traits 3 and 4 (93% and 91%) relatively poorly on

7 Marzano\Grading\Chap 1.100

9



traits 1 and 2 (67% and 75%) and moderately on trait 5 (81%). The overall composite

score masks the difference across traits.

Of course, the example above assumes that the traits addressed in a grading period are

independent. In all likelihood, this would not be the case. That is, a reasonable

assumption is that traits addressed during a grading period are correlated given that all

are subcomponents of a common theme (i.e., weather). However, correlated traits do

not necessarily make for similar achievement profiles from student to student relative

to those traits. Additionally, correlations between traits are generally much lower than

might be expected, even within domains that would logically seem to have highly

related component elements. To illustrate, consider the domain of writing. Ransdell

and Levy (1996) studied the relationship among five elements of writing (i.e., purpose

and audience, word choice, organization, style, and mechanics) with college students.

An analysis of their findings indicates that the range of correlation was .23 to .73 and

the average correlation (using Fisher Z transformations) was .463. The traits within the

domain of reading are also thought to be highly correlated, yet an analysis of the

findings reported by Abbott and Berninger (1999) indicates that among six presumably

highly dependent component skills (i.e., word attacks, phonemic analysis,

comprehension, and so on), the average correlation (for fourth grade students) was .28

with a range of -.07 to .57. In short, the assumption that component skills within a

given domain are highly correlated might not be accurate.

8
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Even when highly correlated traits are involved, there can be a great deal of variation in

intertrait scores. To illustrate, consider Table 1 which contains hypothetic scores on two

traits where these traits are correlated at three levels (r = .7, .5, .3).

Table 1
Scores on Two Traits at Three Levels of Correlation

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R SD

r = .7

Trait #1 45 67 90 96

,

87 75 66

h

84 74 78 82 86 81 78 77 77.73 12.11

Trait #2 66 70 82 85 91 84 70 77 82 83 76 79 85 72 85 79.13 7.09

Abs.
Diff.

21 3 8 11 4 9 4 7 8 5 6 7 4 6 8 7.40 4.36

r= .5

Trait #2 68 71 80 82 93 85 72 75 84 35 74 77 86 70 87 79.40 7.30

Abs.
Diff.

23 6 10 14 6 10 6

.

9

_

10 7 8 9 5 8 10 9.40 4.41

r = .3

Trait #2 69 75 78 80 95 86 75 71 87 87 73 75 86 68

.

90 79.67 8.31

Abs.
Diff.

24 8 12 16 8 11 9 13 13 9 9 11 5 10 13 11.40 4.41

In constructing Table 1, the scores for trait #1 have been held constant, but the scores for

trait #2 were changed to reflect the change in relationship (i.e., correlation). As one

would expect, the absolute value of the differences between trait #1 and trait #2

becomes larger as the correlation decreases. In other words, the pattern of trait scores

from student to student becomes increasingly diverse as the correlation between traits

goes down. This means that even in the case where traits are correlated, reporting

composite scores will mask the true patterns of student achievement. Using an IRT

model, Bolt (1999) found that students who are in the middle of the competence

distribution for two correlated traits will suffer the greatest amount of profile distortion.

9 Marzano\Grading\Chap 1.100
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This finding was consistent for correlations of .3, .5, and .7.

Application Considerations

The most straightforward recommendations relative to the issue of scoring multiple

traits is to report more than one score on a multi-trait classroom assessment. To

illustrate, reconsider the science quiz depicted in Exhibit 1. The teacher would record

two scores for each student one score for the skill of reading tables; the other for the

topic of precipitation. Over a grading period, a teacher would keep track of students'

scores on the various traits addressed. (The technical support necessary for this level of

detail in record keeping is discussed in the third part of this article.) Of course, keeping

track of scores on separate, yet correlated categories of knowledge and skill brings up

the issue of combining the scores at the end of a grading period. There are at least two

approaches to this issue.

One approach is to combine trait scores in a way that reflects their intercorrelations.

Anastasi and Urbina (1997) recommend the use of a linear multiple regression equation.

To illustrate, assume it is known that the equation representing the relationship

between three traits addressed in a mathematics class is the following:

Overall
Math = .21 (Trait #1) + .21 (Trait #2) + .32 (Trait #3) + 26
Achievement

10 Marzano\Grading\Chap 1.100
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Also assume that a given student has received the following scores on the three traits:

trait #1 = 75, trait #2 = 60, and trait #3 = 90. The overall mathematics achievement score

for the student would be:

.21 (75) + .21 (60) + .32 (90) + 26 = 83.15

An issue not addressed by Anastasi and Urbina is the manner in which the regression

weights and the constant are to be computed. (Anastasi and Urbina discuss the use of a

multiple regression equation in the context of achievement batteries. In such cases, the

regression weights and the constant would be computed using data from the norming

sample.) Central to this issue is the fact that the regression weights and constant are

parameter estimates. The issue, then, can be framed as whether the parameter estimates

pertain to a class of students considered as a group, or whether parameter estimates

pertain to individual students.

At a surface level, one might reason that the more data points on which parameter

estimates are based, the more precise the estimates will be. This would suggest that a

single regression equation should be computed combining the data sets for all students

in a class. However, this approach assumes that the correlation matrix for the traits is

fixed, and the variation from student to student is due to sampling errors associated

with occasions, tasks, or both. Stated differently, this approach assumes that the

relationship among traits is the same from student to student. A contrary position

11 Marzano\Grading\Chap 1.100
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would be that the degree of relationships between traits is unique from student to

student. This position would argue for separate regression equations for each student.

It is the latter position that seems most probable from a cognitive perspective.

Anderson (1995) reviews a great deal of the research on the strength association

between elements of knowledge and skill. Virtually all of it (or at least the vast majority

of it) supports the position that the true correlation between traits within a given

domain is different from student to student. To illustrate using one example, consider

the Rescorla-Wagner theory. Anderson (1995) explains that in 1972 psychologists

Rescorla and Wagner formulated a rule for associative learning that can be stated as

follows:

AV = a (b - V)

In this equation, AV stands for the change in strength of associations between two

elements in the context of the current discussion, two traits within a given domain. V

refers to the current strength of association, b refers to the maximum strength of

association, and a refers to the rate at which an association is made. Stated in sentence

form, the Rescorla-Wagner equation says that the change in the strength of association

between two traits is a function of the rate at which an individual forms an association

between the two, multiplied by the difference between the maximum strength of

association between the two and the individual's current strength of association.

12 Marzano\Grading\Chap 1.100
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From this equation, it follows that for two students to have the same strengths of

association between two traits, they would have to (1) have the same rate, a, of making

an association between the two traits, and (2) start their learning in a given class with

the same initial strengths of association, V. (One can assume that the maximum

strength of association, b, would be the same for all students given that it depends on

the nature of the content more than the nature of the learner.) The co-occurrence of

these two events is highly unlikely. In fact, it is more probable that the parameters a

and b in the Rescorla-Wagner equation are normally distributed in a given class of

students which would imply that the distribution of strengths of association at any one

point in time between two traits would be normally distributed. In short, it is probably

unreasonable to assume that the correlations between traits are the same from student

to student and discrepancies between trait correlations from student to student are

functions of error. Thus, computing a multiple regression equation for each student

seems advisable.

A second approach to summarizing performance across traits is to use a form of profile

analysis. Anastasi and Urbina note that this approach "involves the establishment of a

minimum cutoff score" for each trait (p. 159). In the present context, then, a profile

analysis approach would require the identification of specific "cut-scores" on each of the

traits assessed throughout a grading period. The obtained scores on the traits would

not be combined in any mathematical fashion; consequently, sidestepping the issue of

the strength of relationships between traits. Yet the set of traits would be addressed as

13 Marzano\Grading\Chap 1.100
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a group, in that a low score (i.e., a score below the cut-score" on any one trait) would be

interpreted as a lack of competence relative to the entire set. Borrowing a term from

formal logic, this approach has been referred to as "conjunctive" in that the conjunction

of specific events (i.e., attainment of minimum scores on all traits) is required as

evidence for a specific level of achievement within the entire set (Plake, Hambleton, &

Jaeger, 1995). Conversely, the multiple regression approach is more "compensatory" in

that high scores on one trait can offset low scores on other traits, particularly when a

student obtains a high score on a trait with a large regression weight.

It is instructive to note that Cronbach, et al. (1997) caution against the use of conjunctive

rules for combining assessments across traits. Speaking from the perspective of

generalizability theory, they provide the following illustration: Assume that a five-

point scale with half-point intervals (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) is being used

to assess students on a given trait. Also assume that each student has been assessed

using six tasks, and each task has a standard error of .7. Finally, assume that a rule has

been established that students must obtain a minimum score of 1.0 on all six tasks to

"pass." Cronbach et al. demonstrate that within this scenario, a student with a universe

score of 3.0 will have a 22 percent chance to obtain one score below 1.0. Although

Cronbach et al.'s example applies to multiple tasks for a single trait, the same basic logic

will apply to scores across multiple traits. Each score will have an associated standard

error. The more traits that are judged conjunctively, the higher the probability that one

of the scores will take on an extreme value. Haladyna and Ross (1999-2000) have made

14
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similar cautions about the use of conjunctive rules.

AVERAGING

The second convention that works against the utility of classroom assessment as a

viable feedback mechanism, is the use of the average score as a summary of student

performance over time. There are many reasons why the convention of averaging

scores is widely accepted as the best way to summarize student achievement, not the

least of which is classical true score theory. Specifically, classical test theory as

described by Lord & Novick (1968), Gulliksen (1950), and Magnusson (1966) is

grounded in the well recognized formula:

X=t+e

where X is the observed score on a given assessment (to use terms cogent to the current

discussion), t is the true score associated with that assessment and e is the error score

associated with that assessment. Those with even a passing familiarity with

measurement theory in education are well aware of the assumptions underlying the

error component of this model; namely, that the error component is a random, latent

variable that is independent of the error component of other assessments of the same

trait (see Traub, 1997). Given these characteristics, it follows that summing over

multiple assessments will decrease or theoretically remove the error score component.

As Magnusson (1966) notes: "The greater number of parallel tests we administer, the

15
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greater the chances are that the random errors will cancel each other out. The sum of

the error scores will be zero for an infinite number of parallel tests" (p. 64). Of course,

this reasoning supports the use of the average as a summary score for a set of

assessments on a given trait the more scores that are averaged, the higher the

probability that the error component cancels out.

The assumptions underlying the true score component of the model are also well

known by educators although there are variations in descriptions of a true score. Lord

(1959) explains that a true score is "frequently defined as the average of the scores that

the examinee would make on all possible parallel tests if he did not change during the

testing process" (p. 473). Magnusson (1966) describes true score in the following way:

". . . the true score which can be predicted with complete certainty from the latent

continuum is the same for every individual from one parallel test to the other" (p. 63).

Gulliksen (1950) defines true score for a given student as ". . . the limit that the average

of his scores on a number of tests approaches, as the number of parallel tests.. .

increases without limit." (p. 28)

Common to most definitions is that the true score for a given individual on a given trait

is constant from assessment to assessment. Again, this assumption provides a strong

case for averaging. However, this assumption is commonly violated within classroom

assessment and, consequently, renders averaging an imprecise summary statistic. This

point is illuminated by a consideration of the concepts of formative and summative

16
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assessments.

The distinction between formative and summative assessment was first popularized by

Scriven in 1967 as part of an AERA monograph series on evaluation. Scriven's original

message was that a distinction should be made between programs that are being

formulated versus programs that have evolved to their final state. Evaluation takes on

different characteristics and is interpreted differently in formative versus summative

situations. This distinction was soon applied to the assessment of students.

Specifically, formative assessment was defined as occurring while a trait is being

learned. Summative assessment occurs at the end of a learning cycle (see McMillan,

2000).

One can correctly conclude that if assessments on a given trait are all summative, then a

given student's true score on a given trait remains the same from assessment to

assessment. In this case, the average score for the set of assessments is an unbiased

estimate of the student's true score assuming that error components are uncorrelated

from assessment to assessment. However, in practical terms, it is most probably true

that teachers rarely have more than one summative assessment for a given trait.

Typically, teachers spend a number of weeks introducing, providing practice in, and

fine tuning a given trait, all along the way using formative assessments as a form of

feedback to students relative to their progress. At the end of the instructional time

devoted to the trait, a comprehensive assessment is administered. Following the

17 Marzano\Grading\Chap 1.100
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assumptions underlying true score theory, this single assessment would be the only

measure that would be an appropriate estimate of the student's true score at the end of

the instruction. This scenario creates the unfortunate situation in which a single

assessment must be used to make judgments about a given student's proficiency in a

given trait. The average of the formative and summative assessments would certainly

not be an unbiased estimate of the student's true score because it would change from

assessment to assessment assuming that learning occurs.

Another way of looking at the problems associated with the average score as a

summary measure of achievement is that averaging assumes that all deviations from

the mean (in the set of scores being averaged) are random, independent errors since all

scores on all assessments are estimates of the same true score. Nunnally (1967) makes

this assumption explicit in his discussion of obtained scores: "Obtained scores are biased

estimates of true scores. Scores above the mean are biased upward. Scores below the

mean are biased downward" (p. 200). Cohen and Cohen (1975) further explain that if all

assessments measure the same true score, then there should be no pattern in the

residuals (i.e., deviations) from the mean. However, if there is a correlation between the

residuals, by definition, they are not independent and their average is not an unbiased

estimate of the true score. Quite obviously, when learning is occurring, the true score

for a given student is changing (increasing). Residuals from the mean will, therefore, be

correlated. The average score, then, for a set of assessments that are not all summative

is not an effective mathematical model for true score estimation.
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Fortunately, there are ways to model true score development as learning occurs over a

period of time and, consequently, utilize the information provided by both formative

and summative assessments. Many psychologists have noted that most learning can be

modeled using a curvilinear function, the most useful of which appears to be a power

function (i.e., y=axb, where x is the predictor variable and a and b are constants).

Initially described by Newell and Rosenbloom (1981), the "power law" appears to be

ubiquitous, applying to a great variety of learning situations. As Anderson (1995)

explains, "Since its identification by Newell and Rosenbloom, the power law has

attracted a great deal of attention in psychology, and researchers have tried to

understand why learning should take the same form in all experiments" (p. 196).

To illustrate, consider the data reported in Table 2 which is an adaptation of that

reported by Anderson (1995). The data represents a given student's scores over a

period of seven practice sessions.

Table 2
Observed and Predicted Scores Over Seven Practice Sessions

Session 1 2 3 4 5 6 7 R

Observed 53 67 78 88 92 95 94 .81
Score

Predicted 54.20 67.39 76.55 83.79 89.88 95.18 99.81
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As depicted in Table 2, the student began with a score of 53 and ended with a score of

94. Each of the seven observed scores contains true score and error score components.

The most useful mathematical model would be the one that most accurately estimates

the student's true score at the end of the seven assessments. The average for these

seven scores is .81. However, as described above, the average score does not account

for an increase in true score over the practice interval. However, if the student's

learning does adhere to the power law, then the appropriate mathematical model to

represent the student's learning at the end of the interval is a power function using the

final score in the set predicted by the model as the estimate of the student's true score

and the occasions (i.e., practice sessions) as the predictor variable. To demonstrate, a

power function was approximated by transforming both the practice session number

and the observed scores in Table 2 to their natural logs, regressing the observed scores

on the session numbers and then transforming the predicted scores back to their

original metric. Although this technique is an approximation only to a power function

(see Motulsky, 1996), the reason for its use will be discussed in the final section of this

article.

The predicted scores obtained from this procedure are presented in the third row of

Table 2. The final predicted score is 95.18. If, in fact, the student's learning followed a

power function, this is a viable estimate of the student's true score at the end of the

learning period. It is interesting to note that the final predicted score varies greatly

from the mean score (81). Even intuitively, the predicted final score appears to be a
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better candidate for the final true score than is the average score.

It should be noted that the power function is not the only possible model of true score

development. In fact, there is a set of potential candidates that include (1) a linear

function (y = ax + b), (2) an exponential function (y = aebx), (3) a logarithmic function (y

= loge X), (4) a quadratic function (y = ax + b x 2 + c), and (5) a "pseudo-power function"

(mentioned previously), derived by transforming each variable into its natural log,

computing a linear function (loge y = a loge x + b) and then transforming the predicted

scores back to their original metric (y predicted = ex).

To examine the viability of these functions, consider Table 3.

Table 3
Functions for Predicting True Scores Across Practice Sessions

Original Score 53 67 78 88 92 95 94

Power 54.20 67.39 76.55 83.79 89.88 95.18 99.91

Linear 60.32 67.22 74.11 81.00 87.89 94.79 101.68

Exponential 60.26 66.08 72.47 79.46 87.14 95.56 104.78

Logarithmic 52.96 68.92 78.25 84.88 90.02 94.21 97.76

Quadratic 52.76 67.22 78.65 87.05 92.43 94.79 94.12

"Pseudo-Power" 54.22 67.40 76.55 83.79 89.87 95.17 99.89

The first row of Table 3 contains the original set of observed scores. The second row

contains the predicted scores obtained by applying a best fitting power function
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through the original scores and then computing the predicted scores. The remaining

rows contain the predicted scores produced from their respective functions. Inspection

of Table 3 indicates that the predicted scores certainly vary to greater and lesser

degrees. Again, it is interesting to note that in all cases, the final predicted score is

considerably higher than the average score for the original set (81) indicating that the

average score is probably always an underestimate of the true score when learning

occurs across a set of assessments.

One way to judge the effectiveness of the various functions that might be used to model

true score development is to examine their squared residuals from the original set.

Table 4 presents the squared residuals for each function.

Table 4
Residuals for Various Functions

Squared Residuals Percent of Explained Variance

Power 160.80 96.01

Linear 193.68 87.29

Exponential 297.32 80.49

Logarithmic 32.21 97.89

Quadratic 1.67 99.89

Pseudo-Power 193.68 96.02

Table 4 also presents the percent of variance explained by the various regression

functions. As Table 4 indicates, the power function, logarithmic function, quadratic
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function, and pseudo-power function all explain more than 95 percent of the variance in

the observed scores. The quadratic function explains the most variance.

In summary, then, using the average score as the summary score for a set of

assessments assumes a mathematical model in which each assessment is assumed to be

an estimate of the same true score. If these assessments are mostly formative, as is the

case in most classroom assessment situations, this model is not appropriate. Rather, the

appropriate model must depict a change in true score value due to learning. One

approach to modeling true score development is to assume that learning follows a

power function. Another might be to test the viability of a number of functions using

the criterion of minimizing the squared residuals to select the best function. Given that

an appropriate function is found or selected, the best summary score for the

assessments is the final score in the set predicted by the identified function.

Application Considerations

To operationalize the modeling of true score change described above, two issues must

be addressed: (1) the issue of the appropriate number of assessments over time, and (2)

the need for a common scale across assessments. The issue of the appropriate number

of assessments over time can be broken down into two aspects: the appropriate interval

between assessments and the appropriate number of assessments.
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Willett (1988) has addressed the issue of the appropriate number of assessments in his

discussion of measuring change in learning. Quite obviously, the more assessments

(i.e., data points) the better in terms of fitting a curve through the data. However,

Willett exemplifies his approach to the measurement of knowledge change using four

data points only (or four "waves" of data to use his terminology).

It seems reasonable that teachers could fit in at least five assessments for a given trait

within a grading period especially when one considers the fact that a single test, quiz,

and so on can be used to assess more than one trait (consider the quiz depicted in

Exhibit 1). For illustrative purposes, I will assume that a teacher assigns five

assessments per trait. The issue to address, then, is how accurately can a student's true

score progression be estimated if only five data points are available? I will also assume

that a power function has been selected as the model of true score development.

Most discussions of the "power law" of learning in psychological literature assume that

the intervals between assessments are equal or nearly equal. This assumption would be

difficult if not impossible to meet in the classroom. Teachers might not have the

flexibility to give assessments in a set schedule (say every other day). Additionally, the

hiatus produced by weekends adds another mitigating factor.

There are at least two ways of addressing the issue of unequal intervals between

assessments. These are depicted in Table 5.
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Table 5
Order- and Time-Based Accounting

Occasion True Score
(y=22x45)

Order-Based
Assessment #

Order-Based
Prediction

Time-Based
Assessment #

Time-Based
Prediction

1 22.000 1 24.288 1 21.999

2 30.653

3 36.068

4 41.053

5 45.390

6 42.271 2 43.508 6 49.269

7 52.810

8 56.081

9 59.133

10 62.004

11 64.721

12 67.306 3 61.187 12 67.303

13 69.775

14 72.141

15 74.416

16 76.608 4 77.935 16 76.605

17 78.727

18 80.778

19 82.768

20 84.701 5 94.023 20 84.697

R 59.970 60.188 59.975

SD 18.567 27.512 24.991_,

The first column in Table 5 represents 20 consecutive days during which students

practice a given skill each day. The second column is entitled true score and is derived
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by applying the following power function: y= 22x45. In other words, the scores depicted

in column two of Table 5 are those one can assume will be the true scores across 20

equally spaced practice sessions given that learning follows the power function above.

Column three of Table 5 represents one way a teacher might keep track of student

achievement referred to as order-based accounting. Here, the teacher assigns five

assessments over the 20-period interval and simply numbers the assessments

consecutively without regard to differences in time intervals between them. It is easy to

envision a classroom teacher doing this. That is, it is easy to imagine a teacher

administering assessments when the curriculum allows, and then numbering these

assessments consecutively without any regard for the intervals of time between

assessments. The pertinent question relative to this discussion is how accurate is the

estimate of a student's true score at the end of the 20-day period using this order-based

accounting of assessments. To examine this issue, the true scores for these five

assessments (column 2) were regressed on the order-based assignment numbers

(column 3), and the predicted scores computed'. It is also important to note that the

pseudo-power function described above was employed in this illustration. The

predicted final score (i.e., predicted score for the 20th session) using this approach is

94.023 which is an overestimate of the true final score by 9.322.

Certainly the five assessments given to students would not produce true scores for these five occasions.
Each score would also contain an error component. However, one can assume that these components are normally
distributed and independent. Consequently, they would not add any systematic variation to the five observed scores.
For the purposes of this demonstration, we need not include an error component to each score although we can
assume that the final predicted score will include such a component.
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Column five of Table 5 depicts an alternate system of record keeping that might be

referred to as a time-based accounting system. Here, the teacher assigns an identification

number to each assessment that corresponds to the number of days students have had

to practice or review a given trait. Thus, the second assessment that is given to students

(in terms of its order) is given an assessment number of six because it occurs six days

into the instruction/assessment cycle, the third assessment (in order) is given an

assessment number of 12 because it occurs 12 days into the instruction/assessment

cycle and so on. In this system, then, assessment numbers mirror the true point in the

instruction/assessment cycle. When the true scores for these five assessments are

regressed on the time-based assessment numbers (using the pseudo-power function),

the predicted final score is 84.697 which underestimates the true final score by .004 only.

This simulation implies that the time-based system provides for a more precise

estimation of a given student's true score than the order-based system of accounting. In

fact, the implication is that the time-based system provides for a very accurate estimate

of the final true score even in the situation where only one-fourth of the data points (i.e.,

5 of 20 situations) are utilized. Again, it is important to note that both the order-based

and time-based accounting methods are more accurate estimates of the final true score

than is the average score. Specifically, the average score for assessments 1, 6, 12, 16, and

20 is 58.5722. The discrepancy between this average score and the final true score is far

greater than that between the final true score (84.701) and the predicted final score

under both accounting conditions.
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The final issue to address relative to modeling true score development is scale selection.

Obviously, a common metric must be used from assessment to assessment. The metric

that is selected (e.g., a four-point scale or a hundred-point scale) is irrelevant as long as

increases or decreases in that metric can be accurately mapped onto increases or

decreases in competence in the trait being assessed. It is probably safe to say that most

classroom teachers would simply add up points on an assessment and then divide by

the total number of points to obtain a proportion or percentage score. While this

technique does have the effect of translating all scores to a common metric, its reliance

on points presents severe problems.

For the point system to work, items on a given assessment must measure equal or

nearly equal intervals of achievement relative to the trait being addressed. If this is not

the case, then simply adding items can distort student achievement. This problem, was

dramatically illustrated in 1953 in an article by Sanders. Sanders' illustration was

analogous to that below:

Item #1:

Item #2:

Item #3:

Item #4:

1 1

1 1 1 1

1 1 1

I I

Assume that item #1 measures a certain amount of skill relative to a given trait, item #2
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measures three times the amount of skill that item #1 does; item #2 measures two times

the amount of skill as item #1, and item #4 measures one-half the amount of skill as does

item #1. Now assume that student A answers items #1 and #4 correctly, student B

answers items #2 and #3 correctly, and student C answers items #1, #3, and #4 correctly.

If one simply adds up points, it would appear that student C has the highest

competence relative to the trait, and students A and B have similar competence relative

to the trait. However, given the differences in the amount of achievement measured by

the different items, the more accurate depiction of the achievement of the three students

is presented below.

Student Units of Achievement

1 2 3 4 5 6 7

A
I (2.5)

B

C (3.5)

I (5)

Of course, this is quite a different picture of student competence than that produced by

simply adding points. Student B is actually the one who has demonstrated the most

skill relative to the trait.

Prior to Sanders' demonstration of this problem in 1953, scientist S. S. Stevens had

pointed out the issue in a landmark article published in 1946 entitled, On the Theory of

29 Marzano\Grading\Chap 1.100

31



Scales of Measurement. Basically, Stevens reasoned that while it is legitimate to assume

equal intervals between units when measuring physical factors such as length or width,

it is erroneous to assume equal intervals between units for scales used in psychology

and education. It is probably not an exaggeration to say that the stigma of "ordinal

scale" dependence has plagued educational measurement ever since. As demonstrated

above, the convention of adding up points and then converting total obtained points to

a common metric by dividing by the total number of possible points, does little to

alleviate the problems surrounding ordinal scales within educational assessment.

The problem can be framed as one of identifying a scale that represents the percentage

of content attained within a given trait. Bock (1997) addresses this in his discussion of

the history of item response theory. He notes that any score used to represent student

performance on a given trait should reflect the percent of mastery or competence in that

trait. He further argues that the percent of correct items (weighted or unweighted) in a

set of items does not necessarily convey this information:

The concept is that in a given domain of knowledge or skills to be learned, the test

should estimate the percent of competency or mastery. The estimate for a given

student, called a "domain score," refers to a percentage of the domain and not to

the particular collection of items on the test. (p. 30)

The key to developing a useful scale for assessing a given trait, then, is to have some
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way of mapping student responses on items in an assessment onto a description of

levels of competence or mastery within a given trait. At Mid-continent Research for

Education and Learning (McREL), descriptions of two general types of traits have been

used quite effectively to this end (see Marzano & Kendall, 1996). Specifically, Exhibit 4

contains general descriptions of levels of understanding and skill for two types of

knowledge two types of traits.

Exhibit 4
Descriptions of Levels of Competence for Two Types of Knowledge

Declarative Knowledge I Procedural Knowledge I

3 The student has a complete and detailed
understanding of the information important
to the trait.

3 The student can perform the skill or process
important to the trait with no significant
errors and with fluency. Additionally, the
student understands the key features of the
skill process.

2 The student has a complete understanding of
the information important to the trait but not
in great detail.

2 The student can perform the skill or process
important to the trait without making
significant errors. '

1 The student has an incomplete under-
standing of the trait and/or misconceptions
about some of the information. However, the
student maintains a basic understanding of
the trait.

1 The student makes some significant errors
when performing the skill or process
important to the trait but still accomplishes a
rough approximation of the skill or process.

0 The student's understanding of the trait is so
incomplete or has so many misconceptions
that the student cannot be said to understand
the trait.

0 The student makes so many errors in
performing the skill or process important to
the trait that he or she cannot actually
perform the skill or process.

The left-hand portion of Exhibit 4 contains a description of levels of understanding for

declarative knowledge; the right-hand side contains a description of levels of skill for

procedural knowledge. Snow and Lohman (1989) note that the distinction between
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declarative and procedural knowledge should be a fundamental concept in modern

assessment theory. Specifically, they note that cognitive psychology has articulated

many distinctions but that between declarative and procedural knowledge seems "basic

for educational measurement" (p. 266). More pointedly, the distinction between

declarative and procedural knowledge might help educational measurement move

away from its reliance on ordinal scales in that it allows for the mapping of student

responses on an assessment onto a description of development within a given trait. In

Bock's words, it allows for an estimate of a student's "domain score" without the

constraints imposed by points.

To illustrate, consider the scale for procedural knowledge. The bottom level of the scale

certainly represents a zero point in skill inability to execute the skill (a characteristic of

ratio scales), and the top level of the scale represents mastery. The extent to which the

interim two levels are equidistant between the two end points, then, determines the

extent to which the scale has interval (perhaps even ratio) characteristics. At this point,

no claim can be made that levels 1 and 2 on the scale are equidistant from each other

and from the end points. However, a case can be made that they are better

approximations to equidistant points than can be obtained using the point method.

This point is best made from the perspective of their respective "frames of reference."

Scales like those in Exhibit 4 start with a description of levels of understanding or skill

for a given trait. The latent continuum of trait development is explicit from the outset

in this scoring system. The task of the teacher scoring a student's assessment is to
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accurately map the student's responses onto the explicit description of this continuum.

Certainly, error will be present in this approach, but, at least, the latent continuum of

the trait being measured is explicit from the outset. The point system, on the other

hand, does not start with a consideration of the latent continuum for the trait. Rather, it

simply assumes that the more points accumulated, the more competence has been

exhibited on the trait. As illustrated above, if items measure differing amounts of

knowledge or skill relative to the trait, then the total number of points might not

provide an accurate mapping onto this continuum. Certainly, a great deal of research is

needed to establish the conditions under which the most accurate mapping onto a trait

continuum is accomplished. However, at the outset, the use of scales like those

depicted in Exhibit 4, looks more promising relative to its propensity to approximate an

ordinal scale than does the point method.

THE CRITICAL ROLE OF TECHNOLOGY

The suggestions made in this paper can be summarized in the following way:

1. Classroom assessments should be given throughout the cycle of

instruction and learning that is, both formative and summative

assessments should be administered and considered as a set that

represents learning over time.

2. Separate scores should be assigned to each trait addressed in a given

classroom assessment.
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3. A common scale should be used for all traits on all assessments. The

use of descriptions of levels of competence for declarative and

procedural knowledge was discussed.

4. Summary scores for the various traits should be combined in a way

that acknowledges their dependence. Use of a multiple regression

equation for each student is a viable option.

5. The summary scores for a given trait should be estimated by

predicting the final score in the set of scores based on some

mathematical model of learning. Power functions were discussed as

appropriate models.

To implement these suggestions would be virtually impossible within current methods

of record keeping in which teachers record student scores on assessments by hand.

Given suggestion #2 above, the record-keeping load on a teacher would be inordinate.

Similarly, suggestions 4 and 5 above would render computation impossible. However,

relatively straightforward computer software can be designed or adapted to address

these record-keeping and computational issues. To illustrate, consider the software

designed by Strategic Learning Technologies (SLT). It allows teachers to keep track of

student scores on as many as 12 traits throughout a grading period using their choice of

common scales. Scores are displayed in a spreadsheet format for each student each

column representing time-ordered scores for that trait. The average score along with

the predicted final score are also reported for each trait. These summary scores are
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recomputed each time new trait scores are added to a student's file. The method used

to compute the predicted final score is the pseudo-power function described previously.

It is used because: (1) it so closely approximates a power function (as depicted in Tables

3 and 5), and (2) the regression weights and intercept are easily calculated.

While the SLT program does not implement all of the suggestions made in this article, it

represents a prototype of programs to come. Ideally, in the near future, the critical

process of scoring assessments and summarizing student performance will be done

under the guidance of an appropriate theory base and with the use of appropriate

computational algorithms. Programs like that developed by SLT that allow teachers to

go beyond the use of simple weighted averages for composite scores are necessary to

that end.
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